Home | History | Annotate | Download | only in mips
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef  V8_MIPS_CONSTANTS_H_
      6 #define  V8_MIPS_CONSTANTS_H_
      7 #include "src/globals.h"
      8 // UNIMPLEMENTED_ macro for MIPS.
      9 #ifdef DEBUG
     10 #define UNIMPLEMENTED_MIPS()                                                  \
     11   v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
     12                        __FILE__, __LINE__, __func__)
     13 #else
     14 #define UNIMPLEMENTED_MIPS()
     15 #endif
     16 
     17 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
     18 
     19 enum ArchVariants {
     20   kMips32r1 = v8::internal::MIPSr1,
     21   kMips32r2 = v8::internal::MIPSr2,
     22   kMips32r6 = v8::internal::MIPSr6,
     23   kLoongson
     24 };
     25 
     26 #ifdef _MIPS_ARCH_MIPS32R2
     27   static const ArchVariants kArchVariant = kMips32r2;
     28 #elif _MIPS_ARCH_MIPS32R6
     29   static const ArchVariants kArchVariant = kMips32r6;
     30 #elif _MIPS_ARCH_LOONGSON
     31 // The loongson flag refers to the LOONGSON architectures based on MIPS-III,
     32 // which predates (and is a subset of) the mips32r2 and r1 architectures.
     33   static const ArchVariants kArchVariant = kLoongson;
     34 #elif _MIPS_ARCH_MIPS32RX
     35 // This flags referred to compatibility mode that creates universal code that
     36 // can run on any MIPS32 architecture revision. The dynamically generated code
     37 // by v8 is specialized for the MIPS host detected in runtime probing.
     38   static const ArchVariants kArchVariant = kMips32r1;
     39 #else
     40   static const ArchVariants kArchVariant = kMips32r1;
     41 #endif
     42 
     43 enum Endianness {
     44   kLittle,
     45   kBig
     46 };
     47 
     48 #if defined(V8_TARGET_LITTLE_ENDIAN)
     49   static const Endianness kArchEndian = kLittle;
     50 #elif defined(V8_TARGET_BIG_ENDIAN)
     51   static const Endianness kArchEndian = kBig;
     52 #else
     53 #error Unknown endianness
     54 #endif
     55 
     56 enum FpuMode {
     57   kFP32,
     58   kFP64,
     59   kFPXX
     60 };
     61 
     62 #if defined(FPU_MODE_FP32)
     63   static const FpuMode kFpuMode = kFP32;
     64 #elif defined(FPU_MODE_FP64)
     65   static const FpuMode kFpuMode = kFP64;
     66 #elif defined(FPU_MODE_FPXX)
     67   static const FpuMode kFpuMode = kFPXX;
     68 #else
     69   static const FpuMode kFpuMode = kFP32;
     70 #endif
     71 
     72 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
     73 // Use floating-point coprocessor instructions. This flag is raised when
     74 // -mhard-float is passed to the compiler.
     75 const bool IsMipsSoftFloatABI = false;
     76 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
     77 // This flag is raised when -msoft-float is passed to the compiler.
     78 // Although FPU is a base requirement for v8, soft-float ABI is used
     79 // on soft-float systems with FPU kernel emulation.
     80 const bool IsMipsSoftFloatABI = true;
     81 #else
     82 const bool IsMipsSoftFloatABI = true;
     83 #endif
     84 
     85 #if defined(V8_TARGET_LITTLE_ENDIAN)
     86 const uint32_t kHoleNanUpper32Offset = 4;
     87 const uint32_t kHoleNanLower32Offset = 0;
     88 #elif defined(V8_TARGET_BIG_ENDIAN)
     89 const uint32_t kHoleNanUpper32Offset = 0;
     90 const uint32_t kHoleNanLower32Offset = 4;
     91 #else
     92 #error Unknown endianness
     93 #endif
     94 
     95 #ifndef FPU_MODE_FPXX
     96 #define IsFp64Mode() \
     97   (kFpuMode == kFP64)
     98 #else
     99 #define IsFp64Mode() \
    100   (CpuFeatures::IsSupported(FP64FPU))
    101 #endif
    102 
    103 #ifndef _MIPS_ARCH_MIPS32RX
    104 #define IsMipsArchVariant(check) \
    105   (kArchVariant == check)
    106 #else
    107 #define IsMipsArchVariant(check) \
    108   (CpuFeatures::IsSupported(static_cast<CpuFeature>(check)))
    109 #endif
    110 
    111 
    112 #define __STDC_FORMAT_MACROS
    113 #include <inttypes.h>
    114 
    115 // Defines constants and accessor classes to assemble, disassemble and
    116 // simulate MIPS32 instructions.
    117 //
    118 // See: MIPS32 Architecture For Programmers
    119 //      Volume II: The MIPS32 Instruction Set
    120 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
    121 
    122 namespace v8 {
    123 namespace internal {
    124 
    125 // -----------------------------------------------------------------------------
    126 // Registers and FPURegisters.
    127 
    128 // Number of general purpose registers.
    129 const int kNumRegisters = 32;
    130 const int kInvalidRegister = -1;
    131 
    132 // Number of registers with HI, LO, and pc.
    133 const int kNumSimuRegisters = 35;
    134 
    135 // In the simulator, the PC register is simulated as the 34th register.
    136 const int kPCRegister = 34;
    137 
    138 // Number coprocessor registers.
    139 const int kNumFPURegisters = 32;
    140 const int kInvalidFPURegister = -1;
    141 
    142 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
    143 const int kFCSRRegister = 31;
    144 const int kInvalidFPUControlRegister = -1;
    145 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
    146 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1 << 31);
    147 const uint64_t kFPU64InvalidResult =
    148     static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
    149 const int64_t kFPU64InvalidResultNegative =
    150     static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
    151 
    152 // FCSR constants.
