Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 #ifndef V8_ASSEMBLER_H_
     36 #define V8_ASSEMBLER_H_
     37 
     38 #include "src/allocation.h"
     39 #include "src/builtins.h"
     40 #include "src/isolate.h"
     41 #include "src/parsing/token.h"
     42 #include "src/runtime/runtime.h"
     43 
     44 namespace v8 {
     45 
     46 // Forward declarations.
     47 class ApiFunction;
     48 
     49 namespace internal {
     50 
     51 // Forward declarations.
     52 class SourcePosition;
     53 class StatsCounter;
     54 
     55 // -----------------------------------------------------------------------------
     56 // Platform independent assembler base class.
     57 
     58 enum class CodeObjectRequired { kNo, kYes };
     59 
     60 
     61 class AssemblerBase: public Malloced {
     62  public:
     63   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
     64   virtual ~AssemblerBase();
     65 
     66   Isolate* isolate() const { return isolate_; }
     67   int jit_cookie() const { return jit_cookie_; }
     68 
     69   bool emit_debug_code() const { return emit_debug_code_; }
     70   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
     71 
     72   bool serializer_enabled() const { return serializer_enabled_; }
     73   void enable_serializer() { serializer_enabled_ = true; }
     74 
     75   bool predictable_code_size() const { return predictable_code_size_; }
     76   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
     77 
     78   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
     79   void set_enabled_cpu_features(uint64_t features) {
     80     enabled_cpu_features_ = features;
     81   }
     82   bool IsEnabled(CpuFeature f) {
     83     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
     84   }
     85 
     86   bool is_constant_pool_available() const {
     87     if (FLAG_enable_embedded_constant_pool) {
     88       return constant_pool_available_;
     89     } else {
     90       // Embedded constant pool not supported on this architecture.
     91       UNREACHABLE();
     92       return false;
     93     }
     94   }
     95 
     96   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
     97   // cross-snapshotting.
     98   static void QuietNaN(HeapObject* nan) { }
     99 
    100   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
    101 
    102   // This function is called when code generation is aborted, so that
    103   // the assembler could clean up internal data structures.
    104   virtual void AbortedCodeGeneration() { }
    105 
    106   // Debugging
    107   void Print();
    108 
    109   static const int kMinimalBufferSize = 4*KB;
    110 
    111   static void FlushICache(Isolate* isolate, void* start, size_t size);
    112 
    113  protected:
    114   // The buffer into which code and relocation info are generated. It could
    115   // either be owned by the assembler or be provided externally.
    116   byte* buffer_;
    117   int buffer_size_;
    118   bool own_buffer_;
    119 
    120   void set_constant_pool_available(bool available) {
    121     if (FLAG_enable_embedded_constant_pool) {
    122       constant_pool_available_ = available;
    123     } else {
    124       // Embedded constant pool not supported on this architecture.
    125       UNREACHABLE();
    126     }
    127   }
    128 
    129   // The program counter, which points into the buffer above and moves forward.
    130   byte* pc_;
    131 
    132  private:
    133   Isolate* isolate_;
    134   int jit_cookie_;
    135   uint64_t enabled_cpu_features_;
    136   bool emit_debug_code_;
    137   bool predictable_code_size_;
    138   bool serializer_enabled_;
    139 
    140   // Indicates whether the constant pool can be accessed, which is only possible
    141   // if the pp register points to the current code object's constant pool.
    142   bool constant_pool_available_;
    143 
    144   // Constant pool.
    145   friend class FrameAndConstantPoolScope;
    146   friend class ConstantPoolUnavailableScope;
    147 };
    148 
    149 
    150 // Avoids emitting debug code during the lifetime of this scope object.
    151 class DontEmitDebugCodeScope BASE_EMBEDDED {
    152  public:
    153   explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
    154       : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
    155     assembler_->set_emit_debug_code(false);
    156   }
    157   ~DontEmitDebugCodeScope() {
    158     assembler_->set_emit_debug_code(old_value_);
    159   }
    160  private:
    161   AssemblerBase* assembler_;
    162   bool old_value_;
    163 };
    164 
    165 
    166 // Avoids using instructions that vary in size in unpredictable ways between the
    167 // snapshot and the running VM.
    168 class PredictableCodeSizeScope {
    169  public:
    170   explicit PredictableCodeSizeScope(AssemblerBase* assembler);
    171   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
    172   ~PredictableCodeSizeScope();
    173   void ExpectSize(int expected_size) { expected_size_ = expected_size; }
    174 
    175  private:
    176   AssemblerBase* assembler_;
    177   int expected_size_;
    178   int start_offset_;
    179   bool old_value_;
    180 };
    181 
    182 
    183 // Enable a specified feature within a scope.
    184 class CpuFeatureScope BASE_EMBEDDED {
    185  public:
    186 #ifdef DEBUG
    187   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
    188   ~CpuFeatureScope();
    189 
    190  private:
    191   AssemblerBase* assembler_;
    192   uint64_t old_enabled_;
    193 #else
    194   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
    195 #endif
    196 };
    197 
    198 
    199 // CpuFeatures keeps track of which features are supported by the target CPU.
    200 // Supported features must be enabled by a CpuFeatureScope before use.
    201 // Example:
    202 //   if (assembler->IsSupported(SSE3)) {
    203 //     CpuFeatureScope fscope(assembler, SSE3);
    204 //     // Generate code containing SSE3 instructions.
    205 //   } else {
    206 //     // Generate alternative code.
