1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cmath> 25 #include <cstdlib> 26 #include <cstring> 27 #include <limits> 28 using namespace llvm; 29 30 #define DEBUG_TYPE "apint" 31 32 /// A utility function for allocating memory, checking for allocation failures, 33 /// and ensuring the contents are zeroed. 34 inline static uint64_t* getClearedMemory(unsigned numWords) { 35 uint64_t * result = new uint64_t[numWords]; 36 assert(result && "APInt memory allocation fails!"); 37 memset(result, 0, numWords * sizeof(uint64_t)); 38 return result; 39 } 40 41 /// A utility function for allocating memory and checking for allocation 42 /// failure. The content is not zeroed. 43 inline static uint64_t* getMemory(unsigned numWords) { 44 uint64_t * result = new uint64_t[numWords]; 45 assert(result && "APInt memory allocation fails!"); 46 return result; 47 } 48 49 /// A utility function that converts a character to a digit. 50 inline static unsigned getDigit(char cdigit, uint8_t radix) { 51 unsigned r; 52 53 if (radix == 16 || radix == 36) { 54 r = cdigit - '0'; 55 if (r <= 9) 56 return r; 57 58 r = cdigit - 'A'; 59 if (r <= radix - 11U) 60 return r + 10; 61 62 r = cdigit - 'a'; 63 if (r <= radix - 11U) 64 return r + 10; 65 66 radix = 10; 67 } 68 69 r = cdigit - '0'; 70 if (r < radix) 71 return r; 72 73 return -1U; 74 } 75 76 77 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { 78 pVal = getClearedMemory(getNumWords()); 79 pVal[0] = val; 80 if (isSigned && int64_t(val) < 0) 81 for (unsigned i = 1; i < getNumWords(); ++i) 82 pVal[i] = -1ULL; 83 } 84 85 void APInt::initSlowCase(const APInt& that) { 86 pVal = getMemory(getNumWords()); 87 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 88 } 89 90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 91 assert(BitWidth && "Bitwidth too small"); 92 assert(bigVal.data() && "Null pointer detected!"); 93 if (isSingleWord()) 94 VAL = bigVal[0]; 95 else { 96 // Get memory, cleared to 0 97 pVal = getClearedMemory(getNumWords()); 98 // Calculate the number of words to copy 99 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 100 // Copy the words from bigVal to pVal 101 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 102 } 103 // Make sure unused high bits are cleared 104 clearUnusedBits(); 105 } 106 107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 108 : BitWidth(numBits), VAL(0) { 109 initFromArray(bigVal); 110 } 111 112 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 113 : BitWidth(numBits), VAL(0) { 114 initFromArray(makeArrayRef(bigVal, numWords)); 115 } 116 117 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 118 : BitWidth(numbits), VAL(0) { 119 assert(BitWidth && "Bitwidth too small"); 120 fromString(numbits, Str, radix); 121 } 122 123 APInt& APInt::AssignSlowCase(const APInt& RHS) { 124 // Don't do anything for X = X 125 if (this == &RHS) 126 return *this; 127 128 if (BitWidth == RHS.getBitWidth()) { 129 // assume same bit-width single-word case is already handled 130 assert(!isSingleWord()); 131 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 132 return *this; 133 } 134 135 if (isSingleWord()) { 136 // assume case where both are single words is already handled 137 assert(!RHS.isSingleWord()); 138 VAL = 0; 139 pVal = getMemory(RHS.getNumWords()); 140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 141 } else if (getNumWords() == RHS.getNumWords()) 142 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 143 else if (RHS.isSingleWord()) { 144 delete [] pVal; 145 VAL = RHS.VAL; 146 } else { 147 delete [] pVal; 148 pVal = getMemory(RHS.getNumWords()); 149 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 150 } 151 BitWidth = RHS.BitWidth; 152 return clearUnusedBits(); 153 } 154 155 APInt& APInt::operator=(uint64_t RHS) { 156 if (isSingleWord()) 157 VAL = RHS; 158 else { 159 pVal[0] = RHS; 160 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 161 } 162 return clearUnusedBits(); 163 } 164 165 /// This method 'profiles' an APInt for use with FoldingSet. 166 void APInt::Profile(FoldingSetNodeID& ID) const { 167 ID.AddInteger(BitWidth); 168 169 if (isSingleWord()) { 170 ID.AddInteger(VAL); 171 return; 172 } 173 174 unsigned NumWords = getNumWords(); 175 for (unsigned i = 0; i < NumWords; ++i) 176 ID.AddInteger(pVal[i]); 177 } 178 179 /// This function adds a single "digit" integer, y, to the multiple 180 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 181 /// 1 is returned if there is a carry out, otherwise 0 is returned. 182 /// @returns the carry of the addition. 183 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 184 for (unsigned i = 0; i < len; ++i) { 185 dest[i] = y + x[i]; 186 if (dest[i] < y) 187 y = 1; // Carry one to next digit. 188 else { 189 y = 0; // No need to carry so exit early 190 break; 191 } 192 } 193 return y; 194 } 195 196 /// @brief Prefix increment operator. Increments the APInt by one. 197 APInt& APInt::operator++() { 198 if (isSingleWord()) 199 ++VAL; 200 else 201 add_1(pVal, pVal, getNumWords(), 1); 202 return clearUnusedBits(); 203 } 204 205 /// This function subtracts a single "digit" (64-bit word), y, from 206 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 207 /// no further borrowing is neeeded or it runs out of "digits" in x. The result 208 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 209 /// In other words, if y > x then this function returns 1, otherwise 0. 210 /// @returns the borrow out of the subtraction 211 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 212 for (unsigned i = 0; i < len; ++i) { 213 uint64_t X = x[i]; 214 x[i] -= y; 215 if (y > X) 216 y = 1; // We have to "borrow 1" from next "digit" 217 else { 218 y = 0; // No need to borrow 219 break; // Remaining digits are unchanged so exit early 220 } 221 } 222 return bool(y); 223 } 224 225 /// @brief Prefix decrement operator. Decrements the APInt by one. 226 APInt& APInt::operator--() { 227 if (isSingleWord()) 228 --VAL; 229 else 230 sub_1(pVal, getNumWords(), 1); 231 return clearUnusedBits(); 232 } 233 234 /// This function adds the integer array x to the integer array Y and 235 /// places the result in dest. 236 /// @returns the carry out from the addition 237 /// @brief General addition of 64-bit integer arrays 238 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 239 unsigned len) { 240 bool carry = false; 241 for (unsigned i = 0; i< len; ++i) { 242 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x 243 dest[i] = x[i] + y[i] + carry; 244 carry = dest[i] < limit || (carry && dest[i] == limit); 245 } 246 return carry; 247 } 248 249 /// Adds the RHS APint to this APInt. 250 /// @returns this, after addition of RHS. 251 /// @brief Addition assignment operator. 252 APInt& APInt::operator+=(const APInt& RHS) { 253 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 254 if (isSingleWord()) 255 VAL += RHS.VAL; 256 else { 257 add(pVal, pVal, RHS.pVal, getNumWords()); 258 } 259 return clearUnusedBits(); 260 } 261 262 /// Subtracts the integer array y from the integer array x 263 /// @returns returns the borrow out. 264 /// @brief Generalized subtraction of 64-bit integer arrays. 265 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 266 unsigned len) { 267 bool borrow = false; 268 for (unsigned i = 0; i < len; ++i) { 269 uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; 270 borrow = y[i] > x_tmp || (borrow && x[i] == 0); 271 dest[i] = x_tmp - y[i]; 272 } 273 return borrow; 274 } 275 276 /// Subtracts the RHS APInt from this APInt 277 /// @returns this, after subtraction 278 /// @brief Subtraction assignment operator. 279 APInt& APInt::operator-=(const APInt& RHS) { 280 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 281 if (isSingleWord()) 282 VAL -= RHS.VAL; 283 else 284 sub(pVal, pVal, RHS.pVal, getNumWords()); 285 return clearUnusedBits(); 286 } 287 288 /// Multiplies an integer array, x, by a uint64_t integer and places the result 289 /// into dest. 290 /// @returns the carry out of the multiplication. 