1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Compute the type of the array we're initializing. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 125 NumElements); 126 QualType ElementType = Context.getObjCIdType().withConst(); 127 QualType ElementArrayType 128 = Context.getConstantArrayType(ElementType, APNumElements, 129 ArrayType::Normal, /*IndexTypeQuals=*/0); 130 131 // Allocate the temporary array(s). 132 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 133 Address Keys = Address::invalid(); 134 if (DLE) 135 Keys = CreateMemTemp(ElementArrayType, "keys"); 136 137 // In ARC, we may need to do extra work to keep all the keys and 138 // values alive until after the call. 139 SmallVector<llvm::Value *, 16> NeededObjects; 140 bool TrackNeededObjects = 141 (getLangOpts().ObjCAutoRefCount && 142 CGM.getCodeGenOpts().OptimizationLevel != 0); 143 144 // Perform the actual initialialization of the array(s). 145 for (uint64_t i = 0; i < NumElements; i++) { 146 if (ALE) { 147 // Emit the element and store it to the appropriate array slot. 148 const Expr *Rhs = ALE->getElement(i); 149 LValue LV = MakeAddrLValue( 150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 151 ElementType, AlignmentSource::Decl); 152 153 llvm::Value *value = EmitScalarExpr(Rhs); 154 EmitStoreThroughLValue(RValue::get(value), LV, true); 155 if (TrackNeededObjects) { 156 NeededObjects.push_back(value); 157 } 158 } else { 159 // Emit the key and store it to the appropriate array slot. 160 const Expr *Key = DLE->getKeyValueElement(i).Key; 161 LValue KeyLV = MakeAddrLValue( 162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 163 ElementType, AlignmentSource::Decl); 164 llvm::Value *keyValue = EmitScalarExpr(Key); 165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 166 167 // Emit the value and store it to the appropriate array slot. 168 const Expr *Value = DLE->getKeyValueElement(i).Value; 169 LValue ValueLV = MakeAddrLValue( 170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 171 ElementType, AlignmentSource::Decl); 172 llvm::Value *valueValue = EmitScalarExpr(Value); 173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 174 if (TrackNeededObjects) { 175 NeededObjects.push_back(keyValue); 176 NeededObjects.push_back(valueValue); 177 } 178 } 179 } 180 181 // Generate the argument list. 182 CallArgList Args; 183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 184 const ParmVarDecl *argDecl = *PI++; 185 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 186 Args.add(RValue::get(Objects.getPointer()), ArgQT); 187 if (DLE) { 188 argDecl = *PI++; 189 ArgQT = argDecl->getType().getUnqualifiedType(); 190 Args.add(RValue::get(Keys.getPointer()), ArgQT); 191 } 192 argDecl = *PI; 193 ArgQT = argDecl->getType().getUnqualifiedType(); 194 llvm::Value *Count = 195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 196 Args.add(RValue::get(Count), ArgQT); 197 198 // Generate a reference to the class pointer, which will be the receiver. 199 Selector Sel = MethodWithObjects->getSelector(); 200 QualType ResultType = E->getType(); 201 const ObjCObjectPointerType *InterfacePointerType 202 = ResultType->getAsObjCInterfacePointerType(); 203 ObjCInterfaceDecl *Class 204 = InterfacePointerType->getObjectType()->getInterface(); 205 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 206 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 207 208 // Generate the message send. 209 RValue result = Runtime.GenerateMessageSend( 210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 211 Receiver, Args, Class, MethodWithObjects); 212 213 // The above message send needs these objects, but in ARC they are 214 // passed in a buffer that is essentially __unsafe_unretained. 215 // Therefore we must prevent the optimizer from releasing them until 216 // after the call. 217 if (TrackNeededObjects) { 218 EmitARCIntrinsicUse(NeededObjects); 219 } 220 221 return Builder.CreateBitCast(result.getScalarVal(), 222 ConvertType(E->getType())); 223 } 224 225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 227 } 228 229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 230 const ObjCDictionaryLiteral *E) { 231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 232 } 233 234 /// Emit a selector. 235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 236 // Untyped selector. 237 // Note that this implementation allows for non-constant strings to be passed 238 // as arguments to @selector(). Currently, the only thing preventing this 239 // behaviour is the type checking in the front end. 240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 244 // FIXME: This should pass the Decl not the name. 245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 246 } 247 248 /// \brief Adjust the type of an Objective-C object that doesn't match up due 249 /// to type erasure at various points, e.g., related result types or the use 250 /// of parameterized classes. 251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 252 RValue Result) { 253 if (!ExpT->isObjCRetainableType()) 254 return Result; 255 256 // If the converted types are the same, we're done. 257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 258 if (ExpLLVMTy == Result.getScalarVal()->getType()) 259 return Result; 260 261 // We have applied a substitution. Cast the rvalue appropriately. 262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 263 ExpLLVMTy)); 264 } 265 266 /// Decide whether to extend the lifetime of the receiver of a 267 /// returns-inner-pointer message. 268 static bool 269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 270 switch (message->getReceiverKind()) { 271 272 // For a normal instance message, we should extend unless the 273 // receiver is loaded from a variable with precise lifetime. 274 case ObjCMessageExpr::Instance: { 275 const Expr *receiver = message->getInstanceReceiver(); 276 277 // Look through OVEs. 278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 279 if (opaque->getSourceExpr()) 280 receiver = opaque->getSourceExpr()->IgnoreParens(); 281 } 282 283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 285 receiver = ice->getSubExpr()->IgnoreParens(); 286 287 // Look through OVEs. 288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 289 if (opaque->getSourceExpr()) 290 receiver = opaque->getSourceExpr()->IgnoreParens(); 291 } 292 293 // Only __strong variables. 294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 295 return true; 296 297 // All ivars and fields have precise lifetime. 298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 299 return false; 300 301 // Otherwise, check for variables. 302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 303 if (!declRef) return true; 304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 305 if (!var) return true; 306 307 // All variables have precise lifetime except local variables with 308 // automatic storage duration that aren't specially marked. 309 return (var->hasLocalStorage() && 310 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 311 } 312 313 case ObjCMessageExpr::Class: 314 case ObjCMessageExpr::SuperClass: 315 // It's never necessary for class objects. 316 return false; 317 318 case ObjCMessageExpr::SuperInstance: 319 // We generally assume that 'self' lives throughout a method call. 320 return false; 321 } 322 323 llvm_unreachable("invalid receiver kind"); 324 } 325 326 /// Given an expression of ObjC pointer type, check whether it was 327 /// immediately loaded from an ARC __weak l-value. 328 static const Expr *findWeakLValue(const Expr *E) { 329 assert(E->getType()->isObjCRetainableType()); 330 E = E->IgnoreParens(); 331 if (auto CE = dyn_cast<CastExpr>(E)) { 332 if (CE->getCastKind() == CK_LValueToRValue) { 333 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 334 return CE->getSubExpr(); 335 } 336 } 337 338 return nullptr; 339 } 340 341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 342 ReturnValueSlot Return) { 343 // Only the lookup mechanism and first two arguments of the method 344 // implementation vary between runtimes. We can get the receiver and 345 // arguments in generic code. 346 347 bool isDelegateInit = E->isDelegateInitCall(); 348 349 const ObjCMethodDecl *method = E->getMethodDecl(); 350 351 // If the method is -retain, and the receiver's being loaded from 352 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 353 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 354 method->getMethodFamily() == OMF_retain) { 355 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 356 LValue lvalue = EmitLValue(lvalueExpr); 357 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 358 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 359 } 360 } 361 362 // We don't retain the receiver in delegate init calls, and this is 363 // safe because the receiver value is always loaded from 'self', 364 // which we zero out. We don't want to Block_copy block receivers, 365 // though. 366 bool retainSelf = 367 (!isDelegateInit && 368 CGM.getLangOpts().ObjCAutoRefCount && 369 method && 370 method->hasAttr<NSConsumesSelfAttr>()); 371 372 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 373 bool isSuperMessage = false; 374 bool isClassMessage = false; 375 ObjCInterfaceDecl *OID = nullptr; 376 // Find the receiver 377 QualType ReceiverType; 378 llvm::Value *Receiver = nullptr; 379 switch (E->getReceiverKind()) { 380 case ObjCMessageExpr::Instance: 381 ReceiverType = E->getInstanceReceiver()->getType(); 382 if (retainSelf) { 383 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 384 E->getInstanceReceiver()); 385 Receiver = ter.getPointer(); 386 if (ter.getInt()) retainSelf = false; 387 } else 388 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 389 break; 390 391 case ObjCMessageExpr::Class: { 392 ReceiverType = E->getClassReceiver(); 393 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 394 assert(ObjTy && "Invalid Objective-C class message send"); 395 OID = ObjTy->getInterface(); 396 assert(OID && "Invalid Objective-C class message send"); 397 Receiver = Runtime.GetClass(*this, OID); 398 isClassMessage = true; 399 break; 400 } 401 402 case ObjCMessageExpr::SuperInstance: 403 ReceiverType = E->getSuperType(); 404 Receiver = LoadObjCSelf(); 405 isSuperMessage = true; 406 break; 407 408 case ObjCMessageExpr::SuperClass: 409 ReceiverType = E->getSuperType(); 410 Receiver = LoadObjCSelf(); 411 isSuperMessage = true; 412 isClassMessage = true; 413 break; 414 } 415 416 if (retainSelf) 417 Receiver = EmitARCRetainNonBlock(Receiver); 418 419 // In ARC, we sometimes want to "extend the lifetime" 420 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 421 // messages. 422 if (getLangOpts().ObjCAutoRefCount && method && 423 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 424 shouldExtendReceiverForInnerPointerMessage(E)) 425 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 426 427 QualType ResultType = method ? method->getReturnType() : E->getType(); 428 429 CallArgList Args; 430 EmitCallArgs(Args, method, E->arguments()); 431 432 // For delegate init calls in ARC, do an unsafe store of null into 433 // self. This represents the call taking direct ownership of that 434 // value. We have to do this after emitting the other call 435 // arguments because they might also reference self, but we don't 436 // have to worry about any of them modifying self because that would 437 // be an undefined read and write of an object in unordered 438 // expressions. 439 if (isDelegateInit) { 440 assert(getLangOpts().ObjCAutoRefCount && 441 "delegate init calls should only be marked in ARC"); 442 443 // Do an unsafe store of null into self. 444 Address selfAddr = 445 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 446 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 447 } 448 449 RValue result; 450 if (isSuperMessage) { 451 // super is only valid in an Objective-C method 452 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 453 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 454 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 455 E->getSelector(), 456 OMD->getClassInterface(), 457 isCategoryImpl, 458 Receiver, 459 isClassMessage, 460 Args, 461 method); 462 } else { 463 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 464 E->getSelector(), 465 Receiver, Args, OID, 466 method); 467 } 468 469 // For delegate init calls in ARC, implicitly store the result of 470 // the call back into self. This takes ownership of the value. 471 if (isDelegateInit) { 472 Address selfAddr = 473 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 474 llvm::Value *newSelf = result.getScalarVal(); 475 476 // The delegate return type isn't necessarily a matching type; in 477 // fact, it's quite likely to be 'id'. 478 llvm::Type *selfTy = selfAddr.getElementType(); 479 newSelf = Builder.CreateBitCast(newSelf, selfTy); 480 481 Builder.CreateStore(newSelf, selfAddr); 482 } 483 484 return AdjustObjCObjectType(*this, E->getType(), result); 485 } 486 487 namespace { 488 struct FinishARCDealloc final : EHScopeStack::Cleanup { 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 491 492 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 493 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 494 if (!iface->getSuperClass()) return; 495 496 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 497 498 // Call [super dealloc] if we have a superclass. 