    207 //   }
    208 class CpuFeatures : public AllStatic {
    209  public:
    210   static void Probe(bool cross_compile) {
    211     STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
    212     if (initialized_) return;
    213     initialized_ = true;
    214     ProbeImpl(cross_compile);
    215   }
    216 
    217   static unsigned SupportedFeatures() {
    218     Probe(false);
    219     return supported_;
    220   }
    221 
    222   static bool IsSupported(CpuFeature f) {
    223     return (supported_ & (1u << f)) != 0;
    224   }
    225 
    226   static inline bool SupportsCrankshaft();
    227 
    228   static inline unsigned cache_line_size() {
    229     DCHECK(cache_line_size_ != 0);
    230     return cache_line_size_;
    231   }
    232 
    233   static void PrintTarget();
    234   static void PrintFeatures();
    235 
    236  private:
    237   friend class ExternalReference;
    238   friend class AssemblerBase;
    239   // Flush instruction cache.
    240   static void FlushICache(void* start, size_t size);
    241 
    242   // Platform-dependent implementation.
    243   static void ProbeImpl(bool cross_compile);
    244 
    245   static unsigned supported_;
    246   static unsigned cache_line_size_;
    247   static bool initialized_;
    248   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
    249 };
    250 
    251 
    252 // -----------------------------------------------------------------------------
    253 // Labels represent pc locations; they are typically jump or call targets.
    254 // After declaration, a label can be freely used to denote known or (yet)
    255 // unknown pc location. Assembler::bind() is used to bind a label to the
    256 // current pc. A label can be bound only once.
    257 
    258 class Label {
    259  public:
    260   enum Distance {
    261     kNear, kFar
    262   };
    263 
    264   INLINE(Label()) {
    265     Unuse();
    266     UnuseNear();
    267   }
    268 
    269   INLINE(~Label()) {
    270     DCHECK(!is_linked());
    271     DCHECK(!is_near_linked());
    272   }
    273 
    274   INLINE(void Unuse()) { pos_ = 0; }
    275   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
    276 
    277   INLINE(bool is_bound() const) { return pos_ <  0; }
    278   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
    279   INLINE(bool is_linked() const) { return pos_ >  0; }
    280   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
    281 
    282   // Returns the position of bound or linked labels. Cannot be used
    283   // for unused labels.
    284   int pos() const;
    285   int near_link_pos() const { return near_link_pos_ - 1; }
    286 
    287  private:
    288   // pos_ encodes both the binding state (via its sign)
    289   // and the binding position (via its value) of a label.
    290   //
    291   // pos_ <  0  bound label, pos() returns the jump target position
    292   // pos_ == 0  unused label
    293   // pos_ >  0  linked label, pos() returns the last reference position
    294   int pos_;
    295 
    296   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
    297   int near_link_pos_;
    298 
    299   void bind_to(int pos)  {
    300     pos_ = -pos - 1;
    301     DCHECK(is_bound());
    302   }
    303   void link_to(int pos, Distance distance = kFar) {
    304     if (distance == kNear) {
    305       near_link_pos_ = pos + 1;
    306       DCHECK(is_near_linked());
    307     } else {
    308       pos_ = pos + 1;
    309       DCHECK(is_linked());
    310     }
    311   }
    312 
    313   friend class Assembler;
    314   friend class Displacement;
    315   friend class RegExpMacroAssemblerIrregexp;
    316 
    317 #if V8_TARGET_ARCH_ARM64
    318   // On ARM64, the Assembler keeps track of pointers to Labels to resolve
    319   // branches to distant targets. Copying labels would confuse the Assembler.
    320   DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
    321 #endif
    322 };
    323 
    324 
    325 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
    326 
    327 enum ArgvMode { kArgvOnStack, kArgvInRegister };
    328 
    329 // Specifies whether to perform icache flush operations on RelocInfo updates.
    330 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
    331 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
    332 // skipped (only use this if you will flush the icache manually before it is
    333 // executed).
    334 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
    335 
    336 // -----------------------------------------------------------------------------
    337 // Relocation information
    338 
    339 
    340 // Relocation information consists of the address (pc) of the datum
    341 // to which the relocation information applies, the relocation mode
    342 // (rmode), and an optional data field. The relocation mode may be
    343 // "descriptive" and not indicate a need for relocation, but simply
    344 // describe a property of the datum. Such rmodes are useful for GC
    345 // and nice disassembly output.
    346 
    347 class RelocInfo {
    348  public:
    349   // The constant kNoPosition is used with the collecting of source positions
    350   // in the relocation information. Two types of source positions are collected
    351   // "position" (RelocMode position) and "statement position" (RelocMode
    352   // statement_position). The "position" is collected at places in the source
    353   // code which are of interest when making stack traces to pin-point the source
    354   // location of a stack frame as close as possible. The "statement position" is
    355   // collected at the beginning at each statement, and is used to indicate
    356   // possible break locations. kNoPosition is used to indicate an
    357   // invalid/uninitialized position value.
    358   static const int kNoPosition = -1;
    359 
    360   // This string is used to add padding comments to the reloc info in cases
    361   // where we are not sure to have enough space for patching in during
    362   // lazy deoptimization. This is the case if we have indirect calls for which
    363   // we do not normally record relocation info.
    364   static const char* const kFillerCommentString;
    365 
    366   // The minimum size of a comment is equal to two bytes for the extra tagged
    367   // pc and kPointerSize for the actual pointer to the comment.
    368   static const int kMinRelocCommentSize = 2 + kPointerSize;
    369 
    370   // The maximum size for a call instruction including pc-jump.
    371   static const int kMaxCallSize = 6;
    372 
    373   // The maximum pc delta that will use the short encoding.
    374   static const int kMaxSmallPCDelta;
    375 
    376   enum Mode {
    377     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    378     CODE_TARGET,  // Code target which is not any of the above.
    379     CODE_TARGET_WITH_ID,
    380     DEBUGGER_STATEMENT,  // Code target for the debugger statement.
    381     EMBEDDED_OBJECT,
    382     CELL,
    383 
    384     // Everything after runtime_entry (inclusive) is not GC'ed.
    385     RUNTIME_ENTRY,
    386     COMMENT,
    387     POSITION,            // See comment for kNoPosition above.
    388     STATEMENT_POSITION,  // See comment for kNoPosition above.
    389 
    390     // Additional code inserted for debug break slot.