    153 const uint32_t kFCSRInexactFlagBit = 2;
    154 const uint32_t kFCSRUnderflowFlagBit = 3;
    155 const uint32_t kFCSROverflowFlagBit = 4;
    156 const uint32_t kFCSRDivideByZeroFlagBit = 5;
    157 const uint32_t kFCSRInvalidOpFlagBit = 6;
    158 const uint32_t kFCSRNaN2008FlagBit = 18;
    159 
    160 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
    161 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
    162 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
    163 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
    164 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
    165 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
    166 
    167 const uint32_t kFCSRFlagMask =
    168     kFCSRInexactFlagMask |
    169     kFCSRUnderflowFlagMask |
    170     kFCSROverflowFlagMask |
    171     kFCSRDivideByZeroFlagMask |
    172     kFCSRInvalidOpFlagMask;
    173 
    174 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
    175 
    176 // 'pref' instruction hints
    177 const int32_t kPrefHintLoad = 0;
    178 const int32_t kPrefHintStore = 1;
    179 const int32_t kPrefHintLoadStreamed = 4;
    180 const int32_t kPrefHintStoreStreamed = 5;
    181 const int32_t kPrefHintLoadRetained = 6;
    182 const int32_t kPrefHintStoreRetained = 7;
    183 const int32_t kPrefHintWritebackInvalidate = 25;
    184 const int32_t kPrefHintPrepareForStore = 30;
    185 
    186 // Helper functions for converting between register numbers and names.
    187 class Registers {
    188  public:
    189   // Return the name of the register.
    190   static const char* Name(int reg);
    191 
    192   // Lookup the register number for the name provided.
    193   static int Number(const char* name);
    194 
    195   struct RegisterAlias {
    196     int reg;
    197     const char* name;
    198   };
    199 
    200   static const int32_t kMaxValue = 0x7fffffff;
    201   static const int32_t kMinValue = 0x80000000;
    202 
    203  private:
    204   static const char* names_[kNumSimuRegisters];
    205   static const RegisterAlias aliases_[];
    206 };
    207 
    208 // Helper functions for converting between register numbers and names.
    209 class FPURegisters {
    210  public:
    211   // Return the name of the register.
    212   static const char* Name(int reg);
    213 
    214   // Lookup the register number for the name provided.
    215   static int Number(const char* name);
    216 
    217   struct RegisterAlias {
    218     int creg;
    219     const char* name;
    220   };
    221 
    222  private:
    223   static const char* names_[kNumFPURegisters];
    224   static const RegisterAlias aliases_[];
    225 };
    226 
    227 
    228 // -----------------------------------------------------------------------------
    229 // Instructions encoding constants.
    230 
    231 // On MIPS all instructions are 32 bits.
    232 typedef int32_t Instr;
    233 
    234 // Special Software Interrupt codes when used in the presence of the MIPS
    235 // simulator.
    236 enum SoftwareInterruptCodes {
    237   // Transition to C code.
    238   call_rt_redirected = 0xfffff
    239 };
    240 
    241 // On MIPS Simulator breakpoints can have different codes:
    242 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
    243 //   the simulator will run through them and print the registers.
    244 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
    245 //   instructions (see Assembler::stop()).
    246 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
    247 //   debugger.
    248 const uint32_t kMaxWatchpointCode = 31;
    249 const uint32_t kMaxStopCode = 127;
    250 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
    251 
    252 
    253 // ----- Fields offset and length.
    254 const int kOpcodeShift   = 26;
    255 const int kOpcodeBits    = 6;
    256 const int kRsShift       = 21;
    257 const int kRsBits        = 5;
    258 const int kRtShift       = 16;
    259 const int kRtBits        = 5;
    260 const int kRdShift       = 11;
    261 const int kRdBits        = 5;
    262 const int kSaShift       = 6;
    263 const int kSaBits        = 5;
    264 const int kLsaSaBits = 2;
    265 const int kFunctionShift = 0;
    266 const int kFunctionBits  = 6;
    267 const int kLuiShift      = 16;
    268 const int kBp2Shift = 6;
    269 const int kBp2Bits = 2;
    270 
    271 const int kImm16Shift = 0;
    272 const int kImm16Bits  = 16;
    273 const int kImm18Shift = 0;
    274 const int kImm18Bits = 18;
    275 const int kImm19Shift = 0;
    276 const int kImm19Bits = 19;
    277 const int kImm21Shift = 0;
    278 const int kImm21Bits  = 21;
    279 const int kImm26Shift = 0;
    280 const int kImm26Bits  = 26;
    281 const int kImm28Shift = 0;
    282 const int kImm28Bits  = 28;
    283 const int kImm32Shift = 0;
    284 const int kImm32Bits  = 32;
    285 
    286 // In branches and jumps immediate fields point to words, not bytes,
    287 // and are therefore shifted by 2.
    288 const int kImmFieldShift = 2;
    289 
    290 const int kFrBits        = 5;
    291 const int kFrShift       = 21;
    292 const int kFsShift       = 11;
    293 const int kFsBits        = 5;
    294 const int kFtShift       = 16;
    295 const int kFtBits        = 5;
    296 const int kFdShift       = 6;
    297 const int kFdBits        = 5;
    298 const int kFCccShift     = 8;
    299 const int kFCccBits      = 3;
    300 const int kFBccShift     = 18;
    301 const int kFBccBits      = 3;
    302 const int kFBtrueShift   = 16;
    303 const int kFBtrueBits    = 1;
    304 
    305 // ----- Miscellaneous useful masks.
    306 // Instruction bit masks.
    307 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
    308 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
    309 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
    310 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
    311 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
    312 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
    313 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
    314 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
    315 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
    316 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
    317 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
    318 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
    319 // Misc masks.
    320 const int kHiMask = 0xffff << 16;
    321 const int kLoMask = 0xffff;
    322 const int kSignMask = 0x80000000;
    323 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
    324 
    325 // ----- MIPS Opcodes and Function Fields.