499 llvm::Value *self = CGF.LoadObjCSelf(); 500 501 CallArgList args; 502 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 503 CGF.getContext().VoidTy, 504 method->getSelector(), 505 iface, 506 isCategory, 507 self, 508 /*is class msg*/ false, 509 args, 510 method); 511 } 512 }; 513 } 514 515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 516 /// the LLVM function and sets the other context used by 517 /// CodeGenFunction. 518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 519 const ObjCContainerDecl *CD) { 520 SourceLocation StartLoc = OMD->getLocStart(); 521 FunctionArgList args; 522 // Check if we should generate debug info for this method. 523 if (OMD->hasAttr<NoDebugAttr>()) 524 DebugInfo = nullptr; // disable debug info indefinitely for this function 525 526 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 527 528 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 529 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 530 531 args.push_back(OMD->getSelfDecl()); 532 args.push_back(OMD->getCmdDecl()); 533 534 args.append(OMD->param_begin(), OMD->param_end()); 535 536 CurGD = OMD; 537 CurEHLocation = OMD->getLocEnd(); 538 539 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 540 OMD->getLocation(), StartLoc); 541 542 // In ARC, certain methods get an extra cleanup. 543 if (CGM.getLangOpts().ObjCAutoRefCount && 544 OMD->isInstanceMethod() && 545 OMD->getSelector().isUnarySelector()) { 546 const IdentifierInfo *ident = 547 OMD->getSelector().getIdentifierInfoForSlot(0); 548 if (ident->isStr("dealloc")) 549 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 550 } 551 } 552 553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 554 LValue lvalue, QualType type); 555 556 /// Generate an Objective-C method. An Objective-C method is a C function with 557 /// its pointer, name, and types registered in the class struture. 558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 559 StartObjCMethod(OMD, OMD->getClassInterface()); 560 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 561 assert(isa<CompoundStmt>(OMD->getBody())); 562 incrementProfileCounter(OMD->getBody()); 563 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 564 FinishFunction(OMD->getBodyRBrace()); 565 } 566 567 /// emitStructGetterCall - Call the runtime function to load a property 568 /// into the return value slot. 569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 570 bool isAtomic, bool hasStrong) { 571 ASTContext &Context = CGF.getContext(); 572 573 Address src = 574 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 575 .getAddress(); 576 577 // objc_copyStruct (ReturnValue, &structIvar, 578 // sizeof (Type of Ivar), isAtomic, false); 579 CallArgList args; 580 581 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 582 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 583 584 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 585 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 586 587 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 588 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 589 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 590 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 591 592 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 593 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 594 FunctionType::ExtInfo(), 595 RequiredArgs::All), 596 fn, ReturnValueSlot(), args); 597 } 598 599 /// Determine whether the given architecture supports unaligned atomic 600 /// accesses. They don't have to be fast, just faster than a function 601 /// call and a mutex. 602 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 603 // FIXME: Allow unaligned atomic load/store on x86. (It is not 604 // currently supported by the backend.) 605 return 0; 606 } 607 608 /// Return the maximum size that permits atomic accesses for the given 609 /// architecture. 610 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 611 llvm::Triple::ArchType arch) { 612 // ARM has 8-byte atomic accesses, but it's not clear whether we 613 // want to rely on them here. 614 615 // In the default case, just assume that any size up to a pointer is 616 // fine given adequate alignment. 617 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 618 } 619 620 namespace { 621 class PropertyImplStrategy { 622 public: 623 enum StrategyKind { 624 /// The 'native' strategy is to use the architecture's provided 625 /// reads and writes. 626 Native, 627 628 /// Use objc_setProperty and objc_getProperty. 629 GetSetProperty, 630 631 /// Use objc_setProperty for the setter, but use expression 632 /// evaluation for the getter. 633 SetPropertyAndExpressionGet, 634 635 /// Use objc_copyStruct. 636 CopyStruct, 637 638 /// The 'expression' strategy is to emit normal assignment or 639 /// lvalue-to-rvalue expressions. 640 Expression 641 }; 642 643 StrategyKind getKind() const { return StrategyKind(Kind); } 644 645 bool hasStrongMember() const { return HasStrong; } 646 bool isAtomic() const { return IsAtomic; } 647 bool isCopy() const { return IsCopy; } 648 649 CharUnits getIvarSize() const { return IvarSize; } 650 CharUnits getIvarAlignment() const { return IvarAlignment; } 651 652 PropertyImplStrategy(CodeGenModule &CGM, 653 const ObjCPropertyImplDecl *propImpl); 654 655 private: 656 unsigned Kind : 8; 657 unsigned IsAtomic : 1; 658 unsigned IsCopy : 1; 659 unsigned HasStrong : 1; 660 661 CharUnits IvarSize; 662 CharUnits IvarAlignment; 663 }; 664 } 665 666 /// Pick an implementation strategy for the given property synthesis. 667 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 668 const ObjCPropertyImplDecl *propImpl) { 669 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 670 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 671 672 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 673 IsAtomic = prop->isAtomic(); 674 HasStrong = false; // doesn't matter here. 675 676 // Evaluate the ivar's size and alignment. 677 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 678 QualType ivarType = ivar->getType(); 679 std::tie(IvarSize, IvarAlignment) = 680 CGM.getContext().getTypeInfoInChars(ivarType); 681 682 // If we have a copy property, we always have to use getProperty/setProperty. 683 // TODO: we could actually use setProperty and an expression for non-atomics. 684 if (IsCopy) { 685 Kind = GetSetProperty; 686 return; 687 } 688 689 // Handle retain. 690 if (setterKind == ObjCPropertyDecl::Retain) { 691 // In GC-only, there's nothing special that needs to be done. 692 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 693 // fallthrough 694 695 // In ARC, if the property is non-atomic, use expression emission, 696 // which translates to objc_storeStrong. This isn't required, but 697 // it's slightly nicer. 698 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 699 // Using standard expression emission for the setter is only 700 // acceptable if the ivar is __strong, which won't be true if 701 // the property is annotated with __attribute__((NSObject)). 702 // TODO: falling all the way back to objc_setProperty here is 703 // just laziness, though; we could still use objc_storeStrong 704 // if we hacked it right. 705 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 706 Kind = Expression; 707 else 708 Kind = SetPropertyAndExpressionGet; 709 return; 710 711 // Otherwise, we need to at least use setProperty. However, if 712 // the property isn't atomic, we can use normal expression 713 // emission for the getter. 714 } else if (!IsAtomic) { 715 Kind = SetPropertyAndExpressionGet; 716 return; 717 718 // Otherwise, we have to use both setProperty and getProperty. 719 } else { 720 Kind = GetSetProperty; 721 return; 722 } 723 } 724 725 // If we're not atomic, just use expression accesses. 726 if (!IsAtomic) { 727 Kind = Expression; 728 return; 729 } 730 731 // Properties on bitfield ivars need to be emitted using expression 732 // accesses even if they're nominally atomic. 733 if (ivar->isBitField()) { 734 Kind = Expression; 735 return; 736 } 737 738 // GC-qualified or ARC-qualified ivars need to be emitted as 739 // expressions. This actually works out to being atomic anyway, 740 // except for ARC __strong, but that should trigger the above code. 741 if (ivarType.hasNonTrivialObjCLifetime() || 742 (CGM.getLangOpts().getGC() && 743 CGM.getContext().getObjCGCAttrKind(ivarType))) { 744 Kind = Expression; 745 return; 746 } 747 748 // Compute whether the ivar has strong members. 749 if (CGM.getLangOpts().getGC()) 750 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 751 HasStrong = recordType->getDecl()->hasObjectMember(); 752 753 // We can never access structs with object members with a native 754 // access, because we need to use write barriers. This is what 755 // objc_copyStruct is for. 756 if (HasStrong) { 757 Kind = CopyStruct; 758 return; 759 } 760 761 // Otherwise, this is target-dependent and based on the size and 762 // alignment of the ivar. 763 764 // If the size of the ivar is not a power of two, give up. We don't 765 // want to get into the business of doing compare-and-swaps. 766 if (!IvarSize.isPowerOfTwo()) { 767 Kind = CopyStruct; 768 return; 769 } 770 771 llvm::Triple::ArchType arch = 772 CGM.getTarget().getTriple().getArch(); 773 774 // Most architectures require memory to fit within a single cache 775 // line, so the alignment has to be at least the size of the access. 776 // Otherwise we have to grab a lock. 777 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 778 Kind = CopyStruct; 779 return; 780 } 781 782 // If the ivar's size exceeds the architecture's maximum atomic 783 // access size, we have to use CopyStruct. 784 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 785 Kind = CopyStruct; 786 return; 787 } 788 789 // Otherwise, we can use native loads and stores. 790 Kind = Native; 791 } 792 793 /// \brief Generate an Objective-C property getter function. 794 /// 795 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 796 /// is illegal within a category. 797 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 798 const ObjCPropertyImplDecl *PID) { 799 llvm::Constant *AtomicHelperFn = 800 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 801 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 802 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 803 assert(OMD && "Invalid call to generate getter (empty method)"); 804 StartObjCMethod(OMD, IMP->getClassInterface()); 805 806 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 807 808 FinishFunction(); 809 } 810 811 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 812 const Expr *getter = propImpl->getGetterCXXConstructor(); 813 if (!getter) return true; 814 815 // Sema only makes only of these when the ivar has a C++ class type, 816 // so the form is pretty constrained. 817 818 // If the property has a reference type, we might just be binding a 819 // reference, in which case the result will be a gl-value. We should 820 // treat this as a non-trivial operation. 821 if (getter->isGLValue()) 822 return false; 823 824 // If we selected a trivial copy-constructor, we're okay. 825 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 826 return (construct->getConstructor()->isTrivial()); 827 828 // The constructor might require cleanups (in which case it's never 829 // trivial). 830 assert(isa<ExprWithCleanups>(getter)); 831 return false; 832 } 833 834 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 835 /// copy the ivar into the resturn slot. 836 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 837 llvm::Value *returnAddr, 838 ObjCIvarDecl *ivar, 839 llvm::Constant *AtomicHelperFn) { 840 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 841 // AtomicHelperFn); 842 CallArgList args; 843 844 // The 1st argument is the return Slot. 845 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 846 847 // The 2nd argument is the address of the ivar. 848 llvm::Value *ivarAddr = 849 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 850 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 851 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 852 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 853 854 // Third argument is the helper function. 855 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 856 857 llvm::Value *copyCppAtomicObjectFn = 858 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 859 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 860 args, 861 FunctionType::ExtInfo(), 862 RequiredArgs::All), 863 copyCppAtomicObjectFn, ReturnValueSlot(), args); 864 } 865 866 void 867 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 868 const ObjCPropertyImplDecl *propImpl, 869 const ObjCMethodDecl *GetterMethodDecl, 870 llvm::Constant *AtomicHelperFn) { 871 // If there's a non-trivial 'get' expression, we just have to emit that. 872 if (!hasTrivialGetExpr(propImpl)) { 873 if (!AtomicHelperFn) { 874 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 875 /*nrvo*/ nullptr); 876 EmitReturnStmt(ret); 877 } 878 else { 879 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 880 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 881 ivar, AtomicHelperFn); 882 } 883 return; 884 } 885 886 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 887 QualType propType = prop->getType(); 888 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 889 890 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 891 892 // Pick an implementation strategy. 