Home | History | Annotate | Download | only in Analysis
      1   //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the CFG and CFGBuilder classes for representing and
     11 //  building Control-Flow Graphs (CFGs) from ASTs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Analysis/CFG.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/PrettyPrinter.h"
     21 #include "clang/AST/StmtVisitor.h"
     22 #include "clang/Basic/Builtins.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include <memory>
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/Support/Allocator.h"
     27 #include "llvm/Support/Format.h"
     28 #include "llvm/Support/GraphWriter.h"
     29 #include "llvm/Support/SaveAndRestore.h"
     30 
     31 using namespace clang;
     32 
     33 namespace {
     34 
     35 static SourceLocation GetEndLoc(Decl *D) {
     36   if (VarDecl *VD = dyn_cast<VarDecl>(D))
     37     if (Expr *Ex = VD->getInit())
     38       return Ex->getSourceRange().getEnd();
     39   return D->getLocation();
     40 }
     41 
     42 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
     43 /// or EnumConstantDecl from the given Expr. If it fails, returns nullptr.
     44 const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
     45   E = E->IgnoreParens();
     46   if (isa<IntegerLiteral>(E))
     47     return E;
     48   if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
     49     return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
     50   return nullptr;
     51 }
     52 
     53 /// Tries to interpret a binary operator into `Decl Op Expr` form, if Expr is
     54 /// an integer literal or an enum constant.
     55 ///
     56 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
     57 /// null.
     58 static std::tuple<const DeclRefExpr *, BinaryOperatorKind, const Expr *>
     59 tryNormalizeBinaryOperator(const BinaryOperator *B) {
     60   BinaryOperatorKind Op = B->getOpcode();
     61 
     62   const Expr *MaybeDecl = B->getLHS();
     63   const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
     64   // Expr looked like `0 == Foo` instead of `Foo == 0`
     65   if (Constant == nullptr) {
     66     // Flip the operator
     67     if (Op == BO_GT)
     68       Op = BO_LT;
     69     else if (Op == BO_GE)
     70       Op = BO_LE;
     71     else if (Op == BO_LT)
     72       Op = BO_GT;
     73     else if (Op == BO_LE)
     74       Op = BO_GE;
     75 
     76     MaybeDecl = B->getRHS();
     77     Constant = tryTransformToIntOrEnumConstant(B->getLHS());
     78   }
     79 
     80   auto *D = dyn_cast<DeclRefExpr>(MaybeDecl->IgnoreParenImpCasts());
     81   return std::make_tuple(D, Op, Constant);
     82 }
     83 
     84 /// For an expression `x == Foo && x == Bar`, this determines whether the
     85 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
     86 /// literals.
     87 ///
     88 /// It's an error to pass this arguments that are not either IntegerLiterals
     89 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
     90 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
     91   // User intent isn't clear if they're mixing int literals with enum
     92   // constants.
     93   if (isa<IntegerLiteral>(E1) != isa<IntegerLiteral>(E2))
     94     return false;
     95 
     96   // Integer literal comparisons, regardless of literal type, are acceptable.
     97   if (isa<IntegerLiteral>(E1))
     98     return true;
     99 
    100   // IntegerLiterals are handled above and only EnumConstantDecls are expected
    101   // beyond this point
    102   assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
    103   auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
    104   auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
    105 
    106   assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
    107   const DeclContext *DC1 = Decl1->getDeclContext();
    108   const DeclContext *DC2 = Decl2->getDeclContext();
    109 
    110   assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
    111   return DC1 == DC2;
    112 }
    113 
    114 class CFGBuilder;
    115 
    116 /// The CFG builder uses a recursive algorithm to build the CFG.  When
    117 ///  we process an expression, sometimes we know that we must add the
    118 ///  subexpressions as block-level expressions.  For example:
    119 ///
    120 ///    exp1 || exp2
    121 ///
    122 ///  When processing the '||' expression, we know that exp1 and exp2
    123 ///  need to be added as block-level expressions, even though they
    124 ///  might not normally need to be.  AddStmtChoice records this
    125 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
    126 ///  the builder has an option not to add a subexpression as a
    127 ///  block-level expression.
    128 ///
    129 class AddStmtChoice {
    130 public:
    131   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
    132 
    133   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
    134 
    135   bool alwaysAdd(CFGBuilder &builder,
    136                  const Stmt *stmt) const;
    137 
    138   /// Return a copy of this object, except with the 'always-add' bit
    139   ///  set as specified.
    140   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
    141     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
    142   }
    143 
    144 private:
    145   Kind kind;
    146 };
    147 
    148 /// LocalScope - Node in tree of local scopes created for C++ implicit
    149 /// destructor calls generation. It contains list of automatic variables
    150 /// declared in the scope and link to position in previous scope this scope
    151 /// began in.
    152 ///
    153 /// The process of creating local scopes is as follows:
    154 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
    155 /// - Before processing statements in scope (e.g. CompoundStmt) create
    156 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
    157 ///   and set CFGBuilder::ScopePos to the end of new scope,
    158 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
    159 ///   at this VarDecl,
    160 /// - For every normal (without jump) end of scope add to CFGBlock destructors
    161 ///   for objects in the current scope,
    162 /// - For every jump add to CFGBlock destructors for objects
    163 ///   between CFGBuilder::ScopePos and local scope position saved for jump
    164 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
    165 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
    166 ///   (adding any variable that doesn't need constructor to be called to
    167 ///   LocalScope can break this assumption),
    168 ///
    169 class LocalScope {
    170 public:
    171   typedef BumpVector<VarDecl*> AutomaticVarsTy;
    172 
    173   /// const_iterator - Iterates local scope backwards and jumps to previous
    174   /// scope on reaching the beginning of currently iterated scope.
    175   class const_iterator {
    176     const LocalScope* Scope;
    177 
    178     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
    179     /// Invalid iterator (with null Scope) has VarIter equal to 0.
    180     unsigned VarIter;
    181 
    182   public:
    183     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
    184     /// Incrementing invalid iterator is allowed and will result in invalid
    185     /// iterator.
    186     const_iterator()
    187         : Scope(nullptr), VarIter(0) {}
    188 
    189     /// Create valid iterator. In case when S.Prev is an invalid iterator and
    190     /// I is equal to 0, this will create invalid iterator.
    191     const_iterator(const LocalScope& S, unsigned I)
    192         : Scope(&S), VarIter(I) {
    193       // Iterator to "end" of scope is not allowed. Handle it by going up
    194       // in scopes tree possibly up to invalid iterator in the root.
    195       if (VarIter == 0 && Scope)
    196         *this = Scope->Prev;
    197     }
    198 
    199     VarDecl *const* operator->() const {
    200       assert (Scope && "Dereferencing invalid iterator is not allowed");
    201       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
    202       return &Scope->Vars[VarIter - 1];
    203     }
    204     VarDecl *operator*() const {
    205       return *this->operator->();
    206     }
    207 
    208     const_iterator &operator++() {
    209       if (!Scope)
    210         return *this;
    211 
    212       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
    213       --VarIter;
    214       if (VarIter == 0)
    215         *this = Scope->Prev;
    216       return *this;
    217     }
    218     const_iterator operator++(int) {
    219       const_iterator P = *this;
    220       ++*this;
    221       return P;
    222     }
    223 
    224     bool operator==(const const_iterator &rhs) const {
    225       return Scope == rhs.Scope && VarIter == rhs.VarIter;
    226     }
    227     bool operator!=(const const_iterator &rhs) const {
    228       return !(*this == rhs);
    229     }
    230 
    231     explicit operator bool() const {
    232       return *this != const_iterator();
    233     }
    234 
    235     int distance(const_iterator L);
    236   };
    237 
    238   friend class const_iterator;
    239 
    240 private:
    241   BumpVectorContext ctx;
    242 
    243   /// Automatic variables in order of declaration.
    244   AutomaticVarsTy Vars;
    245   /// Iterator to variable in previous scope that was declared just before
    246   /// begin of this scope.
    247   const_iterator Prev;
    248 
    249 public:
    250   /// Constructs empty scope linked to previous scope in specified place.
    251   LocalScope(BumpVectorContext ctx, const_iterator P)
    252       : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
    253 
    254   /// Begin of scope in direction of CFG building (backwards).
    255   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
    256 
    257   void addVar(VarDecl *VD) {
    258     Vars.push_back(VD, ctx);
    259   }
    260 };
    261 
    262 /// distance - Calculates distance from this to L. L must be reachable from this
    263 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
    264 /// number of scopes between this and L.
    265 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
    266   int D = 0;
    267   const_iterator F = *this;
    268   while (F.Scope != L.Scope) {
    269     assert (F != const_iterator()
    270         && "L iterator is not reachable from F iterator.");
    271     D += F.VarIter;
    272     F = F.Scope->Prev;
    273   }
    274   D += F.VarIter - L.VarIter;
    275   return D;
    276 }
    277 
    278 /// Structure for specifying position in CFG during its build process. It
    279 /// consists of CFGBlock that specifies position in CFG and
    280 /// LocalScope::const_iterator that specifies position in LocalScope graph.
    281 struct BlockScopePosPair {
    282   BlockScopePosPair() : block(nullptr) {}
    283   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
    284       : block(b), scopePosition(scopePos) {}
    285 
    286   CFGBlock *block;
    287   LocalScope::const_iterator scopePosition;
    288 };
    289 
    290 /// TryResult - a class representing a variant over the values
    291 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
    292 ///  and is used by the CFGBuilder to decide if a branch condition
    293 ///  can be decided up front during CFG construction.
    294 class TryResult {
    295   int X;
    296 public:
    297   TryResult(bool b) : X(b ? 1 : 0) {}
    298   TryResult() : X(-1) {}
    299 
    300   bool isTrue() const { return X == 1; }
    301   bool isFalse() const { return X == 0; }
    302   bool isKnown() const { return X >= 0; }
    303   void negate() {
    304     assert(isKnown());
    305     X ^= 0x1;
    306   }
    307 };
    308 
    309 TryResult bothKnownTrue(TryResult R1, TryResult R2) {
    310   if (!R1.isKnown() || !R2.isKnown())
    311     return TryResult();
    312   return TryResult(R1.isTrue() && R2.isTrue());
    313 }
    314 
    315 class reverse_children {
    316   llvm::SmallVector<Stmt *, 12> childrenBuf;
    317   ArrayRef<Stmt*> children;
    318 public:
    319   reverse_children(Stmt *S);
    320 
    321   typedef ArrayRef<Stmt*>::reverse_iterator iterator;
    322   iterator begin() const { return children.rbegin(); }
    323   iterator end() const { return children.rend(); }
    324 };
    325 
    326 
    327 reverse_children::reverse_children(Stmt *S) {
    328   if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
    329     children = CE->getRawSubExprs();
    330     return;
    331   }
    332   switch (S->getStmtClass()) {
    333     // Note: Fill in this switch with more cases we want to optimize.
    334     case Stmt::InitListExprClass: {
    335       InitListExpr *IE = cast<InitListExpr>(S);
    336       children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
    337                                     IE->getNumInits());
    338       return;
    339     }
    340     default:
    341       break;
    342   }
    343 
    344   // Default case for all other statements.
    345   for (Stmt *SubStmt : S->children())
    346     childrenBuf.push_back(SubStmt);
    347 
    348   // This needs to be done *after* childrenBuf has been populated.
    349   children = childrenBuf;
    350 }
    351 
    352 /// CFGBuilder - This class implements CFG construction from an AST.
    353 ///   The builder is stateful: an instance of the builder should be used to only
    354 ///   construct a single CFG.
    355 ///
    356 ///   Example usage:
    357 ///
    358 ///     CFGBuilder builder;
    359 ///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
    360 ///
    361 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
    362 ///  the AST in reverse order so that the successor of a basic block is
    363 ///  constructed prior to its predecessor.  This allows us to nicely capture
    364 ///  implicit fall-throughs without extra basic blocks.
    365 ///
    366 class CFGBuilder {
    367   typedef BlockScopePosPair JumpTarget;
    368   typedef BlockScopePosPair JumpSource;
    369 
    370   ASTContext *Context;
    371   std::unique_ptr<CFG> cfg;
    372 
    373   CFGBlock *Block;
    374   CFGBlock *Succ;
    375   JumpTarget ContinueJumpTarget;
    376   JumpTarget BreakJumpTarget;
    377   CFGBlock *SwitchTerminatedBlock;
    378   CFGBlock *DefaultCaseBlock;
    379   CFGBlock *TryTerminatedBlock;
    380 
    381   // Current position in local scope.
    382   LocalScope::const_iterator ScopePos;
    383 
    384   // LabelMap records the mapping from Label expressions to their jump targets.
    385   typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
    386   LabelMapTy LabelMap;
    387 
    388   // A list of blocks that end with a "goto" that must be backpatched to their
    389   // resolved targets upon completion of CFG construction.
    390   typedef std::vector<JumpSource> BackpatchBlocksTy;
    391   BackpatchBlocksTy BackpatchBlocks;
    392 
    393   // A list of labels whose address has been taken (for indirect gotos).
    394   typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
    395   LabelSetTy AddressTakenLabels;
    396 
    397   bool badCFG;
    398   const CFG::BuildOptions &BuildOpts;
    399 
    400   // State to track for building switch statements.
    401   bool switchExclusivelyCovered;
    402   Expr::EvalResult *switchCond;
    403 
    404   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
    405   const Stmt *lastLookup;
    406 
    407   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
    408   // during construction of branches for chained logical operators.
    409   typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
    410   CachedBoolEvalsTy CachedBoolEvals;
    411 
    412 public:
    413   explicit CFGBuilder(ASTContext *astContext,
    414                       const CFG::BuildOptions &buildOpts)
    415     : Context(astContext), cfg(new CFG()), // crew a new CFG
    416       Block(nullptr), Succ(nullptr),
    417       SwitchTerminatedBlock(nullptr), DefaultCaseBlock(nullptr),
    418       TryTerminatedBlock(nullptr), badCFG(false), BuildOpts(buildOpts),
    419       switchExclusivelyCovered(false), switchCond(nullptr),
    420       cachedEntry(nullptr), lastLookup(nullptr) {}
    421 
    422   // buildCFG - Used by external clients to construct the CFG.
    423   std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
    424 
    425   bool alwaysAdd(const Stmt *stmt);
    426 
    427 private:
    428   // Visitors to walk an AST and construct the CFG.
    429   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
    430   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
    431   CFGBlock *VisitBreakStmt(BreakStmt *B);
    432   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
    433   CFGBlock *VisitCaseStmt(CaseStmt *C);
    434   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
    435   CFGBlock *VisitCompoundStmt(CompoundStmt *C);
    436   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
    437                                      AddStmtChoice asc);
    438   CFGBlock *VisitContinueStmt(ContinueStmt *C);
    439   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
    440                                       AddStmtChoice asc);
    441   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
    442   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
    443   CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
    444   CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
    445   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
    446   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
    447                                        AddStmtChoice asc);
    448   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
    449                                         AddStmtChoice asc);
    450   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
    451   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
    452   CFGBlock *VisitDeclStmt(DeclStmt *DS);
    453   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
    454   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
    455   CFGBlock *VisitDoStmt(DoStmt *D);
    456   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
    457   CFGBlock *VisitForStmt(ForStmt *F);
    458   CFGBlock *VisitGotoStmt(GotoStmt *G);
    459   CFGBlock *VisitIfStmt(IfStmt *I);
    460   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
    461   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
    462   CFGBlock *VisitLabelStmt(LabelStmt *L);
    463   CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
    464   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
    465   CFGBlock *VisitLogicalOperator(BinaryOperator *B);
    466   std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
    467                                                          Stmt *Term,
    468                                                          CFGBlock *TrueBlock,
    469                                                          CFGBlock *FalseBlock);
    470   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
    471   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
    472   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
    473   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
    474   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
    475   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
    476   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
    477   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
    478   CFGBlock *VisitReturnStmt(ReturnStmt *R);
    479   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
    480   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
    481   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
    482                                           AddStmtChoice asc);
    483   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
    484   CFGBlock *VisitWhileStmt(WhileStmt *W);
    485 
    486   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
    487   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
    488   CFGBlock *VisitChildren(Stmt *S);
    489   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
    490 
    491   /// When creating the CFG for temporary destructors, we want to mirror the
    492   /// branch structure of the corresponding constructor calls.
    493   /// Thus, while visiting a statement for temporary destructors, we keep a
    494   /// context to keep track of the following information:
    495   /// - whether a subexpression is executed unconditionally
    496   /// - if a subexpression is executed conditionally, the first
    497   ///   CXXBindTemporaryExpr we encounter in that subexpression (which
    498   ///   corresponds to the last temporary destructor we have to call for this
    499   ///   subexpression) and the CFG block at that point (which will become the
    500   ///   successor block when inserting the decision point).
    501   ///
    502   /// That way, we can build the branch structure for temporary destructors as
    503   /// follows:
    504   /// 1. If a subexpression is executed unconditionally, we add the temporary
    505   ///    destructor calls to the current block.
    506   /// 2. If a subexpression is executed conditionally, when we encounter a
    507   ///    CXXBindTemporaryExpr:
    508   ///    a) If it is the first temporary destructor call in the subexpression,
    509   ///       we remember the CXXBindTemporaryExpr and the current block in the
    510   ///       TempDtorContext; we start a new block, and insert the temporary
    511   ///       destructor call.
    512   ///    b) Otherwise, add the temporary destructor call to the current block.
    513   ///  3. When we finished visiting a conditionally executed subexpression,
    514   ///     and we found at least one temporary constructor during the visitation
    515   ///     (2.a has executed), we insert a decision block that uses the
    516   ///     CXXBindTemporaryExpr as terminator, and branches to the current block
    517   ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
    518   ///     branches to the stored successor.
    519   struct TempDtorContext {
    520     TempDtorContext()
    521         : IsConditional(false), KnownExecuted(true), Succ(nullptr),
    522           TerminatorExpr(nullptr) {}
    523 
    524     TempDtorContext(TryResult KnownExecuted)
    525         : IsConditional(true), KnownExecuted(KnownExecuted), Succ(nullptr),
    526           TerminatorExpr(nullptr) {}
    527 
    528     /// Returns whether we need to start a new branch for a temporary destructor
    529     /// call. This is the case when the temporary destructor is
    530     /// conditionally executed, and it is the first one we encounter while
    531     /// visiting a subexpression - other temporary destructors at the same level
    532     /// will be added to the same block and are executed under the same
    533     /// condition.
    534     bool needsTempDtorBranch() const {
    535       return IsConditional && !TerminatorExpr;
    536     }
    537 
    538     /// Remember the successor S of a temporary destructor decision branch for
    539     /// the corresponding CXXBindTemporaryExpr E.
    540     void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
    541       Succ = S;
    542       TerminatorExpr = E;
    543     }
    544 
    545     const bool IsConditional;
    546     const TryResult KnownExecuted;
    547     CFGBlock *Succ;
    548     CXXBindTemporaryExpr *TerminatorExpr;
    549   };
    550 
    551   // Visitors to walk an AST and generate destructors of temporaries in
    552   // full expression.
    553   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
    554                                    TempDtorContext &Context);
    555   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, TempDtorContext &Context);
    556   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
    557                                                  TempDtorContext &Context);
    558   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
    559       CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context);
    560   CFGBlock *VisitConditionalOperatorForTemporaryDtors(
    561       AbstractConditionalOperator *E, bool BindToTemporary,
    562       TempDtorContext &Context);
    563   void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
    564                                    CFGBlock *FalseSucc = nullptr);
    565 
    566   // NYS == Not Yet Supported
    567   CFGBlock *NYS() {
    568     badCFG = true;
    569     return Block;
    570   }
    571 
    572   void autoCreateBlock() { if (!Block) Block = createBlock(); }
    573   CFGBlock *createBlock(bool add_successor = true);
    574   CFGBlock *createNoReturnBlock();
    575 
    576   CFGBlock *addStmt(Stmt *S) {
    577     return Visit(S, AddStmtChoice::AlwaysAdd);
    578   }
    579   CFGBlock *addInitializer(CXXCtorInitializer *I);
    580   void addAutomaticObjDtors(LocalScope::const_iterator B,
    581                             LocalScope::const_iterator E, Stmt *S);
    582   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
    583 
    584   // Local scopes creation.