    391     DEBUG_BREAK_SLOT_AT_POSITION,
    392     DEBUG_BREAK_SLOT_AT_RETURN,
    393     DEBUG_BREAK_SLOT_AT_CALL,
    394 
    395     EXTERNAL_REFERENCE,  // The address of an external C++ function.
    396     INTERNAL_REFERENCE,  // An address inside the same function.
    397 
    398     // Encoded internal reference, used only on MIPS, MIPS64 and PPC.
    399     INTERNAL_REFERENCE_ENCODED,
    400 
    401     // Continuation points for a generator yield.
    402     GENERATOR_CONTINUATION,
    403 
    404     // Marks constant and veneer pools. Only used on ARM and ARM64.
    405     // They use a custom noncompact encoding.
    406     CONST_POOL,
    407     VENEER_POOL,
    408 
    409     DEOPT_REASON,  // Deoptimization reason index.
    410 
    411     // This is not an actual reloc mode, but used to encode a long pc jump that
    412     // cannot be encoded as part of another record.
    413     PC_JUMP,
    414 
    415     // Pseudo-types
    416     NUMBER_OF_MODES,
    417     NONE32,             // never recorded 32-bit value
    418     NONE64,             // never recorded 64-bit value
    419     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
    420                         // code aging.
    421 
    422     FIRST_REAL_RELOC_MODE = CODE_TARGET,
    423     LAST_REAL_RELOC_MODE = VENEER_POOL,
    424     LAST_CODE_ENUM = DEBUGGER_STATEMENT,
    425     LAST_GCED_ENUM = CELL,
    426   };
    427 
    428   STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt);
    429 
    430   explicit RelocInfo(Isolate* isolate) : isolate_(isolate) {
    431     DCHECK_NOT_NULL(isolate);
    432   }
    433 
    434   RelocInfo(Isolate* isolate, byte* pc, Mode rmode, intptr_t data, Code* host)
    435       : isolate_(isolate), pc_(pc), rmode_(rmode), data_(data), host_(host) {
    436     DCHECK_NOT_NULL(isolate);
    437   }
    438 
    439   static inline bool IsRealRelocMode(Mode mode) {
    440     return mode >= FIRST_REAL_RELOC_MODE &&
    441         mode <= LAST_REAL_RELOC_MODE;
    442   }
    443   static inline bool IsCodeTarget(Mode mode) {
    444     return mode <= LAST_CODE_ENUM;
    445   }
    446   static inline bool IsEmbeddedObject(Mode mode) {
    447     return mode == EMBEDDED_OBJECT;
    448   }
    449   static inline bool IsCell(Mode mode) { return mode == CELL; }
    450   static inline bool IsRuntimeEntry(Mode mode) {
    451     return mode == RUNTIME_ENTRY;
    452   }
    453   // Is the relocation mode affected by GC?
    454   static inline bool IsGCRelocMode(Mode mode) {
    455     return mode <= LAST_GCED_ENUM;
    456   }
    457   static inline bool IsComment(Mode mode) {
    458     return mode == COMMENT;
    459   }
    460   static inline bool IsConstPool(Mode mode) {
    461     return mode == CONST_POOL;
    462   }
    463   static inline bool IsVeneerPool(Mode mode) {
    464     return mode == VENEER_POOL;
    465   }
    466   static inline bool IsDeoptReason(Mode mode) {
    467     return mode == DEOPT_REASON;
    468   }
    469   static inline bool IsPosition(Mode mode) {
    470     return mode == POSITION || mode == STATEMENT_POSITION;
    471   }
    472   static inline bool IsStatementPosition(Mode mode) {
    473     return mode == STATEMENT_POSITION;
    474   }
    475   static inline bool IsExternalReference(Mode mode) {
    476     return mode == EXTERNAL_REFERENCE;
    477   }
    478   static inline bool IsInternalReference(Mode mode) {
    479     return mode == INTERNAL_REFERENCE;
    480   }
    481   static inline bool IsInternalReferenceEncoded(Mode mode) {
    482     return mode == INTERNAL_REFERENCE_ENCODED;
    483   }
    484   static inline bool IsDebugBreakSlot(Mode mode) {
    485     return IsDebugBreakSlotAtPosition(mode) || IsDebugBreakSlotAtReturn(mode) ||
    486            IsDebugBreakSlotAtCall(mode);
    487   }
    488   static inline bool IsDebugBreakSlotAtPosition(Mode mode) {
    489     return mode == DEBUG_BREAK_SLOT_AT_POSITION;
    490   }
    491   static inline bool IsDebugBreakSlotAtReturn(Mode mode) {
    492     return mode == DEBUG_BREAK_SLOT_AT_RETURN;
    493   }
    494   static inline bool IsDebugBreakSlotAtCall(Mode mode) {
    495     return mode == DEBUG_BREAK_SLOT_AT_CALL;
    496   }
    497   static inline bool IsDebuggerStatement(Mode mode) {
    498     return mode == DEBUGGER_STATEMENT;
    499   }
    500   static inline bool IsNone(Mode mode) {
    501     return mode == NONE32 || mode == NONE64;
    502   }
    503   static inline bool IsCodeAgeSequence(Mode mode) {
    504     return mode == CODE_AGE_SEQUENCE;
    505   }
    506   static inline bool IsGeneratorContinuation(Mode mode) {
    507     return mode == GENERATOR_CONTINUATION;
    508   }
    509   static inline int ModeMask(Mode mode) { return 1 << mode; }
    510 
    511   // Accessors
    512   Isolate* isolate() const { return isolate_; }
    513   byte* pc() const { return pc_; }
    514   void set_pc(byte* pc) { pc_ = pc; }
    515   Mode rmode() const {  return rmode_; }
    516   intptr_t data() const { return data_; }
    517   Code* host() const { return host_; }
    518   void set_host(Code* host) { host_ = host; }
    519 
    520   // Apply a relocation by delta bytes. When the code object is moved, PC
    521   // relative addresses have to be updated as well as absolute addresses
    522   // inside the code (internal references).