    326 // We use this presentation to stay close to the table representation in
    327 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
    328 enum Opcode : uint32_t {
    329   SPECIAL = 0U << kOpcodeShift,
    330   REGIMM = 1U << kOpcodeShift,
    331 
    332   J = ((0U << 3) + 2) << kOpcodeShift,
    333   JAL = ((0U << 3) + 3) << kOpcodeShift,
    334   BEQ = ((0U << 3) + 4) << kOpcodeShift,
    335   BNE = ((0U << 3) + 5) << kOpcodeShift,
    336   BLEZ = ((0U << 3) + 6) << kOpcodeShift,
    337   BGTZ = ((0U << 3) + 7) << kOpcodeShift,
    338 
    339   ADDI = ((1U << 3) + 0) << kOpcodeShift,
    340   ADDIU = ((1U << 3) + 1) << kOpcodeShift,
    341   SLTI = ((1U << 3) + 2) << kOpcodeShift,
    342   SLTIU = ((1U << 3) + 3) << kOpcodeShift,
    343   ANDI = ((1U << 3) + 4) << kOpcodeShift,
    344   ORI = ((1U << 3) + 5) << kOpcodeShift,
    345   XORI = ((1U << 3) + 6) << kOpcodeShift,
    346   LUI = ((1U << 3) + 7) << kOpcodeShift,  // LUI/AUI family.
    347 
    348   BEQC = ((2U << 3) + 0) << kOpcodeShift,
    349   COP1 = ((2U << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
    350   BEQL = ((2U << 3) + 4) << kOpcodeShift,
    351   BNEL = ((2U << 3) + 5) << kOpcodeShift,
    352   BLEZL = ((2U << 3) + 6) << kOpcodeShift,
    353   BGTZL = ((2U << 3) + 7) << kOpcodeShift,
    354 
    355   DADDI = ((3U << 3) + 0) << kOpcodeShift,  // This is also BNEC.
    356   SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
    357   SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
    358 
    359   LB = ((4U << 3) + 0) << kOpcodeShift,
    360   LH = ((4U << 3) + 1) << kOpcodeShift,
    361   LWL = ((4U << 3) + 2) << kOpcodeShift,
    362   LW = ((4U << 3) + 3) << kOpcodeShift,
    363   LBU = ((4U << 3) + 4) << kOpcodeShift,
    364   LHU = ((4U << 3) + 5) << kOpcodeShift,
    365   LWR = ((4U << 3) + 6) << kOpcodeShift,
    366   SB = ((5U << 3) + 0) << kOpcodeShift,
    367   SH = ((5U << 3) + 1) << kOpcodeShift,
    368   SWL = ((5U << 3) + 2) << kOpcodeShift,
    369   SW = ((5U << 3) + 3) << kOpcodeShift,
    370   SWR = ((5U << 3) + 6) << kOpcodeShift,
    371 
    372   LWC1 = ((6U << 3) + 1) << kOpcodeShift,
    373   BC = ((6U << 3) + 2) << kOpcodeShift,
    374   LDC1 = ((6U << 3) + 5) << kOpcodeShift,
    375   POP66 = ((6U << 3) + 6) << kOpcodeShift,  // beqzc, jic
    376 
    377   PREF = ((6U << 3) + 3) << kOpcodeShift,
    378 
    379   SWC1 = ((7U << 3) + 1) << kOpcodeShift,
    380   BALC = ((7U << 3) + 2) << kOpcodeShift,
    381   PCREL = ((7U << 3) + 3) << kOpcodeShift,
    382   SDC1 = ((7U << 3) + 5) << kOpcodeShift,
    383   POP76 = ((7U << 3) + 6) << kOpcodeShift,  // bnezc, jialc
    384 
    385   COP1X = ((1U << 4) + 3) << kOpcodeShift,
    386 
    387   // New r6 instruction.
    388   POP06 = BLEZ,   // bgeuc/bleuc, blezalc, bgezalc
    389   POP07 = BGTZ,   // bltuc/bgtuc, bgtzalc, bltzalc
    390   POP10 = ADDI,   // beqzalc, bovc, beqc
    391   POP26 = BLEZL,  // bgezc, blezc, bgec/blec
    392   POP27 = BGTZL,  // bgtzc, bltzc, bltc/bgtc
    393   POP30 = DADDI,  // bnezalc, bvnc, bnec
    394 };
    395 
    396 enum SecondaryField : uint32_t {
    397   // SPECIAL Encoding of Function Field.
    398   SLL = ((0U << 3) + 0),
    399   MOVCI = ((0U << 3) + 1),
    400   SRL = ((0U << 3) + 2),
    401   SRA = ((0U << 3) + 3),
    402   SLLV = ((0U << 3) + 4),
    403   LSA = ((0U << 3) + 5),
    404   SRLV = ((0U << 3) + 6),
    405   SRAV = ((0U << 3) + 7),
    406 
    407   JR = ((1U << 3) + 0),
    408   JALR = ((1U << 3) + 1),
    409   MOVZ = ((1U << 3) + 2),
    410   MOVN = ((1U << 3) + 3),
    411   BREAK = ((1U << 3) + 5),
    412 
    413   MFHI = ((2U << 3) + 0),
    414   CLZ_R6 = ((2U << 3) + 0),
    415   CLO_R6 = ((2U << 3) + 1),
    416   MFLO = ((2U << 3) + 2),
    417 
    418   MULT = ((3U << 3) + 0),
    419   MULTU = ((3U << 3) + 1),
    420   DIV = ((3U << 3) + 2),
    421   DIVU = ((3U << 3) + 3),
    422 
    423   ADD = ((4U << 3) + 0),
    424   ADDU = ((4U << 3) + 1),
    425   SUB = ((4U << 3) + 2),
    426   SUBU = ((4U << 3) + 3),
    427   AND = ((4U << 3) + 4),
    428   OR = ((4U << 3) + 5),
    429   XOR = ((4U << 3) + 6),
    430   NOR = ((4U << 3) + 7),
    431 
    432   SLT = ((5U << 3) + 2),
    433   SLTU = ((5U << 3) + 3),
    434 
    435   TGE = ((6U << 3) + 0),
    436   TGEU = ((6U << 3) + 1),
    437   TLT = ((6U << 3) + 2),
    438   TLTU = ((6U << 3) + 3),
    439   TEQ = ((6U << 3) + 4),
    440   SELEQZ_S = ((6U << 3) + 5),
    441   TNE = ((6U << 3) + 6),
    442   SELNEZ_S = ((6U << 3) + 7),
    443 
    444   // Multiply integers in r6.