291 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 292 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 293 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 294 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 295 uint64_t carry = 0; 296 297 // For each digit of x. 298 for (unsigned i = 0; i < len; ++i) { 299 // Split x into high and low words 300 uint64_t lx = x[i] & 0xffffffffULL; 301 uint64_t hx = x[i] >> 32; 302 // hasCarry - A flag to indicate if there is a carry to the next digit. 303 // hasCarry == 0, no carry 304 // hasCarry == 1, has carry 305 // hasCarry == 2, no carry and the calculation result == 0. 306 uint8_t hasCarry = 0; 307 dest[i] = carry + lx * ly; 308 // Determine if the add above introduces carry. 309 hasCarry = (dest[i] < carry) ? 1 : 0; 310 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 311 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 312 // (2^32 - 1) + 2^32 = 2^64. 313 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 314 315 carry += (lx * hy) & 0xffffffffULL; 316 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 317 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 318 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 319 } 320 return carry; 321 } 322 323 /// Multiplies integer array x by integer array y and stores the result into 324 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 325 /// @brief Generalized multiplicate of integer arrays. 326 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 327 unsigned ylen) { 328 dest[xlen] = mul_1(dest, x, xlen, y[0]); 329 for (unsigned i = 1; i < ylen; ++i) { 330 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 331 uint64_t carry = 0, lx = 0, hx = 0; 332 for (unsigned j = 0; j < xlen; ++j) { 333 lx = x[j] & 0xffffffffULL; 334 hx = x[j] >> 32; 335 // hasCarry - A flag to indicate if has carry. 336 // hasCarry == 0, no carry 337 // hasCarry == 1, has carry 338 // hasCarry == 2, no carry and the calculation result == 0. 339 uint8_t hasCarry = 0; 340 uint64_t resul = carry + lx * ly; 341 hasCarry = (resul < carry) ? 1 : 0; 342 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 343 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 344 345 carry += (lx * hy) & 0xffffffffULL; 346 resul = (carry << 32) | (resul & 0xffffffffULL); 347 dest[i+j] += resul; 348 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 349 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 350 ((lx * hy) >> 32) + hx * hy; 351 } 352 dest[i+xlen] = carry; 353 } 354 } 355 356 APInt& APInt::operator*=(const APInt& RHS) { 357 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 358 if (isSingleWord()) { 359 VAL *= RHS.VAL; 360 clearUnusedBits(); 361 return *this; 362 } 363 364 // Get some bit facts about LHS and check for zero 365 unsigned lhsBits = getActiveBits(); 366 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 367 if (!lhsWords) 368 // 0 * X ===> 0 369 return *this; 370 371 // Get some bit facts about RHS and check for zero 372 unsigned rhsBits = RHS.getActiveBits(); 373 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 374 if (!rhsWords) { 375 // X * 0 ===> 0 376 clearAllBits(); 377 return *this; 378 } 379 380 // Allocate space for the result 381 unsigned destWords = rhsWords + lhsWords; 382 uint64_t *dest = getMemory(destWords); 383 384 // Perform the long multiply 385 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 386 387 // Copy result back into *this 388 clearAllBits(); 389 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 390 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 391 clearUnusedBits(); 392 393 // delete dest array and return 394 delete[] dest; 395 return *this; 396 } 397 398 APInt& APInt::operator&=(const APInt& RHS) { 399 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 400 if (isSingleWord()) { 401 VAL &= RHS.VAL; 402 return *this; 403 } 404 unsigned numWords = getNumWords(); 405 for (unsigned i = 0; i < numWords; ++i) 406 pVal[i] &= RHS.pVal[i]; 407 return *this; 408 } 409 410 APInt& APInt::operator|=(const APInt& RHS) { 411 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 412 if (isSingleWord()) { 413 VAL |= RHS.VAL; 414 return *this; 415 } 416 unsigned numWords = getNumWords(); 417 for (unsigned i = 0; i < numWords; ++i) 418 pVal[i] |= RHS.pVal[i]; 419 return *this; 420 } 421 422 APInt& APInt::operator^=(const APInt& RHS) { 423 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 424 if (isSingleWord()) { 425 VAL ^= RHS.VAL; 426 this->clearUnusedBits(); 427 return *this; 428 } 429 unsigned numWords = getNumWords(); 430 for (unsigned i = 0; i < numWords; ++i) 431 pVal[i] ^= RHS.pVal[i]; 432 return clearUnusedBits(); 433 } 434 435 APInt APInt::AndSlowCase(const APInt& RHS) const { 436 unsigned numWords = getNumWords(); 437 uint64_t* val = getMemory(numWords); 438 for (unsigned i = 0; i < numWords; ++i) 439 val[i] = pVal[i] & RHS.pVal[i]; 440 return APInt(val, getBitWidth()); 441 } 442 443 APInt APInt::OrSlowCase(const APInt& RHS) const { 444 unsigned numWords = getNumWords(); 445 uint64_t *val = getMemory(numWords); 446 for (unsigned i = 0; i < numWords; ++i) 447 val[i] = pVal[i] | RHS.pVal[i]; 448 return APInt(val, getBitWidth()); 449 } 450 451 APInt APInt::XorSlowCase(const APInt& RHS) const { 452 unsigned numWords = getNumWords(); 453 uint64_t *val = getMemory(numWords); 454 for (unsigned i = 0; i < numWords; ++i) 455 val[i] = pVal[i] ^ RHS.pVal[i]; 456 457 APInt Result(val, getBitWidth()); 458 // 0^0==1 so clear the high bits in case they got set. 459 Result.clearUnusedBits(); 460 return Result; 461 } 462 463 APInt APInt::operator*(const APInt& RHS) const { 464 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 465 if (isSingleWord()) 466 return APInt(BitWidth, VAL * RHS.VAL); 467 APInt Result(*this); 468 Result *= RHS; 469 return Result; 470 } 471 472 APInt APInt::operator+(const APInt& RHS) const { 473 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 474 if (isSingleWord()) 475 return APInt(BitWidth, VAL + RHS.VAL); 476 APInt Result(BitWidth, 0); 477 add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 478 Result.clearUnusedBits(); 479 return Result; 480 } 481 482 APInt APInt::operator-(const APInt& RHS) const { 483 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 484 if (isSingleWord()) 485 return APInt(BitWidth, VAL - RHS.VAL); 486 APInt Result(BitWidth, 0); 487 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 488 Result.clearUnusedBits(); 489 return Result; 490 } 491 492 bool APInt::EqualSlowCase(const APInt& RHS) const { 493 // Get some facts about the number of bits used in the two operands. 494 unsigned n1 = getActiveBits(); 495 unsigned n2 = RHS.getActiveBits(); 496 497 // If the number of bits isn't the same, they aren't equal 498 if (n1 != n2) 499 return false; 500 501 // If the number of bits fits in a word, we only need to compare the low word. 502 if (n1 <= APINT_BITS_PER_WORD) 503 return pVal[0] == RHS.pVal[0]; 504 505 // Otherwise, compare everything 506 for (int i = whichWord(n1 - 1); i >= 0; --i) 507 if (pVal[i] != RHS.pVal[i]) 508 return false; 509 return true; 510 } 511 512 bool APInt::EqualSlowCase(uint64_t Val) const { 513 unsigned n = getActiveBits(); 514 if (n <= APINT_BITS_PER_WORD) 515 return pVal[0] == Val; 516 else 517 return false; 518 } 519 520 bool APInt::ult(const APInt& RHS) const { 521 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 522 if (isSingleWord()) 523 return VAL < RHS.VAL; 524 525 // Get active bit length of both operands 526 unsigned n1 = getActiveBits(); 527 unsigned n2 = RHS.getActiveBits(); 528 529 // If magnitude of LHS is less than RHS, return true. 530 if (n1 < n2) 531 return true; 532 533 // If magnitude of RHS is greather than LHS, return false. 