    585   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
    586 
    587   void addLocalScopeForStmt(Stmt *S);
    588   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
    589                                        LocalScope* Scope = nullptr);
    590   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
    591 
    592   void addLocalScopeAndDtors(Stmt *S);
    593 
    594   // Interface to CFGBlock - adding CFGElements.
    595   void appendStmt(CFGBlock *B, const Stmt *S) {
    596     if (alwaysAdd(S) && cachedEntry)
    597       cachedEntry->second = B;
    598 
    599     // All block-level expressions should have already been IgnoreParens()ed.
    600     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
    601     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
    602   }
    603   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
    604     B->appendInitializer(I, cfg->getBumpVectorContext());
    605   }
    606   void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
    607     B->appendNewAllocator(NE, cfg->getBumpVectorContext());
    608   }
    609   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
    610     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
    611   }
    612   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
    613     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
    614   }
    615   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
    616     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
    617   }
    618   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
    619     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
    620   }
    621 
    622   void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
    623     B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
    624   }
    625 
    626   void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
    627       LocalScope::const_iterator B, LocalScope::const_iterator E);
    628 
    629   void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
    630     B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
    631                     cfg->getBumpVectorContext());
    632   }
    633 
    634   /// Add a reachable successor to a block, with the alternate variant that is
    635   /// unreachable.
    636   void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
    637     B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
    638                     cfg->getBumpVectorContext());
    639   }
    640 
    641   /// \brief Find a relational comparison with an expression evaluating to a
    642   /// boolean and a constant other than 0 and 1.
    643   /// e.g. if ((x < y) == 10)
    644   TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
    645     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
    646     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
    647 
    648     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
    649     const Expr *BoolExpr = RHSExpr;
    650     bool IntFirst = true;
    651     if (!IntLiteral) {
    652       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
    653       BoolExpr = LHSExpr;
    654       IntFirst = false;
    655     }
    656 
    657     if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
    658       return TryResult();
    659 
    660     llvm::APInt IntValue = IntLiteral->getValue();
    661     if ((IntValue == 1) || (IntValue == 0))
    662       return TryResult();
    663 
    664     bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
    665                      !IntValue.isNegative();
    666 
    667     BinaryOperatorKind Bok = B->getOpcode();
    668     if (Bok == BO_GT || Bok == BO_GE) {
    669       // Always true for 10 > bool and bool > -1
    670       // Always false for -1 > bool and bool > 10
    671       return TryResult(IntFirst == IntLarger);
    672     } else {
    673       // Always true for -1 < bool and bool < 10
    674       // Always false for 10 < bool and bool < -1
    675       return TryResult(IntFirst != IntLarger);
    676     }
    677   }
    678 
    679   /// Find an incorrect equality comparison. Either with an expression
    680   /// evaluating to a boolean and a constant other than 0 and 1.
    681   /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
    682   /// true/false e.q. (x & 8) == 4.
    683   TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
    684     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
    685     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
    686 
    687     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
    688     const Expr *BoolExpr = RHSExpr;
    689 
    690     if (!IntLiteral) {
    691       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
    692       BoolExpr = LHSExpr;
    693     }
    694 
    695     if (!IntLiteral)
    696       return TryResult();
    697 
    698     const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
    699     if (BitOp && (BitOp->getOpcode() == BO_And ||
    700                   BitOp->getOpcode() == BO_Or)) {
    701       const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
    702       const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
    703 
    704       const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
    705 
    706       if (!IntLiteral2)
    707         IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
    708 
    709       if (!IntLiteral2)
    710         return TryResult();
    711 
    712       llvm::APInt L1 = IntLiteral->getValue();
    713       llvm::APInt L2 = IntLiteral2->getValue();
    714       if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
    715           (BitOp->getOpcode() == BO_Or  && (L2 | L1) != L1)) {
    716         if (BuildOpts.Observer)
    717           BuildOpts.Observer->compareBitwiseEquality(B,
    718                                                      B->getOpcode() != BO_EQ);
    719         TryResult(B->getOpcode() != BO_EQ);
    720       }
    721     } else if (BoolExpr->isKnownToHaveBooleanValue()) {
    722       llvm::APInt IntValue = IntLiteral->getValue();
    723       if ((IntValue == 1) || (IntValue == 0)) {
    724         return TryResult();
    725       }
    726       return TryResult(B->getOpcode() != BO_EQ);
    727     }
    728 
    729     return TryResult();
    730   }
    731 
    732   TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
    733                                           const llvm::APSInt &Value1,
    734                                           const llvm::APSInt &Value2) {
    735     assert(Value1.isSigned() == Value2.isSigned());
    736     switch (Relation) {
    737       default:
    738         return TryResult();
    739       case BO_EQ:
    740         return TryResult(Value1 == Value2);
    741       case BO_NE:
    742         return TryResult(Value1 != Value2);
    743       case BO_LT:
    744         return TryResult(Value1 <  Value2);
    745       case BO_LE:
    746         return TryResult(Value1 <= Value2);
    747       case BO_GT:
    748         return TryResult(Value1 >  Value2);
    749       case BO_GE:
    750         return TryResult(Value1 >= Value2);
    751     }
    752   }
    753 
    754   /// \brief Find a pair of comparison expressions with or without parentheses
    755   /// with a shared variable and constants and a logical operator between them
    756   /// that always evaluates to either true or false.
    757   /// e.g. if (x != 3 || x != 4)
    758   TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
    759     assert(B->isLogicalOp());
    760     const BinaryOperator *LHS =
    761         dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
    762     const BinaryOperator *RHS =
    763         dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
    764     if (!LHS || !RHS)
    765       return TryResult();
    766 
    767     if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
    768       return TryResult();
    769 
    770     const DeclRefExpr *Decl1;
    771     const Expr *Expr1;
    772     BinaryOperatorKind BO1;
    773     std::tie(Decl1, BO1, Expr1) = tryNormalizeBinaryOperator(LHS);
    774 
    775     if (!Decl1 || !Expr1)
    776       return TryResult();
    777 
    778     const DeclRefExpr *Decl2;
    779     const Expr *Expr2;
    780     BinaryOperatorKind BO2;
    781     std::tie(Decl2, BO2, Expr2) = tryNormalizeBinaryOperator(RHS);
    782 
    783     if (!Decl2 || !Expr2)
    784       return TryResult();
    785 
    786     // Check that it is the same variable on both sides.
    787     if (Decl1->getDecl() != Decl2->getDecl())
    788       return TryResult();
    789 
    790     // Make sure the user's intent is clear (e.g. they're comparing against two
    791     // int literals, or two things from the same enum)
    792     if (!areExprTypesCompatible(Expr1, Expr2))
    793       return TryResult();
    794 
    795     llvm::APSInt L1, L2;
    796 
    797     if (!Expr1->EvaluateAsInt(L1, *Context) ||
    798         !Expr2->EvaluateAsInt(L2, *Context))
    799       return TryResult();
    800 
    801     // Can't compare signed with unsigned or with different bit width.
    802     if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
    803       return TryResult();
    804 
    805     // Values that will be used to determine if result of logical
    806     // operator is always true/false
    807     const llvm::APSInt Values[] = {
    808       // Value less than both Value1 and Value2
    809       llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
    810       // L1
    811       L1,
    812       // Value between Value1 and Value2
    813       ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
    814                               L1.isUnsigned()),
    815       // L2
    816       L2,
    817       // Value greater than both Value1 and Value2
    818       llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
    819     };
    820 
    821     // Check whether expression is always true/false by evaluating the following
    822     // * variable x is less than the smallest literal.
    823     // * variable x is equal to the smallest literal.
    824     // * Variable x is between smallest and largest literal.
    825     // * Variable x is equal to the largest literal.
    826     // * Variable x is greater than largest literal.
    827     bool AlwaysTrue = true, AlwaysFalse = true;
    828     for (llvm::APSInt Value : Values) {
    829       TryResult Res1, Res2;
    830       Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
    831       Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
    832 
    833       if (!Res1.isKnown() || !Res2.isKnown())
    834         return TryResult();
    835 
    836       if (B->getOpcode() == BO_LAnd) {
    837         AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
    838         AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
    839       } else {
    840         AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
    841         AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
    842       }
    843     }
    844 
    845     if (AlwaysTrue || AlwaysFalse) {
    846       if (BuildOpts.Observer)
    847         BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
    848       return TryResult(AlwaysTrue);
    849     }
    850     return TryResult();
    851   }
    852 
    853   /// Try and evaluate an expression to an integer constant.
    854   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
    855     if (!BuildOpts.PruneTriviallyFalseEdges)
    856       return false;
    857     return !S->isTypeDependent() &&
    858            !S->isValueDependent() &&
    859            S->EvaluateAsRValue(outResult, *Context);
    860   }
    861 
    862   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
    863   /// if we can evaluate to a known value, otherwise return -1.
    864   TryResult tryEvaluateBool(Expr *S) {
    865     if (!BuildOpts.PruneTriviallyFalseEdges ||
    866         S->isTypeDependent() || S->isValueDependent())
    867       return TryResult();
    868 
    869     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
    870       if (Bop->isLogicalOp()) {
    871         // Check the cache first.
    872         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
    873         if (I != CachedBoolEvals.end())
    874           return I->second; // already in map;
    875 
    876         // Retrieve result at first, or the map might be updated.
    877         TryResult Result = evaluateAsBooleanConditionNoCache(S);
    878         CachedBoolEvals[S] = Result; // update or insert
    879         return Result;
    880       }
    881       else {
    882         switch (Bop->getOpcode()) {
    883           default: break;
    884           // For 'x & 0' and 'x * 0', we can determine that
    885           // the value is always false.
    886           case BO_Mul:
    887           case BO_And: {
    888             // If either operand is zero, we know the value
    889             // must be false.
    890             llvm::APSInt IntVal;
    891             if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
    892               if (!IntVal.getBoolValue()) {
    893                 return TryResult(false);
    894               }
    895             }
    896             if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
    897               if (!IntVal.getBoolValue()) {
    898                 return TryResult(false);
    899               }
    900             }
    901           }
    902           break;
    903         }
    904       }
    905     }
    906 
    907     return evaluateAsBooleanConditionNoCache(S);
    908   }
    909 
    910   /// \brief Evaluate as boolean \param E without using the cache.
    911   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
    912     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
    913       if (Bop->isLogicalOp()) {
    914         TryResult LHS = tryEvaluateBool(Bop->getLHS());
    915         if (LHS.isKnown()) {
    916           // We were able to evaluate the LHS, see if we can get away with not
    917           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
    918           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
    919             return LHS.isTrue();
    920 
    921           TryResult RHS = tryEvaluateBool(Bop->getRHS());
    922           if (RHS.isKnown()) {
    923             if (Bop->getOpcode() == BO_LOr)
    924               return LHS.isTrue() || RHS.isTrue();
    925             else
    926               return LHS.isTrue() && RHS.isTrue();
    927           }
    928         } else {
    929           TryResult RHS = tryEvaluateBool(Bop->getRHS());
    930           if (RHS.isKnown()) {
    931             // We can't evaluate the LHS; however, sometimes the result
    932             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
    933             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
    934               return RHS.isTrue();
    935           } else {
    936             TryResult BopRes = checkIncorrectLogicOperator(Bop);
    937             if (BopRes.isKnown())
    938               return BopRes.isTrue();
    939           }
    940         }
    941 
    942         return TryResult();
    943       } else if (Bop->isEqualityOp()) {
    944           TryResult BopRes = checkIncorrectEqualityOperator(Bop);
    945           if (BopRes.isKnown())
    946             return BopRes.isTrue();
    947       } else if (Bop->isRelationalOp()) {
    948         TryResult BopRes = checkIncorrectRelationalOperator(Bop);
    949         if (BopRes.isKnown())
    950           return BopRes.isTrue();
    951       }
    952     }
    953 
    954     bool Result;
    955     if (E->EvaluateAsBooleanCondition(Result, *Context))
    956       return Result;
    957 
    958     return TryResult();
    959   }
    960 
    961 };
    962 
    963 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
    964                                      const Stmt *stmt) const {
    965   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
    966 }
    967 
    968 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
    969   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
    970 
    971   if (!BuildOpts.forcedBlkExprs)
    972     return shouldAdd;
    973 
    974   if (lastLookup == stmt) {
    975     if (cachedEntry) {
    976       assert(cachedEntry->first == stmt);
    977       return true;
    978     }
    979     return shouldAdd;
    980   }
    981 
    982   lastLookup = stmt;
    983 
    984   // Perform the lookup!
    985   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
    986 
    987   if (!fb) {
    988     // No need to update 'cachedEntry', since it will always be null.
    989     assert(!cachedEntry);
    990     return shouldAdd;
    991   }
    992 
    993   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
    994   if (itr == fb->end()) {
    995     cachedEntry = nullptr;
    996     return shouldAdd;
    997   }
    998 
    999   cachedEntry = &*itr;
   1000   return true;
   1001 }
   1002 
   1003 // FIXME: Add support for dependent-sized array types in C++?
   1004 // Does it even make sense to build a CFG for an uninstantiated template?
   1005 static const VariableArrayType *FindVA(const Type *t) {
   1006   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
   1007     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
   1008       if (vat->getSizeExpr())
   1009         return vat;
   1010 
   1011     t = vt->getElementType().getTypePtr();
   1012   }
   1013 
   1014   return nullptr;
   1015 }
   1016 
   1017 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
   1018 ///  arbitrary statement.  Examples include a single expression or a function
   1019 ///  body (compound statement).  The ownership of the returned CFG is
   1020 ///  transferred to the caller.  If CFG construction fails, this method returns
   1021 ///  NULL.
   1022 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
   1023   assert(cfg.get());
   1024   if (!Statement)
   1025     return nullptr;
   1026 
   1027   // Create an empty block that will serve as the exit block for the CFG.  Since
   1028   // this is the first block added to the CFG, it will be implicitly registered
   1029   // as the exit block.
   1030   Succ = createBlock();
   1031   assert(Succ == &cfg->getExit());
   1032   Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
   1033 
   1034   if (BuildOpts.AddImplicitDtors)
   1035     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
   1036       addImplicitDtorsForDestructor(DD);
   1037 
   1038   // Visit the statements and create the CFG.
   1039   CFGBlock *B = addStmt(Statement);
   1040 
   1041   if (badCFG)
   1042     return nullptr;
   1043 
   1044   // For C++ constructor add initializers to CFG.
   1045   if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
   1046     for (auto *I : llvm::reverse(CD->inits())) {
   1047       B = addInitializer(I);
   1048       if (badCFG)
   1049         return nullptr;
   1050     }
   1051   }
   1052 
   1053   if (B)
   1054     Succ = B;
   1055 
   1056   // Backpatch the gotos whose label -> block mappings we didn't know when we
   1057   // encountered them.
   1058   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
   1059                                    E = BackpatchBlocks.end(); I != E; ++I ) {
   1060 
   1061     CFGBlock *B = I->block;
   1062     const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
   1063     LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
   1064 
   1065     // If there is no target for the goto, then we are looking at an
   1066     // incomplete AST.  Handle this by not registering a successor.
   1067     if (LI == LabelMap.end()) continue;
   1068 
   1069     JumpTarget JT = LI->second;
   1070     prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
   1071                                            JT.scopePosition);
   1072     addSuccessor(B, JT.block);
   1073   }
   1074 
   1075   // Add successors to the Indirect Goto Dispatch block (if we have one).
   1076   if (CFGBlock *B = cfg->getIndirectGotoBlock())
   1077     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
   1078                               E = AddressTakenLabels.end(); I != E; ++I ) {
   1079 
   1080       // Lookup the target block.
   1081       LabelMapTy::iterator LI = LabelMap.find(*I);
   1082 
   1083       // If there is no target block that contains label, then we are looking
   1084       // at an incomplete AST.  Handle this by not registering a successor.
   1085       if (LI == LabelMap.end()) continue;
   1086 
   1087       addSuccessor(B, LI->second.block);
   1088     }
   1089 
   1090   // Create an empty entry block that has no predecessors.
   1091   cfg->setEntry(createBlock());
   1092 
   1093   return std::move(cfg);
   1094 }
   1095 
   1096 /// createBlock - Used to lazily create blocks that are connected
   1097 ///  to the current (global) succcessor.
   1098 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
   1099   CFGBlock *B = cfg->createBlock();
   1100   if (add_successor && Succ)
   1101     addSuccessor(B, Succ);
   1102   return B;
   1103 }
   1104 
   1105 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
   1106 /// CFG. It is *not* connected to the current (global) successor, and instead
   1107 /// directly tied to the exit block in order to be reachable.
   1108 CFGBlock *CFGBuilder::createNoReturnBlock() {
   1109   CFGBlock *B = createBlock(false);
   1110   B->setHasNoReturnElement();
   1111   addSuccessor(B, &cfg->getExit(), Succ);
   1112   return B;
   1113 }
   1114 
   1115 /// addInitializer - Add C++ base or member initializer element to CFG.
   1116 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
   1117   if (!BuildOpts.AddInitializers)
   1118     return Block;
   1119 
   1120   bool HasTemporaries = false;
   1121 
   1122   // Destructors of temporaries in initialization expression should be called
   1123   // after initialization finishes.
   1124   Expr *Init = I->getInit();
   1125   if (Init) {
   1126     HasTemporaries = isa<ExprWithCleanups>(Init);
   1127 
   1128     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
   1129       // Generate destructors for temporaries in initialization expression.
   1130       TempDtorContext Context;
   1131       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
   1132                              /*BindToTemporary=*/false, Context);
   1133     }
   1134   }
   1135 
   1136   autoCreateBlock();
   1137   appendInitializer(Block, I);
   1138 
   1139   if (Init) {
   1140     if (HasTemporaries) {
   1141       // For expression with temporaries go directly to subexpression to omit
   1142       // generating destructors for the second time.
   1143       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
   1144     }
   1145     if (BuildOpts.AddCXXDefaultInitExprInCtors) {
   1146       if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
   1147         // In general, appending the expression wrapped by a CXXDefaultInitExpr
   1148         // may cause the same Expr to appear more than once in the CFG. Doing it
   1149         // here is safe because there's only one initializer per field.
   1150         autoCreateBlock();
   1151         appendStmt(Block, Default);
   1152         if (Stmt *Child = Default->getExpr())
   1153           if (CFGBlock *R = Visit(Child))
   1154             Block = R;
   1155         return Block;
   1156       }
   1157     }
   1158     return Visit(Init);
   1159   }
   1160 
   1161   return Block;
   1162 }
   1163 
   1164 /// \brief Retrieve the type of the temporary object whose lifetime was
   1165 /// extended by a local reference with the given initializer.
   1166 static QualType getReferenceInitTemporaryType(ASTContext &Context,
   1167                                               const Expr *Init) {
   1168   while (true) {
   1169     // Skip parentheses.
   1170     Init = Init->IgnoreParens();
   1171 
   1172     // Skip through cleanups.
   1173     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
   1174       Init = EWC->getSubExpr();
   1175       continue;
   1176     }
   1177 
   1178     // Skip through the temporary-materialization expression.
   1179     if (const MaterializeTemporaryExpr *MTE
   1180           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
   1181       Init = MTE->GetTemporaryExpr();
   1182       continue;
   1183     }
   1184 
   1185     // Skip derived-to-base and no-op casts.