893 PropertyImplStrategy strategy(CGM, propImpl); 894 switch (strategy.getKind()) { 895 case PropertyImplStrategy::Native: { 896 // We don't need to do anything for a zero-size struct. 897 if (strategy.getIvarSize().isZero()) 898 return; 899 900 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 901 902 // Currently, all atomic accesses have to be through integer 903 // types, so there's no point in trying to pick a prettier type. 904 llvm::Type *bitcastType = 905 llvm::Type::getIntNTy(getLLVMContext(), 906 getContext().toBits(strategy.getIvarSize())); 907 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 908 909 // Perform an atomic load. This does not impose ordering constraints. 910 Address ivarAddr = LV.getAddress(); 911 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 912 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 913 load->setAtomic(llvm::Unordered); 914 915 // Store that value into the return address. Doing this with a 916 // bitcast is likely to produce some pretty ugly IR, but it's not 917 // the *most* terrible thing in the world. 918 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 919 920 // Make sure we don't do an autorelease. 921 AutoreleaseResult = false; 922 return; 923 } 924 925 case PropertyImplStrategy::GetSetProperty: { 926 llvm::Value *getPropertyFn = 927 CGM.getObjCRuntime().GetPropertyGetFunction(); 928 if (!getPropertyFn) { 929 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 930 return; 931 } 932 933 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 934 // FIXME: Can't this be simpler? This might even be worse than the 935 // corresponding gcc code. 936 llvm::Value *cmd = 937 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 938 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 939 llvm::Value *ivarOffset = 940 EmitIvarOffset(classImpl->getClassInterface(), ivar); 941 942 CallArgList args; 943 args.add(RValue::get(self), getContext().getObjCIdType()); 944 args.add(RValue::get(cmd), getContext().getObjCSelType()); 945 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 946 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 947 getContext().BoolTy); 948 949 // FIXME: We shouldn't need to get the function info here, the 950 // runtime already should have computed it to build the function. 951 llvm::Instruction *CallInstruction; 952 RValue RV = EmitCall( 953 getTypes().arrangeFreeFunctionCall( 954 propType, args, FunctionType::ExtInfo(), RequiredArgs::All), 955 getPropertyFn, ReturnValueSlot(), args, CGCalleeInfo(), 956 &CallInstruction); 957 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 958 call->setTailCall(); 959 960 // We need to fix the type here. Ivars with copy & retain are 961 // always objects so we don't need to worry about complex or 962 // aggregates. 963 RV = RValue::get(Builder.CreateBitCast( 964 RV.getScalarVal(), 965 getTypes().ConvertType(getterMethod->getReturnType()))); 966 967 EmitReturnOfRValue(RV, propType); 968 969 // objc_getProperty does an autorelease, so we should suppress ours. 970 AutoreleaseResult = false; 971 972 return; 973 } 974 975 case PropertyImplStrategy::CopyStruct: 976 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 977 strategy.hasStrongMember()); 978 return; 979 980 case PropertyImplStrategy::Expression: 981 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 982 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 983 984 QualType ivarType = ivar->getType(); 985 switch (getEvaluationKind(ivarType)) { 986 case TEK_Complex: { 987 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 988 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 989 /*init*/ true); 990 return; 991 } 992 case TEK_Aggregate: 993 // The return value slot is guaranteed to not be aliased, but 994 // that's not necessarily the same as "on the stack", so 995 // we still potentially need objc_memmove_collectable. 996 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 997 return; 998 case TEK_Scalar: { 999 llvm::Value *value; 1000 if (propType->isReferenceType()) { 1001 value = LV.getAddress().getPointer(); 1002 } else { 1003 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1004 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1005 if (getLangOpts().ObjCAutoRefCount) { 1006 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1007 } else { 1008 value = EmitARCLoadWeak(LV.getAddress()); 1009 } 1010 1011 // Otherwise we want to do a simple load, suppressing the 1012 // final autorelease. 1013 } else { 1014 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1015 AutoreleaseResult = false; 1016 } 1017 1018 value = Builder.CreateBitCast(value, ConvertType(propType)); 1019 value = Builder.CreateBitCast( 1020 value, ConvertType(GetterMethodDecl->getReturnType())); 1021 } 1022 1023 EmitReturnOfRValue(RValue::get(value), propType); 1024 return; 1025 } 1026 } 1027 llvm_unreachable("bad evaluation kind"); 1028 } 1029 1030 } 1031 llvm_unreachable("bad @property implementation strategy!"); 1032 } 1033 1034 /// emitStructSetterCall - Call the runtime function to store the value 1035 /// from the first formal parameter into the given ivar. 1036 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1037 ObjCIvarDecl *ivar) { 1038 // objc_copyStruct (&structIvar, &Arg, 1039 // sizeof (struct something), true, false); 1040 CallArgList args; 1041 1042 // The first argument is the address of the ivar. 1043 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1044 CGF.LoadObjCSelf(), ivar, 0) 1045 .getPointer(); 1046 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1047 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1048 1049 // The second argument is the address of the parameter variable. 1050 ParmVarDecl *argVar = *OMD->param_begin(); 1051 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1052 VK_LValue, SourceLocation()); 1053 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1054 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1055 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1056 1057 // The third argument is the sizeof the type. 1058 llvm::Value *size = 1059 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1060 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1061 1062 // The fourth argument is the 'isAtomic' flag. 1063 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1064 1065 // The fifth argument is the 'hasStrong' flag. 1066 // FIXME: should this really always be false? 1067 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1068 1069 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1070 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1071 args, 1072 FunctionType::ExtInfo(), 1073 RequiredArgs::All), 1074 copyStructFn, ReturnValueSlot(), args); 1075 } 1076 1077 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1078 /// the value from the first formal parameter into the given ivar, using 1079 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1080 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1081 ObjCMethodDecl *OMD, 1082 ObjCIvarDecl *ivar, 1083 llvm::Constant *AtomicHelperFn) { 1084 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1085 // AtomicHelperFn); 1086 CallArgList args; 1087 1088 // The first argument is the address of the ivar. 1089 llvm::Value *ivarAddr = 1090 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1091 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1092 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1093 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1094 1095 // The second argument is the address of the parameter variable. 1096 ParmVarDecl *argVar = *OMD->param_begin(); 1097 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1098 VK_LValue, SourceLocation()); 1099 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1100 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1101 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1102 1103 // Third argument is the helper function. 1104 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1105 1106 llvm::Value *copyCppAtomicObjectFn = 1107 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1108 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1109 args, 1110 FunctionType::ExtInfo(), 1111 RequiredArgs::All), 1112 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1113 } 1114 1115 1116 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1117 Expr *setter = PID->getSetterCXXAssignment(); 1118 if (!setter) return true; 1119 1120 // Sema only makes only of these when the ivar has a C++ class type, 1121 // so the form is pretty constrained. 1122 1123 // An operator call is trivial if the function it calls is trivial. 1124 // This also implies that there's nothing non-trivial going on with 1125 // the arguments, because operator= can only be trivial if it's a 1126 // synthesized assignment operator and therefore both parameters are 1127 // references. 1128 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1129 if (const FunctionDecl *callee 1130 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1131 if (callee->isTrivial()) 1132 return true; 1133 return false; 1134 } 1135 1136 assert(isa<ExprWithCleanups>(setter)); 1137 return false; 1138 } 1139 1140 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1141 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1142 return false; 1143 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1144 } 1145 1146 void 1147 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1148 const ObjCPropertyImplDecl *propImpl, 1149 llvm::Constant *AtomicHelperFn) { 1150 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1151 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1152 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1153 1154 // Just use the setter expression if Sema gave us one and it's 1155 // non-trivial. 1156 if (!hasTrivialSetExpr(propImpl)) { 1157 if (!AtomicHelperFn) 1158 // If non-atomic, assignment is called directly. 1159 EmitStmt(propImpl->getSetterCXXAssignment()); 1160 else 1161 // If atomic, assignment is called via a locking api. 1162 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1163 AtomicHelperFn); 1164 return; 1165 } 1166 1167 PropertyImplStrategy strategy(CGM, propImpl); 1168 switch (strategy.getKind()) { 1169 case PropertyImplStrategy::Native: { 1170 // We don't need to do anything for a zero-size struct. 1171 if (strategy.getIvarSize().isZero()) 1172 return; 1173 1174 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1175 1176 LValue ivarLValue = 1177 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1178 Address ivarAddr = ivarLValue.getAddress(); 1179 1180 // Currently, all atomic accesses have to be through integer 1181 // types, so there's no point in trying to pick a prettier type. 1182 llvm::Type *bitcastType = 1183 llvm::Type::getIntNTy(getLLVMContext(), 1184 getContext().toBits(strategy.getIvarSize())); 1185 1186 // Cast both arguments to the chosen operation type. 1187 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1188 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1189 1190 // This bitcast load is likely to cause some nasty IR. 1191 llvm::Value *load = Builder.CreateLoad(argAddr); 1192 1193 // Perform an atomic store. There are no memory ordering requirements. 1194 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1195 store->setAtomic(llvm::Unordered); 1196 return; 1197 } 1198 1199 case PropertyImplStrategy::GetSetProperty: 1200 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1201 1202 llvm::Value *setOptimizedPropertyFn = nullptr; 1203 llvm::Value *setPropertyFn = nullptr; 1204 if (UseOptimizedSetter(CGM)) { 1205 // 10.8 and iOS 6.0 code and GC is off 1206 setOptimizedPropertyFn = 1207 CGM.getObjCRuntime() 1208 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1209 strategy.isCopy()); 1210 if (!setOptimizedPropertyFn) { 1211 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1212 return; 1213 } 1214 } 1215 else { 1216 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1217 if (!setPropertyFn) { 1218 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1219 return; 1220 } 1221 } 1222 1223 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1224 // <is-atomic>, <is-copy>). 