534 if (n2 < n1) 535 return false; 536 537 // If they bot fit in a word, just compare the low order word 538 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 539 return pVal[0] < RHS.pVal[0]; 540 541 // Otherwise, compare all words 542 unsigned topWord = whichWord(std::max(n1,n2)-1); 543 for (int i = topWord; i >= 0; --i) { 544 if (pVal[i] > RHS.pVal[i]) 545 return false; 546 if (pVal[i] < RHS.pVal[i]) 547 return true; 548 } 549 return false; 550 } 551 552 bool APInt::slt(const APInt& RHS) const { 553 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 554 if (isSingleWord()) { 555 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); 556 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); 557 return lhsSext < rhsSext; 558 } 559 560 APInt lhs(*this); 561 APInt rhs(RHS); 562 bool lhsNeg = isNegative(); 563 bool rhsNeg = rhs.isNegative(); 564 if (lhsNeg) { 565 // Sign bit is set so perform two's complement to make it positive 566 lhs.flipAllBits(); 567 ++lhs; 568 } 569 if (rhsNeg) { 570 // Sign bit is set so perform two's complement to make it positive 571 rhs.flipAllBits(); 572 ++rhs; 573 } 574 575 // Now we have unsigned values to compare so do the comparison if necessary 576 // based on the negativeness of the values. 577 if (lhsNeg) 578 if (rhsNeg) 579 return lhs.ugt(rhs); 580 else 581 return true; 582 else if (rhsNeg) 583 return false; 584 else 585 return lhs.ult(rhs); 586 } 587 588 void APInt::setBit(unsigned bitPosition) { 589 if (isSingleWord()) 590 VAL |= maskBit(bitPosition); 591 else 592 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 593 } 594 595 /// Set the given bit to 0 whose position is given as "bitPosition". 596 /// @brief Set a given bit to 0. 597 void APInt::clearBit(unsigned bitPosition) { 598 if (isSingleWord()) 599 VAL &= ~maskBit(bitPosition); 600 else 601 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 602 } 603 604 /// @brief Toggle every bit to its opposite value. 605 606 /// Toggle a given bit to its opposite value whose position is given 607 /// as "bitPosition". 608 /// @brief Toggles a given bit to its opposite value. 609 void APInt::flipBit(unsigned bitPosition) { 610 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 611 if ((*this)[bitPosition]) clearBit(bitPosition); 612 else setBit(bitPosition); 613 } 614 615 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 616 assert(!str.empty() && "Invalid string length"); 617 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 618 radix == 36) && 619 "Radix should be 2, 8, 10, 16, or 36!"); 620 621 size_t slen = str.size(); 622 623 // Each computation below needs to know if it's negative. 624 StringRef::iterator p = str.begin(); 625 unsigned isNegative = *p == '-'; 626 if (*p == '-' || *p == '+') { 627 p++; 628 slen--; 629 assert(slen && "String is only a sign, needs a value."); 630 } 631 632 // For radixes of power-of-two values, the bits required is accurately and 633 // easily computed 634 if (radix == 2) 635 return slen + isNegative; 636 if (radix == 8) 637 return slen * 3 + isNegative; 638 if (radix == 16) 639 return slen * 4 + isNegative; 640 641 // FIXME: base 36 642 643 // This is grossly inefficient but accurate. We could probably do something 644 // with a computation of roughly slen*64/20 and then adjust by the value of 645 // the first few digits. But, I'm not sure how accurate that could be. 646 647 // Compute a sufficient number of bits that is always large enough but might 648 // be too large. This avoids the assertion in the constructor. This 649 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 650 // bits in that case. 651 unsigned sufficient 652 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 653 : (slen == 1 ? 7 : slen * 16/3); 654 655 // Convert to the actual binary value. 656 APInt tmp(sufficient, StringRef(p, slen), radix); 657 658 // Compute how many bits are required. If the log is infinite, assume we need 659 // just bit. 660 unsigned log = tmp.logBase2(); 661 if (log == (unsigned)-1) { 662 return isNegative + 1; 663 } else { 664 return isNegative + log + 1; 665 } 666 } 667 668 hash_code llvm::hash_value(const APInt &Arg) { 669 if (Arg.isSingleWord()) 670 return hash_combine(Arg.VAL); 671 672 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); 673 } 674 675 bool APInt::isSplat(unsigned SplatSizeInBits) const { 676 assert(getBitWidth() % SplatSizeInBits == 0 && 677 "SplatSizeInBits must divide width!"); 678 // We can check that all parts of an integer are equal by making use of a 679 // little trick: rotate and check if it's still the same value. 680 return *this == rotl(SplatSizeInBits); 681 } 682 683 /// This function returns the high "numBits" bits of this APInt. 684 APInt APInt::getHiBits(unsigned numBits) const { 685 return APIntOps::lshr(*this, BitWidth - numBits); 686 } 687 688 /// This function returns the low "numBits" bits of this APInt. 689 APInt APInt::getLoBits(unsigned numBits) const { 690 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 691 BitWidth - numBits); 692 } 693 694 unsigned APInt::countLeadingZerosSlowCase() const { 695 // Treat the most significand word differently because it might have 696 // meaningless bits set beyond the precision. 697 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; 698 integerPart MSWMask; 699 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; 700 else { 701 MSWMask = ~integerPart(0); 702 BitsInMSW = APINT_BITS_PER_WORD; 703 } 704 705 unsigned i = getNumWords(); 706 integerPart MSW = pVal[i-1] & MSWMask; 707 if (MSW) 708 return llvm::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); 709 710 unsigned Count = BitsInMSW; 711 for (--i; i > 0u; --i) { 712 if (pVal[i-1] == 0) 713 Count += APINT_BITS_PER_WORD; 714 else { 715 Count += llvm::countLeadingZeros(pVal[i-1]); 716 break; 717 } 718 } 719 return Count; 720 } 721 722 unsigned APInt::countLeadingOnes() const { 723 if (isSingleWord()) 724 return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth)); 725 726 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 727 unsigned shift; 728 if (!highWordBits) { 729 highWordBits = APINT_BITS_PER_WORD; 730 shift = 0; 731 } else { 732 shift = APINT_BITS_PER_WORD - highWordBits; 733 } 734 int i = getNumWords() - 1; 735 unsigned Count = llvm::countLeadingOnes(pVal[i] << shift); 736 if (Count == highWordBits) { 737 for (i--; i >= 0; --i) { 738 if (pVal[i] == -1ULL) 739 Count += APINT_BITS_PER_WORD; 740 else { 741 Count += llvm::countLeadingOnes(pVal[i]); 742 break; 743 } 744 } 745 } 746 return Count; 747 } 748 749 unsigned APInt::countTrailingZeros() const { 750 if (isSingleWord()) 751 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); 752 unsigned Count = 0; 753 unsigned i = 0; 754 for (; i < getNumWords() && pVal[i] == 0; ++i) 755 Count += APINT_BITS_PER_WORD; 756 if (i < getNumWords()) 757 Count += llvm::countTrailingZeros(pVal[i]); 758 return std::min(Count, BitWidth); 759 } 760 761 unsigned APInt::countTrailingOnesSlowCase() const { 762 unsigned Count = 0; 763 unsigned i = 0; 764 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 765 Count += APINT_BITS_PER_WORD; 766 if (i < getNumWords()) 767 Count += llvm::countTrailingOnes(pVal[i]); 768 return std::min(Count, BitWidth); 769 } 770 771 unsigned APInt::countPopulationSlowCase() const { 772 unsigned Count = 0; 773 for (unsigned i = 0; i < getNumWords(); ++i) 774 Count += llvm::countPopulation(pVal[i]); 775 return Count; 776 } 777 778 /// Perform a logical right-shift from Src to Dst, which must be equal or 779 /// non-overlapping, of Words words, by Shift, which must be less than 64. 