    445   MUL_MUH = ((3U << 3) + 0),    // MUL, MUH.
    446   MUL_MUH_U = ((3U << 3) + 1),  // MUL_U, MUH_U.
    447   RINT = ((3U << 3) + 2),
    448 
    449   MUL_OP = ((0U << 3) + 2),
    450   MUH_OP = ((0U << 3) + 3),
    451   DIV_OP = ((0U << 3) + 2),
    452   MOD_OP = ((0U << 3) + 3),
    453 
    454   DIV_MOD = ((3U << 3) + 2),
    455   DIV_MOD_U = ((3U << 3) + 3),
    456 
    457   // SPECIAL2 Encoding of Function Field.
    458   MUL = ((0U << 3) + 2),
    459   CLZ = ((4U << 3) + 0),
    460   CLO = ((4U << 3) + 1),
    461 
    462   // SPECIAL3 Encoding of Function Field.
    463   EXT = ((0U << 3) + 0),
    464   INS = ((0U << 3) + 4),
    465   BSHFL = ((4U << 3) + 0),
    466 
    467   // SPECIAL3 Encoding of sa Field.
    468   BITSWAP = ((0U << 3) + 0),
    469   ALIGN = ((0U << 3) + 2),
    470   WSBH = ((0U << 3) + 2),
    471   SEB = ((2U << 3) + 0),
    472   SEH = ((3U << 3) + 0),
    473 
    474   // REGIMM  encoding of rt Field.
    475   BLTZ = ((0U << 3) + 0) << 16,
    476   BGEZ = ((0U << 3) + 1) << 16,
    477   BLTZAL = ((2U << 3) + 0) << 16,
    478   BGEZAL = ((2U << 3) + 1) << 16,
    479   BGEZALL = ((2U << 3) + 3) << 16,
    480 
    481   // COP1 Encoding of rs Field.
    482   MFC1 = ((0U << 3) + 0) << 21,
    483   CFC1 = ((0U << 3) + 2) << 21,
    484   MFHC1 = ((0U << 3) + 3) << 21,
    485   MTC1 = ((0U << 3) + 4) << 21,
    486   CTC1 = ((0U << 3) + 6) << 21,
    487   MTHC1 = ((0U << 3) + 7) << 21,
    488   BC1 = ((1U << 3) + 0) << 21,
    489   S = ((2U << 3) + 0) << 21,
    490   D = ((2U << 3) + 1) << 21,
    491   W = ((2U << 3) + 4) << 21,
    492   L = ((2U << 3) + 5) << 21,
    493   PS = ((2U << 3) + 6) << 21,
    494   // COP1 Encoding of Function Field When rs=S.
    495 
    496   ADD_S = ((0U << 3) + 0),
    497   SUB_S = ((0U << 3) + 1),
    498   MUL_S = ((0U << 3) + 2),
    499   DIV_S = ((0U << 3) + 3),
    500   ABS_S = ((0U << 3) + 5),
    501   SQRT_S = ((0U << 3) + 4),
    502   MOV_S = ((0U << 3) + 6),
    503   NEG_S = ((0U << 3) + 7),
    504   ROUND_L_S = ((1U << 3) + 0),
    505   TRUNC_L_S = ((1U << 3) + 1),
    506   CEIL_L_S = ((1U << 3) + 2),
    507   FLOOR_L_S = ((1U << 3) + 3),
    508   ROUND_W_S = ((1U << 3) + 4),
    509   TRUNC_W_S = ((1U << 3) + 5),
    510   CEIL_W_S = ((1U << 3) + 6),
    511   FLOOR_W_S = ((1U << 3) + 7),
    512   RECIP_S = ((2U << 3) + 5),
    513   RSQRT_S = ((2U << 3) + 6),
    514   CLASS_S = ((3U << 3) + 3),
    515   CVT_D_S = ((4U << 3) + 1),
    516   CVT_W_S = ((4U << 3) + 4),
    517   CVT_L_S = ((4U << 3) + 5),
    518   CVT_PS_S = ((4U << 3) + 6),
    519 
    520   // COP1 Encoding of Function Field When rs=D.
    521   ADD_D = ((0U << 3) + 0),
    522   SUB_D = ((0U << 3) + 1),
    523   MUL_D = ((0U << 3) + 2),
    524   DIV_D = ((0U << 3) + 3),
    525   SQRT_D = ((0U << 3) + 4),
    526   ABS_D = ((0U << 3) + 5),
    527   MOV_D = ((0U << 3) + 6),
    528   NEG_D = ((0U << 3) + 7),
    529   ROUND_L_D = ((1U << 3) + 0),
    530   TRUNC_L_D = ((1U << 3) + 1),
    531   CEIL_L_D = ((1U << 3) + 2),
    532   FLOOR_L_D = ((1U << 3) + 3),
    533   ROUND_W_D = ((1U << 3) + 4),
    534   TRUNC_W_D = ((1U << 3) + 5),
    535   CEIL_W_D = ((1U << 3) + 6),
    536   FLOOR_W_D = ((1U << 3) + 7),
    537   RECIP_D = ((2U << 3) + 5),
    538   RSQRT_D = ((2U << 3) + 6),
    539   CLASS_D = ((3U << 3) + 3),
    540   MIN = ((3U << 3) + 4),
    541   MINA = ((3U << 3) + 5),
    542   MAX = ((3U << 3) + 6),
    543   MAXA = ((3U << 3) + 7),
    544   CVT_S_D = ((4U << 3) + 0),
    545   CVT_W_D = ((4U << 3) + 4),
    546   CVT_L_D = ((4U << 3) + 5),
    547   C_F_D = ((6U << 3) + 0),
    548   C_UN_D = ((6U << 3) + 1),
    549   C_EQ_D = ((6U << 3) + 2),
    550   C_UEQ_D = ((6U << 3) + 3),
    551   C_OLT_D = ((6U << 3) + 4),
    552   C_ULT_D = ((6U << 3) + 5),
    553   C_OLE_D = ((6U << 3) + 6),
    554   C_ULE_D = ((6U << 3) + 7),
    555 
    556   // COP1 Encoding of Function Field When rs=W or L.