   1186     if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
   1187       if ((CE->getCastKind() == CK_DerivedToBase ||
   1188            CE->getCastKind() == CK_UncheckedDerivedToBase ||
   1189            CE->getCastKind() == CK_NoOp) &&
   1190           Init->getType()->isRecordType()) {
   1191         Init = CE->getSubExpr();
   1192         continue;
   1193       }
   1194     }
   1195 
   1196     // Skip member accesses into rvalues.
   1197     if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
   1198       if (!ME->isArrow() && ME->getBase()->isRValue()) {
   1199         Init = ME->getBase();
   1200         continue;
   1201       }
   1202     }
   1203 
   1204     break;
   1205   }
   1206 
   1207   return Init->getType();
   1208 }
   1209 
   1210 /// addAutomaticObjDtors - Add to current block automatic objects destructors
   1211 /// for objects in range of local scope positions. Use S as trigger statement
   1212 /// for destructors.
   1213 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
   1214                                       LocalScope::const_iterator E, Stmt *S) {
   1215   if (!BuildOpts.AddImplicitDtors)
   1216     return;
   1217 
   1218   if (B == E)
   1219     return;
   1220 
   1221   // We need to append the destructors in reverse order, but any one of them
   1222   // may be a no-return destructor which changes the CFG. As a result, buffer
   1223   // this sequence up and replay them in reverse order when appending onto the
   1224   // CFGBlock(s).
   1225   SmallVector<VarDecl*, 10> Decls;
   1226   Decls.reserve(B.distance(E));
   1227   for (LocalScope::const_iterator I = B; I != E; ++I)
   1228     Decls.push_back(*I);
   1229 
   1230   for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
   1231                                                    E = Decls.rend();
   1232        I != E; ++I) {
   1233     // If this destructor is marked as a no-return destructor, we need to
   1234     // create a new block for the destructor which does not have as a successor
   1235     // anything built thus far: control won't flow out of this block.
   1236     QualType Ty = (*I)->getType();
   1237     if (Ty->isReferenceType()) {
   1238       Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
   1239     }
   1240     Ty = Context->getBaseElementType(Ty);
   1241 
   1242     if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
   1243       Block = createNoReturnBlock();
   1244     else
   1245       autoCreateBlock();
   1246 
   1247     appendAutomaticObjDtor(Block, *I, S);
   1248   }
   1249 }
   1250 
   1251 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
   1252 /// base and member objects in destructor.
   1253 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
   1254   assert (BuildOpts.AddImplicitDtors
   1255       && "Can be called only when dtors should be added");
   1256   const CXXRecordDecl *RD = DD->getParent();
   1257 
   1258   // At the end destroy virtual base objects.
   1259   for (const auto &VI : RD->vbases()) {
   1260     const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
   1261     if (!CD->hasTrivialDestructor()) {
   1262       autoCreateBlock();
   1263       appendBaseDtor(Block, &VI);
   1264     }
   1265   }
   1266 
   1267   // Before virtual bases destroy direct base objects.
   1268   for (const auto &BI : RD->bases()) {
   1269     if (!BI.isVirtual()) {
   1270       const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
   1271       if (!CD->hasTrivialDestructor()) {
   1272         autoCreateBlock();
   1273         appendBaseDtor(Block, &BI);
   1274       }
   1275     }
   1276   }
   1277 
   1278   // First destroy member objects.
   1279   for (auto *FI : RD->fields()) {
   1280     // Check for constant size array. Set type to array element type.
   1281     QualType QT = FI->getType();
   1282     if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
   1283       if (AT->getSize() == 0)
   1284         continue;
   1285       QT = AT->getElementType();
   1286     }
   1287 
   1288     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
   1289       if (!CD->hasTrivialDestructor()) {
   1290         autoCreateBlock();
   1291         appendMemberDtor(Block, FI);
   1292       }
   1293   }
   1294 }
   1295 
   1296 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
   1297 /// way return valid LocalScope object.
   1298 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
   1299   if (Scope)
   1300     return Scope;
   1301   llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
   1302   return new (alloc.Allocate<LocalScope>())
   1303       LocalScope(BumpVectorContext(alloc), ScopePos);
   1304 }
   1305 
   1306 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
   1307 /// that should create implicit scope (e.g. if/else substatements).
   1308 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
   1309   if (!BuildOpts.AddImplicitDtors)
   1310     return;
   1311 
   1312   LocalScope *Scope = nullptr;
   1313 
   1314   // For compound statement we will be creating explicit scope.
   1315   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
   1316     for (auto *BI : CS->body()) {
   1317       Stmt *SI = BI->stripLabelLikeStatements();
   1318       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
   1319         Scope = addLocalScopeForDeclStmt(DS, Scope);
   1320     }
   1321     return;
   1322   }
   1323 
   1324   // For any other statement scope will be implicit and as such will be
   1325   // interesting only for DeclStmt.
   1326   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
   1327     addLocalScopeForDeclStmt(DS);
   1328 }
   1329 
   1330 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
   1331 /// reuse Scope if not NULL.
   1332 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
   1333                                                  LocalScope* Scope) {
   1334   if (!BuildOpts.AddImplicitDtors)
   1335     return Scope;
   1336 
   1337   for (auto *DI : DS->decls())
   1338     if (VarDecl *VD = dyn_cast<VarDecl>(DI))
   1339       Scope = addLocalScopeForVarDecl(VD, Scope);
   1340   return Scope;
   1341 }
   1342 
   1343 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
   1344 /// create add scope for automatic objects and temporary objects bound to
   1345 /// const reference. Will reuse Scope if not NULL.
   1346 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
   1347                                                 LocalScope* Scope) {
   1348   if (!BuildOpts.AddImplicitDtors)
   1349     return Scope;
   1350 
   1351   // Check if variable is local.
   1352   switch (VD->getStorageClass()) {
   1353   case SC_None:
   1354   case SC_Auto:
   1355   case SC_Register:
   1356     break;
   1357   default: return Scope;
   1358   }
   1359 
   1360   // Check for const references bound to temporary. Set type to pointee.
   1361   QualType QT = VD->getType();
   1362   if (QT.getTypePtr()->isReferenceType()) {
   1363     // Attempt to determine whether this declaration lifetime-extends a
   1364     // temporary.
   1365     //
   1366     // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
   1367     // temporaries, and a single declaration can extend multiple temporaries.
   1368     // We should look at the storage duration on each nested
   1369     // MaterializeTemporaryExpr instead.
   1370     const Expr *Init = VD->getInit();
   1371     if (!Init)
   1372       return Scope;
   1373     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
   1374       Init = EWC->getSubExpr();
   1375     if (!isa<MaterializeTemporaryExpr>(Init))
   1376       return Scope;
   1377 
   1378     // Lifetime-extending a temporary.
   1379     QT = getReferenceInitTemporaryType(*Context, Init);
   1380   }
   1381 
   1382   // Check for constant size array. Set type to array element type.
   1383   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
   1384     if (AT->getSize() == 0)
   1385       return Scope;
   1386     QT = AT->getElementType();
   1387   }
   1388 
   1389   // Check if type is a C++ class with non-trivial destructor.
   1390   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
   1391     if (!CD->hasTrivialDestructor()) {
   1392       // Add the variable to scope
   1393       Scope = createOrReuseLocalScope(Scope);
   1394       Scope->addVar(VD);
   1395       ScopePos = Scope->begin();
   1396     }
   1397   return Scope;
   1398 }
   1399 
   1400 /// addLocalScopeAndDtors - For given statement add local scope for it and
   1401 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
   1402 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
   1403   if (!BuildOpts.AddImplicitDtors)
   1404     return;
   1405 
   1406   LocalScope::const_iterator scopeBeginPos = ScopePos;
   1407   addLocalScopeForStmt(S);
   1408   addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
   1409 }
   1410 
   1411 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
   1412 /// variables with automatic storage duration to CFGBlock's elements vector.
   1413 /// Elements will be prepended to physical beginning of the vector which
   1414 /// happens to be logical end. Use blocks terminator as statement that specifies
   1415 /// destructors call site.
   1416 /// FIXME: This mechanism for adding automatic destructors doesn't handle
   1417 /// no-return destructors properly.
   1418 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
   1419     LocalScope::const_iterator B, LocalScope::const_iterator E) {
   1420   BumpVectorContext &C = cfg->getBumpVectorContext();
   1421   CFGBlock::iterator InsertPos
   1422     = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
   1423   for (LocalScope::const_iterator I = B; I != E; ++I)
   1424     InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
   1425                                             Blk->getTerminator());
   1426 }
   1427 
   1428 /// Visit - Walk the subtree of a statement and add extra
   1429 ///   blocks for ternary operators, &&, and ||.  We also process "," and
   1430 ///   DeclStmts (which may contain nested control-flow).
   1431 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
   1432   if (!S) {
   1433     badCFG = true;
   1434     return nullptr;
   1435   }
   1436 
   1437   if (Expr *E = dyn_cast<Expr>(S))
   1438     S = E->IgnoreParens();
   1439 
   1440   switch (S->getStmtClass()) {
   1441     default:
   1442       return VisitStmt(S, asc);
   1443 
   1444     case Stmt::AddrLabelExprClass:
   1445       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
   1446 
   1447     case Stmt::BinaryConditionalOperatorClass:
   1448       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
   1449 
   1450     case Stmt::BinaryOperatorClass:
   1451       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
   1452 
   1453     case Stmt::BlockExprClass:
   1454       return VisitBlockExpr(cast<BlockExpr>(S), asc);
   1455 
   1456     case Stmt::BreakStmtClass:
   1457       return VisitBreakStmt(cast<BreakStmt>(S));
   1458 
   1459     case Stmt::CallExprClass:
   1460     case Stmt::CXXOperatorCallExprClass:
   1461     case Stmt::CXXMemberCallExprClass:
   1462     case Stmt::UserDefinedLiteralClass:
   1463       return VisitCallExpr(cast<CallExpr>(S), asc);
   1464 
   1465     case Stmt::CaseStmtClass:
   1466       return VisitCaseStmt(cast<CaseStmt>(S));
   1467 
   1468     case Stmt::ChooseExprClass:
   1469       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
   1470 
   1471     case Stmt::CompoundStmtClass:
   1472       return VisitCompoundStmt(cast<CompoundStmt>(S));
   1473 
   1474     case Stmt::ConditionalOperatorClass:
   1475       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
   1476 
   1477     case Stmt::ContinueStmtClass:
   1478       return VisitContinueStmt(cast<ContinueStmt>(S));
   1479 
   1480     case Stmt::CXXCatchStmtClass:
   1481       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
   1482 
   1483     case Stmt::ExprWithCleanupsClass:
   1484       return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
   1485 
   1486     case Stmt::CXXDefaultArgExprClass:
   1487     case Stmt::CXXDefaultInitExprClass:
   1488       // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
   1489       // called function's declaration, not by the caller. If we simply add
   1490       // this expression to the CFG, we could end up with the same Expr
   1491       // appearing multiple times.
   1492       // PR13385 / <rdar://problem/12156507>
   1493       //
   1494       // It's likewise possible for multiple CXXDefaultInitExprs for the same
   1495       // expression to be used in the same function (through aggregate
   1496       // initialization).
   1497       return VisitStmt(S, asc);
   1498 
   1499     case Stmt::CXXBindTemporaryExprClass:
   1500       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
   1501 
   1502     case Stmt::CXXConstructExprClass:
   1503       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
   1504 
   1505     case Stmt::CXXNewExprClass:
   1506       return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
   1507 
   1508     case Stmt::CXXDeleteExprClass:
   1509       return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
   1510 
   1511     case Stmt::CXXFunctionalCastExprClass:
   1512       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
   1513 
   1514     case Stmt::CXXTemporaryObjectExprClass:
   1515       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
   1516 
   1517     case Stmt::CXXThrowExprClass:
   1518       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
   1519 
   1520     case Stmt::CXXTryStmtClass:
   1521       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
   1522 
   1523     case Stmt::CXXForRangeStmtClass:
   1524       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
   1525 
   1526     case Stmt::DeclStmtClass:
   1527       return VisitDeclStmt(cast<DeclStmt>(S));
   1528 
   1529     case Stmt::DefaultStmtClass:
   1530       return VisitDefaultStmt(cast<DefaultStmt>(S));
   1531 
   1532     case Stmt::DoStmtClass:
   1533       return VisitDoStmt(cast<DoStmt>(S));
   1534 
   1535     case Stmt::ForStmtClass:
   1536       return VisitForStmt(cast<ForStmt>(S));
   1537 
   1538     case Stmt::GotoStmtClass:
   1539       return VisitGotoStmt(cast<GotoStmt>(S));
   1540 
   1541     case Stmt::IfStmtClass:
   1542       return VisitIfStmt(cast<IfStmt>(S));
   1543 
   1544     case Stmt::ImplicitCastExprClass:
   1545       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
   1546 
   1547     case Stmt::IndirectGotoStmtClass:
   1548       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
   1549 
   1550     case Stmt::LabelStmtClass:
   1551       return VisitLabelStmt(cast<LabelStmt>(S));
   1552 
   1553     case Stmt::LambdaExprClass:
   1554       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
   1555 
   1556     case Stmt::MemberExprClass:
   1557       return VisitMemberExpr(cast<MemberExpr>(S), asc);
   1558 
   1559     case Stmt::NullStmtClass:
   1560       return Block;
   1561 
   1562     case Stmt::ObjCAtCatchStmtClass:
   1563       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
   1564 
   1565     case Stmt::ObjCAutoreleasePoolStmtClass:
   1566     return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
   1567 
   1568     case Stmt::ObjCAtSynchronizedStmtClass:
   1569       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
   1570 
   1571     case Stmt::ObjCAtThrowStmtClass:
   1572       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
   1573 
   1574     case Stmt::ObjCAtTryStmtClass:
   1575       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
   1576 
   1577     case Stmt::ObjCForCollectionStmtClass:
   1578       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
   1579 
   1580     case Stmt::OpaqueValueExprClass:
   1581       return Block;
   1582 
   1583     case Stmt::PseudoObjectExprClass:
   1584       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
   1585 
   1586     case Stmt::ReturnStmtClass:
   1587       return VisitReturnStmt(cast<ReturnStmt>(S));
   1588 
   1589     case Stmt::UnaryExprOrTypeTraitExprClass:
   1590       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
   1591                                            asc);
   1592 
   1593     case Stmt::StmtExprClass:
   1594       return VisitStmtExpr(cast<StmtExpr>(S), asc);
   1595 
   1596     case Stmt::SwitchStmtClass:
   1597       return VisitSwitchStmt(cast<SwitchStmt>(S));
   1598 
   1599     case Stmt::UnaryOperatorClass:
   1600       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
   1601 
   1602     case Stmt::WhileStmtClass:
   1603       return VisitWhileStmt(cast<WhileStmt>(S));
   1604   }
   1605 }
   1606 
   1607 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
   1608   if (asc.alwaysAdd(*this, S)) {
   1609     autoCreateBlock();
   1610     appendStmt(Block, S);
   1611   }
   1612 
   1613   return VisitChildren(S);
   1614 }
   1615 
   1616 /// VisitChildren - Visit the children of a Stmt.
   1617 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
   1618   CFGBlock *B = Block;
   1619 
   1620   // Visit the children in their reverse order so that they appear in
   1621   // left-to-right (natural) order in the CFG.
   1622   reverse_children RChildren(S);
   1623   for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
   1624        I != E; ++I) {
   1625     if (Stmt *Child = *I)
   1626       if (CFGBlock *R = Visit(Child))
   1627         B = R;
   1628   }
   1629   return B;
   1630 }
   1631 
   1632 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
   1633                                          AddStmtChoice asc) {
   1634   AddressTakenLabels.insert(A->getLabel());
   1635 
   1636   if (asc.alwaysAdd(*this, A)) {
   1637     autoCreateBlock();
   1638     appendStmt(Block, A);
   1639   }
   1640 
   1641   return Block;
   1642 }
   1643 
   1644 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
   1645            AddStmtChoice asc) {
   1646   if (asc.alwaysAdd(*this, U)) {
   1647     autoCreateBlock();
   1648     appendStmt(Block, U);
   1649   }
   1650 
   1651   return Visit(U->getSubExpr(), AddStmtChoice());
   1652 }
   1653 
   1654 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
   1655   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1656   appendStmt(ConfluenceBlock, B);
   1657 
   1658   if (badCFG)
   1659     return nullptr;
   1660 
   1661   return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
   1662                               ConfluenceBlock).first;
   1663 }
   1664 
   1665 std::pair<CFGBlock*, CFGBlock*>
   1666 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
   1667                                  Stmt *Term,
   1668                                  CFGBlock *TrueBlock,
   1669                                  CFGBlock *FalseBlock) {
   1670 
   1671   // Introspect the RHS.  If it is a nested logical operation, we recursively
   1672   // build the CFG using this function.  Otherwise, resort to default
   1673   // CFG construction behavior.
   1674   Expr *RHS = B->getRHS()->IgnoreParens();
   1675   CFGBlock *RHSBlock, *ExitBlock;
   1676 
   1677   do {
   1678     if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
   1679       if (B_RHS->isLogicalOp()) {
   1680         std::tie(RHSBlock, ExitBlock) =
   1681           VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
   1682         break;
   1683       }
   1684 
   1685     // The RHS is not a nested logical operation.  Don't push the terminator
   1686     // down further, but instead visit RHS and construct the respective
   1687     // pieces of the CFG, and link up the RHSBlock with the terminator
   1688     // we have been provided.
   1689     ExitBlock = RHSBlock = createBlock(false);
   1690 
   1691     if (!Term) {
   1692       assert(TrueBlock == FalseBlock);
   1693       addSuccessor(RHSBlock, TrueBlock);
   1694     }
   1695     else {
   1696       RHSBlock->setTerminator(Term);
   1697       TryResult KnownVal = tryEvaluateBool(RHS);
   1698       if (!KnownVal.isKnown())
   1699         KnownVal = tryEvaluateBool(B);
   1700       addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
   1701       addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
   1702     }
   1703 
   1704     Block = RHSBlock;
   1705     RHSBlock = addStmt(RHS);
   1706   }
   1707   while (false);
   1708 
   1709   if (badCFG)
   1710     return std::make_pair(nullptr, nullptr);
   1711 
   1712   // Generate the blocks for evaluating the LHS.
   1713   Expr *LHS = B->getLHS()->IgnoreParens();
   1714 
   1715   if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
   1716     if (B_LHS->isLogicalOp()) {
   1717       if (B->getOpcode() == BO_LOr)
   1718         FalseBlock = RHSBlock;
   1719       else
   1720         TrueBlock = RHSBlock;
   1721 
   1722       // For the LHS, treat 'B' as the terminator that we want to sink
   1723       // into the nested branch.  The RHS always gets the top-most
   1724       // terminator.
   1725       return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
   1726     }
   1727 
   1728   // Create the block evaluating the LHS.
   1729   // This contains the '&&' or '||' as the terminator.
   1730   CFGBlock *LHSBlock = createBlock(false);
   1731   LHSBlock->setTerminator(B);
   1732 
   1733   Block = LHSBlock;
   1734   CFGBlock *EntryLHSBlock = addStmt(LHS);
   1735 
   1736   if (badCFG)
   1737     return std::make_pair(nullptr, nullptr);
   1738 
   1739   // See if this is a known constant.
   1740   TryResult KnownVal = tryEvaluateBool(LHS);
   1741 
   1742   // Now link the LHSBlock with RHSBlock.