780 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 781 unsigned Shift) { 782 uint64_t Carry = 0; 783 for (int I = Words - 1; I >= 0; --I) { 784 uint64_t Tmp = Src[I]; 785 Dst[I] = (Tmp >> Shift) | Carry; 786 Carry = Tmp << (64 - Shift); 787 } 788 } 789 790 APInt APInt::byteSwap() const { 791 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 792 if (BitWidth == 16) 793 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 794 if (BitWidth == 32) 795 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 796 if (BitWidth == 48) { 797 unsigned Tmp1 = unsigned(VAL >> 16); 798 Tmp1 = ByteSwap_32(Tmp1); 799 uint16_t Tmp2 = uint16_t(VAL); 800 Tmp2 = ByteSwap_16(Tmp2); 801 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 802 } 803 if (BitWidth == 64) 804 return APInt(BitWidth, ByteSwap_64(VAL)); 805 806 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 807 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 808 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 809 if (Result.BitWidth != BitWidth) { 810 lshrNear(Result.pVal, Result.pVal, getNumWords(), 811 Result.BitWidth - BitWidth); 812 Result.BitWidth = BitWidth; 813 } 814 return Result; 815 } 816 817 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 818 const APInt& API2) { 819 APInt A = API1, B = API2; 820 while (!!B) { 821 APInt T = B; 822 B = APIntOps::urem(A, B); 823 A = T; 824 } 825 return A; 826 } 827 828 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 829 union { 830 double D; 831 uint64_t I; 832 } T; 833 T.D = Double; 834 835 // Get the sign bit from the highest order bit 836 bool isNeg = T.I >> 63; 837 838 // Get the 11-bit exponent and adjust for the 1023 bit bias 839 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 840 841 // If the exponent is negative, the value is < 0 so just return 0. 842 if (exp < 0) 843 return APInt(width, 0u); 844 845 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 846 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 847 848 // If the exponent doesn't shift all bits out of the mantissa 849 if (exp < 52) 850 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 851 APInt(width, mantissa >> (52 - exp)); 852 853 // If the client didn't provide enough bits for us to shift the mantissa into 854 // then the result is undefined, just return 0 855 if (width <= exp - 52) 856 return APInt(width, 0); 857 858 // Otherwise, we have to shift the mantissa bits up to the right location 859 APInt Tmp(width, mantissa); 860 Tmp = Tmp.shl((unsigned)exp - 52); 861 return isNeg ? -Tmp : Tmp; 862 } 863 864 /// This function converts this APInt to a double. 865 /// The layout for double is as following (IEEE Standard 754): 866 /// -------------------------------------- 867 /// | Sign Exponent Fraction Bias | 868 /// |-------------------------------------- | 869 /// | 1[63] 11[62-52] 52[51-00] 1023 | 870 /// -------------------------------------- 871 double APInt::roundToDouble(bool isSigned) const { 872 873 // Handle the simple case where the value is contained in one uint64_t. 874 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 875 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 876 if (isSigned) { 877 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); 878 return double(sext); 879 } else 880 return double(getWord(0)); 881 } 882 883 // Determine if the value is negative. 884 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 885 886 // Construct the absolute value if we're negative. 887 APInt Tmp(isNeg ? -(*this) : (*this)); 888 889 // Figure out how many bits we're using. 890 unsigned n = Tmp.getActiveBits(); 891 892 // The exponent (without bias normalization) is just the number of bits 893 // we are using. Note that the sign bit is gone since we constructed the 894 // absolute value. 895 uint64_t exp = n; 896 897 // Return infinity for exponent overflow 898 if (exp > 1023) { 899 if (!isSigned || !isNeg) 900 return std::numeric_limits<double>::infinity(); 901 else 902 return -std::numeric_limits<double>::infinity(); 903 } 904 exp += 1023; // Increment for 1023 bias 905 906 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 907 // extract the high 52 bits from the correct words in pVal. 908 uint64_t mantissa; 909 unsigned hiWord = whichWord(n-1); 910 if (hiWord == 0) { 911 mantissa = Tmp.pVal[0]; 912 if (n > 52) 913 mantissa >>= n - 52; // shift down, we want the top 52 bits. 914 } else { 915 assert(hiWord > 0 && "huh?"); 916 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 917 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 918 mantissa = hibits | lobits; 919 } 920 921 // The leading bit of mantissa is implicit, so get rid of it. 922 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 923 union { 924 double D; 925 uint64_t I; 926 } T; 927 T.I = sign | (exp << 52) | mantissa; 928 return T.D; 929 } 930 931 // Truncate to new width. 932 APInt APInt::trunc(unsigned width) const { 933 assert(width < BitWidth && "Invalid APInt Truncate request"); 934 assert(width && "Can't truncate to 0 bits"); 935 936 if (width <= APINT_BITS_PER_WORD) 937 return APInt(width, getRawData()[0]); 938 939 APInt Result(getMemory(getNumWords(width)), width); 940 941 // Copy full words. 942 unsigned i; 943 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 944 Result.pVal[i] = pVal[i]; 945 946 // Truncate and copy any partial word. 947 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 948 if (bits != 0) 949 Result.pVal[i] = pVal[i] << bits >> bits; 950 951 return Result; 952 } 953 954 // Sign extend to a new width. 955 APInt APInt::sext(unsigned width) const { 956 assert(width > BitWidth && "Invalid APInt SignExtend request"); 957 958 if (width <= APINT_BITS_PER_WORD) { 959 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 960 val = (int64_t)val >> (width - BitWidth); 961 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 962 } 963 964 APInt Result(getMemory(getNumWords(width)), width); 965 966 // Copy full words. 967 unsigned i; 968 uint64_t word = 0; 969 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 970 word = getRawData()[i]; 971 Result.pVal[i] = word; 972 } 973 974 // Read and sign-extend any partial word. 975 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 976 if (bits != 0) 977 word = (int64_t)getRawData()[i] << bits >> bits; 978 else 979 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 980 981 // Write remaining full words. 982 for (; i != width / APINT_BITS_PER_WORD; i++) { 983 Result.pVal[i] = word; 984 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 985 } 986 987 // Write any partial word. 988 bits = (0 - width) % APINT_BITS_PER_WORD; 989 if (bits != 0) 990 Result.pVal[i] = word << bits >> bits; 991 992 return Result; 993 } 994 995 // Zero extend to a new width. 996 APInt APInt::zext(unsigned width) const { 997 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 998 999 if (width <= APINT_BITS_PER_WORD) 1000 return APInt(width, VAL); 1001 1002 APInt Result(getMemory(getNumWords(width)), width); 1003 1004 // Copy words. 1005 unsigned i; 1006 for (i = 0; i != getNumWords(); i++) 1007 Result.pVal[i] = getRawData()[i]; 1008 1009 // Zero remaining words. 1010 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 1011 1012 return Result; 1013 } 1014 1015 APInt APInt::zextOrTrunc(unsigned width) const { 1016 if (BitWidth < width) 1017 return zext(width); 1018 if (BitWidth > width) 1019 return trunc(width); 1020 return *this; 1021 } 1022 1023 APInt APInt::sextOrTrunc(unsigned width) const { 1024 if (BitWidth < width) 1025 return sext(width); 1026 if (BitWidth > width) 1027 return trunc(width); 1028 return *this; 1029 } 1030 1031 APInt APInt::zextOrSelf(unsigned width) const { 1032 if (BitWidth < width) 1033 return zext(width); 1034 return *this; 1035 } 1036 1037 APInt APInt::sextOrSelf(unsigned width) const { 1038 if (BitWidth < width) 1039 return sext(width); 1040 return *this; 1041 } 1042 1043 /// Arithmetic right-shift this APInt by shiftAmt. 1044 /// @brief Arithmetic right-shift function. 1045 APInt APInt::ashr(const APInt &shiftAmt) const { 1046 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1047 } 1048 1049 /// Arithmetic right-shift this APInt by shiftAmt. 1050 /// @brief Arithmetic right-shift function. 1051 APInt APInt::ashr(unsigned shiftAmt) const { 1052 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1053 // Handle a degenerate case 1054 if (shiftAmt == 0) 1055 return *this; 1056 1057 // Handle single word shifts with built-in ashr 1058 if (isSingleWord()) { 1059 if (shiftAmt == BitWidth) 1060 return APInt(BitWidth, 0); // undefined 1061 else { 1062 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; 1063 return APInt(BitWidth, 1064 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); 1065 } 1066 } 1067 1068 // If all the bits were shifted out, the result is, technically, undefined. 1069 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1070 // issues in the algorithm below. 