    523   // Do not forget to flush the icache afterwards!
    524   INLINE(void apply(intptr_t delta));
    525 
    526   // Is the pointer this relocation info refers to coded like a plain pointer
    527   // or is it strange in some way (e.g. relative or patched into a series of
    528   // instructions).
    529   bool IsCodedSpecially();
    530 
    531   // If true, the pointer this relocation info refers to is an entry in the
    532   // constant pool, otherwise the pointer is embedded in the instruction stream.
    533   bool IsInConstantPool();
    534 
    535   // this relocation applies to;
    536   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    537   INLINE(Address target_address());
    538   INLINE(void set_target_address(Address target,
    539                                  WriteBarrierMode write_barrier_mode =
    540                                      UPDATE_WRITE_BARRIER,
    541                                  ICacheFlushMode icache_flush_mode =
    542                                      FLUSH_ICACHE_IF_NEEDED));
    543   INLINE(Object* target_object());
    544   INLINE(Handle<Object> target_object_handle(Assembler* origin));
    545   INLINE(void set_target_object(Object* target,
    546                                 WriteBarrierMode write_barrier_mode =
    547                                     UPDATE_WRITE_BARRIER,
    548                                 ICacheFlushMode icache_flush_mode =
    549                                     FLUSH_ICACHE_IF_NEEDED));
    550   INLINE(Address target_runtime_entry(Assembler* origin));
    551   INLINE(void set_target_runtime_entry(Address target,
    552                                        WriteBarrierMode write_barrier_mode =
    553                                            UPDATE_WRITE_BARRIER,
    554                                        ICacheFlushMode icache_flush_mode =
    555                                            FLUSH_ICACHE_IF_NEEDED));
    556   INLINE(Cell* target_cell());
    557   INLINE(Handle<Cell> target_cell_handle());
    558   INLINE(void set_target_cell(Cell* cell,
    559                               WriteBarrierMode write_barrier_mode =
    560                                   UPDATE_WRITE_BARRIER,
    561                               ICacheFlushMode icache_flush_mode =
    562                                   FLUSH_ICACHE_IF_NEEDED));
    563   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
    564   INLINE(Code* code_age_stub());
    565   INLINE(void set_code_age_stub(Code* stub,
    566                                 ICacheFlushMode icache_flush_mode =
    567                                     FLUSH_ICACHE_IF_NEEDED));
    568 
    569   // Returns the address of the constant pool entry where the target address
    570   // is held.  This should only be called if IsInConstantPool returns true.
    571   INLINE(Address constant_pool_entry_address());
    572 
    573   // Read the address of the word containing the target_address in an
    574   // instruction stream.  What this means exactly is architecture-independent.
    575   // The only architecture-independent user of this function is the serializer.
    576   // The serializer uses it to find out how many raw bytes of instruction to
    577   // output before the next target.  Architecture-independent code shouldn't
    578   // dereference the pointer it gets back from this.
    579   INLINE(Address target_address_address());
    580 
    581   // This indicates how much space a target takes up when deserializing a code
    582   // stream.  For most architectures this is just the size of a pointer.  For
    583   // an instruction like movw/movt where the target bits are mixed into the
    584   // instruction bits the size of the target will be zero, indicating that the
    585   // serializer should not step forwards in memory after a target is resolved
    586   // and written.  In this case the target_address_address function above
    587   // should return the end of the instructions to be patched, allowing the
    588   // deserializer to deserialize the instructions as raw bytes and put them in
    589   // place, ready to be patched with the target.
    590   INLINE(int target_address_size());
    591 
    592   // Read the reference in the instruction this relocation
    593   // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE.
    594   INLINE(Address target_external_reference());
    595 
    596   // Read the reference in the instruction this relocation
    597   // applies to; can only be called if rmode_ is INTERNAL_REFERENCE.
    598   INLINE(Address target_internal_reference());
    599 
    600   // Return the reference address this relocation applies to;
    601   // can only be called if rmode_ is INTERNAL_REFERENCE.
    602   INLINE(Address target_internal_reference_address());
    603 
    604   // Read/modify the address of a call instruction. This is used to relocate
    605   // the break points where straight-line code is patched with a call
    606   // instruction.
    607   INLINE(Address debug_call_address());
    608   INLINE(void set_debug_call_address(Address target));
    609 
    610   // Wipe out a relocation to a fixed value, used for making snapshots
    611   // reproducible.
    612   INLINE(void WipeOut());
    613 
    614   template<typename StaticVisitor> inline void Visit(Heap* heap);
    615   inline void Visit(Isolate* isolate, ObjectVisitor* v);
    616 
    617   // Check whether this return sequence has been patched
    618   // with a call to the debugger.
    619   INLINE(bool IsPatchedReturnSequence());
    620 
    621   // Check whether this debug break slot has been patched with a call to the
    622   // debugger.
    623   INLINE(bool IsPatchedDebugBreakSlotSequence());
    624 
    625 #ifdef DEBUG
    626   // Check whether the given code contains relocation information that
    627   // either is position-relative or movable by the garbage collector.
    628   static bool RequiresRelocation(const CodeDesc& desc);
    629 #endif
    630 
    631 #ifdef ENABLE_DISASSEMBLER
    632   // Printing
    633   static const char* RelocModeName(Mode rmode);
    634   void Print(Isolate* isolate, std::ostream& os);  // NOLINT
    635 #endif  // ENABLE_DISASSEMBLER
    636 #ifdef VERIFY_HEAP
    637   void Verify(Isolate* isolate);
    638 #endif
    639 
    640   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
    641   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
    642   static const int kDataMask =
    643       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
    644   static const int kDebugBreakSlotMask = 1 << DEBUG_BREAK_SLOT_AT_POSITION |
    645                                          1 << DEBUG_BREAK_SLOT_AT_RETURN |
    646                                          1 << DEBUG_BREAK_SLOT_AT_CALL;
    647   static const int kApplyMask;  // Modes affected by apply.  Depends on arch.