   1743   if (B->getOpcode() == BO_LOr) {
   1744     addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
   1745     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
   1746   } else {
   1747     assert(B->getOpcode() == BO_LAnd);
   1748     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
   1749     addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
   1750   }
   1751 
   1752   return std::make_pair(EntryLHSBlock, ExitBlock);
   1753 }
   1754 
   1755 
   1756 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
   1757                                           AddStmtChoice asc) {
   1758    // && or ||
   1759   if (B->isLogicalOp())
   1760     return VisitLogicalOperator(B);
   1761 
   1762   if (B->getOpcode() == BO_Comma) { // ,
   1763     autoCreateBlock();
   1764     appendStmt(Block, B);
   1765     addStmt(B->getRHS());
   1766     return addStmt(B->getLHS());
   1767   }
   1768 
   1769   if (B->isAssignmentOp()) {
   1770     if (asc.alwaysAdd(*this, B)) {
   1771       autoCreateBlock();
   1772       appendStmt(Block, B);
   1773     }
   1774     Visit(B->getLHS());
   1775     return Visit(B->getRHS());
   1776   }
   1777 
   1778   if (asc.alwaysAdd(*this, B)) {
   1779     autoCreateBlock();
   1780     appendStmt(Block, B);
   1781   }
   1782 
   1783   CFGBlock *RBlock = Visit(B->getRHS());
   1784   CFGBlock *LBlock = Visit(B->getLHS());
   1785   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
   1786   // containing a DoStmt, and the LHS doesn't create a new block, then we should
   1787   // return RBlock.  Otherwise we'll incorrectly return NULL.
   1788   return (LBlock ? LBlock : RBlock);
   1789 }
   1790 
   1791 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
   1792   if (asc.alwaysAdd(*this, E)) {
   1793     autoCreateBlock();
   1794     appendStmt(Block, E);
   1795   }
   1796   return Block;
   1797 }
   1798 
   1799 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
   1800   // "break" is a control-flow statement.  Thus we stop processing the current
   1801   // block.
   1802   if (badCFG)
   1803     return nullptr;
   1804 
   1805   // Now create a new block that ends with the break statement.
   1806   Block = createBlock(false);
   1807   Block->setTerminator(B);
   1808 
   1809   // If there is no target for the break, then we are looking at an incomplete
   1810   // AST.  This means that the CFG cannot be constructed.
   1811   if (BreakJumpTarget.block) {
   1812     addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
   1813     addSuccessor(Block, BreakJumpTarget.block);
   1814   } else
   1815     badCFG = true;
   1816 
   1817 
   1818   return Block;
   1819 }
   1820 
   1821 static bool CanThrow(Expr *E, ASTContext &Ctx) {
   1822   QualType Ty = E->getType();
   1823   if (Ty->isFunctionPointerType())
   1824     Ty = Ty->getAs<PointerType>()->getPointeeType();
   1825   else if (Ty->isBlockPointerType())
   1826     Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
   1827 
   1828   const FunctionType *FT = Ty->getAs<FunctionType>();
   1829   if (FT) {
   1830     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
   1831       if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
   1832           Proto->isNothrow(Ctx))
   1833         return false;
   1834   }
   1835   return true;
   1836 }
   1837 
   1838 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
   1839   // Compute the callee type.
   1840   QualType calleeType = C->getCallee()->getType();
   1841   if (calleeType == Context->BoundMemberTy) {
   1842     QualType boundType = Expr::findBoundMemberType(C->getCallee());
   1843 
   1844     // We should only get a null bound type if processing a dependent
   1845     // CFG.  Recover by assuming nothing.
   1846     if (!boundType.isNull()) calleeType = boundType;
   1847   }
   1848 
   1849   // If this is a call to a no-return function, this stops the block here.
   1850   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
   1851 
   1852   bool AddEHEdge = false;
   1853 
   1854   // Languages without exceptions are assumed to not throw.
   1855   if (Context->getLangOpts().Exceptions) {
   1856     if (BuildOpts.AddEHEdges)
   1857       AddEHEdge = true;
   1858   }
   1859 
   1860   // If this is a call to a builtin function, it might not actually evaluate
   1861   // its arguments. Don't add them to the CFG if this is the case.
   1862   bool OmitArguments = false;
   1863 
   1864   if (FunctionDecl *FD = C->getDirectCallee()) {
   1865     if (FD->isNoReturn())
   1866       NoReturn = true;
   1867     if (FD->hasAttr<NoThrowAttr>())
   1868       AddEHEdge = false;
   1869     if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
   1870       OmitArguments = true;
   1871   }
   1872 
   1873   if (!CanThrow(C->getCallee(), *Context))
   1874     AddEHEdge = false;
   1875 
   1876   if (OmitArguments) {
   1877     assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
   1878     assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
   1879     autoCreateBlock();
   1880     appendStmt(Block, C);
   1881     return Visit(C->getCallee());
   1882   }
   1883 
   1884   if (!NoReturn && !AddEHEdge) {
   1885     return VisitStmt(C, asc.withAlwaysAdd(true));
   1886   }
   1887 
   1888   if (Block) {
   1889     Succ = Block;
   1890     if (badCFG)
   1891       return nullptr;
   1892   }
   1893 
   1894   if (NoReturn)
   1895     Block = createNoReturnBlock();
   1896   else
   1897     Block = createBlock();
   1898 
   1899   appendStmt(Block, C);
   1900 
   1901   if (AddEHEdge) {
   1902     // Add exceptional edges.
   1903     if (TryTerminatedBlock)
   1904       addSuccessor(Block, TryTerminatedBlock);
   1905     else
   1906       addSuccessor(Block, &cfg->getExit());
   1907   }
   1908 
   1909   return VisitChildren(C);
   1910 }
   1911 
   1912 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
   1913                                       AddStmtChoice asc) {
   1914   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1915   appendStmt(ConfluenceBlock, C);
   1916   if (badCFG)
   1917     return nullptr;
   1918 
   1919   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
   1920   Succ = ConfluenceBlock;
   1921   Block = nullptr;
   1922   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
   1923   if (badCFG)
   1924     return nullptr;
   1925 
   1926   Succ = ConfluenceBlock;
   1927   Block = nullptr;
   1928   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
   1929   if (badCFG)
   1930     return nullptr;
   1931 
   1932   Block = createBlock(false);
   1933   // See if this is a known constant.
   1934   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
   1935   addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
   1936   addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
   1937   Block->setTerminator(C);
   1938   return addStmt(C->getCond());
   1939 }
   1940 
   1941 
   1942 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
   1943   LocalScope::const_iterator scopeBeginPos = ScopePos;
   1944   if (BuildOpts.AddImplicitDtors) {
   1945     addLocalScopeForStmt(C);
   1946   }
   1947   if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
   1948     // If the body ends with a ReturnStmt, the dtors will be added in VisitReturnStmt
   1949     addAutomaticObjDtors(ScopePos, scopeBeginPos, C);
   1950   }
   1951 
   1952   CFGBlock *LastBlock = Block;
   1953 
   1954   for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
   1955        I != E; ++I ) {
   1956     // If we hit a segment of code just containing ';' (NullStmts), we can
   1957     // get a null block back.  In such cases, just use the LastBlock
   1958     if (CFGBlock *newBlock = addStmt(*I))
   1959       LastBlock = newBlock;
   1960 
   1961     if (badCFG)
   1962       return nullptr;
   1963   }
   1964 
   1965   return LastBlock;
   1966 }
   1967 
   1968 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
   1969                                                AddStmtChoice asc) {
   1970   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
   1971   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
   1972 
   1973   // Create the confluence block that will "merge" the results of the ternary
   1974   // expression.
   1975   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1976   appendStmt(ConfluenceBlock, C);
   1977   if (badCFG)
   1978     return nullptr;
   1979 
   1980   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
   1981 
   1982   // Create a block for the LHS expression if there is an LHS expression.  A
   1983   // GCC extension allows LHS to be NULL, causing the condition to be the
   1984   // value that is returned instead.
   1985   //  e.g: x ?: y is shorthand for: x ? x : y;
   1986   Succ = ConfluenceBlock;
   1987   Block = nullptr;
   1988   CFGBlock *LHSBlock = nullptr;
   1989   const Expr *trueExpr = C->getTrueExpr();
   1990   if (trueExpr != opaqueValue) {
   1991     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
   1992     if (badCFG)
   1993       return nullptr;
   1994     Block = nullptr;
   1995   }
   1996   else
   1997     LHSBlock = ConfluenceBlock;
   1998 
   1999   // Create the block for the RHS expression.
   2000   Succ = ConfluenceBlock;
   2001   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
   2002   if (badCFG)
   2003     return nullptr;
   2004 
   2005   // If the condition is a logical '&&' or '||', build a more accurate CFG.
   2006   if (BinaryOperator *Cond =
   2007         dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
   2008     if (Cond->isLogicalOp())
   2009       return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
   2010 
   2011   // Create the block that will contain the condition.
   2012   Block = createBlock(false);
   2013 
   2014   // See if this is a known constant.
   2015   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
   2016   addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
   2017   addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
   2018   Block->setTerminator(C);
   2019   Expr *condExpr = C->getCond();
   2020 
   2021   if (opaqueValue) {
   2022     // Run the condition expression if it's not trivially expressed in
   2023     // terms of the opaque value (or if there is no opaque value).
   2024     if (condExpr != opaqueValue)
   2025       addStmt(condExpr);
   2026 
   2027     // Before that, run the common subexpression if there was one.
   2028     // At least one of this or the above will be run.
   2029     return addStmt(BCO->getCommon());
   2030   }
   2031 
   2032   return addStmt(condExpr);
   2033 }
   2034 
   2035 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
   2036   // Check if the Decl is for an __label__.  If so, elide it from the
   2037   // CFG entirely.
   2038   if (isa<LabelDecl>(*DS->decl_begin()))
   2039     return Block;
   2040 
   2041   // This case also handles static_asserts.
   2042   if (DS->isSingleDecl())
   2043     return VisitDeclSubExpr(DS);
   2044 
   2045   CFGBlock *B = nullptr;
   2046 
   2047   // Build an individual DeclStmt for each decl.
   2048   for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
   2049                                        E = DS->decl_rend();
   2050        I != E; ++I) {
   2051     // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
   2052     unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
   2053                ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
   2054 
   2055     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
   2056     // automatically freed with the CFG.
   2057     DeclGroupRef DG(*I);
   2058     Decl *D = *I;
   2059     void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
   2060     DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
   2061     cfg->addSyntheticDeclStmt(DSNew, DS);
   2062 
   2063     // Append the fake DeclStmt to block.
   2064     B = VisitDeclSubExpr(DSNew);
   2065   }
   2066 
   2067   return B;
   2068 }
   2069 
   2070 /// VisitDeclSubExpr - Utility method to add block-level expressions for
   2071 /// DeclStmts and initializers in them.
   2072 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
   2073   assert(DS->isSingleDecl() && "Can handle single declarations only.");
   2074   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
   2075 
   2076   if (!VD) {
   2077     // Of everything that can be declared in a DeclStmt, only VarDecls impact
   2078     // runtime semantics.
   2079     return Block;
   2080   }
   2081 
   2082   bool HasTemporaries = false;
   2083 
   2084   // Guard static initializers under a branch.
   2085   CFGBlock *blockAfterStaticInit = nullptr;
   2086 
   2087   if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
   2088     // For static variables, we need to create a branch to track
   2089     // whether or not they are initialized.
   2090     if (Block) {
   2091       Succ = Block;
   2092       Block = nullptr;
   2093       if (badCFG)
   2094         return nullptr;
   2095     }
   2096     blockAfterStaticInit = Succ;
   2097   }
   2098 
   2099   // Destructors of temporaries in initialization expression should be called
   2100   // after initialization finishes.
   2101   Expr *Init = VD->getInit();
   2102   if (Init) {
   2103     HasTemporaries = isa<ExprWithCleanups>(Init);
   2104 
   2105     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
   2106       // Generate destructors for temporaries in initialization expression.
   2107       TempDtorContext Context;
   2108       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
   2109                              /*BindToTemporary=*/false, Context);
   2110     }
   2111   }
   2112 
   2113   autoCreateBlock();
   2114   appendStmt(Block, DS);
   2115 
   2116   // Keep track of the last non-null block, as 'Block' can be nulled out
   2117   // if the initializer expression is something like a 'while' in a
   2118   // statement-expression.
   2119   CFGBlock *LastBlock = Block;
   2120 
   2121   if (Init) {
   2122     if (HasTemporaries) {
   2123       // For expression with temporaries go directly to subexpression to omit
   2124       // generating destructors for the second time.
   2125       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
   2126       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
   2127         LastBlock = newBlock;
   2128     }
   2129     else {
   2130       if (CFGBlock *newBlock = Visit(Init))
   2131         LastBlock = newBlock;
   2132     }
   2133   }
   2134 
   2135   // If the type of VD is a VLA, then we must process its size expressions.
   2136   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
   2137        VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
   2138     if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
   2139       LastBlock = newBlock;
   2140   }
   2141 
   2142   // Remove variable from local scope.
   2143   if (ScopePos && VD == *ScopePos)
   2144     ++ScopePos;
   2145 
   2146   CFGBlock *B = LastBlock;
   2147   if (blockAfterStaticInit) {
   2148     Succ = B;
   2149     Block = createBlock(false);
   2150     Block->setTerminator(DS);
   2151     addSuccessor(Block, blockAfterStaticInit);
   2152     addSuccessor(Block, B);
   2153     B = Block;
   2154   }
   2155 
   2156   return B;
   2157 }
   2158 
   2159 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
   2160   // We may see an if statement in the middle of a basic block, or it may be the
   2161   // first statement we are processing.  In either case, we create a new basic
   2162   // block.  First, we create the blocks for the then...else statements, and
   2163   // then we create the block containing the if statement.  If we were in the
   2164   // middle of a block, we stop processing that block.  That block is then the
   2165   // implicit successor for the "then" and "else" clauses.
   2166 
   2167   // Save local scope position because in case of condition variable ScopePos
   2168   // won't be restored when traversing AST.
   2169   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2170 
   2171   // Create local scope for possible condition variable.
   2172   // Store scope position. Add implicit destructor.
   2173   if (VarDecl *VD = I->getConditionVariable()) {
   2174     LocalScope::const_iterator BeginScopePos = ScopePos;
   2175     addLocalScopeForVarDecl(VD);
   2176     addAutomaticObjDtors(ScopePos, BeginScopePos, I);
   2177   }
   2178 
   2179   // The block we were processing is now finished.  Make it the successor
   2180   // block.
   2181   if (Block) {
   2182     Succ = Block;
   2183     if (badCFG)
   2184       return nullptr;
   2185   }
   2186 
   2187   // Process the false branch.
   2188   CFGBlock *ElseBlock = Succ;
   2189 
   2190   if (Stmt *Else = I->getElse()) {
   2191     SaveAndRestore<CFGBlock*> sv(Succ);
   2192 
   2193     // NULL out Block so that the recursive call to Visit will
   2194     // create a new basic block.
   2195     Block = nullptr;
   2196 
   2197     // If branch is not a compound statement create implicit scope
   2198     // and add destructors.
   2199     if (!isa<CompoundStmt>(Else))
   2200       addLocalScopeAndDtors(Else);
   2201 
   2202     ElseBlock = addStmt(Else);
   2203 
   2204     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
   2205       ElseBlock = sv.get();
   2206     else if (Block) {
   2207       if (badCFG)
   2208         return nullptr;
   2209     }
   2210   }
   2211 
   2212   // Process the true branch.
   2213   CFGBlock *ThenBlock;
   2214   {
   2215     Stmt *Then = I->getThen();
   2216     assert(Then);
   2217     SaveAndRestore<CFGBlock*> sv(Succ);
   2218     Block = nullptr;
   2219 
   2220     // If branch is not a compound statement create implicit scope
   2221     // and add destructors.
   2222     if (!isa<CompoundStmt>(Then))
   2223       addLocalScopeAndDtors(Then);
   2224 
   2225     ThenBlock = addStmt(Then);
   2226 
   2227     if (!ThenBlock) {
   2228       // We can reach here if the "then" body has all NullStmts.
   2229       // Create an empty block so we can distinguish between true and false
   2230       // branches in path-sensitive analyses.
   2231       ThenBlock = createBlock(false);
   2232       addSuccessor(ThenBlock, sv.get());
   2233     } else if (Block) {
   2234       if (badCFG)
   2235         return nullptr;
   2236     }
   2237   }
   2238 
   2239   // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
   2240   // having these handle the actual control-flow jump.  Note that
   2241   // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
   2242   // we resort to the old control-flow behavior.  This special handling
   2243   // removes infeasible paths from the control-flow graph by having the
   2244   // control-flow transfer of '&&' or '||' go directly into the then/else
   2245   // blocks directly.
   2246   if (!I->getConditionVariable())
   2247     if (BinaryOperator *Cond =
   2248             dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
   2249       if (Cond->isLogicalOp())
   2250         return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
   2251 
   2252   // Now create a new block containing the if statement.
   2253   Block = createBlock(false);
   2254 
   2255   // Set the terminator of the new block to the If statement.
   2256   Block->setTerminator(I);
   2257 
   2258   // See if this is a known constant.
   2259   const TryResult &KnownVal = tryEvaluateBool(I->getCond());
   2260 
   2261   // Add the successors.  If we know that specific branches are
   2262   // unreachable, inform addSuccessor() of that knowledge.
   2263   addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
   2264   addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
   2265 
   2266   // Add the condition as the last statement in the new block.  This may create
   2267   // new blocks as the condition may contain control-flow.  Any newly created
   2268   // blocks will be pointed to be "Block".
   2269   CFGBlock *LastBlock = addStmt(I->getCond());
   2270 
   2271   // Finally, if the IfStmt contains a condition variable, add it and its
   2272   // initializer to the CFG.
   2273   if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
   2274     autoCreateBlock();
   2275     LastBlock = addStmt(const_cast<DeclStmt *>(DS));
   2276   }
   2277 
   2278   return LastBlock;
   2279 }
   2280 
   2281 
   2282 CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
   2283   // If we were in the middle of a block we stop processing that block.
   2284   //
   2285   // NOTE: If a "return" appears in the middle of a block, this means that the
   2286   //       code afterwards is DEAD (unreachable).  We still keep a basic block
   2287   //       for that code; a simple "mark-and-sweep" from the entry block will be
   2288   //       able to report such dead blocks.
   2289 
   2290   // Create the new block.
   2291   Block = createBlock(false);
   2292 
   2293   addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
   2294 
   2295   // If the one of the destructors does not return, we already have the Exit
   2296   // block as a successor.
   2297   if (!Block->hasNoReturnElement())
   2298     addSuccessor(Block, &cfg->getExit());
   2299 
   2300   // Add the return statement to the block.  This may create new blocks if R
   2301   // contains control-flow (short-circuit operations).
   2302   return VisitStmt(R, AddStmtChoice::AlwaysAdd);
   2303 }
   2304 
   2305 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
   2306   // Get the block of the labeled statement.  Add it to our map.
   2307   addStmt(L->getSubStmt());
   2308   CFGBlock *LabelBlock = Block;
   2309 
   2310   if (!LabelBlock)              // This can happen when the body is empty, i.e.
   2311     LabelBlock = createBlock(); // scopes that only contains NullStmts.
   2312 
   2313   assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
   2314          "label already in map");
   2315   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
   2316 
   2317   // Labels partition blocks, so this is the end of the basic block we were
   2318   // processing (L is the block's label).  Because this is label (and we have
   2319   // already processed the substatement) there is no extra control-flow to worry
   2320   // about.
   2321   LabelBlock->setLabel(L);
   2322   if (badCFG)
   2323     return nullptr;
   2324 
   2325   // We set Block to NULL to allow lazy creation of a new block (if necessary);
   2326   Block = nullptr;
   2327 
   2328   // This block is now the implicit successor of other blocks.