    557   CVT_S_W = ((4U << 3) + 0),
    558   CVT_D_W = ((4U << 3) + 1),
    559   CVT_S_L = ((4U << 3) + 0),
    560   CVT_D_L = ((4U << 3) + 1),
    561   BC1EQZ = ((2U << 2) + 1) << 21,
    562   BC1NEZ = ((3U << 2) + 1) << 21,
    563   // COP1 CMP positive predicates Bit 5..4 = 00.
    564   CMP_AF = ((0U << 3) + 0),
    565   CMP_UN = ((0U << 3) + 1),
    566   CMP_EQ = ((0U << 3) + 2),
    567   CMP_UEQ = ((0U << 3) + 3),
    568   CMP_LT = ((0U << 3) + 4),
    569   CMP_ULT = ((0U << 3) + 5),
    570   CMP_LE = ((0U << 3) + 6),
    571   CMP_ULE = ((0U << 3) + 7),
    572   CMP_SAF = ((1U << 3) + 0),
    573   CMP_SUN = ((1U << 3) + 1),
    574   CMP_SEQ = ((1U << 3) + 2),
    575   CMP_SUEQ = ((1U << 3) + 3),
    576   CMP_SSLT = ((1U << 3) + 4),
    577   CMP_SSULT = ((1U << 3) + 5),
    578   CMP_SLE = ((1U << 3) + 6),
    579   CMP_SULE = ((1U << 3) + 7),
    580   // COP1 CMP negative predicates Bit 5..4 = 01.
    581   CMP_AT = ((2U << 3) + 0),  // Reserved, not implemented.
    582   CMP_OR = ((2U << 3) + 1),
    583   CMP_UNE = ((2U << 3) + 2),
    584   CMP_NE = ((2U << 3) + 3),
    585   CMP_UGE = ((2U << 3) + 4),  // Reserved, not implemented.
    586   CMP_OGE = ((2U << 3) + 5),  // Reserved, not implemented.
    587   CMP_UGT = ((2U << 3) + 6),  // Reserved, not implemented.
    588   CMP_OGT = ((2U << 3) + 7),  // Reserved, not implemented.
    589   CMP_SAT = ((3U << 3) + 0),  // Reserved, not implemented.
    590   CMP_SOR = ((3U << 3) + 1),
    591   CMP_SUNE = ((3U << 3) + 2),
    592   CMP_SNE = ((3U << 3) + 3),
    593   CMP_SUGE = ((3U << 3) + 4),  // Reserved, not implemented.
    594   CMP_SOGE = ((3U << 3) + 5),  // Reserved, not implemented.
    595   CMP_SUGT = ((3U << 3) + 6),  // Reserved, not implemented.
    596   CMP_SOGT = ((3U << 3) + 7),  // Reserved, not implemented.
    597 
    598   SEL = ((2U << 3) + 0),
    599   MOVZ_C = ((2U << 3) + 2),
    600   MOVN_C = ((2U << 3) + 3),
    601   SELEQZ_C = ((2U << 3) + 4),  // COP1 on FPR registers.
    602   MOVF = ((2U << 3) + 1),      // Function field for MOVT.fmt and MOVF.fmt
    603   SELNEZ_C = ((2U << 3) + 7),  // COP1 on FPR registers.
    604   // COP1 Encoding of Function Field When rs=PS.
    605   // COP1X Encoding of Function Field.
    606   MADD_D = ((4U << 3) + 1),
    607 
    608   // PCREL Encoding of rt Field.
    609   ADDIUPC = ((0U << 2) + 0),
    610   LWPC = ((0U << 2) + 1),
    611   AUIPC = ((3U << 3) + 6),
    612   ALUIPC = ((3U << 3) + 7),
    613 
    614   // POP66 Encoding of rs Field.
    615   JIC = ((0U << 5) + 0),
    616 
    617   // POP76 Encoding of rs Field.
    618   JIALC = ((0U << 5) + 0),
    619 
    620   NULLSF = 0U
    621 };
    622 
    623 
    624 // ----- Emulated conditions.
    625 // On MIPS we use this enum to abstract from conditional branch instructions.
    626 // The 'U' prefix is used to specify unsigned comparisons.
    627 // Opposite conditions must be paired as odd/even numbers
    628 // because 'NegateCondition' function flips LSB to negate condition.
    629 enum Condition {
    630   // Any value < 0 is considered no_condition.
    631   kNoCondition = -1,
    632   overflow = 0,
    633   no_overflow = 1,
    634   Uless = 2,
    635   Ugreater_equal = 3,
    636   Uless_equal = 4,
    637   Ugreater = 5,
    638   equal = 6,
    639   not_equal = 7,  // Unordered or Not Equal.
    640   negative = 8,
    641   positive = 9,
    642   parity_even = 10,
    643   parity_odd = 11,
    644   less = 12,
    645   greater_equal = 13,
    646   less_equal = 14,
    647   greater = 15,
    648   ueq = 16,  // Unordered or Equal.
    649   ogl = 17,  // Ordered and Not Equal.
    650   cc_always = 18,
    651 
    652   // Aliases.
    653   carry = Uless,
    654   not_carry = Ugreater_equal,
    655   zero = equal,
    656   eq = equal,
    657   not_zero = not_equal,
    658   ne = not_equal,
    659   nz = not_equal,
    660   sign = negative,
    661   not_sign = positive,
    662   mi = negative,
    663   pl = positive,
    664   hi = Ugreater,
    665   ls = Uless_equal,
    666   ge = greater_equal,
    667   lt = less,
    668   gt = greater,
    669   le = less_equal,
    670   hs = Ugreater_equal,
    671   lo = Uless,
    672   al = cc_always,
    673   ult = Uless,
    674   uge = Ugreater_equal,
    675   ule = Uless_equal,
    676   ugt = Ugreater,
    677   cc_default = kNoCondition
    678 };
    679 
    680 
    681 // Returns the equivalent of !cc.
    682 // Negation of the default kNoCondition (-1) results in a non-default
    683 // no_condition value (-2). As long as tests for no_condition check
    684 // for condition < 0, this will work as expected.