    648 
    649  private:
    650   Isolate* isolate_;
    651   // On ARM, note that pc_ is the address of the constant pool entry
    652   // to be relocated and not the address of the instruction
    653   // referencing the constant pool entry (except when rmode_ ==
    654   // comment).
    655   byte* pc_;
    656   Mode rmode_;
    657   intptr_t data_;
    658   Code* host_;
    659   friend class RelocIterator;
    660 };
    661 
    662 
    663 // RelocInfoWriter serializes a stream of relocation info. It writes towards
    664 // lower addresses.
    665 class RelocInfoWriter BASE_EMBEDDED {
    666  public:
    667   RelocInfoWriter()
    668       : pos_(NULL),
    669         last_pc_(NULL),
    670         last_id_(0),
    671         last_position_(0),
    672         last_mode_(RelocInfo::NUMBER_OF_MODES),
    673         next_position_candidate_pos_delta_(0),
    674         next_position_candidate_pc_delta_(0),
    675         next_position_candidate_flushed_(true) {}
    676   RelocInfoWriter(byte* pos, byte* pc)
    677       : pos_(pos),
    678         last_pc_(pc),
    679         last_id_(0),
    680         last_position_(0),
    681         last_mode_(RelocInfo::NUMBER_OF_MODES),
    682         next_position_candidate_pos_delta_(0),
    683         next_position_candidate_pc_delta_(0),
    684         next_position_candidate_flushed_(true) {}
    685 
    686   byte* pos() const { return pos_; }
    687   byte* last_pc() const { return last_pc_; }
    688 
    689   void Write(const RelocInfo* rinfo);
    690 
    691   // Update the state of the stream after reloc info buffer
    692   // and/or code is moved while the stream is active.
    693   void Reposition(byte* pos, byte* pc) {
    694     pos_ = pos;
    695     last_pc_ = pc;
    696   }
    697 
    698   void Finish() { FlushPosition(); }
    699 
    700   // Max size (bytes) of a written RelocInfo. Longest encoding is
    701   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta.
    702   // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11.
    703   // On x64 this is 1 + 4 + 1 + 1 + 8 == 15;
    704   // Here we use the maximum of the two.
    705   static const int kMaxSize = 15;
    706 
    707  private:
    708   inline uint32_t WriteLongPCJump(uint32_t pc_delta);
    709 
    710   inline void WriteShortTaggedPC(uint32_t pc_delta, int tag);
    711   inline void WriteShortTaggedData(intptr_t data_delta, int tag);
    712 
    713   inline void WriteMode(RelocInfo::Mode rmode);
    714   inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode);
    715   inline void WriteIntData(int data_delta);
    716   inline void WriteData(intptr_t data_delta);
    717   inline void WritePosition(int pc_delta, int pos_delta, RelocInfo::Mode rmode);
    718 
    719   void FlushPosition();
    720 
    721   byte* pos_;
    722   byte* last_pc_;
    723   int last_id_;
    724   int last_position_;
    725   RelocInfo::Mode last_mode_;
    726   int next_position_candidate_pos_delta_;
    727   uint32_t next_position_candidate_pc_delta_;
    728   bool next_position_candidate_flushed_;
    729 
    730   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
    731 };
    732 
    733 
    734 // A RelocIterator iterates over relocation information.
    735 // Typical use:
    736 //
    737 //   for (RelocIterator it(code); !it.done(); it.next()) {
    738 //     // do something with it.rinfo() here
    739 //   }
    740 //
    741 // A mask can be specified to skip unwanted modes.
    742 class RelocIterator: public Malloced {
    743  public:
    744   // Create a new iterator positioned at
    745   // the beginning of the reloc info.
    746   // Relocation information with mode k is included in the
    747   // iteration iff bit k of mode_mask is set.
    748   explicit RelocIterator(Code* code, int mode_mask = -1);
    749   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
    750 
    751   // Iteration
    752   bool done() const { return done_; }
    753   void next();
    754 
    755   // Return pointer valid until next next().
    756   RelocInfo* rinfo() {
    757     DCHECK(!done());
    758     return &rinfo_;
    759   }
    760 
    761  private:
    762   // Advance* moves the position before/after reading.
    763   // *Read* reads from current byte(s) into rinfo_.
    764   // *Get* just reads and returns info on current byte.
    765   void Advance(int bytes = 1) { pos_ -= bytes; }
    766   int AdvanceGetTag();
    767   RelocInfo::Mode GetMode();
    768 
    769   void AdvanceReadLongPCJump();
    770 
    771   int GetShortDataTypeTag();
    772   void ReadShortTaggedPC();
    773   void ReadShortTaggedId();
    774   void ReadShortTaggedPosition();
    775   void ReadShortTaggedData();
    776 
    777   void AdvanceReadPC();
    778   void AdvanceReadId();
    779   void AdvanceReadInt();
    780   void AdvanceReadPosition();
    781   void AdvanceReadData();
    782 
    783   // If the given mode is wanted, set it in rinfo_ and return true.
    784   // Else return false. Used for efficiently skipping unwanted modes.
    785   bool SetMode(RelocInfo::Mode mode) {
    786     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
    787   }
    788 
    789   byte* pos_;
    790   byte* end_;
    791   byte* code_age_sequence_;
    792   RelocInfo rinfo_;
    793   bool done_;
    794   int mode_mask_;
    795   int last_id_;
    796   int last_position_;
    797   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
    798 };
    799 
    800 
    801 //------------------------------------------------------------------------------
    802 // External function
    803 
    804 //----------------------------------------------------------------------------
    805 class SCTableReference;
    806 class Debug_Address;
    807 
    808 
    809 // An ExternalReference represents a C++ address used in the generated
    810 // code. All references to C++ functions and variables must be encapsulated in
    811 // an ExternalReference instance. This is done in order to track the origin of
    812 // all external references in the code so that they can be bound to the correct
    813 // addresses when deserializing a heap.