1225 llvm::Value *cmd = 1226 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1227 llvm::Value *self = 1228 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1229 llvm::Value *ivarOffset = 1230 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1231 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1232 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1233 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1234 1235 CallArgList args; 1236 args.add(RValue::get(self), getContext().getObjCIdType()); 1237 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1238 if (setOptimizedPropertyFn) { 1239 args.add(RValue::get(arg), getContext().getObjCIdType()); 1240 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1241 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1242 FunctionType::ExtInfo(), 1243 RequiredArgs::All), 1244 setOptimizedPropertyFn, ReturnValueSlot(), args); 1245 } else { 1246 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1247 args.add(RValue::get(arg), getContext().getObjCIdType()); 1248 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1249 getContext().BoolTy); 1250 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1251 getContext().BoolTy); 1252 // FIXME: We shouldn't need to get the function info here, the runtime 1253 // already should have computed it to build the function. 1254 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1255 FunctionType::ExtInfo(), 1256 RequiredArgs::All), 1257 setPropertyFn, ReturnValueSlot(), args); 1258 } 1259 1260 return; 1261 } 1262 1263 case PropertyImplStrategy::CopyStruct: 1264 emitStructSetterCall(*this, setterMethod, ivar); 1265 return; 1266 1267 case PropertyImplStrategy::Expression: 1268 break; 1269 } 1270 1271 // Otherwise, fake up some ASTs and emit a normal assignment. 1272 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1273 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1274 VK_LValue, SourceLocation()); 1275 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1276 selfDecl->getType(), CK_LValueToRValue, &self, 1277 VK_RValue); 1278 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1279 SourceLocation(), SourceLocation(), 1280 &selfLoad, true, true); 1281 1282 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1283 QualType argType = argDecl->getType().getNonReferenceType(); 1284 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1285 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1286 argType.getUnqualifiedType(), CK_LValueToRValue, 1287 &arg, VK_RValue); 1288 1289 // The property type can differ from the ivar type in some situations with 1290 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1291 // The following absurdity is just to ensure well-formed IR. 1292 CastKind argCK = CK_NoOp; 1293 if (ivarRef.getType()->isObjCObjectPointerType()) { 1294 if (argLoad.getType()->isObjCObjectPointerType()) 1295 argCK = CK_BitCast; 1296 else if (argLoad.getType()->isBlockPointerType()) 1297 argCK = CK_BlockPointerToObjCPointerCast; 1298 else 1299 argCK = CK_CPointerToObjCPointerCast; 1300 } else if (ivarRef.getType()->isBlockPointerType()) { 1301 if (argLoad.getType()->isBlockPointerType()) 1302 argCK = CK_BitCast; 1303 else 1304 argCK = CK_AnyPointerToBlockPointerCast; 1305 } else if (ivarRef.getType()->isPointerType()) { 1306 argCK = CK_BitCast; 1307 } 1308 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1309 ivarRef.getType(), argCK, &argLoad, 1310 VK_RValue); 1311 Expr *finalArg = &argLoad; 1312 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1313 argLoad.getType())) 1314 finalArg = &argCast; 1315 1316 1317 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1318 ivarRef.getType(), VK_RValue, OK_Ordinary, 1319 SourceLocation(), false); 1320 EmitStmt(&assign); 1321 } 1322 1323 /// \brief Generate an Objective-C property setter function. 1324 /// 1325 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1326 /// is illegal within a category. 1327 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1328 const ObjCPropertyImplDecl *PID) { 1329 llvm::Constant *AtomicHelperFn = 1330 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1331 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1332 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1333 assert(OMD && "Invalid call to generate setter (empty method)"); 1334 StartObjCMethod(OMD, IMP->getClassInterface()); 1335 1336 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1337 1338 FinishFunction(); 1339 } 1340 1341 namespace { 1342 struct DestroyIvar final : EHScopeStack::Cleanup { 1343 private: 1344 llvm::Value *addr; 1345 const ObjCIvarDecl *ivar; 1346 CodeGenFunction::Destroyer *destroyer; 1347 bool useEHCleanupForArray; 1348 public: 1349 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1350 CodeGenFunction::Destroyer *destroyer, 1351 bool useEHCleanupForArray) 1352 : addr(addr), ivar(ivar), destroyer(destroyer), 1353 useEHCleanupForArray(useEHCleanupForArray) {} 1354 1355 void Emit(CodeGenFunction &CGF, Flags flags) override { 1356 LValue lvalue 1357 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1358 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1359 flags.isForNormalCleanup() && useEHCleanupForArray); 1360 } 1361 }; 1362 } 1363 1364 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1365 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1366 Address addr, 1367 QualType type) { 1368 llvm::Value *null = getNullForVariable(addr); 1369 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1370 } 1371 1372 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1373 ObjCImplementationDecl *impl) { 1374 CodeGenFunction::RunCleanupsScope scope(CGF); 1375 1376 llvm::Value *self = CGF.LoadObjCSelf(); 1377 1378 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1379 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1380 ivar; ivar = ivar->getNextIvar()) { 1381 QualType type = ivar->getType(); 1382 1383 // Check whether the ivar is a destructible type. 1384 QualType::DestructionKind dtorKind = type.isDestructedType(); 1385 if (!dtorKind) continue; 1386 1387 CodeGenFunction::Destroyer *destroyer = nullptr; 1388 1389 // Use a call to objc_storeStrong to destroy strong ivars, for the 1390 // general benefit of the tools. 1391 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1392 destroyer = destroyARCStrongWithStore; 1393 1394 // Otherwise use the default for the destruction kind. 1395 } else { 1396 destroyer = CGF.getDestroyer(dtorKind); 1397 } 1398 1399 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1400 1401 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1402 cleanupKind & EHCleanup); 1403 } 1404 1405 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1406 } 1407 1408 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1409 ObjCMethodDecl *MD, 1410 bool ctor) { 1411 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1412 StartObjCMethod(MD, IMP->getClassInterface()); 1413 1414 // Emit .cxx_construct. 1415 if (ctor) { 1416 // Suppress the final autorelease in ARC. 1417 AutoreleaseResult = false; 1418 1419 for (const auto *IvarInit : IMP->inits()) { 1420 FieldDecl *Field = IvarInit->getAnyMember(); 1421 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1422 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1423 LoadObjCSelf(), Ivar, 0); 1424 EmitAggExpr(IvarInit->getInit(), 1425 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1426 AggValueSlot::DoesNotNeedGCBarriers, 1427 AggValueSlot::IsNotAliased)); 1428 } 1429 // constructor returns 'self'. 1430 CodeGenTypes &Types = CGM.getTypes(); 1431 QualType IdTy(CGM.getContext().getObjCIdType()); 1432 llvm::Value *SelfAsId = 1433 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1434 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1435 1436 // Emit .cxx_destruct. 1437 } else { 1438 emitCXXDestructMethod(*this, IMP); 1439 } 1440 FinishFunction(); 1441 } 1442 1443 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1444 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1445 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1446 Self->getType(), VK_LValue, SourceLocation()); 1447 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1448 } 1449 1450 QualType CodeGenFunction::TypeOfSelfObject() { 1451 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1452 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1453 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1454 getContext().getCanonicalType(selfDecl->getType())); 1455 return PTy->getPointeeType(); 1456 } 1457 1458 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1459 llvm::Constant *EnumerationMutationFn = 1460 CGM.getObjCRuntime().EnumerationMutationFunction(); 1461 1462 if (!EnumerationMutationFn) { 1463 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1464 return; 1465 } 1466 1467 CGDebugInfo *DI = getDebugInfo(); 1468 if (DI) 1469 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1470 1471 // The local variable comes into scope immediately. 1472 AutoVarEmission variable = AutoVarEmission::invalid(); 1473 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1474 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1475 1476 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1477 1478 // Fast enumeration state. 1479 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1480 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1481 EmitNullInitialization(StatePtr, StateTy); 1482 1483 // Number of elements in the items array. 1484 static const unsigned NumItems = 16; 1485 1486 // Fetch the countByEnumeratingWithState:objects:count: selector. 1487 IdentifierInfo *II[] = { 1488 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1489 &CGM.getContext().Idents.get("objects"), 1490 &CGM.getContext().Idents.get("count") 1491 }; 1492 Selector FastEnumSel = 1493 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1494 1495 QualType ItemsTy = 1496 getContext().getConstantArrayType(getContext().getObjCIdType(), 1497 llvm::APInt(32, NumItems), 1498 ArrayType::Normal, 0); 1499 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1500 1501 // Emit the collection pointer. In ARC, we do a retain. 1502 llvm::Value *Collection; 1503 if (getLangOpts().ObjCAutoRefCount) { 1504 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1505 1506 // Enter a cleanup to do the release. 1507 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1508 } else { 1509 Collection = EmitScalarExpr(S.getCollection()); 1510 } 1511 1512 // The 'continue' label needs to appear within the cleanup for the 1513 // collection object. 1514 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1515 1516 // Send it our message: 1517 CallArgList Args; 1518 1519 // The first argument is a temporary of the enumeration-state type. 1520 Args.add(RValue::get(StatePtr.getPointer()), 1521 getContext().getPointerType(StateTy)); 1522 1523 // The second argument is a temporary array with space for NumItems 1524 // pointers. We'll actually be loading elements from the array 1525 // pointer written into the control state; this buffer is so that 1526 // collections that *aren't* backed by arrays can still queue up 1527 // batches of elements. 1528 Args.add(RValue::get(ItemsPtr.getPointer()), 1529 getContext().getPointerType(ItemsTy)); 1530 1531 // The third argument is the capacity of that temporary array. 1532 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1533 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1534 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1535 1536 // Start the enumeration. 1537 RValue CountRV = 1538 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1539 getContext().UnsignedLongTy, 1540 FastEnumSel, 1541 Collection, Args); 1542 1543 // The initial number of objects that were returned in the buffer. 1544 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1545 1546 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1547 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1548 1549 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1550 1551 // If the limit pointer was zero to begin with, the collection is 1552 // empty; skip all this. Set the branch weight assuming this has the same 1553 // probability of exiting the loop as any other loop exit. 1554 uint64_t EntryCount = getCurrentProfileCount(); 1555 Builder.CreateCondBr( 1556 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1557 LoopInitBB, 1558 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1559 1560 // Otherwise, initialize the loop. 1561 EmitBlock(LoopInitBB); 1562 1563 // Save the initial mutations value. This is the value at an 1564 // address that was written into the state object by 1565 // countByEnumeratingWithState:objects:count:. 1566 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1567 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1568 llvm::Value *StateMutationsPtr 1569 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1570 1571 llvm::Value *initialMutations = 1572 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1573 "forcoll.initial-mutations"); 1574 1575 // Start looping. This is the point we return to whenever we have a 1576 // fresh, non-empty batch of objects. 1577 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1578 EmitBlock(LoopBodyBB); 1579 1580 // The current index into the buffer. 1581 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1582 index->addIncoming(zero, LoopInitBB); 1583 1584 // The current buffer size. 1585 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1586 count->addIncoming(initialBufferLimit, LoopInitBB); 1587 1588 incrementProfileCounter(&S); 1589 1590 // Check whether the mutations value has changed from where it was 1591 // at start. StateMutationsPtr should actually be invariant between 1592 // refreshes. 