    685 inline Condition NegateCondition(Condition cc) {
    686   DCHECK(cc != cc_always);
    687   return static_cast<Condition>(cc ^ 1);
    688 }
    689 
    690 
    691 inline Condition NegateFpuCondition(Condition cc) {
    692   DCHECK(cc != cc_always);
    693   switch (cc) {
    694     case ult:
    695       return ge;
    696     case ugt:
    697       return le;
    698     case uge:
    699       return lt;
    700     case ule:
    701       return gt;
    702     case lt:
    703       return uge;
    704     case gt:
    705       return ule;
    706     case ge:
    707       return ult;
    708     case le:
    709       return ugt;
    710     case eq:
    711       return ne;
    712     case ne:
    713       return eq;
    714     case ueq:
    715       return ogl;
    716     case ogl:
    717       return ueq;
    718     default:
    719       return cc;
    720   }
    721 }
    722 
    723 
    724 // Commute a condition such that {a cond b == b cond' a}.
    725 inline Condition CommuteCondition(Condition cc) {
    726   switch (cc) {
    727     case Uless:
    728       return Ugreater;
    729     case Ugreater:
    730       return Uless;
    731     case Ugreater_equal:
    732       return Uless_equal;
    733     case Uless_equal:
    734       return Ugreater_equal;
    735     case less:
    736       return greater;
    737     case greater:
    738       return less;
    739     case greater_equal:
    740       return less_equal;
    741     case less_equal:
    742       return greater_equal;
    743     default:
    744       return cc;
    745   }
    746 }
    747 
    748 
    749 // ----- Coprocessor conditions.
    750 enum FPUCondition {
    751   kNoFPUCondition = -1,
    752 
    753   F = 0x00,    // False.
    754   UN = 0x01,   // Unordered.
    755   EQ = 0x02,   // Equal.
    756   UEQ = 0x03,  // Unordered or Equal.
    757   OLT = 0x04,  // Ordered or Less Than, on Mips release < 6.
    758   LT = 0x04,   // Ordered or Less Than, on Mips release >= 6.
    759   ULT = 0x05,  // Unordered or Less Than.
    760   OLE = 0x06,  // Ordered or Less Than or Equal, on Mips release < 6.
    761   LE = 0x06,   // Ordered or Less Than or Equal, on Mips release >= 6.
    762   ULE = 0x07,  // Unordered or Less Than or Equal.
    763 
    764   // Following constants are available on Mips release >= 6 only.
    765   ORD = 0x11,  // Ordered, on Mips release >= 6.
    766   UNE = 0x12,  // Not equal, on Mips release >= 6.
    767   NE = 0x13,   // Ordered Greater Than or Less Than. on Mips >= 6 only.
    768 };
    769 
    770 
    771 // FPU rounding modes.
    772 enum FPURoundingMode {
    773   RN = 0 << 0,  // Round to Nearest.
    774   RZ = 1 << 0,  // Round towards zero.
    775   RP = 2 << 0,  // Round towards Plus Infinity.
    776   RM = 3 << 0,  // Round towards Minus Infinity.
    777 
    778   // Aliases.
    779   kRoundToNearest = RN,
    780   kRoundToZero = RZ,
    781   kRoundToPlusInf = RP,
    782   kRoundToMinusInf = RM,
    783 
    784   mode_round = RN,
    785   mode_ceil = RP,
    786   mode_floor = RM,
    787   mode_trunc = RZ
    788 };
    789 
    790 const uint32_t kFPURoundingModeMask = 3 << 0;
    791 
    792 enum CheckForInexactConversion {
    793   kCheckForInexactConversion,
    794   kDontCheckForInexactConversion
    795 };
    796 
    797 
    798 // -----------------------------------------------------------------------------
    799 // Hints.
    800 
    801 // Branch hints are not used on the MIPS.  They are defined so that they can
    802 // appear in shared function signatures, but will be ignored in MIPS
    803 // implementations.
    804 enum Hint {
    805   no_hint = 0
    806 };
    807 
    808 
    809 inline Hint NegateHint(Hint hint) {
    810   return no_hint;
    811 }
    812 
    813 
    814 // -----------------------------------------------------------------------------
    815 // Specific instructions, constants, and masks.
    816 // These constants are declared in assembler-mips.cc, as they use named
    817 // registers and other constants.
    818 
    819 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
    820 // operations as post-increment of sp.
    821 extern const Instr kPopInstruction;
    822 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
    823 extern const Instr kPushInstruction;
    824 // sw(r, MemOperand(sp, 0))
    825 extern const Instr kPushRegPattern;
    826 // lw(r, MemOperand(sp, 0))
    827 extern const Instr kPopRegPattern;
    828 extern const Instr kLwRegFpOffsetPattern;
    829 extern const Instr kSwRegFpOffsetPattern;
    830 extern const Instr kLwRegFpNegOffsetPattern;
    831 extern const Instr kSwRegFpNegOffsetPattern;
    832 // A mask for the Rt register for push, pop, lw, sw instructions.
    833 extern const Instr kRtMask;
    834 extern const Instr kLwSwInstrTypeMask;
    835 extern const Instr kLwSwInstrArgumentMask;
    836 extern const Instr kLwSwOffsetMask;
    837 
    838 // Break 0xfffff, reserved for redirected real time call.
    839 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
    840 // A nop instruction. (Encoding of sll 0 0 0).
    841 const Instr nopInstr = 0;
    842 
    843 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
    844   return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
    845 }
    846 
    847 
    848 class Instruction {
    849  public:
    850   enum {
    851     kInstrSize = 4,
    852     kInstrSizeLog2 = 2,
    853     // On MIPS PC cannot actually be directly accessed. We behave as if PC was
    854     // always the value of the current instruction being executed.
    855     kPCReadOffset = 0
    856   };
    857 
    858   // Get the raw instruction bits.
    859   inline Instr InstructionBits() const {
    860     return *reinterpret_cast<const Instr*>(this);
    861   }
    862 
    863   // Set the raw instruction bits to value.
    864   inline void SetInstructionBits(Instr value) {
    865     *reinterpret_cast<Instr*>(this) = value;
    866   }
    867 
    868   // Read one particular bit out of the instruction bits.
    869   inline int Bit(int nr) const {
    870     return (InstructionBits() >> nr) & 1;
    871   }
    872 
    873   // Read a bit field out of the instruction bits.