    814 class ExternalReference BASE_EMBEDDED {
    815  public:
    816   // Used in the simulator to support different native api calls.
    817   enum Type {
    818     // Builtin call.
    819     // Object* f(v8::internal::Arguments).
    820     BUILTIN_CALL,  // default
    821 
    822     // Builtin that takes float arguments and returns an int.
    823     // int f(double, double).
    824     BUILTIN_COMPARE_CALL,
    825 
    826     // Builtin call that returns floating point.
    827     // double f(double, double).
    828     BUILTIN_FP_FP_CALL,
    829 
    830     // Builtin call that returns floating point.
    831     // double f(double).
    832     BUILTIN_FP_CALL,
    833 
    834     // Builtin call that returns floating point.
    835     // double f(double, int).
    836     BUILTIN_FP_INT_CALL,
    837 
    838     // Direct call to API function callback.
    839     // void f(v8::FunctionCallbackInfo&)
    840     DIRECT_API_CALL,
    841 
    842     // Call to function callback via InvokeFunctionCallback.
    843     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
    844     PROFILING_API_CALL,
    845 
    846     // Direct call to accessor getter callback.
    847     // void f(Local<Name> property, PropertyCallbackInfo& info)
    848     DIRECT_GETTER_CALL,
    849 
    850     // Call to accessor getter callback via InvokeAccessorGetterCallback.
    851     // void f(Local<Name> property, PropertyCallbackInfo& info,
    852     //     AccessorNameGetterCallback callback)
    853     PROFILING_GETTER_CALL
    854   };
    855 
    856   static void SetUp();
    857   static void InitializeMathExpData();
    858   static void TearDownMathExpData();
    859 
    860   typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original,
    861                                             Type type);
    862 
    863   ExternalReference() : address_(NULL) {}
    864 
    865   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
    866 
    867   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
    868 
    869   ExternalReference(Builtins::Name name, Isolate* isolate);
    870 
    871   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
    872 
    873   ExternalReference(const Runtime::Function* f, Isolate* isolate);
    874 
    875   explicit ExternalReference(StatsCounter* counter);
    876 
    877   ExternalReference(Isolate::AddressId id, Isolate* isolate);
    878 
    879   explicit ExternalReference(const SCTableReference& table_ref);
    880 
    881   // Isolate as an external reference.
    882   static ExternalReference isolate_address(Isolate* isolate);
    883 
    884   // One-of-a-kind references. These references are not part of a general
    885   // pattern. This means that they have to be added to the
    886   // ExternalReferenceTable in serialize.cc manually.
    887 
    888   static ExternalReference incremental_marking_record_write_function(
    889       Isolate* isolate);
    890   static ExternalReference store_buffer_overflow_function(
    891       Isolate* isolate);
    892   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
    893 
    894   static ExternalReference get_date_field_function(Isolate* isolate);
    895   static ExternalReference date_cache_stamp(Isolate* isolate);
    896 
    897   static ExternalReference get_make_code_young_function(Isolate* isolate);
    898   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
    899 
    900   // Deoptimization support.
    901   static ExternalReference new_deoptimizer_function(Isolate* isolate);
    902   static ExternalReference compute_output_frames_function(Isolate* isolate);
    903 
    904   // Log support.
    905   static ExternalReference log_enter_external_function(Isolate* isolate);
    906   static ExternalReference log_leave_external_function(Isolate* isolate);
    907 
    908   // Static data in the keyed lookup cache.
    909   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
    910   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
    911 
    912   // Static variable Heap::roots_array_start()
    913   static ExternalReference roots_array_start(Isolate* isolate);
    914 
    915   // Static variable Heap::allocation_sites_list_address()
    916   static ExternalReference allocation_sites_list_address(Isolate* isolate);
    917 
    918   // Static variable StackGuard::address_of_jslimit()
    919   static ExternalReference address_of_stack_limit(Isolate* isolate);
    920 
    921   // Static variable StackGuard::address_of_real_jslimit()
    922   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
    923 
    924   // Static variable RegExpStack::limit_address()
    925   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
    926 
    927   // Static variables for RegExp.
    928   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
    929   static ExternalReference address_of_regexp_stack_memory_address(
    930       Isolate* isolate);
    931   static ExternalReference address_of_regexp_stack_memory_size(
    932       Isolate* isolate);
    933 
    934   // Static variable Heap::NewSpaceStart()
    935   static ExternalReference new_space_start(Isolate* isolate);
    936   static ExternalReference new_space_mask(Isolate* isolate);
    937 
    938   // Write barrier.
    939   static ExternalReference store_buffer_top(Isolate* isolate);
    940 
    941   // Used for fast allocation in generated code.
    942   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
    943   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
    944   static ExternalReference old_space_allocation_top_address(Isolate* isolate);
    945   static ExternalReference old_space_allocation_limit_address(Isolate* isolate);
    946 
    947   static ExternalReference mod_two_doubles_operation(Isolate* isolate);
    948   static ExternalReference power_double_double_function(Isolate* isolate);
    949   static ExternalReference power_double_int_function(Isolate* isolate);
    950 
    951   static ExternalReference handle_scope_next_address(Isolate* isolate);
    952   static ExternalReference handle_scope_limit_address(Isolate* isolate);
    953   static ExternalReference handle_scope_level_address(Isolate* isolate);
    954 
    955   static ExternalReference scheduled_exception_address(Isolate* isolate);
    956   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
    957 
    958   // Static variables containing common double constants.