1593 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1594 llvm::Value *currentMutations 1595 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1596 "statemutations"); 1597 1598 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1599 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1600 1601 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1602 WasNotMutatedBB, WasMutatedBB); 1603 1604 // If so, call the enumeration-mutation function. 1605 EmitBlock(WasMutatedBB); 1606 llvm::Value *V = 1607 Builder.CreateBitCast(Collection, 1608 ConvertType(getContext().getObjCIdType())); 1609 CallArgList Args2; 1610 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1611 // FIXME: We shouldn't need to get the function info here, the runtime already 1612 // should have computed it to build the function. 1613 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1614 FunctionType::ExtInfo(), 1615 RequiredArgs::All), 1616 EnumerationMutationFn, ReturnValueSlot(), Args2); 1617 1618 // Otherwise, or if the mutation function returns, just continue. 1619 EmitBlock(WasNotMutatedBB); 1620 1621 // Initialize the element variable. 1622 RunCleanupsScope elementVariableScope(*this); 1623 bool elementIsVariable; 1624 LValue elementLValue; 1625 QualType elementType; 1626 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1627 // Initialize the variable, in case it's a __block variable or something. 1628 EmitAutoVarInit(variable); 1629 1630 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1631 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1632 VK_LValue, SourceLocation()); 1633 elementLValue = EmitLValue(&tempDRE); 1634 elementType = D->getType(); 1635 elementIsVariable = true; 1636 1637 if (D->isARCPseudoStrong()) 1638 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1639 } else { 1640 elementLValue = LValue(); // suppress warning 1641 elementType = cast<Expr>(S.getElement())->getType(); 1642 elementIsVariable = false; 1643 } 1644 llvm::Type *convertedElementType = ConvertType(elementType); 1645 1646 // Fetch the buffer out of the enumeration state. 1647 // TODO: this pointer should actually be invariant between 1648 // refreshes, which would help us do certain loop optimizations. 1649 Address StateItemsPtr = Builder.CreateStructGEP( 1650 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1651 llvm::Value *EnumStateItems = 1652 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1653 1654 // Fetch the value at the current index from the buffer. 1655 llvm::Value *CurrentItemPtr = 1656 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1657 llvm::Value *CurrentItem = 1658 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1659 1660 // Cast that value to the right type. 1661 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1662 "currentitem"); 1663 1664 // Make sure we have an l-value. Yes, this gets evaluated every 1665 // time through the loop. 1666 if (!elementIsVariable) { 1667 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1668 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1669 } else { 1670 EmitScalarInit(CurrentItem, elementLValue); 1671 } 1672 1673 // If we do have an element variable, this assignment is the end of 1674 // its initialization. 1675 if (elementIsVariable) 1676 EmitAutoVarCleanups(variable); 1677 1678 // Perform the loop body, setting up break and continue labels. 1679 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1680 { 1681 RunCleanupsScope Scope(*this); 1682 EmitStmt(S.getBody()); 1683 } 1684 BreakContinueStack.pop_back(); 1685 1686 // Destroy the element variable now. 1687 elementVariableScope.ForceCleanup(); 1688 1689 // Check whether there are more elements. 1690 EmitBlock(AfterBody.getBlock()); 1691 1692 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1693 1694 // First we check in the local buffer. 1695 llvm::Value *indexPlusOne 1696 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1697 1698 // If we haven't overrun the buffer yet, we can continue. 1699 // Set the branch weights based on the simplifying assumption that this is 1700 // like a while-loop, i.e., ignoring that the false branch fetches more 1701 // elements and then returns to the loop. 1702 Builder.CreateCondBr( 1703 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1704 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1705 1706 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1707 count->addIncoming(count, AfterBody.getBlock()); 1708 1709 // Otherwise, we have to fetch more elements. 1710 EmitBlock(FetchMoreBB); 1711 1712 CountRV = 1713 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1714 getContext().UnsignedLongTy, 1715 FastEnumSel, 1716 Collection, Args); 1717 1718 // If we got a zero count, we're done. 1719 llvm::Value *refetchCount = CountRV.getScalarVal(); 1720 1721 // (note that the message send might split FetchMoreBB) 1722 index->addIncoming(zero, Builder.GetInsertBlock()); 1723 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1724 1725 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1726 EmptyBB, LoopBodyBB); 1727 1728 // No more elements. 1729 EmitBlock(EmptyBB); 1730 1731 if (!elementIsVariable) { 1732 // If the element was not a declaration, set it to be null. 1733 1734 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1735 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1736 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1737 } 1738 1739 if (DI) 1740 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1741 1742 // Leave the cleanup we entered in ARC. 1743 if (getLangOpts().ObjCAutoRefCount) 1744 PopCleanupBlock(); 1745 1746 EmitBlock(LoopEnd.getBlock()); 1747 } 1748 1749 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1750 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1751 } 1752 1753 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1754 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1755 } 1756 1757 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1758 const ObjCAtSynchronizedStmt &S) { 1759 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1760 } 1761 1762 namespace { 1763 struct CallObjCRelease final : EHScopeStack::Cleanup { 1764 CallObjCRelease(llvm::Value *object) : object(object) {} 1765 llvm::Value *object; 1766 1767 void Emit(CodeGenFunction &CGF, Flags flags) override { 1768 // Releases at the end of the full-expression are imprecise. 1769 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1770 } 1771 }; 1772 } 1773 1774 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1775 /// release at the end of the full-expression. 1776 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1777 llvm::Value *object) { 1778 // If we're in a conditional branch, we need to make the cleanup 1779 // conditional. 1780 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1781 return object; 1782 } 1783 1784 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1785 llvm::Value *value) { 1786 return EmitARCRetainAutorelease(type, value); 1787 } 1788 1789 /// Given a number of pointers, inform the optimizer that they're 1790 /// being intrinsically used up until this point in the program. 1791 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1792 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1793 if (!fn) { 1794 llvm::FunctionType *fnType = 1795 llvm::FunctionType::get(CGM.VoidTy, None, true); 1796 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1797 } 1798 1799 // This isn't really a "runtime" function, but as an intrinsic it 1800 // doesn't really matter as long as we align things up. 1801 EmitNounwindRuntimeCall(fn, values); 1802 } 1803 1804 1805 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1806 llvm::FunctionType *type, 1807 StringRef fnName) { 1808 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1809 1810 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1811 // If the target runtime doesn't naturally support ARC, emit weak 1812 // references to the runtime support library. We don't really 1813 // permit this to fail, but we need a particular relocation style. 1814 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1815 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1816 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1817 // If we have Native ARC, set nonlazybind attribute for these APIs for 1818 // performance. 1819 f->addFnAttr(llvm::Attribute::NonLazyBind); 1820 } 1821 } 1822 1823 return fn; 1824 } 1825 1826 /// Perform an operation having the signature 1827 /// i8* (i8*) 1828 /// where a null input causes a no-op and returns null. 1829 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1830 llvm::Value *value, 1831 llvm::Constant *&fn, 1832 StringRef fnName, 1833 bool isTailCall = false) { 1834 if (isa<llvm::ConstantPointerNull>(value)) return value; 1835 1836 if (!fn) { 1837 llvm::FunctionType *fnType = 1838 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1839 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1840 } 1841 1842 // Cast the argument to 'id'. 1843 llvm::Type *origType = value->getType(); 1844 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1845 1846 // Call the function. 1847 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1848 if (isTailCall) 1849 call->setTailCall(); 1850 1851 // Cast the result back to the original type. 1852 return CGF.Builder.CreateBitCast(call, origType); 1853 } 1854 1855 /// Perform an operation having the following signature: 1856 /// i8* (i8**) 1857 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1858 Address addr, 1859 llvm::Constant *&fn, 1860 StringRef fnName) { 1861 if (!fn) { 1862 llvm::FunctionType *fnType = 1863 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1864 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1865 } 1866 1867 // Cast the argument to 'id*'. 1868 llvm::Type *origType = addr.getElementType(); 1869 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1870 1871 // Call the function. 1872 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1873 1874 // Cast the result back to a dereference of the original type. 1875 if (origType != CGF.Int8PtrTy) 1876 result = CGF.Builder.CreateBitCast(result, origType); 1877 1878 return result; 1879 } 1880 1881 /// Perform an operation having the following signature: 1882 /// i8* (i8**, i8*) 1883 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1884 Address addr, 1885 llvm::Value *value, 1886 llvm::Constant *&fn, 1887 StringRef fnName, 1888 bool ignored) { 1889 assert(addr.getElementType() == value->getType()); 1890 1891 if (!fn) { 1892 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1893 1894 llvm::FunctionType *fnType 1895 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1896 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1897 } 1898 1899 llvm::Type *origType = value->getType(); 1900 1901 llvm::Value *args[] = { 1902 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1903 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1904 }; 1905 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1906 1907 if (ignored) return nullptr; 1908 1909 return CGF.Builder.CreateBitCast(result, origType); 1910 } 1911 1912 /// Perform an operation having the following signature: 1913 /// void (i8**, i8**) 1914 static void emitARCCopyOperation(CodeGenFunction &CGF, 1915 Address dst, 1916 Address src, 1917 llvm::Constant *&fn, 1918 StringRef fnName) { 1919 assert(dst.getType() == src.getType()); 1920 1921 if (!fn) { 1922 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1923 1924 llvm::FunctionType *fnType 1925 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1926 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1927 } 1928 1929 llvm::Value *args[] = { 1930 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1931 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1932 }; 1933 CGF.EmitNounwindRuntimeCall(fn, args); 1934 } 1935 1936 /// Produce the code to do a retain. Based on the type, calls one of: 1937 /// call i8* \@objc_retain(i8* %value) 1938 /// call i8* \@objc_retainBlock(i8* %value) 1939 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1940 if (type->isBlockPointerType()) 1941 return EmitARCRetainBlock(value, /*mandatory*/ false); 1942 else 1943 return EmitARCRetainNonBlock(value); 1944 } 1945 1946 /// Retain the given object, with normal retain semantics. 1947 /// call i8* \@objc_retain(i8* %value) 1948 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1949 return emitARCValueOperation(*this, value, 1950 CGM.getObjCEntrypoints().objc_retain, 1951 "objc_retain"); 1952 } 1953 1954 /// Retain the given block, with _Block_copy semantics. 1955 /// call i8* \@objc_retainBlock(i8* %value) 1956 /// 1957 /// \param mandatory - If false, emit the call with metadata 1958 /// indicating that it's okay for the optimizer to eliminate this call 1959 /// if it can prove that the block never escapes except down the stack. 1960 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1961 bool mandatory) { 1962 llvm::Value *result 1963 = emitARCValueOperation(*this, value, 1964 CGM.getObjCEntrypoints().objc_retainBlock, 1965 "objc_retainBlock"); 1966 1967 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1968 // tell the optimizer that it doesn't need to do this copy if the 1969 // block doesn't escape, where being passed as an argument doesn't 1970 // count as escaping. 