1071 if (shiftAmt == BitWidth) { 1072 if (isNegative()) 1073 return APInt(BitWidth, -1ULL, true); 1074 else 1075 return APInt(BitWidth, 0); 1076 } 1077 1078 // Create some space for the result. 1079 uint64_t * val = new uint64_t[getNumWords()]; 1080 1081 // Compute some values needed by the following shift algorithms 1082 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1083 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1084 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1085 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1086 if (bitsInWord == 0) 1087 bitsInWord = APINT_BITS_PER_WORD; 1088 1089 // If we are shifting whole words, just move whole words 1090 if (wordShift == 0) { 1091 // Move the words containing significant bits 1092 for (unsigned i = 0; i <= breakWord; ++i) 1093 val[i] = pVal[i+offset]; // move whole word 1094 1095 // Adjust the top significant word for sign bit fill, if negative 1096 if (isNegative()) 1097 if (bitsInWord < APINT_BITS_PER_WORD) 1098 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1099 } else { 1100 // Shift the low order words 1101 for (unsigned i = 0; i < breakWord; ++i) { 1102 // This combines the shifted corresponding word with the low bits from 1103 // the next word (shifted into this word's high bits). 1104 val[i] = (pVal[i+offset] >> wordShift) | 1105 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1106 } 1107 1108 // Shift the break word. In this case there are no bits from the next word 1109 // to include in this word. 1110 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1111 1112 // Deal with sign extension in the break word, and possibly the word before 1113 // it. 1114 if (isNegative()) { 1115 if (wordShift > bitsInWord) { 1116 if (breakWord > 0) 1117 val[breakWord-1] |= 1118 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1119 val[breakWord] |= ~0ULL; 1120 } else 1121 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1122 } 1123 } 1124 1125 // Remaining words are 0 or -1, just assign them. 1126 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1127 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1128 val[i] = fillValue; 1129 APInt Result(val, BitWidth); 1130 Result.clearUnusedBits(); 1131 return Result; 1132 } 1133 1134 /// Logical right-shift this APInt by shiftAmt. 1135 /// @brief Logical right-shift function. 1136 APInt APInt::lshr(const APInt &shiftAmt) const { 1137 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1138 } 1139 1140 /// Logical right-shift this APInt by shiftAmt. 1141 /// @brief Logical right-shift function. 1142 APInt APInt::lshr(unsigned shiftAmt) const { 1143 if (isSingleWord()) { 1144 if (shiftAmt >= BitWidth) 1145 return APInt(BitWidth, 0); 1146 else 1147 return APInt(BitWidth, this->VAL >> shiftAmt); 1148 } 1149 1150 // If all the bits were shifted out, the result is 0. This avoids issues 1151 // with shifting by the size of the integer type, which produces undefined 1152 // results. We define these "undefined results" to always be 0. 1153 if (shiftAmt >= BitWidth) 1154 return APInt(BitWidth, 0); 1155 1156 // If none of the bits are shifted out, the result is *this. This avoids 1157 // issues with shifting by the size of the integer type, which produces 1158 // undefined results in the code below. This is also an optimization. 1159 if (shiftAmt == 0) 1160 return *this; 1161 1162 // Create some space for the result. 1163 uint64_t * val = new uint64_t[getNumWords()]; 1164 1165 // If we are shifting less than a word, compute the shift with a simple carry 1166 if (shiftAmt < APINT_BITS_PER_WORD) { 1167 lshrNear(val, pVal, getNumWords(), shiftAmt); 1168 APInt Result(val, BitWidth); 1169 Result.clearUnusedBits(); 1170 return Result; 1171 } 1172 1173 // Compute some values needed by the remaining shift algorithms 1174 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1175 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1176 1177 // If we are shifting whole words, just move whole words 1178 if (wordShift == 0) { 1179 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1180 val[i] = pVal[i+offset]; 1181 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1182 val[i] = 0; 1183 APInt Result(val, BitWidth); 1184 Result.clearUnusedBits(); 1185 return Result; 1186 } 1187 1188 // Shift the low order words 1189 unsigned breakWord = getNumWords() - offset -1; 1190 for (unsigned i = 0; i < breakWord; ++i) 1191 val[i] = (pVal[i+offset] >> wordShift) | 1192 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1193 // Shift the break word. 1194 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1195 1196 // Remaining words are 0 1197 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1198 val[i] = 0; 1199 APInt Result(val, BitWidth); 1200 Result.clearUnusedBits(); 1201 return Result; 1202 } 1203 1204 /// Left-shift this APInt by shiftAmt. 1205 /// @brief Left-shift function. 1206 APInt APInt::shl(const APInt &shiftAmt) const { 1207 // It's undefined behavior in C to shift by BitWidth or greater. 1208 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1209 } 1210 1211 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1212 // If all the bits were shifted out, the result is 0. This avoids issues 1213 // with shifting by the size of the integer type, which produces undefined 1214 // results. We define these "undefined results" to always be 0. 1215 if (shiftAmt == BitWidth) 1216 return APInt(BitWidth, 0); 1217 1218 // If none of the bits are shifted out, the result is *this. This avoids a 1219 // lshr by the words size in the loop below which can produce incorrect 1220 // results. It also avoids the expensive computation below for a common case. 1221 if (shiftAmt == 0) 1222 return *this; 1223 1224 // Create some space for the result. 1225 uint64_t * val = new uint64_t[getNumWords()]; 1226 1227 // If we are shifting less than a word, do it the easy way 1228 if (shiftAmt < APINT_BITS_PER_WORD) { 1229 uint64_t carry = 0; 1230 for (unsigned i = 0; i < getNumWords(); i++) { 1231 val[i] = pVal[i] << shiftAmt | carry; 1232 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1233 } 1234 APInt Result(val, BitWidth); 1235 Result.clearUnusedBits(); 1236 return Result; 1237 } 1238 1239 // Compute some values needed by the remaining shift algorithms 1240 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1241 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1242 1243 // If we are shifting whole words, just move whole words 1244 if (wordShift == 0) { 1245 for (unsigned i = 0; i < offset; i++) 1246 val[i] = 0; 1247 for (unsigned i = offset; i < getNumWords(); i++) 1248 val[i] = pVal[i-offset]; 1249 APInt Result(val, BitWidth); 1250 Result.clearUnusedBits(); 1251 return Result; 1252 } 1253 1254 // Copy whole words from this to Result. 1255 unsigned i = getNumWords() - 1; 1256 for (; i > offset; --i) 1257 val[i] = pVal[i-offset] << wordShift | 1258 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1259 val[offset] = pVal[0] << wordShift; 1260 for (i = 0; i < offset; ++i) 1261 val[i] = 0; 1262 APInt Result(val, BitWidth); 1263 Result.clearUnusedBits(); 1264 return Result; 1265 } 1266 1267 APInt APInt::rotl(const APInt &rotateAmt) const { 1268 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1269 } 1270 1271 APInt APInt::rotl(unsigned rotateAmt) const { 1272 rotateAmt %= BitWidth; 1273 if (rotateAmt == 0) 1274 return *this; 1275 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1276 } 1277 1278 APInt APInt::rotr(const APInt &rotateAmt) const { 1279 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1280 } 1281 1282 APInt APInt::rotr(unsigned rotateAmt) const { 1283 rotateAmt %= BitWidth; 1284 if (rotateAmt == 0) 1285 return *this; 1286 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1287 } 1288 1289 // Square Root - this method computes and returns the square root of "this". 