    959   static ExternalReference address_of_min_int();
    960   static ExternalReference address_of_one_half();
    961   static ExternalReference address_of_minus_one_half();
    962   static ExternalReference address_of_negative_infinity();
    963   static ExternalReference address_of_the_hole_nan();
    964   static ExternalReference address_of_uint32_bias();
    965 
    966   static ExternalReference math_log_double_function(Isolate* isolate);
    967 
    968   static ExternalReference math_exp_constants(int constant_index);
    969   static ExternalReference math_exp_log_table();
    970 
    971   static ExternalReference page_flags(Page* page);
    972 
    973   static ExternalReference ForDeoptEntry(Address entry);
    974 
    975   static ExternalReference cpu_features();
    976 
    977   static ExternalReference debug_is_active_address(Isolate* isolate);
    978   static ExternalReference debug_after_break_target_address(Isolate* isolate);
    979 
    980   static ExternalReference is_profiling_address(Isolate* isolate);
    981   static ExternalReference invoke_function_callback(Isolate* isolate);
    982   static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
    983 
    984   static ExternalReference virtual_handler_register(Isolate* isolate);
    985   static ExternalReference virtual_slot_register(Isolate* isolate);
    986 
    987   static ExternalReference runtime_function_table_address(Isolate* isolate);
    988 
    989   Address address() const { return reinterpret_cast<Address>(address_); }
    990 
    991   // Used to check if single stepping is enabled in generated code.
    992   static ExternalReference debug_step_in_enabled_address(Isolate* isolate);
    993 
    994 #ifndef V8_INTERPRETED_REGEXP
    995   // C functions called from RegExp generated code.
    996 
    997   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
    998   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
    999 
   1000   // Function RegExpMacroAssembler*::CheckStackGuardState()
   1001   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
   1002 
   1003   // Function NativeRegExpMacroAssembler::GrowStack()
   1004   static ExternalReference re_grow_stack(Isolate* isolate);
   1005 
   1006   // byte NativeRegExpMacroAssembler::word_character_bitmap
   1007   static ExternalReference re_word_character_map();
   1008 
   1009 #endif
   1010 
   1011   // This lets you register a function that rewrites all external references.
   1012   // Used by the ARM simulator to catch calls to external references.
   1013   static void set_redirector(Isolate* isolate,
   1014                              ExternalReferenceRedirector* redirector) {
   1015     // We can't stack them.
   1016     DCHECK(isolate->external_reference_redirector() == NULL);
   1017     isolate->set_external_reference_redirector(
   1018         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
   1019   }
   1020 
   1021   static ExternalReference stress_deopt_count(Isolate* isolate);
   1022 
   1023   static ExternalReference fixed_typed_array_base_data_offset();
   1024 
   1025  private:
   1026   explicit ExternalReference(void* address)
   1027       : address_(address) {}
   1028 
   1029   static void* Redirect(Isolate* isolate,
   1030                         Address address_arg,
   1031                         Type type = ExternalReference::BUILTIN_CALL) {
   1032     ExternalReferenceRedirector* redirector =
   1033         reinterpret_cast<ExternalReferenceRedirector*>(
   1034             isolate->external_reference_redirector());
   1035     void* address = reinterpret_cast<void*>(address_arg);
   1036     void* answer =
   1037         (redirector == NULL) ? address : (*redirector)(isolate, address, type);
   1038     return answer;
   1039   }
   1040 
   1041   void* address_;
   1042 };
   1043 
   1044 bool operator==(ExternalReference, ExternalReference);
   1045 bool operator!=(ExternalReference, ExternalReference);
   1046 
   1047 size_t hash_value(ExternalReference);
   1048 
   1049 std::ostream& operator<<(std::ostream&, ExternalReference);
   1050 
   1051 
   1052 // -----------------------------------------------------------------------------
   1053 // Position recording support
   1054 
   1055 struct PositionState {
   1056   PositionState() : current_position(RelocInfo::kNoPosition),
   1057                     written_position(RelocInfo::kNoPosition),
   1058                     current_statement_position(RelocInfo::kNoPosition),
   1059                     written_statement_position(RelocInfo::kNoPosition) {}
   1060 
   1061   int current_position;
   1062   int written_position;
   1063 
   1064   int current_statement_position;
   1065   int written_statement_position;
   1066 };
   1067 
   1068 
   1069 class PositionsRecorder BASE_EMBEDDED {
   1070  public:
   1071   explicit PositionsRecorder(Assembler* assembler)
   1072       : assembler_(assembler) {
   1073     jit_handler_data_ = NULL;
   1074   }
   1075 
   1076   void AttachJITHandlerData(void* user_data) {
   1077     jit_handler_data_ = user_data;
   1078   }
   1079 
   1080   void* DetachJITHandlerData() {
   1081     void* old_data = jit_handler_data_;
   1082     jit_handler_data_ = NULL;
   1083     return old_data;
   1084   }
   1085   // Set current position to pos.
   1086   void RecordPosition(int pos);
   1087 
   1088   // Set current statement position to pos.
   1089   void RecordStatementPosition(int pos);
   1090 
   1091   // Write recorded positions to relocation information.
   1092   bool WriteRecordedPositions();
   1093 
   1094   int current_position() const { return state_.current_position; }
   1095 
   1096   int current_statement_position() const {
   1097     return state_.current_statement_position;
   1098   }
   1099 
   1100  private:
   1101   Assembler* assembler_;
   1102   PositionState state_;
   1103 
   1104   // Currently jit_handler_data_ is used to store JITHandler-specific data
   1105   // over the lifetime of a PositionsRecorder
   1106   void* jit_handler_data_;
   1107 
   1108   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
   1109 };
   1110 
   1111 
   1112 // -----------------------------------------------------------------------------
   1113 // Utility functions
   1114 
   1115 inline int NumberOfBitsSet(uint32_t x) {
   1116   unsigned int num_bits_set;
   1117   for (num_bits_set = 0; x; x >>= 1) {
   1118     num_bits_set += x & 1;
   1119   }
   1120   return num_bits_set;
   1121 }
   1122 
   1123 bool EvalComparison(Token::Value op, double op1, double op2);
   1124 
   1125 // Computes pow(x, y) with the special cases in the spec for Math.pow.