1971 if (!mandatory && isa<llvm::Instruction>(result)) { 1972 llvm::CallInst *call 1973 = cast<llvm::CallInst>(result->stripPointerCasts()); 1974 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 1975 1976 call->setMetadata("clang.arc.copy_on_escape", 1977 llvm::MDNode::get(Builder.getContext(), None)); 1978 } 1979 1980 return result; 1981 } 1982 1983 /// Retain the given object which is the result of a function call. 1984 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1985 /// 1986 /// Yes, this function name is one character away from a different 1987 /// call with completely different semantics. 1988 llvm::Value * 1989 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1990 // Fetch the void(void) inline asm which marks that we're going to 1991 // retain the autoreleased return value. 1992 llvm::InlineAsm *&marker 1993 = CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 1994 if (!marker) { 1995 StringRef assembly 1996 = CGM.getTargetCodeGenInfo() 1997 .getARCRetainAutoreleasedReturnValueMarker(); 1998 1999 // If we have an empty assembly string, there's nothing to do. 2000 if (assembly.empty()) { 2001 2002 // Otherwise, at -O0, build an inline asm that we're going to call 2003 // in a moment. 2004 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2005 llvm::FunctionType *type = 2006 llvm::FunctionType::get(VoidTy, /*variadic*/false); 2007 2008 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2009 2010 // If we're at -O1 and above, we don't want to litter the code 2011 // with this marker yet, so leave a breadcrumb for the ARC 2012 // optimizer to pick up. 2013 } else { 2014 llvm::NamedMDNode *metadata = 2015 CGM.getModule().getOrInsertNamedMetadata( 2016 "clang.arc.retainAutoreleasedReturnValueMarker"); 2017 assert(metadata->getNumOperands() <= 1); 2018 if (metadata->getNumOperands() == 0) { 2019 metadata->addOperand(llvm::MDNode::get( 2020 getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly))); 2021 } 2022 } 2023 } 2024 2025 // Call the marker asm if we made one, which we do only at -O0. 2026 if (marker) 2027 Builder.CreateCall(marker); 2028 2029 return emitARCValueOperation(*this, value, 2030 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2031 "objc_retainAutoreleasedReturnValue"); 2032 } 2033 2034 /// Release the given object. 2035 /// call void \@objc_release(i8* %value) 2036 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2037 ARCPreciseLifetime_t precise) { 2038 if (isa<llvm::ConstantPointerNull>(value)) return; 2039 2040 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2041 if (!fn) { 2042 llvm::FunctionType *fnType = 2043 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2044 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2045 } 2046 2047 // Cast the argument to 'id'. 2048 value = Builder.CreateBitCast(value, Int8PtrTy); 2049 2050 // Call objc_release. 2051 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2052 2053 if (precise == ARCImpreciseLifetime) { 2054 call->setMetadata("clang.imprecise_release", 2055 llvm::MDNode::get(Builder.getContext(), None)); 2056 } 2057 } 2058 2059 /// Destroy a __strong variable. 2060 /// 2061 /// At -O0, emit a call to store 'null' into the address; 2062 /// instrumenting tools prefer this because the address is exposed, 2063 /// but it's relatively cumbersome to optimize. 2064 /// 2065 /// At -O1 and above, just load and call objc_release. 2066 /// 2067 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2068 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2069 ARCPreciseLifetime_t precise) { 2070 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2071 llvm::Value *null = getNullForVariable(addr); 2072 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2073 return; 2074 } 2075 2076 llvm::Value *value = Builder.CreateLoad(addr); 2077 EmitARCRelease(value, precise); 2078 } 2079 2080 /// Store into a strong object. Always calls this: 2081 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2082 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2083 llvm::Value *value, 2084 bool ignored) { 2085 assert(addr.getElementType() == value->getType()); 2086 2087 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2088 if (!fn) { 2089 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2090 llvm::FunctionType *fnType 2091 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2092 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2093 } 2094 2095 llvm::Value *args[] = { 2096 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2097 Builder.CreateBitCast(value, Int8PtrTy) 2098 }; 2099 EmitNounwindRuntimeCall(fn, args); 2100 2101 if (ignored) return nullptr; 2102 return value; 2103 } 2104 2105 /// Store into a strong object. Sometimes calls this: 2106 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2107 /// Other times, breaks it down into components. 2108 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2109 llvm::Value *newValue, 2110 bool ignored) { 2111 QualType type = dst.getType(); 2112 bool isBlock = type->isBlockPointerType(); 2113 2114 // Use a store barrier at -O0 unless this is a block type or the 2115 // lvalue is inadequately aligned. 2116 if (shouldUseFusedARCCalls() && 2117 !isBlock && 2118 (dst.getAlignment().isZero() || 2119 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2120 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2121 } 2122 2123 // Otherwise, split it out. 2124 2125 // Retain the new value. 2126 newValue = EmitARCRetain(type, newValue); 2127 2128 // Read the old value. 2129 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2130 2131 // Store. We do this before the release so that any deallocs won't 2132 // see the old value. 2133 EmitStoreOfScalar(newValue, dst); 2134 2135 // Finally, release the old value. 2136 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2137 2138 return newValue; 2139 } 2140 2141 /// Autorelease the given object. 2142 /// call i8* \@objc_autorelease(i8* %value) 2143 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2144 return emitARCValueOperation(*this, value, 2145 CGM.getObjCEntrypoints().objc_autorelease, 2146 "objc_autorelease"); 2147 } 2148 2149 /// Autorelease the given object. 2150 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2151 llvm::Value * 2152 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2153 return emitARCValueOperation(*this, value, 2154 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2155 "objc_autoreleaseReturnValue", 2156 /*isTailCall*/ true); 2157 } 2158 2159 /// Do a fused retain/autorelease of the given object. 2160 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2161 llvm::Value * 2162 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2163 return emitARCValueOperation(*this, value, 2164 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2165 "objc_retainAutoreleaseReturnValue", 2166 /*isTailCall*/ true); 2167 } 2168 2169 /// Do a fused retain/autorelease of the given object. 2170 /// call i8* \@objc_retainAutorelease(i8* %value) 2171 /// or 2172 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2173 /// call i8* \@objc_autorelease(i8* %retain) 2174 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2175 llvm::Value *value) { 2176 if (!type->isBlockPointerType()) 2177 return EmitARCRetainAutoreleaseNonBlock(value); 2178 2179 if (isa<llvm::ConstantPointerNull>(value)) return value; 2180 2181 llvm::Type *origType = value->getType(); 2182 value = Builder.CreateBitCast(value, Int8PtrTy); 2183 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2184 value = EmitARCAutorelease(value); 2185 return Builder.CreateBitCast(value, origType); 2186 } 2187 2188 /// Do a fused retain/autorelease of the given object. 2189 /// call i8* \@objc_retainAutorelease(i8* %value) 2190 llvm::Value * 2191 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2192 return emitARCValueOperation(*this, value, 2193 CGM.getObjCEntrypoints().objc_retainAutorelease, 2194 "objc_retainAutorelease"); 2195 } 2196 2197 /// i8* \@objc_loadWeak(i8** %addr) 2198 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2199 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2200 return emitARCLoadOperation(*this, addr, 2201 CGM.getObjCEntrypoints().objc_loadWeak, 2202 "objc_loadWeak"); 2203 } 2204 2205 /// i8* \@objc_loadWeakRetained(i8** %addr) 2206 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2207 return emitARCLoadOperation(*this, addr, 2208 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2209 "objc_loadWeakRetained"); 2210 } 2211 2212 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2213 /// Returns %value. 2214 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2215 llvm::Value *value, 2216 bool ignored) { 2217 return emitARCStoreOperation(*this, addr, value, 2218 CGM.getObjCEntrypoints().objc_storeWeak, 2219 "objc_storeWeak", ignored); 2220 } 2221 2222 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2223 /// Returns %value. %addr is known to not have a current weak entry. 2224 /// Essentially equivalent to: 2225 /// *addr = nil; objc_storeWeak(addr, value); 2226 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2227 // If we're initializing to null, just write null to memory; no need 2228 // to get the runtime involved. But don't do this if optimization 2229 // is enabled, because accounting for this would make the optimizer 2230 // much more complicated. 2231 if (isa<llvm::ConstantPointerNull>(value) && 2232 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2233 Builder.CreateStore(value, addr); 2234 return; 2235 } 2236 2237 emitARCStoreOperation(*this, addr, value, 2238 CGM.getObjCEntrypoints().objc_initWeak, 2239 "objc_initWeak", /*ignored*/ true); 2240 } 2241 2242 /// void \@objc_destroyWeak(i8** %addr) 2243 /// Essentially objc_storeWeak(addr, nil). 2244 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2245 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2246 if (!fn) { 2247 llvm::FunctionType *fnType = 2248 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2249 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2250 } 2251 2252 // Cast the argument to 'id*'. 2253 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2254 2255 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2256 } 2257 2258 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2259 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2260 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2261 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2262 emitARCCopyOperation(*this, dst, src, 2263 CGM.getObjCEntrypoints().objc_moveWeak, 2264 "objc_moveWeak"); 2265 } 2266 2267 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2268 /// Disregards the current value in %dest. Essentially 2269 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2270 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2271 emitARCCopyOperation(*this, dst, src, 2272 CGM.getObjCEntrypoints().objc_copyWeak, 2273 "objc_copyWeak"); 2274 } 2275 2276 /// Produce the code to do a objc_autoreleasepool_push. 2277 /// call i8* \@objc_autoreleasePoolPush(void) 2278 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2279 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2280 if (!fn) { 2281 llvm::FunctionType *fnType = 2282 llvm::FunctionType::get(Int8PtrTy, false); 2283 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2284 } 2285 2286 return EmitNounwindRuntimeCall(fn); 2287 } 2288 2289 /// Produce the code to do a primitive release. 2290 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2291 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2292 assert(value->getType() == Int8PtrTy); 2293 2294 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2295 if (!fn) { 2296 llvm::FunctionType *fnType = 2297 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2298 2299 // We don't want to use a weak import here; instead we should not 2300 // fall into this path. 2301 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2302 } 2303 2304 // objc_autoreleasePoolPop can throw. 2305 EmitRuntimeCallOrInvoke(fn, value); 2306 } 2307 2308 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2309 /// Which is: [[NSAutoreleasePool alloc] init]; 2310 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2311 /// init is declared as: - (id) init; in its NSObject super class. 2312 /// 2313 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2314 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2315 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2316 // [NSAutoreleasePool alloc] 2317 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2318 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2319 CallArgList Args; 2320 RValue AllocRV = 2321 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2322 getContext().getObjCIdType(), 2323 AllocSel, Receiver, Args); 2324 2325 // [Receiver init] 2326 Receiver = AllocRV.getScalarVal(); 2327 II = &CGM.getContext().Idents.get("init"); 2328 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2329 RValue InitRV = 2330 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2331 getContext().getObjCIdType(), 2332 InitSel, Receiver, Args); 2333 return InitRV.getScalarVal(); 2334 } 2335 2336 /// Produce the code to do a primitive release. 