1290 // Three mechanisms are used for computation. For small values (<= 5 bits), 1291 // a table lookup is done. This gets some performance for common cases. For 1292 // values using less than 52 bits, the value is converted to double and then 1293 // the libc sqrt function is called. The result is rounded and then converted 1294 // back to a uint64_t which is then used to construct the result. Finally, 1295 // the Babylonian method for computing square roots is used. 1296 APInt APInt::sqrt() const { 1297 1298 // Determine the magnitude of the value. 1299 unsigned magnitude = getActiveBits(); 1300 1301 // Use a fast table for some small values. This also gets rid of some 1302 // rounding errors in libc sqrt for small values. 1303 if (magnitude <= 5) { 1304 static const uint8_t results[32] = { 1305 /* 0 */ 0, 1306 /* 1- 2 */ 1, 1, 1307 /* 3- 6 */ 2, 2, 2, 2, 1308 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1309 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1310 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1311 /* 31 */ 6 1312 }; 1313 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1314 } 1315 1316 // If the magnitude of the value fits in less than 52 bits (the precision of 1317 // an IEEE double precision floating point value), then we can use the 1318 // libc sqrt function which will probably use a hardware sqrt computation. 1319 // This should be faster than the algorithm below. 1320 if (magnitude < 52) { 1321 return APInt(BitWidth, 1322 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1323 } 1324 1325 // Okay, all the short cuts are exhausted. We must compute it. The following 1326 // is a classical Babylonian method for computing the square root. This code 1327 // was adapted to APInt from a wikipedia article on such computations. 1328 // See http://www.wikipedia.org/ and go to the page named 1329 // Calculate_an_integer_square_root. 1330 unsigned nbits = BitWidth, i = 4; 1331 APInt testy(BitWidth, 16); 1332 APInt x_old(BitWidth, 1); 1333 APInt x_new(BitWidth, 0); 1334 APInt two(BitWidth, 2); 1335 1336 // Select a good starting value using binary logarithms. 1337 for (;; i += 2, testy = testy.shl(2)) 1338 if (i >= nbits || this->ule(testy)) { 1339 x_old = x_old.shl(i / 2); 1340 break; 1341 } 1342 1343 // Use the Babylonian method to arrive at the integer square root: 1344 for (;;) { 1345 x_new = (this->udiv(x_old) + x_old).udiv(two); 1346 if (x_old.ule(x_new)) 1347 break; 1348 x_old = x_new; 1349 } 1350 1351 // Make sure we return the closest approximation 1352 // NOTE: The rounding calculation below is correct. It will produce an 1353 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1354 // determined to be a rounding issue with pari/gp as it begins to use a 1355 // floating point representation after 192 bits. There are no discrepancies 1356 // between this algorithm and pari/gp for bit widths < 192 bits. 1357 APInt square(x_old * x_old); 1358 APInt nextSquare((x_old + 1) * (x_old +1)); 1359 if (this->ult(square)) 1360 return x_old; 1361 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1362 APInt midpoint((nextSquare - square).udiv(two)); 1363 APInt offset(*this - square); 1364 if (offset.ult(midpoint)) 1365 return x_old; 1366 return x_old + 1; 1367 } 1368 1369 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1370 /// iterative extended Euclidean algorithm is used to solve for this value, 1371 /// however we simplify it to speed up calculating only the inverse, and take 1372 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1373 /// (potentially large) APInts around. 1374 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1375 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1376 1377 // Using the properties listed at the following web page (accessed 06/21/08): 1378 // http://www.numbertheory.org/php/euclid.html 1379 // (especially the properties numbered 3, 4 and 9) it can be proved that 1380 // BitWidth bits suffice for all the computations in the algorithm implemented 1381 // below. More precisely, this number of bits suffice if the multiplicative 1382 // inverse exists, but may not suffice for the general extended Euclidean 1383 // algorithm. 1384 1385 APInt r[2] = { modulo, *this }; 1386 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1387 APInt q(BitWidth, 0); 1388 1389 unsigned i; 1390 for (i = 0; r[i^1] != 0; i ^= 1) { 1391 // An overview of the math without the confusing bit-flipping: 1392 // q = r[i-2] / r[i-1] 1393 // r[i] = r[i-2] % r[i-1] 1394 // t[i] = t[i-2] - t[i-1] * q 1395 udivrem(r[i], r[i^1], q, r[i]); 1396 t[i] -= t[i^1] * q; 1397 } 1398 1399 // If this APInt and the modulo are not coprime, there is no multiplicative 1400 // inverse, so return 0. We check this by looking at the next-to-last 1401 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1402 // algorithm. 1403 if (r[i] != 1) 1404 return APInt(BitWidth, 0); 1405 1406 // The next-to-last t is the multiplicative inverse. However, we are 1407 // interested in a positive inverse. Calcuate a positive one from a negative 1408 // one if necessary. A simple addition of the modulo suffices because 1409 // abs(t[i]) is known to be less than *this/2 (see the link above). 1410 return t[i].isNegative() ? t[i] + modulo : t[i]; 1411 } 1412 1413 /// Calculate the magic numbers required to implement a signed integer division 1414 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1415 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1416 /// Warren, Jr., chapter 10. 1417 APInt::ms APInt::magic() const { 1418 const APInt& d = *this; 1419 unsigned p; 1420 APInt ad, anc, delta, q1, r1, q2, r2, t; 1421 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1422 struct ms mag; 1423 1424 ad = d.abs(); 1425 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1426 anc = t - 1 - t.urem(ad); // absolute value of nc 1427 p = d.getBitWidth() - 1; // initialize p 1428 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1429 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1430 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1431 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1432 do { 1433 p = p + 1; 1434 q1 = q1<<1; // update q1 = 2p/abs(nc) 1435 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1436 if (r1.uge(anc)) { // must be unsigned comparison 1437 q1 = q1 + 1; 1438 r1 = r1 - anc; 1439 } 1440 q2 = q2<<1; // update q2 = 2p/abs(d) 1441 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1442 if (r2.uge(ad)) { // must be unsigned comparison 1443 q2 = q2 + 1; 1444 r2 = r2 - ad; 1445 } 1446 delta = ad - r2; 1447 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1448 1449 mag.m = q2 + 1; 1450 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1451 mag.s = p - d.getBitWidth(); // resulting shift 1452 return mag; 1453 } 1454 1455 /// Calculate the magic numbers required to implement an unsigned integer 1456 /// division by a constant as a sequence of multiplies, adds and shifts. 1457 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1458 /// S. Warren, Jr., chapter 10. 1459 /// LeadingZeros can be used to simplify the calculation if the upper bits 1460 /// of the divided value are known zero. 1461 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1462 const APInt& d = *this; 1463 unsigned p; 1464 APInt nc, delta, q1, r1, q2, r2; 1465 struct mu magu; 1466 magu.a = 0; // initialize "add" indicator 1467 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1468 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1469 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1470 1471 nc = allOnes - (allOnes - d).urem(d); 1472 p = d.getBitWidth() - 1; // initialize p 1473 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1474 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1475 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1476 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1477 do { 1478 p = p + 1; 1479 if (r1.uge(nc - r1)) { 1480 q1 = q1 + q1 + 1; // update q1 1481 r1 = r1 + r1 - nc; // update r1 1482 } 1483 else { 1484 q1 = q1+q1; // update q1 1485 r1 = r1+r1; // update r1 1486 } 1487 if ((r2 + 1).uge(d - r2)) { 1488 if (q2.uge(signedMax)) magu.a = 1; 1489 q2 = q2+q2 + 1; // update q2 1490 r2 = r2+r2 + 1 - d; // update r2 1491 } 1492 else { 1493 if (q2.uge(signedMin)) magu.a = 1; 1494 q2 = q2+q2; // update q2 1495 r2 = r2+r2 + 1; // update r2 1496 } 1497 delta = d - 1 - r2; 1498 } while (p < d.getBitWidth()*2 && 1499 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1500 magu.m = q2 + 1; // resulting magic number 1501 magu.s = p - d.getBitWidth(); // resulting shift 1502 return magu; 1503 } 1504 1505 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1506 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1507 /// variables here have the same names as in the algorithm. Comments explain 1508 /// the algorithm and any deviation from it. 1509 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1510 unsigned m, unsigned n) { 1511 assert(u && "Must provide dividend"); 1512 assert(v && "Must provide divisor"); 1513 assert(q && "Must provide quotient"); 1514 assert(u != v && u != q && v != q && "Must use different memory"); 1515 assert(n>1 && "n must be > 1"); 1516 1517 // b denotes the base of the number system. In our case b is 2^32. 