    874   inline int Bits(int hi, int lo) const {
    875     return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
    876   }
    877 
    878   // Instruction type.
    879   enum Type {
    880     kRegisterType,
    881     kImmediateType,
    882     kJumpType,
    883     kUnsupported = -1
    884   };
    885 
    886   enum TypeChecks { NORMAL, EXTRA };
    887 
    888 
    889   static constexpr uint64_t kOpcodeImmediateTypeMask =
    890       OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
    891       OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
    892       OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
    893       OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
    894       OpcodeToBitNumber(SLTI) | OpcodeToBitNumber(SLTIU) |
    895       OpcodeToBitNumber(ANDI) | OpcodeToBitNumber(ORI) |
    896       OpcodeToBitNumber(XORI) | OpcodeToBitNumber(LUI) |
    897       OpcodeToBitNumber(BEQL) | OpcodeToBitNumber(BNEL) |
    898       OpcodeToBitNumber(BLEZL) | OpcodeToBitNumber(BGTZL) |
    899       OpcodeToBitNumber(POP66) | OpcodeToBitNumber(POP76) |
    900       OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) | OpcodeToBitNumber(LWL) |
    901       OpcodeToBitNumber(LW) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
    902       OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
    903       OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SWR) |
    904       OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
    905       OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
    906       OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(BC) |
    907       OpcodeToBitNumber(BALC);
    908 
    909 #define FunctionFieldToBitNumber(function) (1ULL << function)
    910 
    911   static const uint64_t kFunctionFieldRegisterTypeMask =
    912       FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
    913       FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
    914       FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(SRA) |
    915       FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(SRLV) |
    916       FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(LSA) |
    917       FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
    918       FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(MULTU) |
    919       FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DIVU) |
    920       FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(ADDU) |
    921       FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(SUBU) |
    922       FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
    923       FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
    924       FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
    925       FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
    926       FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
    927       FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
    928       FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
    929       FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
    930       FunctionFieldToBitNumber(SELNEZ_S);
    931 
    932 
    933   // Get the encoding type of the instruction.
    934   inline Type InstructionType(TypeChecks checks = NORMAL) const;
    935 
    936   // Accessors for the different named fields used in the MIPS encoding.
    937   inline Opcode OpcodeValue() const {
    938     return static_cast<Opcode>(
    939         Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
    940   }
    941 
    942   inline int RsValue() const {
    943     DCHECK(InstructionType() == kRegisterType ||
    944            InstructionType() == kImmediateType);
    945     return Bits(kRsShift + kRsBits - 1, kRsShift);
    946   }
    947 
    948   inline int RtValue() const {
    949     DCHECK(InstructionType() == kRegisterType ||
    950            InstructionType() == kImmediateType);
    951     return Bits(kRtShift + kRtBits - 1, kRtShift);
    952   }
    953 
    954   inline int RdValue() const {
    955     DCHECK(InstructionType() == kRegisterType);
    956     return Bits(kRdShift + kRdBits - 1, kRdShift);
    957   }
    958 
    959   inline int SaValue() const {
    960     DCHECK(InstructionType() == kRegisterType);
    961     return Bits(kSaShift + kSaBits - 1, kSaShift);
    962   }
    963 
    964   inline int LsaSaValue() const {
    965     DCHECK(InstructionType() == kRegisterType);
    966     return Bits(kSaShift + kLsaSaBits - 1, kSaShift);
    967   }
    968 
    969   inline int FunctionValue() const {
    970     DCHECK(InstructionType() == kRegisterType ||
    971            InstructionType() == kImmediateType);
    972     return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
    973   }
    974 
    975   inline int FdValue() const {
    976     return Bits(kFdShift + kFdBits - 1, kFdShift);
    977   }
    978 
    979   inline int FsValue() const {
    980     return Bits(kFsShift + kFsBits - 1, kFsShift);
    981   }
    982 
    983   inline int FtValue() const {
    984     return Bits(kFtShift + kFtBits - 1, kFtShift);
    985   }
    986 
    987   inline int FrValue() const {
    988     return Bits(kFrShift + kFrBits -1, kFrShift);
    989   }
    990 
    991   inline int Bp2Value() const {
    992     DCHECK(InstructionType() == kRegisterType);
    993     return Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
    994   }
    995 
    996   // Float Compare condition code instruction bits.
    997   inline int FCccValue() const {
    998     return Bits(kFCccShift + kFCccBits - 1, kFCccShift);
    999   }
   1000 
   1001   // Float Branch condition code instruction bits.
   1002   inline int FBccValue() const {
   1003     return Bits(kFBccShift + kFBccBits - 1, kFBccShift);
   1004   }
   1005 
   1006   // Float Branch true/false instruction bit.
   1007   inline int FBtrueValue() const {
   1008     return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
   1009   }
   1010 
   1011   // Return the fields at their original place in the instruction encoding.
   1012   inline Opcode OpcodeFieldRaw() const {
   1013     return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
   1014   }
   1015 
   1016   inline int RsFieldRaw() const {
   1017     DCHECK(InstructionType() == kRegisterType ||
   1018            InstructionType() == kImmediateType);
   1019     return InstructionBits() & kRsFieldMask;
   1020   }
   1021 
   1022   // Same as above function, but safe to call within InstructionType().
   1023   inline int RsFieldRawNoAssert() const {
   1024     return InstructionBits() & kRsFieldMask;
   1025   }
   1026 
   1027   inline int RtFieldRaw() const {
   1028     DCHECK(InstructionType() == kRegisterType ||
   1029            InstructionType() == kImmediateType);
   1030     return InstructionBits() & kRtFieldMask;
   1031   }
   1032 
   1033   inline int RdFieldRaw() const {
   1034     DCHECK(InstructionType() == kRegisterType);
   1035     return InstructionBits() & kRdFieldMask;
   1036   }
   1037 
   1038   inline int SaFieldRaw() const {
   1039     return InstructionBits() & kSaFieldMask;
   1040   }
   1041 
   1042   inline int FunctionFieldRaw() const {
   1043     return InstructionBits() & kFunctionFieldMask;
   1044   }
   1045 
   1046   // Get the secondary field according to the opcode.