   2329   Succ = LabelBlock;
   2330 
   2331   return LabelBlock;
   2332 }
   2333 
   2334 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
   2335   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
   2336   for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
   2337     if (Expr *CopyExpr = CI.getCopyExpr()) {
   2338       CFGBlock *Tmp = Visit(CopyExpr);
   2339       if (Tmp)
   2340         LastBlock = Tmp;
   2341     }
   2342   }
   2343   return LastBlock;
   2344 }
   2345 
   2346 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
   2347   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
   2348   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
   2349        et = E->capture_init_end(); it != et; ++it) {
   2350     if (Expr *Init = *it) {
   2351       CFGBlock *Tmp = Visit(Init);
   2352       if (Tmp)
   2353         LastBlock = Tmp;
   2354     }
   2355   }
   2356   return LastBlock;
   2357 }
   2358 
   2359 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
   2360   // Goto is a control-flow statement.  Thus we stop processing the current
   2361   // block and create a new one.
   2362 
   2363   Block = createBlock(false);
   2364   Block->setTerminator(G);
   2365 
   2366   // If we already know the mapping to the label block add the successor now.
   2367   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
   2368 
   2369   if (I == LabelMap.end())
   2370     // We will need to backpatch this block later.
   2371     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
   2372   else {
   2373     JumpTarget JT = I->second;
   2374     addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
   2375     addSuccessor(Block, JT.block);
   2376   }
   2377 
   2378   return Block;
   2379 }
   2380 
   2381 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
   2382   CFGBlock *LoopSuccessor = nullptr;
   2383 
   2384   // Save local scope position because in case of condition variable ScopePos
   2385   // won't be restored when traversing AST.
   2386   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2387 
   2388   // Create local scope for init statement and possible condition variable.
   2389   // Add destructor for init statement and condition variable.
   2390   // Store scope position for continue statement.
   2391   if (Stmt *Init = F->getInit())
   2392     addLocalScopeForStmt(Init);
   2393   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
   2394 
   2395   if (VarDecl *VD = F->getConditionVariable())
   2396     addLocalScopeForVarDecl(VD);
   2397   LocalScope::const_iterator ContinueScopePos = ScopePos;
   2398 
   2399   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
   2400 
   2401   // "for" is a control-flow statement.  Thus we stop processing the current
   2402   // block.
   2403   if (Block) {
   2404     if (badCFG)
   2405       return nullptr;
   2406     LoopSuccessor = Block;
   2407   } else
   2408     LoopSuccessor = Succ;
   2409 
   2410   // Save the current value for the break targets.
   2411   // All breaks should go to the code following the loop.
   2412   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   2413   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2414 
   2415   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
   2416 
   2417   // Now create the loop body.
   2418   {
   2419     assert(F->getBody());
   2420 
   2421     // Save the current values for Block, Succ, continue and break targets.
   2422     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2423     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
   2424 
   2425     // Create an empty block to represent the transition block for looping back
   2426     // to the head of the loop.  If we have increment code, it will
   2427     // go in this block as well.
   2428     Block = Succ = TransitionBlock = createBlock(false);
   2429     TransitionBlock->setLoopTarget(F);
   2430 
   2431     if (Stmt *I = F->getInc()) {
   2432       // Generate increment code in its own basic block.  This is the target of
   2433       // continue statements.
   2434       Succ = addStmt(I);
   2435     }
   2436 
   2437     // Finish up the increment (or empty) block if it hasn't been already.
   2438     if (Block) {
   2439       assert(Block == Succ);
   2440       if (badCFG)
   2441         return nullptr;
   2442       Block = nullptr;
   2443     }
   2444 
   2445    // The starting block for the loop increment is the block that should
   2446    // represent the 'loop target' for looping back to the start of the loop.
   2447    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
   2448    ContinueJumpTarget.block->setLoopTarget(F);
   2449 
   2450     // Loop body should end with destructor of Condition variable (if any).
   2451     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
   2452 
   2453     // If body is not a compound statement create implicit scope
   2454     // and add destructors.
   2455     if (!isa<CompoundStmt>(F->getBody()))
   2456       addLocalScopeAndDtors(F->getBody());
   2457 
   2458     // Now populate the body block, and in the process create new blocks as we
   2459     // walk the body of the loop.
   2460     BodyBlock = addStmt(F->getBody());
   2461 
   2462     if (!BodyBlock) {
   2463       // In the case of "for (...;...;...);" we can have a null BodyBlock.
   2464       // Use the continue jump target as the proxy for the body.
   2465       BodyBlock = ContinueJumpTarget.block;
   2466     }
   2467     else if (badCFG)
   2468       return nullptr;
   2469   }
   2470 
   2471   // Because of short-circuit evaluation, the condition of the loop can span
   2472   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2473   // evaluate the condition.
   2474   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
   2475 
   2476   do {
   2477     Expr *C = F->getCond();
   2478 
   2479     // Specially handle logical operators, which have a slightly
   2480     // more optimal CFG representation.
   2481     if (BinaryOperator *Cond =
   2482             dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
   2483       if (Cond->isLogicalOp()) {
   2484         std::tie(EntryConditionBlock, ExitConditionBlock) =
   2485           VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
   2486         break;
   2487       }
   2488 
   2489     // The default case when not handling logical operators.
   2490     EntryConditionBlock = ExitConditionBlock = createBlock(false);
   2491     ExitConditionBlock->setTerminator(F);
   2492 
   2493     // See if this is a known constant.
   2494     TryResult KnownVal(true);
   2495 
   2496     if (C) {
   2497       // Now add the actual condition to the condition block.
   2498       // Because the condition itself may contain control-flow, new blocks may
   2499       // be created.  Thus we update "Succ" after adding the condition.
   2500       Block = ExitConditionBlock;
   2501       EntryConditionBlock = addStmt(C);
   2502 
   2503       // If this block contains a condition variable, add both the condition
   2504       // variable and initializer to the CFG.
   2505       if (VarDecl *VD = F->getConditionVariable()) {
   2506         if (Expr *Init = VD->getInit()) {
   2507           autoCreateBlock();
   2508           appendStmt(Block, F->getConditionVariableDeclStmt());
   2509           EntryConditionBlock = addStmt(Init);
   2510           assert(Block == EntryConditionBlock);
   2511         }
   2512       }
   2513 
   2514       if (Block && badCFG)
   2515         return nullptr;
   2516 
   2517       KnownVal = tryEvaluateBool(C);
   2518     }
   2519 
   2520     // Add the loop body entry as a successor to the condition.
   2521     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
   2522     // Link up the condition block with the code that follows the loop.  (the
   2523     // false branch).
   2524     addSuccessor(ExitConditionBlock,
   2525                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
   2526 
   2527   } while (false);
   2528 
   2529   // Link up the loop-back block to the entry condition block.
   2530   addSuccessor(TransitionBlock, EntryConditionBlock);
   2531 
   2532   // The condition block is the implicit successor for any code above the loop.
   2533   Succ = EntryConditionBlock;
   2534 
   2535   // If the loop contains initialization, create a new block for those
   2536   // statements.  This block can also contain statements that precede the loop.
   2537   if (Stmt *I = F->getInit()) {
   2538     Block = createBlock();
   2539     return addStmt(I);
   2540   }
   2541 
   2542   // There is no loop initialization.  We are thus basically a while loop.
   2543   // NULL out Block to force lazy block construction.
   2544   Block = nullptr;
   2545   Succ = EntryConditionBlock;
   2546   return EntryConditionBlock;
   2547 }
   2548 
   2549 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
   2550   if (asc.alwaysAdd(*this, M)) {
   2551     autoCreateBlock();
   2552     appendStmt(Block, M);
   2553   }
   2554   return Visit(M->getBase());
   2555 }
   2556 
   2557 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
   2558   // Objective-C fast enumeration 'for' statements:
   2559   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
   2560   //
   2561   //  for ( Type newVariable in collection_expression ) { statements }
   2562   //
   2563   //  becomes:
   2564   //
   2565   //   prologue:
   2566   //     1. collection_expression
   2567   //     T. jump to loop_entry
   2568   //   loop_entry:
   2569   //     1. side-effects of element expression
   2570   //     1. ObjCForCollectionStmt [performs binding to newVariable]
   2571   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
   2572   //   TB:
   2573   //     statements
   2574   //     T. jump to loop_entry
   2575   //   FB:
   2576   //     what comes after
   2577   //
   2578   //  and
   2579   //
   2580   //  Type existingItem;
   2581   //  for ( existingItem in expression ) { statements }
   2582   //
   2583   //  becomes:
   2584   //
   2585   //   the same with newVariable replaced with existingItem; the binding works
   2586   //   the same except that for one ObjCForCollectionStmt::getElement() returns
   2587   //   a DeclStmt and the other returns a DeclRefExpr.
   2588   //
   2589 
   2590   CFGBlock *LoopSuccessor = nullptr;
   2591 
   2592   if (Block) {
   2593     if (badCFG)
   2594       return nullptr;
   2595     LoopSuccessor = Block;
   2596     Block = nullptr;
   2597   } else
   2598     LoopSuccessor = Succ;
   2599 
   2600   // Build the condition blocks.
   2601   CFGBlock *ExitConditionBlock = createBlock(false);
   2602 
   2603   // Set the terminator for the "exit" condition block.
   2604   ExitConditionBlock->setTerminator(S);
   2605 
   2606   // The last statement in the block should be the ObjCForCollectionStmt, which
   2607   // performs the actual binding to 'element' and determines if there are any
   2608   // more items in the collection.
   2609   appendStmt(ExitConditionBlock, S);
   2610   Block = ExitConditionBlock;
   2611 
   2612   // Walk the 'element' expression to see if there are any side-effects.  We
   2613   // generate new blocks as necessary.  We DON'T add the statement by default to
   2614   // the CFG unless it contains control-flow.
   2615   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
   2616                                         AddStmtChoice::NotAlwaysAdd);
   2617   if (Block) {
   2618     if (badCFG)
   2619       return nullptr;
   2620     Block = nullptr;
   2621   }
   2622 
   2623   // The condition block is the implicit successor for the loop body as well as
   2624   // any code above the loop.
   2625   Succ = EntryConditionBlock;
   2626 
   2627   // Now create the true branch.
   2628   {
   2629     // Save the current values for Succ, continue and break targets.
   2630     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2631     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2632                                save_break(BreakJumpTarget);
   2633 
   2634     // Add an intermediate block between the BodyBlock and the
   2635     // EntryConditionBlock to represent the "loop back" transition, for looping
   2636     // back to the head of the loop.
   2637     CFGBlock *LoopBackBlock = nullptr;
   2638     Succ = LoopBackBlock = createBlock();
   2639     LoopBackBlock->setLoopTarget(S);
   2640 
   2641     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2642     ContinueJumpTarget = JumpTarget(Succ, ScopePos);
   2643 
   2644     CFGBlock *BodyBlock = addStmt(S->getBody());
   2645 
   2646     if (!BodyBlock)
   2647       BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
   2648     else if (Block) {
   2649       if (badCFG)
   2650         return nullptr;
   2651     }
   2652 
   2653     // This new body block is a successor to our "exit" condition block.
   2654     addSuccessor(ExitConditionBlock, BodyBlock);
   2655   }
   2656 
   2657   // Link up the condition block with the code that follows the loop.
   2658   // (the false branch).
   2659   addSuccessor(ExitConditionBlock, LoopSuccessor);
   2660 
   2661   // Now create a prologue block to contain the collection expression.
   2662   Block = createBlock();
   2663   return addStmt(S->getCollection());
   2664 }
   2665 
   2666 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
   2667   // Inline the body.
   2668   return addStmt(S->getSubStmt());
   2669   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
   2670 }
   2671 
   2672 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
   2673   // FIXME: Add locking 'primitives' to CFG for @synchronized.
   2674 
   2675   // Inline the body.
   2676   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
   2677 
   2678   // The sync body starts its own basic block.  This makes it a little easier
   2679   // for diagnostic clients.
   2680   if (SyncBlock) {
   2681     if (badCFG)
   2682       return nullptr;
   2683 
   2684     Block = nullptr;
   2685     Succ = SyncBlock;
   2686   }
   2687 
   2688   // Add the @synchronized to the CFG.
   2689   autoCreateBlock();
   2690   appendStmt(Block, S);
   2691 
   2692   // Inline the sync expression.
   2693   return addStmt(S->getSynchExpr());
   2694 }
   2695 
   2696 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
   2697   // FIXME
   2698   return NYS();
   2699 }
   2700 
   2701 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
   2702   autoCreateBlock();
   2703 
   2704   // Add the PseudoObject as the last thing.
   2705   appendStmt(Block, E);
   2706 
   2707   CFGBlock *lastBlock = Block;
   2708 
   2709   // Before that, evaluate all of the semantics in order.  In
   2710   // CFG-land, that means appending them in reverse order.
   2711   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
   2712     Expr *Semantic = E->getSemanticExpr(--i);
   2713 
   2714     // If the semantic is an opaque value, we're being asked to bind
   2715     // it to its source expression.
   2716     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
   2717       Semantic = OVE->getSourceExpr();
   2718 
   2719     if (CFGBlock *B = Visit(Semantic))
   2720       lastBlock = B;
   2721   }
   2722 
   2723   return lastBlock;
   2724 }
   2725 
   2726 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
   2727   CFGBlock *LoopSuccessor = nullptr;
   2728 
   2729   // Save local scope position because in case of condition variable ScopePos
   2730   // won't be restored when traversing AST.
   2731   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2732 
   2733   // Create local scope for possible condition variable.
   2734   // Store scope position for continue statement.
   2735   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
   2736   if (VarDecl *VD = W->getConditionVariable()) {
   2737     addLocalScopeForVarDecl(VD);
   2738     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
   2739   }
   2740 
   2741   // "while" is a control-flow statement.  Thus we stop processing the current
   2742   // block.
   2743   if (Block) {
   2744     if (badCFG)
   2745       return nullptr;
   2746     LoopSuccessor = Block;
   2747     Block = nullptr;
   2748   } else {
   2749     LoopSuccessor = Succ;
   2750   }
   2751 
   2752   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
   2753 
   2754   // Process the loop body.
   2755   {
   2756     assert(W->getBody());
   2757 
   2758     // Save the current values for Block, Succ, continue and break targets.
   2759     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2760     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2761                                save_break(BreakJumpTarget);
   2762 
   2763     // Create an empty block to represent the transition block for looping back
   2764     // to the head of the loop.
   2765     Succ = TransitionBlock = createBlock(false);
   2766     TransitionBlock->setLoopTarget(W);
   2767     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
   2768 
   2769     // All breaks should go to the code following the loop.
   2770     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2771 
   2772     // Loop body should end with destructor of Condition variable (if any).
   2773     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
   2774 
   2775     // If body is not a compound statement create implicit scope
   2776     // and add destructors.
   2777     if (!isa<CompoundStmt>(W->getBody()))
   2778       addLocalScopeAndDtors(W->getBody());
   2779 
   2780     // Create the body.  The returned block is the entry to the loop body.
   2781     BodyBlock = addStmt(W->getBody());
   2782 
   2783     if (!BodyBlock)
   2784       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
   2785     else if (Block && badCFG)
   2786       return nullptr;
   2787   }
   2788 
   2789   // Because of short-circuit evaluation, the condition of the loop can span
   2790   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2791   // evaluate the condition.
   2792   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
   2793 
   2794   do {
   2795     Expr *C = W->getCond();
   2796 
   2797     // Specially handle logical operators, which have a slightly
   2798     // more optimal CFG representation.
   2799     if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
   2800       if (Cond->isLogicalOp()) {
   2801         std::tie(EntryConditionBlock, ExitConditionBlock) =
   2802             VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
   2803         break;
   2804       }
   2805 
   2806     // The default case when not handling logical operators.
   2807     ExitConditionBlock = createBlock(false);
   2808     ExitConditionBlock->setTerminator(W);
   2809 
   2810     // Now add the actual condition to the condition block.
   2811     // Because the condition itself may contain control-flow, new blocks may
   2812     // be created.  Thus we update "Succ" after adding the condition.
   2813     Block = ExitConditionBlock;
   2814     Block = EntryConditionBlock = addStmt(C);
   2815 
   2816     // If this block contains a condition variable, add both the condition
   2817     // variable and initializer to the CFG.
   2818     if (VarDecl *VD = W->getConditionVariable()) {
   2819       if (Expr *Init = VD->getInit()) {
   2820         autoCreateBlock();
   2821         appendStmt(Block, W->getConditionVariableDeclStmt());
   2822         EntryConditionBlock = addStmt(Init);
   2823         assert(Block == EntryConditionBlock);
   2824       }
   2825     }
   2826 
   2827     if (Block && badCFG)
   2828       return nullptr;
   2829 
   2830     // See if this is a known constant.
   2831     const TryResult& KnownVal = tryEvaluateBool(C);
   2832 
   2833     // Add the loop body entry as a successor to the condition.
   2834     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
   2835     // Link up the condition block with the code that follows the loop.  (the
   2836     // false branch).
   2837     addSuccessor(ExitConditionBlock,
   2838                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
   2839 
   2840   } while(false);
   2841 
   2842   // Link up the loop-back block to the entry condition block.
   2843   addSuccessor(TransitionBlock, EntryConditionBlock);
   2844 
   2845   // There can be no more statements in the condition block since we loop back
   2846   // to this block.  NULL out Block to force lazy creation of another block.
   2847   Block = nullptr;
   2848 
   2849   // Return the condition block, which is the dominating block for the loop.
   2850   Succ = EntryConditionBlock;
   2851   return EntryConditionBlock;
   2852 }
   2853 
   2854 
   2855 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
   2856   // FIXME: For now we pretend that @catch and the code it contains does not
   2857   //  exit.
   2858   return Block;
   2859 }
   2860 
   2861 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
   2862   // FIXME: This isn't complete.  We basically treat @throw like a return
   2863   //  statement.
   2864 
   2865   // If we were in the middle of a block we stop processing that block.
   2866   if (badCFG)
   2867     return nullptr;
   2868 
   2869   // Create the new block.
   2870   Block = createBlock(false);
   2871 
   2872   // The Exit block is the only successor.
   2873   addSuccessor(Block, &cfg->getExit());
   2874 
   2875   // Add the statement to the block.  This may create new blocks if S contains
   2876   // control-flow (short-circuit operations).
   2877   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
   2878 }
   2879 
   2880 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
   2881   // If we were in the middle of a block we stop processing that block.
   2882   if (badCFG)
   2883     return nullptr;
   2884 
   2885   // Create the new block.
   2886   Block = createBlock(false);
   2887 
   2888   if (TryTerminatedBlock)
   2889     // The current try statement is the only successor.
   2890     addSuccessor(Block, TryTerminatedBlock);
   2891   else
   2892     // otherwise the Exit block is the only successor.
   2893     addSuccessor(Block, &cfg->getExit());
   2894 
   2895   // Add the statement to the block.  This may create new blocks if S contains
   2896   // control-flow (short-circuit operations).
   2897   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
   2898 }
   2899 
   2900 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
   2901   CFGBlock *LoopSuccessor = nullptr;
   2902 
   2903   // "do...while" is a control-flow statement.  Thus we stop processing the
   2904   // current block.
   2905   if (Block) {
   2906     if (badCFG)
   2907       return nullptr;
   2908     LoopSuccessor = Block;
   2909   } else
   2910     LoopSuccessor = Succ;
   2911 
   2912   // Because of short-circuit evaluation, the condition of the loop can span
   2913   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2914   // evaluate the condition.
   2915   CFGBlock *ExitConditionBlock = createBlock(false);
   2916   CFGBlock *EntryConditionBlock = ExitConditionBlock;
   2917 
   2918   // Set the terminator for the "exit" condition block.
   2919   ExitConditionBlock->setTerminator(D);
   2920 
   2921   // Now add the actual condition to the condition block.  Because the condition
   2922   // itself may contain control-flow, new blocks may be created.