2337 /// [tmp drain]; 2338 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2339 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2340 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2341 CallArgList Args; 2342 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2343 getContext().VoidTy, DrainSel, Arg, Args); 2344 } 2345 2346 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2347 Address addr, 2348 QualType type) { 2349 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2350 } 2351 2352 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2353 Address addr, 2354 QualType type) { 2355 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2356 } 2357 2358 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2359 Address addr, 2360 QualType type) { 2361 CGF.EmitARCDestroyWeak(addr); 2362 } 2363 2364 namespace { 2365 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2366 llvm::Value *Token; 2367 2368 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2369 2370 void Emit(CodeGenFunction &CGF, Flags flags) override { 2371 CGF.EmitObjCAutoreleasePoolPop(Token); 2372 } 2373 }; 2374 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2375 llvm::Value *Token; 2376 2377 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2378 2379 void Emit(CodeGenFunction &CGF, Flags flags) override { 2380 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2381 } 2382 }; 2383 } 2384 2385 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2386 if (CGM.getLangOpts().ObjCAutoRefCount) 2387 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2388 else 2389 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2390 } 2391 2392 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2393 LValue lvalue, 2394 QualType type) { 2395 switch (type.getObjCLifetime()) { 2396 case Qualifiers::OCL_None: 2397 case Qualifiers::OCL_ExplicitNone: 2398 case Qualifiers::OCL_Strong: 2399 case Qualifiers::OCL_Autoreleasing: 2400 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2401 SourceLocation()).getScalarVal(), 2402 false); 2403 2404 case Qualifiers::OCL_Weak: 2405 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2406 true); 2407 } 2408 2409 llvm_unreachable("impossible lifetime!"); 2410 } 2411 2412 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2413 const Expr *e) { 2414 e = e->IgnoreParens(); 2415 QualType type = e->getType(); 2416 2417 // If we're loading retained from a __strong xvalue, we can avoid 2418 // an extra retain/release pair by zeroing out the source of this 2419 // "move" operation. 2420 if (e->isXValue() && 2421 !type.isConstQualified() && 2422 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2423 // Emit the lvalue. 2424 LValue lv = CGF.EmitLValue(e); 2425 2426 // Load the object pointer. 2427 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2428 SourceLocation()).getScalarVal(); 2429 2430 // Set the source pointer to NULL. 2431 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2432 2433 return TryEmitResult(result, true); 2434 } 2435 2436 // As a very special optimization, in ARC++, if the l-value is the 2437 // result of a non-volatile assignment, do a simple retain of the 2438 // result of the call to objc_storeWeak instead of reloading. 2439 if (CGF.getLangOpts().CPlusPlus && 2440 !type.isVolatileQualified() && 2441 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2442 isa<BinaryOperator>(e) && 2443 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2444 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2445 2446 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2447 } 2448 2449 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2450 llvm::Value *value); 2451 2452 /// Given that the given expression is some sort of call (which does 2453 /// not return retained), emit a retain following it. 2454 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2455 llvm::Value *value = CGF.EmitScalarExpr(e); 2456 return emitARCRetainAfterCall(CGF, value); 2457 } 2458 2459 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2460 llvm::Value *value) { 2461 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2462 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2463 2464 // Place the retain immediately following the call. 2465 CGF.Builder.SetInsertPoint(call->getParent(), 2466 ++llvm::BasicBlock::iterator(call)); 2467 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2468 2469 CGF.Builder.restoreIP(ip); 2470 return value; 2471 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2472 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2473 2474 // Place the retain at the beginning of the normal destination block. 2475 llvm::BasicBlock *BB = invoke->getNormalDest(); 2476 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2477 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2478 2479 CGF.Builder.restoreIP(ip); 2480 return value; 2481 2482 // Bitcasts can arise because of related-result returns. Rewrite 2483 // the operand. 2484 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2485 llvm::Value *operand = bitcast->getOperand(0); 2486 operand = emitARCRetainAfterCall(CGF, operand); 2487 bitcast->setOperand(0, operand); 2488 return bitcast; 2489 2490 // Generic fall-back case. 2491 } else { 2492 // Retain using the non-block variant: we never need to do a copy 2493 // of a block that's been returned to us. 2494 return CGF.EmitARCRetainNonBlock(value); 2495 } 2496 } 2497 2498 /// Determine whether it might be important to emit a separate 2499 /// objc_retain_block on the result of the given expression, or 2500 /// whether it's okay to just emit it in a +1 context. 2501 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2502 assert(e->getType()->isBlockPointerType()); 2503 e = e->IgnoreParens(); 2504 2505 // For future goodness, emit block expressions directly in +1 2506 // contexts if we can. 2507 if (isa<BlockExpr>(e)) 2508 return false; 2509 2510 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2511 switch (cast->getCastKind()) { 2512 // Emitting these operations in +1 contexts is goodness. 2513 case CK_LValueToRValue: 2514 case CK_ARCReclaimReturnedObject: 2515 case CK_ARCConsumeObject: 2516 case CK_ARCProduceObject: 2517 return false; 2518 2519 // These operations preserve a block type. 2520 case CK_NoOp: 2521 case CK_BitCast: 2522 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2523 2524 // These operations are known to be bad (or haven't been considered). 2525 case CK_AnyPointerToBlockPointerCast: 2526 default: 2527 return true; 2528 } 2529 } 2530 2531 return true; 2532 } 2533 2534 /// Try to emit a PseudoObjectExpr at +1. 2535 /// 2536 /// This massively duplicates emitPseudoObjectRValue. 2537 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2538 const PseudoObjectExpr *E) { 2539 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2540 2541 // Find the result expression. 2542 const Expr *resultExpr = E->getResultExpr(); 2543 assert(resultExpr); 2544 TryEmitResult result; 2545 2546 for (PseudoObjectExpr::const_semantics_iterator 2547 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2548 const Expr *semantic = *i; 2549 2550 // If this semantic expression is an opaque value, bind it 2551 // to the result of its source expression. 2552 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2553 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2554 OVMA opaqueData; 2555 2556 // If this semantic is the result of the pseudo-object 2557 // expression, try to evaluate the source as +1. 2558 if (ov == resultExpr) { 2559 assert(!OVMA::shouldBindAsLValue(ov)); 2560 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2561 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2562 2563 // Otherwise, just bind it. 2564 } else { 2565 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2566 } 2567 opaques.push_back(opaqueData); 2568 2569 // Otherwise, if the expression is the result, evaluate it 2570 // and remember the result. 2571 } else if (semantic == resultExpr) { 2572 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2573 2574 // Otherwise, evaluate the expression in an ignored context. 2575 } else { 2576 CGF.EmitIgnoredExpr(semantic); 2577 } 2578 } 2579 2580 // Unbind all the opaques now. 2581 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2582 opaques[i].unbind(CGF); 2583 2584 return result; 2585 } 2586 2587 static TryEmitResult 2588 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2589 // We should *never* see a nested full-expression here, because if 2590 // we fail to emit at +1, our caller must not retain after we close 2591 // out the full-expression. 2592 assert(!isa<ExprWithCleanups>(e)); 2593 2594 // The desired result type, if it differs from the type of the 2595 // ultimate opaque expression. 2596 llvm::Type *resultType = nullptr; 2597 2598 while (true) { 2599 e = e->IgnoreParens(); 2600 2601 // There's a break at the end of this if-chain; anything 2602 // that wants to keep looping has to explicitly continue. 2603 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2604 switch (ce->getCastKind()) { 2605 // No-op casts don't change the type, so we just ignore them. 2606 case CK_NoOp: 2607 e = ce->getSubExpr(); 2608 continue; 2609 2610 case CK_LValueToRValue: { 2611 TryEmitResult loadResult 2612 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2613 if (resultType) { 2614 llvm::Value *value = loadResult.getPointer(); 2615 value = CGF.Builder.CreateBitCast(value, resultType); 2616 loadResult.setPointer(value); 2617 } 2618 return loadResult; 2619 } 2620 2621 // These casts can change the type, so remember that and 2622 // soldier on. We only need to remember the outermost such 2623 // cast, though. 2624 case CK_CPointerToObjCPointerCast: 2625 case CK_BlockPointerToObjCPointerCast: 2626 case CK_AnyPointerToBlockPointerCast: 2627 case CK_BitCast: 2628 if (!resultType) 2629 resultType = CGF.ConvertType(ce->getType()); 2630 e = ce->getSubExpr(); 2631 assert(e->getType()->hasPointerRepresentation()); 2632 continue; 2633 2634 // For consumptions, just emit the subexpression and thus elide 2635 // the retain/release pair. 2636 case CK_ARCConsumeObject: { 2637 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2638 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2639 return TryEmitResult(result, true); 2640 } 2641 2642 // Block extends are net +0. Naively, we could just recurse on 2643 // the subexpression, but actually we need to ensure that the 2644 // value is copied as a block, so there's a little filter here. 2645 case CK_ARCExtendBlockObject: { 2646 llvm::Value *result; // will be a +0 value 2647 2648 // If we can't safely assume the sub-expression will produce a 2649 // block-copied value, emit the sub-expression at +0. 2650 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2651 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2652 2653 // Otherwise, try to emit the sub-expression at +1 recursively. 2654 } else { 2655 TryEmitResult subresult 2656 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2657 result = subresult.getPointer(); 2658 2659 // If that produced a retained value, just use that, 2660 // possibly casting down. 2661 if (subresult.getInt()) { 2662 if (resultType) 2663 result = CGF.Builder.CreateBitCast(result, resultType); 2664 return TryEmitResult(result, true); 2665 } 2666 2667 // Otherwise it's +0. 2668 } 2669 2670 // Retain the object as a block, then cast down. 2671 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2672 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2673 return TryEmitResult(result, true); 2674 } 2675 2676 // For reclaims, emit the subexpression as a retained call and 2677 // skip the consumption. 2678 case CK_ARCReclaimReturnedObject: { 2679 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2680 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2681 return TryEmitResult(result, true); 2682 } 2683 2684 default: 2685 break; 2686 } 2687 2688 // Skip __extension__. 2689 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2690 if (op->getOpcode() == UO_Extension) { 2691 e = op->getSubExpr(); 2692 continue; 2693 } 2694 2695 // For calls and message sends, use the retained-call logic. 2696 // Delegate inits are a special case in that they're the only 2697 // returns-retained expression that *isn't* surrounded by 2698 // a consume. 2699 } else if (isa<CallExpr>(e) || 2700 (isa<ObjCMessageExpr>(e) && 2701 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2702 llvm::Value *result = emitARCRetainCall(CGF, e); 2703 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2704 return TryEmitResult(result, true); 2705 2706 // Look through pseudo-object expressions. 2707 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2708 TryEmitResult result 2709 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2710 if (resultType) { 2711 llvm::Value *value = result.getPointer(); 2712 value = CGF.Builder.CreateBitCast(value, resultType); 2713 result.setPointer(value); 2714 } 2715 return result; 2716 } 2717 2718 // Conservatively halt the search at any other expression kind. 2719 break; 2720 } 2721 2722 // We didn't find an obvious production, so emit what we've got and 2723 // tell the caller that we didn't manage to retain. 