1518 LLVM_CONSTEXPR uint64_t b = uint64_t(1) << 32; 1519 1520 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1521 DEBUG(dbgs() << "KnuthDiv: original:"); 1522 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1523 DEBUG(dbgs() << " by"); 1524 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1525 DEBUG(dbgs() << '\n'); 1526 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1527 // u and v by d. Note that we have taken Knuth's advice here to use a power 1528 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1529 // 2 allows us to shift instead of multiply and it is easy to determine the 1530 // shift amount from the leading zeros. We are basically normalizing the u 1531 // and v so that its high bits are shifted to the top of v's range without 1532 // overflow. Note that this can require an extra word in u so that u must 1533 // be of length m+n+1. 1534 unsigned shift = countLeadingZeros(v[n-1]); 1535 unsigned v_carry = 0; 1536 unsigned u_carry = 0; 1537 if (shift) { 1538 for (unsigned i = 0; i < m+n; ++i) { 1539 unsigned u_tmp = u[i] >> (32 - shift); 1540 u[i] = (u[i] << shift) | u_carry; 1541 u_carry = u_tmp; 1542 } 1543 for (unsigned i = 0; i < n; ++i) { 1544 unsigned v_tmp = v[i] >> (32 - shift); 1545 v[i] = (v[i] << shift) | v_carry; 1546 v_carry = v_tmp; 1547 } 1548 } 1549 u[m+n] = u_carry; 1550 1551 DEBUG(dbgs() << "KnuthDiv: normal:"); 1552 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1553 DEBUG(dbgs() << " by"); 1554 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1555 DEBUG(dbgs() << '\n'); 1556 1557 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1558 int j = m; 1559 do { 1560 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1561 // D3. [Calculate q'.]. 1562 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1563 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1564 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1565 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1566 // on v[n-2] determines at high speed most of the cases in which the trial 1567 // value qp is one too large, and it eliminates all cases where qp is two 1568 // too large. 1569 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1570 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1571 uint64_t qp = dividend / v[n-1]; 1572 uint64_t rp = dividend % v[n-1]; 1573 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1574 qp--; 1575 rp += v[n-1]; 1576 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1577 qp--; 1578 } 1579 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1580 1581 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1582 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1583 // consists of a simple multiplication by a one-place number, combined with 1584 // a subtraction. 1585 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1586 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1587 // true value plus b**(n+1), namely as the b's complement of 1588 // the true value, and a "borrow" to the left should be remembered. 1589 int64_t borrow = 0; 1590 for (unsigned i = 0; i < n; ++i) { 1591 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1592 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; 1593 u[j+i] = (unsigned)subres; 1594 borrow = (p >> 32) - (subres >> 32); 1595 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] 1596 << ", borrow = " << borrow << '\n'); 1597 } 1598 bool isNeg = u[j+n] < borrow; 1599 u[j+n] -= (unsigned)borrow; 1600 1601 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1602 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1603 DEBUG(dbgs() << '\n'); 1604 1605 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1606 // negative, go to step D6; otherwise go on to step D7. 1607 q[j] = (unsigned)qp; 1608 if (isNeg) { 1609 // D6. [Add back]. The probability that this step is necessary is very 1610 // small, on the order of only 2/b. Make sure that test data accounts for 1611 // this possibility. Decrease q[j] by 1 1612 q[j]--; 1613 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1614 // A carry will occur to the left of u[j+n], and it should be ignored 1615 // since it cancels with the borrow that occurred in D4. 1616 bool carry = false; 1617 for (unsigned i = 0; i < n; i++) { 1618 unsigned limit = std::min(u[j+i],v[i]); 1619 u[j+i] += v[i] + carry; 1620 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1621 } 1622 u[j+n] += carry; 1623 } 1624 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1625 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1626 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1627 1628 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1629 } while (--j >= 0); 1630 1631 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1632 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1633 DEBUG(dbgs() << '\n'); 1634 1635 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1636 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1637 // compute the remainder (urem uses this). 1638 if (r) { 1639 // The value d is expressed by the "shift" value above since we avoided 1640 // multiplication by d by using a shift left. So, all we have to do is 1641 // shift right here. In order to mak 1642 if (shift) { 1643 unsigned carry = 0; 1644 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1645 for (int i = n-1; i >= 0; i--) { 1646 r[i] = (u[i] >> shift) | carry; 1647 carry = u[i] << (32 - shift); 1648 DEBUG(dbgs() << " " << r[i]); 1649 } 1650 } else { 1651 for (int i = n-1; i >= 0; i--) { 1652 r[i] = u[i]; 1653 DEBUG(dbgs() << " " << r[i]); 1654 } 1655 } 1656 DEBUG(dbgs() << '\n'); 1657 } 1658 DEBUG(dbgs() << '\n'); 1659 } 1660 1661 void APInt::divide(const APInt LHS, unsigned lhsWords, 1662 const APInt &RHS, unsigned rhsWords, 1663 APInt *Quotient, APInt *Remainder) 1664 { 1665 assert(lhsWords >= rhsWords && "Fractional result"); 1666 1667 // First, compose the values into an array of 32-bit words instead of 1668 // 64-bit words. This is a necessity of both the "short division" algorithm 1669 // and the Knuth "classical algorithm" which requires there to be native 1670 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1671 // can't use 64-bit operands here because we don't have native results of 1672 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1673 // work on large-endian machines. 