   2923   if (Stmt *C = D->getCond()) {
   2924     Block = ExitConditionBlock;
   2925     EntryConditionBlock = addStmt(C);
   2926     if (Block) {
   2927       if (badCFG)
   2928         return nullptr;
   2929     }
   2930   }
   2931 
   2932   // The condition block is the implicit successor for the loop body.
   2933   Succ = EntryConditionBlock;
   2934 
   2935   // See if this is a known constant.
   2936   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
   2937 
   2938   // Process the loop body.
   2939   CFGBlock *BodyBlock = nullptr;
   2940   {
   2941     assert(D->getBody());
   2942 
   2943     // Save the current values for Block, Succ, and continue and break targets
   2944     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2945     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2946         save_break(BreakJumpTarget);
   2947 
   2948     // All continues within this loop should go to the condition block
   2949     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
   2950 
   2951     // All breaks should go to the code following the loop.
   2952     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2953 
   2954     // NULL out Block to force lazy instantiation of blocks for the body.
   2955     Block = nullptr;
   2956 
   2957     // If body is not a compound statement create implicit scope
   2958     // and add destructors.
   2959     if (!isa<CompoundStmt>(D->getBody()))
   2960       addLocalScopeAndDtors(D->getBody());
   2961 
   2962     // Create the body.  The returned block is the entry to the loop body.
   2963     BodyBlock = addStmt(D->getBody());
   2964 
   2965     if (!BodyBlock)
   2966       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
   2967     else if (Block) {
   2968       if (badCFG)
   2969         return nullptr;
   2970     }
   2971 
   2972     if (!KnownVal.isFalse()) {
   2973       // Add an intermediate block between the BodyBlock and the
   2974       // ExitConditionBlock to represent the "loop back" transition.  Create an
   2975       // empty block to represent the transition block for looping back to the
   2976       // head of the loop.
   2977       // FIXME: Can we do this more efficiently without adding another block?
   2978       Block = nullptr;
   2979       Succ = BodyBlock;
   2980       CFGBlock *LoopBackBlock = createBlock();
   2981       LoopBackBlock->setLoopTarget(D);
   2982 
   2983       // Add the loop body entry as a successor to the condition.
   2984       addSuccessor(ExitConditionBlock, LoopBackBlock);
   2985     }
   2986     else
   2987       addSuccessor(ExitConditionBlock, nullptr);
   2988   }
   2989 
   2990   // Link up the condition block with the code that follows the loop.
   2991   // (the false branch).
   2992   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
   2993 
   2994   // There can be no more statements in the body block(s) since we loop back to
   2995   // the body.  NULL out Block to force lazy creation of another block.
   2996   Block = nullptr;
   2997 
   2998   // Return the loop body, which is the dominating block for the loop.
   2999   Succ = BodyBlock;
   3000   return BodyBlock;
   3001 }
   3002 
   3003 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
   3004   // "continue" is a control-flow statement.  Thus we stop processing the
   3005   // current block.
   3006   if (badCFG)
   3007     return nullptr;
   3008 
   3009   // Now create a new block that ends with the continue statement.
   3010   Block = createBlock(false);
   3011   Block->setTerminator(C);
   3012 
   3013   // If there is no target for the continue, then we are looking at an
   3014   // incomplete AST.  This means the CFG cannot be constructed.
   3015   if (ContinueJumpTarget.block) {
   3016     addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
   3017     addSuccessor(Block, ContinueJumpTarget.block);
   3018   } else
   3019     badCFG = true;
   3020 
   3021   return Block;
   3022 }
   3023 
   3024 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
   3025                                                     AddStmtChoice asc) {
   3026 
   3027   if (asc.alwaysAdd(*this, E)) {
   3028     autoCreateBlock();
   3029     appendStmt(Block, E);
   3030   }
   3031 
   3032   // VLA types have expressions that must be evaluated.
   3033   CFGBlock *lastBlock = Block;
   3034 
   3035   if (E->isArgumentType()) {
   3036     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
   3037          VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
   3038       lastBlock = addStmt(VA->getSizeExpr());
   3039   }
   3040   return lastBlock;
   3041 }
   3042 
   3043 /// VisitStmtExpr - Utility method to handle (nested) statement
   3044 ///  expressions (a GCC extension).
   3045 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
   3046   if (asc.alwaysAdd(*this, SE)) {
   3047     autoCreateBlock();
   3048     appendStmt(Block, SE);
   3049   }
   3050   return VisitCompoundStmt(SE->getSubStmt());
   3051 }
   3052 
   3053 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
   3054   // "switch" is a control-flow statement.  Thus we stop processing the current
   3055   // block.
   3056   CFGBlock *SwitchSuccessor = nullptr;
   3057 
   3058   // Save local scope position because in case of condition variable ScopePos
   3059   // won't be restored when traversing AST.
   3060   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   3061 
   3062   // Create local scope for possible condition variable.
   3063   // Store scope position. Add implicit destructor.
   3064   if (VarDecl *VD = Terminator->getConditionVariable()) {
   3065     LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
   3066     addLocalScopeForVarDecl(VD);
   3067     addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
   3068   }
   3069 
   3070   if (Block) {
   3071     if (badCFG)
   3072       return nullptr;
   3073     SwitchSuccessor = Block;
   3074   } else SwitchSuccessor = Succ;
   3075 
   3076   // Save the current "switch" context.
   3077   SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
   3078                             save_default(DefaultCaseBlock);
   3079   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   3080 
   3081   // Set the "default" case to be the block after the switch statement.  If the
   3082   // switch statement contains a "default:", this value will be overwritten with
   3083   // the block for that code.
   3084   DefaultCaseBlock = SwitchSuccessor;
   3085 
   3086   // Create a new block that will contain the switch statement.
   3087   SwitchTerminatedBlock = createBlock(false);
   3088 
   3089   // Now process the switch body.  The code after the switch is the implicit
   3090   // successor.
   3091   Succ = SwitchSuccessor;
   3092   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
   3093 
   3094   // When visiting the body, the case statements should automatically get linked
   3095   // up to the switch.  We also don't keep a pointer to the body, since all
   3096   // control-flow from the switch goes to case/default statements.
   3097   assert(Terminator->getBody() && "switch must contain a non-NULL body");
   3098   Block = nullptr;
   3099 
   3100   // For pruning unreachable case statements, save the current state
   3101   // for tracking the condition value.
   3102   SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
   3103                                                      false);
   3104 
   3105   // Determine if the switch condition can be explicitly evaluated.
   3106   assert(Terminator->getCond() && "switch condition must be non-NULL");
   3107   Expr::EvalResult result;
   3108   bool b = tryEvaluate(Terminator->getCond(), result);
   3109   SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
   3110                                                     b ? &result : nullptr);
   3111 
   3112   // If body is not a compound statement create implicit scope
   3113   // and add destructors.
   3114   if (!isa<CompoundStmt>(Terminator->getBody()))
   3115     addLocalScopeAndDtors(Terminator->getBody());
   3116 
   3117   addStmt(Terminator->getBody());
   3118   if (Block) {
   3119     if (badCFG)
   3120       return nullptr;
   3121   }
   3122 
   3123   // If we have no "default:" case, the default transition is to the code
   3124   // following the switch body.  Moreover, take into account if all the
   3125   // cases of a switch are covered (e.g., switching on an enum value).
   3126   //
   3127   // Note: We add a successor to a switch that is considered covered yet has no
   3128   //       case statements if the enumeration has no enumerators.
   3129   bool SwitchAlwaysHasSuccessor = false;
   3130   SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
   3131   SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
   3132                               Terminator->getSwitchCaseList();
   3133   addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
   3134                !SwitchAlwaysHasSuccessor);
   3135 
   3136   // Add the terminator and condition in the switch block.
   3137   SwitchTerminatedBlock->setTerminator(Terminator);
   3138   Block = SwitchTerminatedBlock;
   3139   CFGBlock *LastBlock = addStmt(Terminator->getCond());
   3140 
   3141   // Finally, if the SwitchStmt contains a condition variable, add both the
   3142   // SwitchStmt and the condition variable initialization to the CFG.
   3143   if (VarDecl *VD = Terminator->getConditionVariable()) {
   3144     if (Expr *Init = VD->getInit()) {
   3145       autoCreateBlock();
   3146       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
   3147       LastBlock = addStmt(Init);
   3148     }
   3149   }
   3150 
   3151   return LastBlock;
   3152 }
   3153 
   3154 static bool shouldAddCase(bool &switchExclusivelyCovered,
   3155                           const Expr::EvalResult *switchCond,
   3156                           const CaseStmt *CS,
   3157                           ASTContext &Ctx) {
   3158   if (!switchCond)
   3159     return true;
   3160 
   3161   bool addCase = false;
   3162 
   3163   if (!switchExclusivelyCovered) {
   3164     if (switchCond->Val.isInt()) {
   3165       // Evaluate the LHS of the case value.
   3166       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
   3167       const llvm::APSInt &condInt = switchCond->Val.getInt();
   3168 
   3169       if (condInt == lhsInt) {
   3170         addCase = true;
   3171         switchExclusivelyCovered = true;
   3172       }
   3173       else if (condInt > lhsInt) {
   3174         if (const Expr *RHS = CS->getRHS()) {
   3175           // Evaluate the RHS of the case value.
   3176           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
   3177           if (V2 >= condInt) {
   3178             addCase = true;
   3179             switchExclusivelyCovered = true;
   3180           }
   3181         }
   3182       }
   3183     }
   3184     else
   3185       addCase = true;
   3186   }
   3187   return addCase;
   3188 }
   3189 
   3190 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
   3191   // CaseStmts are essentially labels, so they are the first statement in a
   3192   // block.
   3193   CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
   3194 
   3195   if (Stmt *Sub = CS->getSubStmt()) {
   3196     // For deeply nested chains of CaseStmts, instead of doing a recursion
   3197     // (which can blow out the stack), manually unroll and create blocks
   3198     // along the way.
   3199     while (isa<CaseStmt>(Sub)) {
   3200       CFGBlock *currentBlock = createBlock(false);
   3201       currentBlock->setLabel(CS);
   3202 
   3203       if (TopBlock)
   3204         addSuccessor(LastBlock, currentBlock);
   3205       else
   3206         TopBlock = currentBlock;
   3207 
   3208       addSuccessor(SwitchTerminatedBlock,
   3209                    shouldAddCase(switchExclusivelyCovered, switchCond,
   3210                                  CS, *Context)
   3211                    ? currentBlock : nullptr);
   3212 
   3213       LastBlock = currentBlock;
   3214       CS = cast<CaseStmt>(Sub);
   3215       Sub = CS->getSubStmt();
   3216     }
   3217 
   3218     addStmt(Sub);
   3219   }
   3220 
   3221   CFGBlock *CaseBlock = Block;
   3222   if (!CaseBlock)
   3223     CaseBlock = createBlock();
   3224 
   3225   // Cases statements partition blocks, so this is the top of the basic block we
   3226   // were processing (the "case XXX:" is the label).
   3227   CaseBlock->setLabel(CS);
   3228 
   3229   if (badCFG)
   3230     return nullptr;
   3231 
   3232   // Add this block to the list of successors for the block with the switch
   3233   // statement.
   3234   assert(SwitchTerminatedBlock);
   3235   addSuccessor(SwitchTerminatedBlock, CaseBlock,
   3236                shouldAddCase(switchExclusivelyCovered, switchCond,
   3237                              CS, *Context));
   3238 
   3239   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   3240   Block = nullptr;
   3241 
   3242   if (TopBlock) {
   3243     addSuccessor(LastBlock, CaseBlock);
   3244     Succ = TopBlock;
   3245   } else {
   3246     // This block is now the implicit successor of other blocks.
   3247     Succ = CaseBlock;
   3248   }
   3249 
   3250   return Succ;
   3251 }
   3252 
   3253 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
   3254   if (Terminator->getSubStmt())
   3255     addStmt(Terminator->getSubStmt());
   3256 
   3257   DefaultCaseBlock = Block;
   3258 
   3259   if (!DefaultCaseBlock)
   3260     DefaultCaseBlock = createBlock();
   3261 
   3262   // Default statements partition blocks, so this is the top of the basic block
   3263   // we were processing (the "default:" is the label).
   3264   DefaultCaseBlock->setLabel(Terminator);
   3265 
   3266   if (badCFG)
   3267     return nullptr;
   3268 
   3269   // Unlike case statements, we don't add the default block to the successors
   3270   // for the switch statement immediately.  This is done when we finish
   3271   // processing the switch statement.  This allows for the default case
   3272   // (including a fall-through to the code after the switch statement) to always
   3273   // be the last successor of a switch-terminated block.
   3274 
   3275   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   3276   Block = nullptr;
   3277 
   3278   // This block is now the implicit successor of other blocks.
   3279   Succ = DefaultCaseBlock;
   3280 
   3281   return DefaultCaseBlock;
   3282 }
   3283 
   3284 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
   3285   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
   3286   // current block.
   3287   CFGBlock *TrySuccessor = nullptr;
   3288 
   3289   if (Block) {
   3290     if (badCFG)
   3291       return nullptr;
   3292     TrySuccessor = Block;
   3293   } else TrySuccessor = Succ;
   3294 
   3295   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
   3296 
   3297   // Create a new block that will contain the try statement.
   3298   CFGBlock *NewTryTerminatedBlock = createBlock(false);
   3299   // Add the terminator in the try block.
   3300   NewTryTerminatedBlock->setTerminator(Terminator);
   3301 
   3302   bool HasCatchAll = false;
   3303   for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
   3304     // The code after the try is the implicit successor.
   3305     Succ = TrySuccessor;
   3306     CXXCatchStmt *CS = Terminator->getHandler(h);
   3307     if (CS->getExceptionDecl() == nullptr) {
   3308       HasCatchAll = true;
   3309     }
   3310     Block = nullptr;
   3311     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
   3312     if (!CatchBlock)
   3313       return nullptr;
   3314     // Add this block to the list of successors for the block with the try
   3315     // statement.
   3316     addSuccessor(NewTryTerminatedBlock, CatchBlock);
   3317   }
   3318   if (!HasCatchAll) {
   3319     if (PrevTryTerminatedBlock)
   3320       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
   3321     else
   3322       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
   3323   }
   3324 
   3325   // The code after the try is the implicit successor.
   3326   Succ = TrySuccessor;
   3327 
   3328   // Save the current "try" context.
   3329   SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
   3330   cfg->addTryDispatchBlock(TryTerminatedBlock);
   3331 
   3332   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
   3333   Block = nullptr;
   3334   return addStmt(Terminator->getTryBlock());
   3335 }
   3336 
   3337 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
   3338   // CXXCatchStmt are treated like labels, so they are the first statement in a
   3339   // block.
   3340 
   3341   // Save local scope position because in case of exception variable ScopePos
   3342   // won't be restored when traversing AST.
   3343   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   3344 
   3345   // Create local scope for possible exception variable.
   3346   // Store scope position. Add implicit destructor.
   3347   if (VarDecl *VD = CS->getExceptionDecl()) {
   3348     LocalScope::const_iterator BeginScopePos = ScopePos;
   3349     addLocalScopeForVarDecl(VD);
   3350     addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
   3351   }
   3352 
   3353   if (CS->getHandlerBlock())
   3354     addStmt(CS->getHandlerBlock());
   3355 
   3356   CFGBlock *CatchBlock = Block;
   3357   if (!CatchBlock)
   3358     CatchBlock = createBlock();
   3359 
   3360   // CXXCatchStmt is more than just a label.  They have semantic meaning
   3361   // as well, as they implicitly "initialize" the catch variable.  Add
   3362   // it to the CFG as a CFGElement so that the control-flow of these
   3363   // semantics gets captured.
   3364   appendStmt(CatchBlock, CS);
   3365 
   3366   // Also add the CXXCatchStmt as a label, to mirror handling of regular
   3367   // labels.
   3368   CatchBlock->setLabel(CS);
   3369 
   3370   // Bail out if the CFG is bad.
   3371   if (badCFG)
   3372     return nullptr;
   3373 
   3374   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   3375   Block = nullptr;
   3376 
   3377   return CatchBlock;
   3378 }
   3379 
   3380 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
   3381   // C++0x for-range statements are specified as [stmt.ranged]:
   3382   //
   3383   // {
   3384   //   auto && __range = range-init;
   3385   //   for ( auto __begin = begin-expr,
   3386   //         __end = end-expr;
   3387   //         __begin != __end;
   3388   //         ++__begin ) {
   3389   //     for-range-declaration = *__begin;
   3390   //     statement
   3391   //   }
   3392   // }
   3393 
   3394   // Save local scope position before the addition of the implicit variables.
   3395   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   3396 
   3397   // Create local scopes and destructors for range, begin and end variables.
   3398   if (Stmt *Range = S->getRangeStmt())
   3399     addLocalScopeForStmt(Range);
   3400   if (Stmt *BeginEnd = S->getBeginEndStmt())
   3401     addLocalScopeForStmt(BeginEnd);
   3402   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
   3403 
   3404   LocalScope::const_iterator ContinueScopePos = ScopePos;
   3405 
   3406   // "for" is a control-flow statement.  Thus we stop processing the current
   3407   // block.
   3408   CFGBlock *LoopSuccessor = nullptr;
   3409   if (Block) {
   3410     if (badCFG)
   3411       return nullptr;
   3412     LoopSuccessor = Block;
   3413   } else
   3414     LoopSuccessor = Succ;
   3415 
   3416   // Save the current value for the break targets.
   3417   // All breaks should go to the code following the loop.
   3418   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   3419   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   3420 
   3421   // The block for the __begin != __end expression.
   3422   CFGBlock *ConditionBlock = createBlock(false);
   3423   ConditionBlock->setTerminator(S);
   3424 
   3425   // Now add the actual condition to the condition block.
   3426   if (Expr *C = S->getCond()) {
   3427     Block = ConditionBlock;
   3428     CFGBlock *BeginConditionBlock = addStmt(C);
   3429     if (badCFG)
   3430       return nullptr;
   3431     assert(BeginConditionBlock == ConditionBlock &&
   3432            "condition block in for-range was unexpectedly complex");
   3433     (void)BeginConditionBlock;
   3434   }
   3435 
   3436   // The condition block is the implicit successor for the loop body as well as
   3437   // any code above the loop.
   3438   Succ = ConditionBlock;
   3439 
   3440   // See if this is a known constant.
   3441   TryResult KnownVal(true);
   3442 
   3443   if (S->getCond())
   3444     KnownVal = tryEvaluateBool(S->getCond());
   3445 
   3446   // Now create the loop body.
   3447   {
   3448     assert(S->getBody());
   3449 
   3450     // Save the current values for Block, Succ, and continue targets.
   3451     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   3452     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
   3453 
   3454     // Generate increment code in its own basic block.  This is the target of
   3455     // continue statements.
   3456     Block = nullptr;
   3457     Succ = addStmt(S->getInc());
   3458     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
   3459 
   3460     // The starting block for the loop increment is the block that should
   3461     // represent the 'loop target' for looping back to the start of the loop.
   3462     ContinueJumpTarget.block->setLoopTarget(S);
   3463 
   3464     // Finish up the increment block and prepare to start the loop body.
   3465     assert(Block);
   3466     if (badCFG)
   3467       return nullptr;
   3468     Block = nullptr;
   3469 
   3470     // Add implicit scope and dtors for loop variable.
   3471     addLocalScopeAndDtors(S->getLoopVarStmt());
   3472 
   3473     // Populate a new block to contain the loop body and loop variable.
   3474     addStmt(S->getBody());
   3475     if (badCFG)
   3476       return nullptr;
   3477     CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
   3478     if (badCFG)
   3479       return nullptr;
   3480 
   3481     // This new body block is a successor to our condition block.
   3482     addSuccessor(ConditionBlock,
   3483                  KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
   3484   }
   3485 
   3486   // Link up the condition block with the code that follows the loop (the
   3487   // false branch).