   1126 double power_helper(Isolate* isolate, double x, double y);
   1127 double power_double_int(double x, int y);
   1128 double power_double_double(double x, double y);
   1129 
   1130 // Helper class for generating code or data associated with the code
   1131 // right after a call instruction. As an example this can be used to
   1132 // generate safepoint data after calls for crankshaft.
   1133 class CallWrapper {
   1134  public:
   1135   CallWrapper() { }
   1136   virtual ~CallWrapper() { }
   1137   // Called just before emitting a call. Argument is the size of the generated
   1138   // call code.
   1139   virtual void BeforeCall(int call_size) const = 0;
   1140   // Called just after emitting a call, i.e., at the return site for the call.
   1141   virtual void AfterCall() const = 0;
   1142   // Return whether call needs to check for debug stepping.
   1143   virtual bool NeedsDebugStepCheck() const { return false; }
   1144 };
   1145 
   1146 
   1147 class NullCallWrapper : public CallWrapper {
   1148  public:
   1149   NullCallWrapper() { }
   1150   virtual ~NullCallWrapper() { }
   1151   virtual void BeforeCall(int call_size) const { }
   1152   virtual void AfterCall() const { }
   1153 };
   1154 
   1155 
   1156 class CheckDebugStepCallWrapper : public CallWrapper {
   1157  public:
   1158   CheckDebugStepCallWrapper() {}
   1159   virtual ~CheckDebugStepCallWrapper() {}
   1160   virtual void BeforeCall(int call_size) const {}
   1161   virtual void AfterCall() const {}
   1162   virtual bool NeedsDebugStepCheck() const { return true; }
   1163 };
   1164 
   1165 
   1166 // -----------------------------------------------------------------------------
   1167 // Constant pool support
   1168 
   1169 class ConstantPoolEntry {
   1170  public:
   1171   ConstantPoolEntry() {}
   1172   ConstantPoolEntry(int position, intptr_t value, bool sharing_ok)
   1173       : position_(position),
   1174         merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
   1175         value_(value) {}
   1176   ConstantPoolEntry(int position, double value)
   1177       : position_(position), merged_index_(SHARING_ALLOWED), value64_(value) {}
   1178 
   1179   int position() const { return position_; }
   1180   bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
   1181   bool is_merged() const { return merged_index_ >= 0; }
   1182   int merged_index(void) const {
   1183     DCHECK(is_merged());
   1184     return merged_index_;
   1185   }
   1186   void set_merged_index(int index) {
   1187     merged_index_ = index;
   1188     DCHECK(is_merged());
   1189   }
   1190   int offset(void) const {
   1191     DCHECK(merged_index_ >= 0);
   1192     return merged_index_;
   1193   }
   1194   void set_offset(int offset) {
   1195     DCHECK(offset >= 0);
   1196     merged_index_ = offset;
   1197   }
   1198   intptr_t value() const { return value_; }
   1199   uint64_t value64() const { return bit_cast<uint64_t>(value64_); }
   1200 
   1201   enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };
   1202 
   1203   static int size(Type type) {
   1204     return (type == INTPTR) ? kPointerSize : kDoubleSize;
   1205   }
   1206 
   1207   enum Access { REGULAR, OVERFLOWED };
   1208 
   1209  private:
   1210   int position_;
   1211   int merged_index_;
   1212   union {
   1213     intptr_t value_;
   1214     double value64_;
   1215   };
   1216   enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
   1217 };
   1218 
   1219 
   1220 // -----------------------------------------------------------------------------
   1221 // Embedded constant pool support
   1222 
   1223 class ConstantPoolBuilder BASE_EMBEDDED {
   1224  public:
   1225   ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);
   1226 
   1227   // Add pointer-sized constant to the embedded constant pool
   1228   ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
   1229                                      bool sharing_ok) {
   1230     ConstantPoolEntry entry(position, value, sharing_ok);
   1231     return AddEntry(entry, ConstantPoolEntry::INTPTR);
   1232   }
   1233 
   1234   // Add double constant to the embedded constant pool
   1235   ConstantPoolEntry::Access AddEntry(int position, double value) {
   1236     ConstantPoolEntry entry(position, value);
   1237     return AddEntry(entry, ConstantPoolEntry::DOUBLE);
   1238   }
   1239 
   1240   // Previews the access type required for the next new entry to be added.
   1241   ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;
   1242 
   1243   bool IsEmpty() {
   1244     return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
   1245            info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
   1246            info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
   1247            info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
   1248   }
   1249 
   1250   // Emit the constant pool.  Invoke only after all entries have been
   1251   // added and all instructions have been emitted.
   1252   // Returns position of the emitted pool (zero implies no constant pool).
   1253   int Emit(Assembler* assm);
   1254 
   1255   // Returns the label associated with the start of the constant pool.
   1256   // Linking to this label in the function prologue may provide an
   1257   // efficient means of constant pool pointer register initialization
   1258   // on some architectures.
   1259   inline Label* EmittedPosition() { return &emitted_label_; }
   1260 
   1261  private:
   1262   ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
   1263                                      ConstantPoolEntry::Type type);
   1264   void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
   1265   void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
   1266                  ConstantPoolEntry::Type type);
   1267 
   1268   struct PerTypeEntryInfo {
   1269     PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
   1270     bool overflow() const {
   1271       return (overflow_start >= 0 &&
   1272               overflow_start < static_cast<int>(entries.size()));
   1273     }
   1274     int regular_reach_bits;
   1275     int regular_count;
   1276     int overflow_start;
   1277     std::vector<ConstantPoolEntry> entries;
   1278     std::vector<ConstantPoolEntry> shared_entries;
   1279   };
   1280 
   1281   Label emitted_label_;  // Records pc_offset of emitted pool
   1282   PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
   1283 };
   1284 
   1285 }  // namespace internal
   1286 }  // namespace v8
   1287 #endif  // V8_ASSEMBLER_H_
   1288