2724 llvm::Value *result = CGF.EmitScalarExpr(e); 2725 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2726 return TryEmitResult(result, false); 2727 } 2728 2729 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2730 LValue lvalue, 2731 QualType type) { 2732 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2733 llvm::Value *value = result.getPointer(); 2734 if (!result.getInt()) 2735 value = CGF.EmitARCRetain(type, value); 2736 return value; 2737 } 2738 2739 /// EmitARCRetainScalarExpr - Semantically equivalent to 2740 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2741 /// best-effort attempt to peephole expressions that naturally produce 2742 /// retained objects. 2743 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2744 // The retain needs to happen within the full-expression. 2745 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2746 enterFullExpression(cleanups); 2747 RunCleanupsScope scope(*this); 2748 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2749 } 2750 2751 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2752 llvm::Value *value = result.getPointer(); 2753 if (!result.getInt()) 2754 value = EmitARCRetain(e->getType(), value); 2755 return value; 2756 } 2757 2758 llvm::Value * 2759 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2760 // The retain needs to happen within the full-expression. 2761 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2762 enterFullExpression(cleanups); 2763 RunCleanupsScope scope(*this); 2764 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2765 } 2766 2767 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2768 llvm::Value *value = result.getPointer(); 2769 if (result.getInt()) 2770 value = EmitARCAutorelease(value); 2771 else 2772 value = EmitARCRetainAutorelease(e->getType(), value); 2773 return value; 2774 } 2775 2776 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2777 llvm::Value *result; 2778 bool doRetain; 2779 2780 if (shouldEmitSeparateBlockRetain(e)) { 2781 result = EmitScalarExpr(e); 2782 doRetain = true; 2783 } else { 2784 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2785 result = subresult.getPointer(); 2786 doRetain = !subresult.getInt(); 2787 } 2788 2789 if (doRetain) 2790 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2791 return EmitObjCConsumeObject(e->getType(), result); 2792 } 2793 2794 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2795 // In ARC, retain and autorelease the expression. 2796 if (getLangOpts().ObjCAutoRefCount) { 2797 // Do so before running any cleanups for the full-expression. 2798 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2799 return EmitARCRetainAutoreleaseScalarExpr(expr); 2800 } 2801 2802 // Otherwise, use the normal scalar-expression emission. The 2803 // exception machinery doesn't do anything special with the 2804 // exception like retaining it, so there's no safety associated with 2805 // only running cleanups after the throw has started, and when it 2806 // matters it tends to be substantially inferior code. 2807 return EmitScalarExpr(expr); 2808 } 2809 2810 std::pair<LValue,llvm::Value*> 2811 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2812 bool ignored) { 2813 // Evaluate the RHS first. 2814 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2815 llvm::Value *value = result.getPointer(); 2816 2817 bool hasImmediateRetain = result.getInt(); 2818 2819 // If we didn't emit a retained object, and the l-value is of block 2820 // type, then we need to emit the block-retain immediately in case 2821 // it invalidates the l-value. 2822 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2823 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2824 hasImmediateRetain = true; 2825 } 2826 2827 LValue lvalue = EmitLValue(e->getLHS()); 2828 2829 // If the RHS was emitted retained, expand this. 2830 if (hasImmediateRetain) { 2831 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2832 EmitStoreOfScalar(value, lvalue); 2833 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2834 } else { 2835 value = EmitARCStoreStrong(lvalue, value, ignored); 2836 } 2837 2838 return std::pair<LValue,llvm::Value*>(lvalue, value); 2839 } 2840 2841 std::pair<LValue,llvm::Value*> 2842 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2843 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2844 LValue lvalue = EmitLValue(e->getLHS()); 2845 2846 EmitStoreOfScalar(value, lvalue); 2847 2848 return std::pair<LValue,llvm::Value*>(lvalue, value); 2849 } 2850 2851 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2852 const ObjCAutoreleasePoolStmt &ARPS) { 2853 const Stmt *subStmt = ARPS.getSubStmt(); 2854 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2855 2856 CGDebugInfo *DI = getDebugInfo(); 2857 if (DI) 2858 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2859 2860 // Keep track of the current cleanup stack depth. 2861 RunCleanupsScope Scope(*this); 2862 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2863 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2864 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2865 } else { 2866 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2867 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2868 } 2869 2870 for (const auto *I : S.body()) 2871 EmitStmt(I); 2872 2873 if (DI) 2874 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2875 } 2876 2877 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2878 /// make sure it survives garbage collection until this point. 2879 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2880 // We just use an inline assembly. 2881 llvm::FunctionType *extenderType 2882 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2883 llvm::Value *extender 2884 = llvm::InlineAsm::get(extenderType, 2885 /* assembly */ "", 2886 /* constraints */ "r", 2887 /* side effects */ true); 2888 2889 object = Builder.CreateBitCast(object, VoidPtrTy); 2890 EmitNounwindRuntimeCall(extender, object); 2891 } 2892 2893 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2894 /// non-trivial copy assignment function, produce following helper function. 2895 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2896 /// 2897 llvm::Constant * 2898 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2899 const ObjCPropertyImplDecl *PID) { 2900 if (!getLangOpts().CPlusPlus || 2901 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2902 return nullptr; 2903 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2904 if (!Ty->isRecordType()) 2905 return nullptr; 2906 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2907 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2908 return nullptr; 2909 llvm::Constant *HelperFn = nullptr; 2910 if (hasTrivialSetExpr(PID)) 2911 return nullptr; 2912 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2913 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2914 return HelperFn; 2915 2916 ASTContext &C = getContext(); 2917 IdentifierInfo *II 2918 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2919 FunctionDecl *FD = FunctionDecl::Create(C, 2920 C.getTranslationUnitDecl(), 2921 SourceLocation(), 2922 SourceLocation(), II, C.VoidTy, 2923 nullptr, SC_Static, 2924 false, 2925 false); 2926 2927 QualType DestTy = C.getPointerType(Ty); 2928 QualType SrcTy = Ty; 2929 SrcTy.addConst(); 2930 SrcTy = C.getPointerType(SrcTy); 2931 2932 FunctionArgList args; 2933 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2934 args.push_back(&dstDecl); 2935 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2936 args.push_back(&srcDecl); 2937 2938 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2939 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2940 2941 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2942 2943 llvm::Function *Fn = 2944 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2945 "__assign_helper_atomic_property_", 2946 &CGM.getModule()); 2947 2948 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 2949 2950 StartFunction(FD, C.VoidTy, Fn, FI, args); 2951 2952 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2953 VK_RValue, SourceLocation()); 2954 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2955 VK_LValue, OK_Ordinary, SourceLocation()); 2956 2957 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2958 VK_RValue, SourceLocation()); 2959 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2960 VK_LValue, OK_Ordinary, SourceLocation()); 2961 2962 Expr *Args[2] = { &DST, &SRC }; 2963 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2964 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2965 Args, DestTy->getPointeeType(), 2966 VK_LValue, SourceLocation(), false); 2967 2968 EmitStmt(&TheCall); 2969 2970 FinishFunction(); 2971 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2972 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2973 return HelperFn; 2974 } 2975 2976 llvm::Constant * 2977 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2978 const ObjCPropertyImplDecl *PID) { 2979 if (!getLangOpts().CPlusPlus || 2980 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2981 return nullptr; 2982 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2983 QualType Ty = PD->getType(); 2984 if (!Ty->isRecordType()) 2985 return nullptr; 2986 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2987 return nullptr; 2988 llvm::Constant *HelperFn = nullptr; 2989 2990 if (hasTrivialGetExpr(PID)) 2991 return nullptr; 2992 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2993 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2994 return HelperFn; 2995 2996 2997 ASTContext &C = getContext(); 2998 IdentifierInfo *II 2999 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3000 FunctionDecl *FD = FunctionDecl::Create(C, 3001 C.getTranslationUnitDecl(), 3002 SourceLocation(), 3003 SourceLocation(), II, C.VoidTy, 3004 nullptr, SC_Static, 3005 false, 3006 false); 3007 3008 QualType DestTy = C.getPointerType(Ty); 3009 QualType SrcTy = Ty; 3010 SrcTy.addConst(); 3011 SrcTy = C.getPointerType(SrcTy); 3012 3013 FunctionArgList args; 3014 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3015 args.push_back(&dstDecl); 3016 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3017 args.push_back(&srcDecl); 3018 3019 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 3020 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 3021 3022 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3023 3024 llvm::Function *Fn = 3025 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3026 "__copy_helper_atomic_property_", &CGM.getModule()); 3027 3028 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3029 3030 StartFunction(FD, C.VoidTy, Fn, FI, args); 3031 3032 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3033 VK_RValue, SourceLocation()); 3034 3035 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3036 VK_LValue, OK_Ordinary, SourceLocation()); 3037 3038 CXXConstructExpr *CXXConstExpr = 3039 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3040 3041 SmallVector<Expr*, 4> ConstructorArgs; 3042 ConstructorArgs.push_back(&SRC); 3043 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3044 CXXConstExpr->arg_end()); 3045 3046 CXXConstructExpr *TheCXXConstructExpr = 3047 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3048 CXXConstExpr->getConstructor(), 3049 CXXConstExpr->isElidable(), 3050 ConstructorArgs, 3051 CXXConstExpr->hadMultipleCandidates(), 3052 CXXConstExpr->isListInitialization(), 3053 CXXConstExpr->isStdInitListInitialization(), 3054 CXXConstExpr->requiresZeroInitialization(), 3055 CXXConstExpr->getConstructionKind(), 3056 SourceRange()); 3057 3058 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3059 VK_RValue, SourceLocation()); 3060 3061 RValue DV = EmitAnyExpr(&DstExpr); 3062 CharUnits Alignment 3063 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3064 EmitAggExpr(TheCXXConstructExpr, 3065 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3066 Qualifiers(), 3067 AggValueSlot::IsDestructed, 3068 AggValueSlot::DoesNotNeedGCBarriers, 3069 AggValueSlot::IsNotAliased)); 3070 3071 FinishFunction(); 3072 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3073 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3074 return HelperFn; 3075 } 3076 3077 llvm::Value * 3078 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3079 // Get selectors for retain/autorelease. 3080 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3081 Selector CopySelector = 3082 getContext().Selectors.getNullarySelector(CopyID); 3083 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3084 Selector AutoreleaseSelector = 3085 getContext().Selectors.getNullarySelector(AutoreleaseID); 3086 3087 // Emit calls to retain/autorelease. 3088 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3089 llvm::Value *Val = Block; 3090 RValue Result; 3091 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3092 Ty, CopySelector, 3093 Val, CallArgList(), nullptr, nullptr); 3094 Val = Result.getScalarVal(); 3095 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3096 Ty, AutoreleaseSelector, 3097 Val, CallArgList(), nullptr, nullptr); 3098 Val = Result.getScalarVal(); 3099 return Val; 3100 } 3101 3102 3103 CGObjCRuntime::~CGObjCRuntime() {} 3104