   3488   addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
   3489 
   3490   // Add the initialization statements.
   3491   Block = createBlock();
   3492   addStmt(S->getBeginEndStmt());
   3493   return addStmt(S->getRangeStmt());
   3494 }
   3495 
   3496 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
   3497     AddStmtChoice asc) {
   3498   if (BuildOpts.AddTemporaryDtors) {
   3499     // If adding implicit destructors visit the full expression for adding
   3500     // destructors of temporaries.
   3501     TempDtorContext Context;
   3502     VisitForTemporaryDtors(E->getSubExpr(), false, Context);
   3503 
   3504     // Full expression has to be added as CFGStmt so it will be sequenced
   3505     // before destructors of it's temporaries.
   3506     asc = asc.withAlwaysAdd(true);
   3507   }
   3508   return Visit(E->getSubExpr(), asc);
   3509 }
   3510 
   3511 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
   3512                                                 AddStmtChoice asc) {
   3513   if (asc.alwaysAdd(*this, E)) {
   3514     autoCreateBlock();
   3515     appendStmt(Block, E);
   3516 
   3517     // We do not want to propagate the AlwaysAdd property.
   3518     asc = asc.withAlwaysAdd(false);
   3519   }
   3520   return Visit(E->getSubExpr(), asc);
   3521 }
   3522 
   3523 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
   3524                                             AddStmtChoice asc) {
   3525   autoCreateBlock();
   3526   appendStmt(Block, C);
   3527 
   3528   return VisitChildren(C);
   3529 }
   3530 
   3531 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
   3532                                       AddStmtChoice asc) {
   3533 
   3534   autoCreateBlock();
   3535   appendStmt(Block, NE);
   3536 
   3537   if (NE->getInitializer())
   3538     Block = Visit(NE->getInitializer());
   3539   if (BuildOpts.AddCXXNewAllocator)
   3540     appendNewAllocator(Block, NE);
   3541   if (NE->isArray())
   3542     Block = Visit(NE->getArraySize());
   3543   for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
   3544        E = NE->placement_arg_end(); I != E; ++I)
   3545     Block = Visit(*I);
   3546   return Block;
   3547 }
   3548 
   3549 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
   3550                                          AddStmtChoice asc) {
   3551   autoCreateBlock();
   3552   appendStmt(Block, DE);
   3553   QualType DTy = DE->getDestroyedType();
   3554   DTy = DTy.getNonReferenceType();
   3555   CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
   3556   if (RD) {
   3557     if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
   3558       appendDeleteDtor(Block, RD, DE);
   3559   }
   3560 
   3561   return VisitChildren(DE);
   3562 }
   3563 
   3564 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
   3565                                                  AddStmtChoice asc) {
   3566   if (asc.alwaysAdd(*this, E)) {
   3567     autoCreateBlock();
   3568     appendStmt(Block, E);
   3569     // We do not want to propagate the AlwaysAdd property.
   3570     asc = asc.withAlwaysAdd(false);
   3571   }
   3572   return Visit(E->getSubExpr(), asc);
   3573 }
   3574 
   3575 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
   3576                                                   AddStmtChoice asc) {
   3577   autoCreateBlock();
   3578   appendStmt(Block, C);
   3579   return VisitChildren(C);
   3580 }
   3581 
   3582 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
   3583                                             AddStmtChoice asc) {
   3584   if (asc.alwaysAdd(*this, E)) {
   3585     autoCreateBlock();
   3586     appendStmt(Block, E);
   3587   }
   3588   return Visit(E->getSubExpr(), AddStmtChoice());
   3589 }
   3590 
   3591 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
   3592   // Lazily create the indirect-goto dispatch block if there isn't one already.
   3593   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
   3594 
   3595   if (!IBlock) {
   3596     IBlock = createBlock(false);
   3597     cfg->setIndirectGotoBlock(IBlock);
   3598   }
   3599 
   3600   // IndirectGoto is a control-flow statement.  Thus we stop processing the
   3601   // current block and create a new one.
   3602   if (badCFG)
   3603     return nullptr;
   3604 
   3605   Block = createBlock(false);
   3606   Block->setTerminator(I);
   3607   addSuccessor(Block, IBlock);
   3608   return addStmt(I->getTarget());
   3609 }
   3610 
   3611 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
   3612                                              TempDtorContext &Context) {
   3613   assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
   3614 
   3615 tryAgain:
   3616   if (!E) {
   3617     badCFG = true;
   3618     return nullptr;
   3619   }
   3620   switch (E->getStmtClass()) {
   3621     default:
   3622       return VisitChildrenForTemporaryDtors(E, Context);
   3623 
   3624     case Stmt::BinaryOperatorClass:
   3625       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
   3626                                                   Context);
   3627 
   3628     case Stmt::CXXBindTemporaryExprClass:
   3629       return VisitCXXBindTemporaryExprForTemporaryDtors(
   3630           cast<CXXBindTemporaryExpr>(E), BindToTemporary, Context);
   3631 
   3632     case Stmt::BinaryConditionalOperatorClass:
   3633     case Stmt::ConditionalOperatorClass:
   3634       return VisitConditionalOperatorForTemporaryDtors(
   3635           cast<AbstractConditionalOperator>(E), BindToTemporary, Context);
   3636 
   3637     case Stmt::ImplicitCastExprClass:
   3638       // For implicit cast we want BindToTemporary to be passed further.
   3639       E = cast<CastExpr>(E)->getSubExpr();
   3640       goto tryAgain;
   3641 
   3642     case Stmt::CXXFunctionalCastExprClass:
   3643       // For functional cast we want BindToTemporary to be passed further.
   3644       E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
   3645       goto tryAgain;
   3646 
   3647     case Stmt::ParenExprClass:
   3648       E = cast<ParenExpr>(E)->getSubExpr();
   3649       goto tryAgain;
   3650 
   3651     case Stmt::MaterializeTemporaryExprClass: {
   3652       const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
   3653       BindToTemporary = (MTE->getStorageDuration() != SD_FullExpression);
   3654       SmallVector<const Expr *, 2> CommaLHSs;
   3655       SmallVector<SubobjectAdjustment, 2> Adjustments;
   3656       // Find the expression whose lifetime needs to be extended.
   3657       E = const_cast<Expr *>(
   3658           cast<MaterializeTemporaryExpr>(E)
   3659               ->GetTemporaryExpr()
   3660               ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
   3661       // Visit the skipped comma operator left-hand sides for other temporaries.
   3662       for (const Expr *CommaLHS : CommaLHSs) {
   3663         VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
   3664                                /*BindToTemporary=*/false, Context);
   3665       }
   3666       goto tryAgain;
   3667     }
   3668 
   3669     case Stmt::BlockExprClass:
   3670       // Don't recurse into blocks; their subexpressions don't get evaluated
   3671       // here.
   3672       return Block;
   3673 
   3674     case Stmt::LambdaExprClass: {
   3675       // For lambda expressions, only recurse into the capture initializers,
   3676       // and not the body.
   3677       auto *LE = cast<LambdaExpr>(E);
   3678       CFGBlock *B = Block;
   3679       for (Expr *Init : LE->capture_inits()) {
   3680         if (CFGBlock *R = VisitForTemporaryDtors(
   3681                 Init, /*BindToTemporary=*/false, Context))
   3682           B = R;
   3683       }
   3684       return B;
   3685     }
   3686 
   3687     case Stmt::CXXDefaultArgExprClass:
   3688       E = cast<CXXDefaultArgExpr>(E)->getExpr();
   3689       goto tryAgain;
   3690 
   3691     case Stmt::CXXDefaultInitExprClass:
   3692       E = cast<CXXDefaultInitExpr>(E)->getExpr();
   3693       goto tryAgain;
   3694   }
   3695 }
   3696 
   3697 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
   3698                                                      TempDtorContext &Context) {
   3699   if (isa<LambdaExpr>(E)) {
   3700     // Do not visit the children of lambdas; they have their own CFGs.
   3701     return Block;
   3702   }
   3703 
   3704   // When visiting children for destructors we want to visit them in reverse
   3705   // order that they will appear in the CFG.  Because the CFG is built
   3706   // bottom-up, this means we visit them in their natural order, which
   3707   // reverses them in the CFG.
   3708   CFGBlock *B = Block;
   3709   for (Stmt *Child : E->children())
   3710     if (Child)
   3711       if (CFGBlock *R = VisitForTemporaryDtors(Child, false, Context))
   3712         B = R;
   3713 
   3714   return B;
   3715 }
   3716 
   3717 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
   3718     BinaryOperator *E, TempDtorContext &Context) {
   3719   if (E->isLogicalOp()) {
   3720     VisitForTemporaryDtors(E->getLHS(), false, Context);
   3721     TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
   3722     if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
   3723       RHSExecuted.negate();
   3724 
   3725     // We do not know at CFG-construction time whether the right-hand-side was
   3726     // executed, thus we add a branch node that depends on the temporary
   3727     // constructor call.
   3728     TempDtorContext RHSContext(
   3729         bothKnownTrue(Context.KnownExecuted, RHSExecuted));
   3730     VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
   3731     InsertTempDtorDecisionBlock(RHSContext);
   3732 
   3733     return Block;
   3734   }
   3735 
   3736   if (E->isAssignmentOp()) {
   3737     // For assignment operator (=) LHS expression is visited
   3738     // before RHS expression. For destructors visit them in reverse order.
   3739     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
   3740     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
   3741     return LHSBlock ? LHSBlock : RHSBlock;
   3742   }
   3743 
   3744   // For any other binary operator RHS expression is visited before
   3745   // LHS expression (order of children). For destructors visit them in reverse
   3746   // order.
   3747   CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
   3748   CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
   3749   return RHSBlock ? RHSBlock : LHSBlock;
   3750 }
   3751 
   3752 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
   3753     CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context) {
   3754   // First add destructors for temporaries in subexpression.
   3755   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), false, Context);
   3756   if (!BindToTemporary) {
   3757     // If lifetime of temporary is not prolonged (by assigning to constant
   3758     // reference) add destructor for it.
   3759 
   3760     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
   3761 
   3762     if (Dtor->getParent()->isAnyDestructorNoReturn()) {
   3763       // If the destructor is marked as a no-return destructor, we need to
   3764       // create a new block for the destructor which does not have as a
   3765       // successor anything built thus far. Control won't flow out of this
   3766       // block.
   3767       if (B) Succ = B;
   3768       Block = createNoReturnBlock();
   3769     } else if (Context.needsTempDtorBranch()) {
   3770       // If we need to introduce a branch, we add a new block that we will hook
   3771       // up to a decision block later.
   3772       if (B) Succ = B;
   3773       Block = createBlock();
   3774     } else {
   3775       autoCreateBlock();
   3776     }
   3777     if (Context.needsTempDtorBranch()) {
   3778       Context.setDecisionPoint(Succ, E);
   3779     }
   3780     appendTemporaryDtor(Block, E);
   3781 
   3782     B = Block;
   3783   }
   3784   return B;
   3785 }
   3786 
   3787 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
   3788                                              CFGBlock *FalseSucc) {
   3789   if (!Context.TerminatorExpr) {
   3790     // If no temporary was found, we do not need to insert a decision point.
   3791     return;
   3792   }
   3793   assert(Context.TerminatorExpr);
   3794   CFGBlock *Decision = createBlock(false);
   3795   Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, true));
   3796   addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
   3797   addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
   3798                !Context.KnownExecuted.isTrue());
   3799   Block = Decision;
   3800 }
   3801 
   3802 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
   3803     AbstractConditionalOperator *E, bool BindToTemporary,
   3804     TempDtorContext &Context) {
   3805   VisitForTemporaryDtors(E->getCond(), false, Context);
   3806   CFGBlock *ConditionBlock = Block;
   3807   CFGBlock *ConditionSucc = Succ;
   3808   TryResult ConditionVal = tryEvaluateBool(E->getCond());
   3809   TryResult NegatedVal = ConditionVal;
   3810   if (NegatedVal.isKnown()) NegatedVal.negate();
   3811 
   3812   TempDtorContext TrueContext(
   3813       bothKnownTrue(Context.KnownExecuted, ConditionVal));
   3814   VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary, TrueContext);
   3815   CFGBlock *TrueBlock = Block;
   3816 
   3817   Block = ConditionBlock;
   3818   Succ = ConditionSucc;
   3819   TempDtorContext FalseContext(
   3820       bothKnownTrue(Context.KnownExecuted, NegatedVal));
   3821   VisitForTemporaryDtors(E->getFalseExpr(), BindToTemporary, FalseContext);
   3822 
   3823   if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
   3824     InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
   3825   } else if (TrueContext.TerminatorExpr) {
   3826     Block = TrueBlock;
   3827     InsertTempDtorDecisionBlock(TrueContext);
   3828   } else {
   3829     InsertTempDtorDecisionBlock(FalseContext);
   3830   }
   3831   return Block;
   3832 }
   3833 
   3834 } // end anonymous namespace
   3835 
   3836 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
   3837 ///  no successors or predecessors.  If this is the first block created in the
   3838 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
   3839 CFGBlock *CFG::createBlock() {
   3840   bool first_block = begin() == end();
   3841 
   3842   // Create the block.
   3843   CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
   3844   new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
   3845   Blocks.push_back(Mem, BlkBVC);
   3846 
   3847   // If this is the first block, set it as the Entry and Exit.
   3848   if (first_block)
   3849     Entry = Exit = &back();
   3850 
   3851   // Return the block.
   3852   return &back();
   3853 }
   3854 
   3855 /// buildCFG - Constructs a CFG from an AST.
   3856 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
   3857                                    ASTContext *C, const BuildOptions &BO) {
   3858   CFGBuilder Builder(C, BO);
   3859   return Builder.buildCFG(D, Statement);
   3860 }
   3861 
   3862 const CXXDestructorDecl *
   3863 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
   3864   switch (getKind()) {
   3865     case CFGElement::Statement:
   3866     case CFGElement::Initializer:
   3867     case CFGElement::NewAllocator:
   3868       llvm_unreachable("getDestructorDecl should only be used with "
   3869                        "ImplicitDtors");
   3870     case CFGElement::AutomaticObjectDtor: {
   3871       const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
   3872       QualType ty = var->getType();
   3873       ty = ty.getNonReferenceType();
   3874       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
   3875         ty = arrayType->getElementType();
   3876       }
   3877       const RecordType *recordType = ty->getAs<RecordType>();
   3878       const CXXRecordDecl *classDecl =
   3879       cast<CXXRecordDecl>(recordType->getDecl());
   3880       return classDecl->getDestructor();
   3881     }
   3882     case CFGElement::DeleteDtor: {
   3883       const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
   3884       QualType DTy = DE->getDestroyedType();
   3885       DTy = DTy.getNonReferenceType();
   3886       const CXXRecordDecl *classDecl =
   3887           astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
   3888       return classDecl->getDestructor();
   3889     }
   3890     case CFGElement::TemporaryDtor: {
   3891       const CXXBindTemporaryExpr *bindExpr =
   3892         castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
   3893       const CXXTemporary *temp = bindExpr->getTemporary();
   3894       return temp->getDestructor();
   3895     }
   3896     case CFGElement::BaseDtor:
   3897     case CFGElement::MemberDtor:
   3898 
   3899       // Not yet supported.
   3900       return nullptr;
   3901   }
   3902   llvm_unreachable("getKind() returned bogus value");
   3903 }
   3904 
   3905 bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
   3906   if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
   3907     return DD->isNoReturn();
   3908   return false;
   3909 }
   3910 
   3911 //===----------------------------------------------------------------------===//
   3912 // CFGBlock operations.
   3913 //===----------------------------------------------------------------------===//
   3914 
   3915 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
   3916   : ReachableBlock(IsReachable ? B : nullptr),
   3917     UnreachableBlock(!IsReachable ? B : nullptr,
   3918                      B && IsReachable ? AB_Normal : AB_Unreachable) {}
   3919 
   3920 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
   3921   : ReachableBlock(B),
   3922     UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
   3923                      B == AlternateBlock ? AB_Alternate : AB_Normal) {}
   3924 
   3925 void CFGBlock::addSuccessor(AdjacentBlock Succ,
   3926                             BumpVectorContext &C) {
   3927   if (CFGBlock *B = Succ.getReachableBlock())
   3928     B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
   3929 
   3930   if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
   3931     UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
   3932 
   3933   Succs.push_back(Succ, C);
   3934 }
   3935 
   3936 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
   3937         const CFGBlock *From, const CFGBlock *To) {
   3938 
   3939   if (F.IgnoreNullPredecessors && !From)
   3940     return true;
   3941 
   3942   if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
   3943     // If the 'To' has no label or is labeled but the label isn't a
   3944     // CaseStmt then filter this edge.
   3945     if (const SwitchStmt *S =
   3946         dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
   3947       if (S->isAllEnumCasesCovered()) {
   3948         const Stmt *L = To->getLabel();
   3949         if (!L || !isa<CaseStmt>(L))
   3950           return true;
   3951       }
   3952     }
   3953   }
   3954 
   3955   return false;
   3956 }
   3957 
   3958 //===----------------------------------------------------------------------===//
   3959 // CFG pretty printing
   3960 //===----------------------------------------------------------------------===//
   3961 
   3962 namespace {
   3963 
   3964 class StmtPrinterHelper : public PrinterHelper  {
   3965   typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
   3966   typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
   3967   StmtMapTy StmtMap;
   3968   DeclMapTy DeclMap;
   3969   signed currentBlock;
   3970   unsigned currStmt;
   3971   const LangOptions &LangOpts;
   3972 public:
   3973 
   3974   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
   3975     : currentBlock(0), currStmt(0), LangOpts(LO)
   3976   {
   3977     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
   3978       unsigned j = 1;
   3979       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
   3980            BI != BEnd; ++BI, ++j ) {
   3981         if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
   3982           const Stmt *stmt= SE->getStmt();
   3983           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
   3984           StmtMap[stmt] = P;
   3985 
   3986           switch (stmt->getStmtClass()) {
   3987             case Stmt::DeclStmtClass:
   3988                 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
   3989                 break;
   3990             case Stmt::IfStmtClass: {
   3991               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
   3992               if (var)
   3993                 DeclMap[var] = P;
   3994               break;
   3995             }
   3996             case Stmt::ForStmtClass: {
   3997               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
   3998               if (var)
   3999                 DeclMap[var] = P;
   4000               break;
   4001             }
   4002             case Stmt::WhileStmtClass: {
   4003               const VarDecl *var =
   4004                 cast<WhileStmt>(stmt)->getConditionVariable();
   4005               if (var)
   4006                 DeclMap[var] = P;
   4007               break;
   4008             }
   4009             case Stmt::SwitchStmtClass: {
   4010               const VarDecl *var =
   4011                 cast<SwitchStmt>(stmt)->getConditionVariable();
   4012               if (var)
   4013                 DeclMap[var] = P;
   4014               break;
   4015             }
   4016             case Stmt::CXXCatchStmtClass: {
   4017               const VarDecl *var =
   4018                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
   4019               if (var)
   4020                 DeclMap[var] = P;
   4021               break;
   4022             }
   4023             default:
   4024               break;
   4025           }
   4026         }
   4027       }
   4028     }
   4029   }
   4030 
   4031   ~StmtPrinterHelper() override {}
   4032 
   4033   const LangOptions &getLangOpts() const { return LangOpts; }
   4034   void setBlockID(signed i) { currentBlock = i; }
   4035   void setStmtID(unsigned i) { currStmt = i; }
   4036 
   4037   bool handledStmt(Stmt *S, raw_ostream &OS) override {
   4038     StmtMapTy::iterator I = StmtMap.find(S);
   4039 
   4040     if (I == StmtMap.end())
   4041       return false;
   4042 
   4043     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
   4044                           && I->second.second == currStmt) {
   4045       return false;
   4046     }
   4047 
   4048     OS << "[B" << I->second.first << "." << I->second.second << "]";
   4049     return true;
   4050   }
   4051 
   4052   bool handleDecl(const Decl *D, raw_ostream &OS) {
   4053     DeclMapTy::iterator I = DeclMap.find(D);
   4054 
   4055     if (I == DeclMap.end())
   4056       return false;
   4057 
   4058     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
   4059                           && I->second.second == currStmt) {
   4060       return false;
   4061     }
   4062 
   4063     OS << "[B" << I->second.first << "." << I->second.second << "]";
   4064     return true;
   4065   }
   4066 };
   4067 } // end anonymous namespace
   4068 
   4069 
   4070 namespace {
   4071 class CFGBlockTerminatorPrint
   4072   : public StmtVisitor<CFGBlockTerminatorPrint,void> {
   4073 
   4074   raw_ostream &OS;
   4075   StmtPrinterHelper* Helper;
   4076   PrintingPolicy Policy;
   4077 public:
   4078   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
   4079                           const PrintingPolicy &Policy)
   4080     : OS(os), Helper(helper), Policy(Policy) {
   4081     this->Policy.IncludeNewlines = false;
   4082   }
   4083 
   4084   void VisitIfStmt(IfStmt *I) {
   4085     OS << "if ";
   4086     if (Stmt *C = I->getCond())
   4087       C->printPretty(OS, Helper, Policy);
   4088   }
   4089 
   4090   // Default case.