   1047   inline int SecondaryValue() const {
   1048     Opcode op = OpcodeFieldRaw();
   1049     switch (op) {
   1050       case SPECIAL:
   1051       case SPECIAL2:
   1052         return FunctionValue();
   1053       case COP1:
   1054         return RsValue();
   1055       case REGIMM:
   1056         return RtValue();
   1057       default:
   1058         return NULLSF;
   1059     }
   1060   }
   1061 
   1062   inline int32_t ImmValue(int bits) const {
   1063     DCHECK(InstructionType() == kImmediateType);
   1064     return Bits(bits - 1, 0);
   1065   }
   1066 
   1067   inline int32_t Imm16Value() const {
   1068     DCHECK(InstructionType() == kImmediateType);
   1069     return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
   1070   }
   1071 
   1072   inline int32_t Imm18Value() const {
   1073     DCHECK(InstructionType() == kImmediateType);
   1074     return Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
   1075   }
   1076 
   1077   inline int32_t Imm19Value() const {
   1078     DCHECK(InstructionType() == kImmediateType);
   1079     return Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
   1080   }
   1081 
   1082   inline int32_t Imm21Value() const {
   1083     DCHECK(InstructionType() == kImmediateType);
   1084     return Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
   1085   }
   1086 
   1087   inline int32_t Imm26Value() const {
   1088     DCHECK((InstructionType() == kJumpType) ||
   1089            (InstructionType() == kImmediateType));
   1090     return Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
   1091   }
   1092 
   1093   static bool IsForbiddenAfterBranchInstr(Instr instr);
   1094 
   1095   // Say if the instruction should not be used in a branch delay slot or
   1096   // immediately after a compact branch.
   1097   inline bool IsForbiddenAfterBranch() const {
   1098     return IsForbiddenAfterBranchInstr(InstructionBits());
   1099   }
   1100 
   1101   inline bool IsForbiddenInBranchDelay() const {
   1102     return IsForbiddenAfterBranch();
   1103   }
   1104 
   1105   // Say if the instruction 'links'. e.g. jal, bal.
   1106   bool IsLinkingInstruction() const;
   1107   // Say if the instruction is a break or a trap.
   1108   bool IsTrap() const;
   1109 
   1110   // Instructions are read of out a code stream. The only way to get a
   1111   // reference to an instruction is to convert a pointer. There is no way
   1112   // to allocate or create instances of class Instruction.
   1113   // Use the At(pc) function to create references to Instruction.
   1114   static Instruction* At(byte* pc) {
   1115     return reinterpret_cast<Instruction*>(pc);
   1116   }
   1117 
   1118  private:
   1119   // We need to prevent the creation of instances of class Instruction.
   1120   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
   1121 };
   1122 
   1123 
   1124 // -----------------------------------------------------------------------------
   1125 // MIPS assembly various constants.
   1126 
   1127 // C/C++ argument slots size.
   1128 const int kCArgSlotCount = 4;
   1129 const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize;
   1130 const int kInvalidStackOffset = -1;
   1131 // JS argument slots size.
   1132 const int kJSArgsSlotsSize = 0 * Instruction::kInstrSize;
   1133 // Assembly builtins argument slots size.
   1134 const int kBArgsSlotsSize = 0 * Instruction::kInstrSize;
   1135 
   1136 const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
   1137 
   1138 
   1139 Instruction::Type Instruction::InstructionType(TypeChecks checks) const {
   1140   if (checks == EXTRA) {
   1141     if (OpcodeToBitNumber(OpcodeFieldRaw()) & kOpcodeImmediateTypeMask) {
   1142       return kImmediateType;
   1143     }
   1144   }
   1145   switch (OpcodeFieldRaw()) {
   1146     case SPECIAL:
   1147       if (checks == EXTRA) {
   1148         if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
   1149             kFunctionFieldRegisterTypeMask) {
   1150           return kRegisterType;
   1151         } else {
   1152           return kUnsupported;
   1153         }
   1154       } else {
   1155         return kRegisterType;
   1156       }
   1157       break;
   1158     case SPECIAL2:
   1159       switch (FunctionFieldRaw()) {
   1160         case MUL:
   1161         case CLZ:
   1162           return kRegisterType;
   1163         default:
   1164           return kUnsupported;
   1165       }
   1166       break;
   1167     case SPECIAL3:
   1168       switch (FunctionFieldRaw()) {
   1169         case INS:
   1170         case EXT:
   1171           return kRegisterType;
   1172         case BSHFL: {
   1173           int sa = SaFieldRaw() >> kSaShift;
   1174           switch (sa) {
   1175             case BITSWAP:
   1176               return kRegisterType;
   1177             case WSBH:
   1178             case SEB:
   1179             case SEH:
   1180               return kUnsupported;
   1181           }
   1182           sa >>= kBp2Bits;
   1183           switch (sa) {
   1184             case ALIGN:
   1185               return kRegisterType;
   1186             default:
   1187               return kUnsupported;
   1188           }
   1189         }
   1190         default:
   1191           return kUnsupported;
   1192       }
   1193       break;
   1194     case COP1:  // Coprocessor instructions.
   1195       switch (RsFieldRawNoAssert()) {
   1196         case BC1:  // Branch on coprocessor condition.
   1197         case BC1EQZ:
   1198         case BC1NEZ:
   1199           return kImmediateType;
   1200         default:
   1201           return kRegisterType;
   1202       }
   1203       break;
   1204     case COP1X:
   1205       return kRegisterType;
   1206 
   1207     // 26 bits immediate type instructions. e.g.: j imm26.
   1208     case J:
   1209     case JAL:
   1210       return kJumpType;
   1211 
   1212     default:
   1213       if (checks == NORMAL) {
   1214         return kImmediateType;
   1215       } else {
   1216         return kUnsupported;
   1217       }
   1218   }
   1219 }
   1220 
   1221 #undef OpcodeToBitNumber
   1222 #undef FunctionFieldToBitNumber
   1223 }  // namespace internal
   1224 }  // namespace v8
   1225 
   1226 #endif    // #ifndef V8_MIPS_CONSTANTS_H_
   1227