   4091   void VisitStmt(Stmt *Terminator) {
   4092     Terminator->printPretty(OS, Helper, Policy);
   4093   }
   4094 
   4095   void VisitDeclStmt(DeclStmt *DS) {
   4096     VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
   4097     OS << "static init " << VD->getName();
   4098   }
   4099 
   4100   void VisitForStmt(ForStmt *F) {
   4101     OS << "for (" ;
   4102     if (F->getInit())
   4103       OS << "...";
   4104     OS << "; ";
   4105     if (Stmt *C = F->getCond())
   4106       C->printPretty(OS, Helper, Policy);
   4107     OS << "; ";
   4108     if (F->getInc())
   4109       OS << "...";
   4110     OS << ")";
   4111   }
   4112 
   4113   void VisitWhileStmt(WhileStmt *W) {
   4114     OS << "while " ;
   4115     if (Stmt *C = W->getCond())
   4116       C->printPretty(OS, Helper, Policy);
   4117   }
   4118 
   4119   void VisitDoStmt(DoStmt *D) {
   4120     OS << "do ... while ";
   4121     if (Stmt *C = D->getCond())
   4122       C->printPretty(OS, Helper, Policy);
   4123   }
   4124 
   4125   void VisitSwitchStmt(SwitchStmt *Terminator) {
   4126     OS << "switch ";
   4127     Terminator->getCond()->printPretty(OS, Helper, Policy);
   4128   }
   4129 
   4130   void VisitCXXTryStmt(CXXTryStmt *CS) {
   4131     OS << "try ...";
   4132   }
   4133 
   4134   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
   4135     if (Stmt *Cond = C->getCond())
   4136       Cond->printPretty(OS, Helper, Policy);
   4137     OS << " ? ... : ...";
   4138   }
   4139 
   4140   void VisitChooseExpr(ChooseExpr *C) {
   4141     OS << "__builtin_choose_expr( ";
   4142     if (Stmt *Cond = C->getCond())
   4143       Cond->printPretty(OS, Helper, Policy);
   4144     OS << " )";
   4145   }
   4146 
   4147   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
   4148     OS << "goto *";
   4149     if (Stmt *T = I->getTarget())
   4150       T->printPretty(OS, Helper, Policy);
   4151   }
   4152 
   4153   void VisitBinaryOperator(BinaryOperator* B) {
   4154     if (!B->isLogicalOp()) {
   4155       VisitExpr(B);
   4156       return;
   4157     }
   4158 
   4159     if (B->getLHS())
   4160       B->getLHS()->printPretty(OS, Helper, Policy);
   4161 
   4162     switch (B->getOpcode()) {
   4163       case BO_LOr:
   4164         OS << " || ...";
   4165         return;
   4166       case BO_LAnd:
   4167         OS << " && ...";
   4168         return;
   4169       default:
   4170         llvm_unreachable("Invalid logical operator.");
   4171     }
   4172   }
   4173 
   4174   void VisitExpr(Expr *E) {
   4175     E->printPretty(OS, Helper, Policy);
   4176   }
   4177 
   4178 public:
   4179   void print(CFGTerminator T) {
   4180     if (T.isTemporaryDtorsBranch())
   4181       OS << "(Temp Dtor) ";
   4182     Visit(T.getStmt());
   4183   }
   4184 };
   4185 } // end anonymous namespace
   4186 
   4187 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
   4188                        const CFGElement &E) {
   4189   if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
   4190     const Stmt *S = CS->getStmt();
   4191     assert(S != nullptr && "Expecting non-null Stmt");
   4192 
   4193     // special printing for statement-expressions.
   4194     if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
   4195       const CompoundStmt *Sub = SE->getSubStmt();
   4196 
   4197       auto Children = Sub->children();
   4198       if (Children.begin() != Children.end()) {
   4199         OS << "({ ... ; ";
   4200         Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
   4201         OS << " })\n";
   4202         return;
   4203       }
   4204     }
   4205     // special printing for comma expressions.
   4206     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
   4207       if (B->getOpcode() == BO_Comma) {
   4208         OS << "... , ";
   4209         Helper.handledStmt(B->getRHS(),OS);
   4210         OS << '\n';
   4211         return;
   4212       }
   4213     }
   4214     S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
   4215 
   4216     if (isa<CXXOperatorCallExpr>(S)) {
   4217       OS << " (OperatorCall)";
   4218     }
   4219     else if (isa<CXXBindTemporaryExpr>(S)) {
   4220       OS << " (BindTemporary)";
   4221     }
   4222     else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
   4223       OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
   4224     }
   4225     else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
   4226       OS << " (" << CE->getStmtClassName() << ", "
   4227          << CE->getCastKindName()
   4228          << ", " << CE->getType().getAsString()
   4229          << ")";
   4230     }
   4231 
   4232     // Expressions need a newline.
   4233     if (isa<Expr>(S))
   4234       OS << '\n';
   4235 
   4236   } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
   4237     const CXXCtorInitializer *I = IE->getInitializer();
   4238     if (I->isBaseInitializer())
   4239       OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
   4240     else if (I->isDelegatingInitializer())
   4241       OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
   4242     else OS << I->getAnyMember()->getName();
   4243 
   4244     OS << "(";
   4245     if (Expr *IE = I->getInit())
   4246       IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
   4247     OS << ")";
   4248 
   4249     if (I->isBaseInitializer())
   4250       OS << " (Base initializer)\n";
   4251     else if (I->isDelegatingInitializer())
   4252       OS << " (Delegating initializer)\n";
   4253     else OS << " (Member initializer)\n";
   4254 
   4255   } else if (Optional<CFGAutomaticObjDtor> DE =
   4256                  E.getAs<CFGAutomaticObjDtor>()) {
   4257     const VarDecl *VD = DE->getVarDecl();
   4258     Helper.handleDecl(VD, OS);
   4259 
   4260     const Type* T = VD->getType().getTypePtr();
   4261     if (const ReferenceType* RT = T->getAs<ReferenceType>())
   4262       T = RT->getPointeeType().getTypePtr();
   4263     T = T->getBaseElementTypeUnsafe();
   4264 
   4265     OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
   4266     OS << " (Implicit destructor)\n";
   4267 
   4268   } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
   4269     OS << "CFGNewAllocator(";
   4270     if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
   4271       AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
   4272     OS << ")\n";
   4273   } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
   4274     const CXXRecordDecl *RD = DE->getCXXRecordDecl();
   4275     if (!RD)
   4276       return;
   4277     CXXDeleteExpr *DelExpr =
   4278         const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
   4279     Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
   4280     OS << "->~" << RD->getName().str() << "()";
   4281     OS << " (Implicit destructor)\n";
   4282   } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
   4283     const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
   4284     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
   4285     OS << " (Base object destructor)\n";
   4286 
   4287   } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
   4288     const FieldDecl *FD = ME->getFieldDecl();
   4289     const Type *T = FD->getType()->getBaseElementTypeUnsafe();
   4290     OS << "this->" << FD->getName();
   4291     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
   4292     OS << " (Member object destructor)\n";
   4293 
   4294   } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
   4295     const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
   4296     OS << "~";
   4297     BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
   4298     OS << "() (Temporary object destructor)\n";
   4299   }
   4300 }
   4301 
   4302 static void print_block(raw_ostream &OS, const CFG* cfg,
   4303                         const CFGBlock &B,
   4304                         StmtPrinterHelper &Helper, bool print_edges,
   4305                         bool ShowColors) {
   4306 
   4307   Helper.setBlockID(B.getBlockID());
   4308 
   4309   // Print the header.
   4310   if (ShowColors)
   4311     OS.changeColor(raw_ostream::YELLOW, true);
   4312 
   4313   OS << "\n [B" << B.getBlockID();
   4314 
   4315   if (&B == &cfg->getEntry())
   4316     OS << " (ENTRY)]\n";
   4317   else if (&B == &cfg->getExit())
   4318     OS << " (EXIT)]\n";
   4319   else if (&B == cfg->getIndirectGotoBlock())
   4320     OS << " (INDIRECT GOTO DISPATCH)]\n";
   4321   else if (B.hasNoReturnElement())
   4322     OS << " (NORETURN)]\n";
   4323   else
   4324     OS << "]\n";
   4325 
   4326   if (ShowColors)
   4327     OS.resetColor();
   4328 
   4329   // Print the label of this block.
   4330   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
   4331 
   4332     if (print_edges)
   4333       OS << "  ";
   4334 
   4335     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
   4336       OS << L->getName();
   4337     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
   4338       OS << "case ";
   4339       if (C->getLHS())
   4340         C->getLHS()->printPretty(OS, &Helper,
   4341                                  PrintingPolicy(Helper.getLangOpts()));
   4342       if (C->getRHS()) {
   4343         OS << " ... ";
   4344         C->getRHS()->printPretty(OS, &Helper,
   4345                                  PrintingPolicy(Helper.getLangOpts()));
   4346       }
   4347     } else if (isa<DefaultStmt>(Label))
   4348       OS << "default";
   4349     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
   4350       OS << "catch (";
   4351       if (CS->getExceptionDecl())
   4352         CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
   4353                                       0);
   4354       else
   4355         OS << "...";
   4356       OS << ")";
   4357 
   4358     } else
   4359       llvm_unreachable("Invalid label statement in CFGBlock.");
   4360 
   4361     OS << ":\n";
   4362   }
   4363 
   4364   // Iterate through the statements in the block and print them.
   4365   unsigned j = 1;
   4366 
   4367   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
   4368        I != E ; ++I, ++j ) {
   4369 
   4370     // Print the statement # in the basic block and the statement itself.
   4371     if (print_edges)
   4372       OS << " ";
   4373 
   4374     OS << llvm::format("%3d", j) << ": ";
   4375 
   4376     Helper.setStmtID(j);
   4377 
   4378     print_elem(OS, Helper, *I);
   4379   }
   4380 
   4381   // Print the terminator of this block.
   4382   if (B.getTerminator()) {
   4383     if (ShowColors)
   4384       OS.changeColor(raw_ostream::GREEN);
   4385 
   4386     OS << "   T: ";
   4387 
   4388     Helper.setBlockID(-1);
   4389 
   4390     PrintingPolicy PP(Helper.getLangOpts());
   4391     CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
   4392     TPrinter.print(B.getTerminator());
   4393     OS << '\n';
   4394 
   4395     if (ShowColors)
   4396       OS.resetColor();
   4397   }
   4398 
   4399   if (print_edges) {
   4400     // Print the predecessors of this block.
   4401     if (!B.pred_empty()) {
   4402       const raw_ostream::Colors Color = raw_ostream::BLUE;
   4403       if (ShowColors)
   4404         OS.changeColor(Color);
   4405       OS << "   Preds " ;
   4406       if (ShowColors)
   4407         OS.resetColor();
   4408       OS << '(' << B.pred_size() << "):";
   4409       unsigned i = 0;
   4410 
   4411       if (ShowColors)
   4412         OS.changeColor(Color);
   4413 
   4414       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
   4415            I != E; ++I, ++i) {
   4416 
   4417         if (i % 10 == 8)
   4418           OS << "\n     ";
   4419 
   4420         CFGBlock *B = *I;
   4421         bool Reachable = true;
   4422         if (!B) {
   4423           Reachable = false;
   4424           B = I->getPossiblyUnreachableBlock();
   4425         }
   4426 
   4427         OS << " B" << B->getBlockID();
   4428         if (!Reachable)
   4429           OS << "(Unreachable)";
   4430       }
   4431 
   4432       if (ShowColors)
   4433         OS.resetColor();
   4434 
   4435       OS << '\n';
   4436     }
   4437 
   4438     // Print the successors of this block.
   4439     if (!B.succ_empty()) {
   4440       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
   4441       if (ShowColors)
   4442         OS.changeColor(Color);
   4443       OS << "   Succs ";
   4444       if (ShowColors)
   4445         OS.resetColor();
   4446       OS << '(' << B.succ_size() << "):";
   4447       unsigned i = 0;
   4448 
   4449       if (ShowColors)
   4450         OS.changeColor(Color);
   4451 
   4452       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
   4453            I != E; ++I, ++i) {
   4454 
   4455         if (i % 10 == 8)
   4456           OS << "\n    ";
   4457 
   4458         CFGBlock *B = *I;
   4459 
   4460         bool Reachable = true;
   4461         if (!B) {
   4462           Reachable = false;
   4463           B = I->getPossiblyUnreachableBlock();
   4464         }
   4465 
   4466         if (B) {
   4467           OS << " B" << B->getBlockID();
   4468           if (!Reachable)
   4469             OS << "(Unreachable)";
   4470         }
   4471         else {
   4472           OS << " NULL";
   4473         }
   4474       }
   4475 
   4476       if (ShowColors)
   4477         OS.resetColor();
   4478       OS << '\n';
   4479     }
   4480   }
   4481 }
   4482 
   4483 
   4484 /// dump - A simple pretty printer of a CFG that outputs to stderr.
   4485 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
   4486   print(llvm::errs(), LO, ShowColors);
   4487 }
   4488 
   4489 /// print - A simple pretty printer of a CFG that outputs to an ostream.
   4490 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
   4491   StmtPrinterHelper Helper(this, LO);
   4492 
   4493   // Print the entry block.
   4494   print_block(OS, this, getEntry(), Helper, true, ShowColors);
   4495 
   4496   // Iterate through the CFGBlocks and print them one by one.
   4497   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
   4498     // Skip the entry block, because we already printed it.
   4499     if (&(**I) == &getEntry() || &(**I) == &getExit())
   4500       continue;
   4501 
   4502     print_block(OS, this, **I, Helper, true, ShowColors);
   4503   }
   4504 
   4505   // Print the exit block.
   4506   print_block(OS, this, getExit(), Helper, true, ShowColors);
   4507   OS << '\n';
   4508   OS.flush();
   4509 }
   4510 
   4511 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
   4512 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
   4513                     bool ShowColors) const {
   4514   print(llvm::errs(), cfg, LO, ShowColors);
   4515 }
   4516 
   4517 void CFGBlock::dump() const {
   4518   dump(getParent(), LangOptions(), false);
   4519 }
   4520 
   4521 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
   4522 ///   Generally this will only be called from CFG::print.
   4523 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
   4524                      const LangOptions &LO, bool ShowColors) const {
   4525   StmtPrinterHelper Helper(cfg, LO);
   4526   print_block(OS, cfg, *this, Helper, true, ShowColors);
   4527   OS << '\n';
   4528 }
   4529 
   4530 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
   4531 void CFGBlock::printTerminator(raw_ostream &OS,
   4532                                const LangOptions &LO) const {
   4533   CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
   4534   TPrinter.print(getTerminator());
   4535 }
   4536 
   4537 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
   4538   Stmt *Terminator = this->Terminator;
   4539   if (!Terminator)
   4540     return nullptr;
   4541 
   4542   Expr *E = nullptr;
   4543 
   4544   switch (Terminator->getStmtClass()) {
   4545     default:
   4546       break;
   4547 
   4548     case Stmt::CXXForRangeStmtClass:
   4549       E = cast<CXXForRangeStmt>(Terminator)->getCond();
   4550       break;
   4551 
   4552     case Stmt::ForStmtClass:
   4553       E = cast<ForStmt>(Terminator)->getCond();
   4554       break;
   4555 
   4556     case Stmt::WhileStmtClass:
   4557       E = cast<WhileStmt>(Terminator)->getCond();
   4558       break;
   4559 
   4560     case Stmt::DoStmtClass:
   4561       E = cast<DoStmt>(Terminator)->getCond();
   4562       break;
   4563 
   4564     case Stmt::IfStmtClass:
   4565       E = cast<IfStmt>(Terminator)->getCond();
   4566       break;
   4567 
   4568     case Stmt::ChooseExprClass:
   4569       E = cast<ChooseExpr>(Terminator)->getCond();
   4570       break;
   4571 
   4572     case Stmt::IndirectGotoStmtClass:
   4573       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
   4574       break;
   4575 
   4576     case Stmt::SwitchStmtClass:
   4577       E = cast<SwitchStmt>(Terminator)->getCond();
   4578       break;
   4579 
   4580     case Stmt::BinaryConditionalOperatorClass:
   4581       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
   4582       break;
   4583 
   4584     case Stmt::ConditionalOperatorClass:
   4585       E = cast<ConditionalOperator>(Terminator)->getCond();
   4586       break;
   4587 
   4588     case Stmt::BinaryOperatorClass: // '&&' and '||'
   4589       E = cast<BinaryOperator>(Terminator)->getLHS();
   4590       break;
   4591 
   4592     case Stmt::ObjCForCollectionStmtClass:
   4593       return Terminator;
   4594   }
   4595 
   4596   if (!StripParens)
   4597     return E;
   4598 
   4599   return E ? E->IgnoreParens() : nullptr;
   4600 }
   4601 
   4602 //===----------------------------------------------------------------------===//
   4603 // CFG Graphviz Visualization
   4604 //===----------------------------------------------------------------------===//
   4605 
   4606 
   4607 #ifndef NDEBUG
   4608 static StmtPrinterHelper* GraphHelper;
   4609 #endif
   4610 
   4611 void CFG::viewCFG(const LangOptions &LO) const {
   4612 #ifndef NDEBUG
   4613   StmtPrinterHelper H(this, LO);
   4614   GraphHelper = &H;
   4615   llvm::ViewGraph(this,"CFG");
   4616   GraphHelper = nullptr;
   4617 #endif
   4618 }
   4619 
   4620 namespace llvm {
   4621 template<>
   4622 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
   4623 
   4624   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   4625 
   4626   static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
   4627 
   4628 #ifndef NDEBUG
   4629     std::string OutSStr;
   4630     llvm::raw_string_ostream Out(OutSStr);
   4631     print_block(Out,Graph, *Node, *GraphHelper, false, false);
   4632     std::string& OutStr = Out.str();
   4633 
   4634     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
   4635 
   4636     // Process string output to make it nicer...
   4637     for (unsigned i = 0; i != OutStr.length(); ++i)
   4638       if (OutStr[i] == '\n') {                            // Left justify
   4639         OutStr[i] = '\\';
   4640         OutStr.insert(OutStr.begin()+i+1, 'l');
   4641       }
   4642 
   4643     return OutStr;
   4644 #else
   4645     return "";
   4646 #endif
   4647   }
   4648 };
   4649 } // end namespace llvm
   4650