1674 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1675 unsigned n = rhsWords * 2; 1676 unsigned m = (lhsWords * 2) - n; 1677 1678 // Allocate space for the temporary values we need either on the stack, if 1679 // it will fit, or on the heap if it won't. 1680 unsigned SPACE[128]; 1681 unsigned *U = nullptr; 1682 unsigned *V = nullptr; 1683 unsigned *Q = nullptr; 1684 unsigned *R = nullptr; 1685 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1686 U = &SPACE[0]; 1687 V = &SPACE[m+n+1]; 1688 Q = &SPACE[(m+n+1) + n]; 1689 if (Remainder) 1690 R = &SPACE[(m+n+1) + n + (m+n)]; 1691 } else { 1692 U = new unsigned[m + n + 1]; 1693 V = new unsigned[n]; 1694 Q = new unsigned[m+n]; 1695 if (Remainder) 1696 R = new unsigned[n]; 1697 } 1698 1699 // Initialize the dividend 1700 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1701 for (unsigned i = 0; i < lhsWords; ++i) { 1702 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1703 U[i * 2] = (unsigned)(tmp & mask); 1704 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1705 } 1706 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1707 1708 // Initialize the divisor 1709 memset(V, 0, (n)*sizeof(unsigned)); 1710 for (unsigned i = 0; i < rhsWords; ++i) { 1711 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1712 V[i * 2] = (unsigned)(tmp & mask); 1713 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1714 } 1715 1716 // initialize the quotient and remainder 1717 memset(Q, 0, (m+n) * sizeof(unsigned)); 1718 if (Remainder) 1719 memset(R, 0, n * sizeof(unsigned)); 1720 1721 // Now, adjust m and n for the Knuth division. n is the number of words in 1722 // the divisor. m is the number of words by which the dividend exceeds the 1723 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1724 // contain any zero words or the Knuth algorithm fails. 1725 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1726 n--; 1727 m++; 1728 } 1729 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1730 m--; 1731 1732 // If we're left with only a single word for the divisor, Knuth doesn't work 1733 // so we implement the short division algorithm here. This is much simpler 1734 // and faster because we are certain that we can divide a 64-bit quantity 1735 // by a 32-bit quantity at hardware speed and short division is simply a 1736 // series of such operations. This is just like doing short division but we 1737 // are using base 2^32 instead of base 10. 1738 assert(n != 0 && "Divide by zero?"); 1739 if (n == 1) { 1740 unsigned divisor = V[0]; 1741 unsigned remainder = 0; 1742 for (int i = m+n-1; i >= 0; i--) { 1743 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1744 if (partial_dividend == 0) { 1745 Q[i] = 0; 1746 remainder = 0; 1747 } else if (partial_dividend < divisor) { 1748 Q[i] = 0; 1749 remainder = (unsigned)partial_dividend; 1750 } else if (partial_dividend == divisor) { 1751 Q[i] = 1; 1752 remainder = 0; 1753 } else { 1754 Q[i] = (unsigned)(partial_dividend / divisor); 1755 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1756 } 1757 } 1758 if (R) 1759 R[0] = remainder; 1760 } else { 1761 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1762 // case n > 1. 1763 KnuthDiv(U, V, Q, R, m, n); 1764 } 1765 1766 // If the caller wants the quotient 1767 if (Quotient) { 1768 // Set up the Quotient value's memory. 1769 if (Quotient->BitWidth != LHS.BitWidth) { 1770 if (Quotient->isSingleWord()) 1771 Quotient->VAL = 0; 1772 else 1773 delete [] Quotient->pVal; 1774 Quotient->BitWidth = LHS.BitWidth; 1775 if (!Quotient->isSingleWord()) 1776 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1777 } else 1778 Quotient->clearAllBits(); 1779 1780 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1781 // order words. 1782 // This case is currently dead as all users of divide() handle trivial cases 1783 // earlier. 1784 if (lhsWords == 1) { 1785 uint64_t tmp = 1786 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1787 if (Quotient->isSingleWord()) 1788 Quotient->VAL = tmp; 1789 else 1790 Quotient->pVal[0] = tmp; 1791 } else { 1792 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1793 for (unsigned i = 0; i < lhsWords; ++i) 1794 Quotient->pVal[i] = 1795 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1796 } 1797 } 1798 1799 // If the caller wants the remainder 1800 if (Remainder) { 1801 // Set up the Remainder value's memory. 1802 if (Remainder->BitWidth != RHS.BitWidth) { 1803 if (Remainder->isSingleWord()) 1804 Remainder->VAL = 0; 1805 else 1806 delete [] Remainder->pVal; 1807 Remainder->BitWidth = RHS.BitWidth; 1808 if (!Remainder->isSingleWord()) 1809 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1810 } else 1811 Remainder->clearAllBits(); 1812 1813 // The remainder is in R. Reconstitute the remainder into Remainder's low 1814 // order words. 1815 if (rhsWords == 1) { 1816 uint64_t tmp = 1817 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1818 if (Remainder->isSingleWord()) 1819 Remainder->VAL = tmp; 1820 else 1821 Remainder->pVal[0] = tmp; 1822 } else { 1823 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1824 for (unsigned i = 0; i < rhsWords; ++i) 1825 Remainder->pVal[i] = 1826 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1827 } 1828 } 1829 1830 // Clean up the memory we allocated. 1831 if (U != &SPACE[0]) { 1832 delete [] U; 1833 delete [] V; 1834 delete [] Q; 1835 delete [] R; 1836 } 1837 } 1838 1839 APInt APInt::udiv(const APInt& RHS) const { 1840 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1841 1842 // First, deal with the easy case 1843 if (isSingleWord()) { 1844 assert(RHS.VAL != 0 && "Divide by zero?"); 1845 return APInt(BitWidth, VAL / RHS.VAL); 1846 } 1847 1848 // Get some facts about the LHS and RHS number of bits and words 1849 unsigned rhsBits = RHS.getActiveBits(); 1850 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1851 assert(rhsWords && "Divided by zero???"); 1852 unsigned lhsBits = this->getActiveBits(); 1853 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1854 1855 // Deal with some degenerate cases 1856 if (!lhsWords) 1857 // 0 / X ===> 0 1858 return APInt(BitWidth, 0); 1859 else if (lhsWords < rhsWords || this->ult(RHS)) { 1860 // X / Y ===> 0, iff X < Y 1861 return APInt(BitWidth, 0); 1862 } else if (*this == RHS) { 1863 // X / X ===> 1 1864 return APInt(BitWidth, 1); 1865 } else if (lhsWords == 1 && rhsWords == 1) { 1866 // All high words are zero, just use native divide 1867 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1868 } 1869 1870 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1871 APInt Quotient(1,0); // to hold result. 1872 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); 1873 return Quotient; 1874 } 1875 1876 APInt APInt::sdiv(const APInt &RHS) const { 1877 if (isNegative()) { 1878 if (RHS.isNegative()) 1879 return (-(*this)).udiv(-RHS); 1880 return -((-(*this)).udiv(RHS)); 1881 } 1882 if (RHS.isNegative()) 1883 return -(this->udiv(-RHS)); 1884 return this->udiv(RHS); 1885 } 1886 1887 APInt APInt::urem(const APInt& RHS) const { 1888 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1889 if (isSingleWord()) { 1890 assert(RHS.VAL != 0 && "Remainder by zero?"); 1891 return APInt(BitWidth, VAL % RHS.VAL); 1892 } 1893 1894 // Get some facts about the LHS 1895 unsigned lhsBits = getActiveBits(); 1896 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1897 1898 // Get some facts about the RHS 1899 unsigned rhsBits = RHS.getActiveBits(); 1900 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1901 assert(rhsWords && "Performing remainder operation by zero ???"); 1902 1903 // Check the degenerate cases 1904 if (lhsWords == 0) { 1905 // 0 % Y ===> 0 1906 return APInt(BitWidth, 0); 1907 } else if (lhsWords < rhsWords || this->ult(RHS)) { 1908 // X % Y ===> X, iff X < Y 1909 return *this; 1910 } else if (*this == RHS) { 1911 // X % X == 0; 1912 return APInt(BitWidth, 0); 1913 } else if (lhsWords == 1) { 1914 // All high words are zero, just use native remainder 1915 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 1916 } 1917 1918 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1919 APInt Remainder(1,0); 1920 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); 1921 return Remainder; 1922 } 1923 1924 APInt APInt::srem(const APInt &RHS) const { 1925 if (isNegative()) { 1926 if (RHS.isNegative()) 1927 return -((-(*this)).urem(-RHS)); 1928 return -((-(*this)).urem(RHS)); 1929 } 1930 if (RHS.isNegative()) 1931 return this->urem(-RHS); 1932 return this->urem(RHS); 1933 } 1934 1935 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1936 APInt &Quotient, APInt &Remainder) { 1937 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1938 1939 // First, deal with the easy case 1940 if (LHS.isSingleWord()) { 1941 assert(RHS.VAL != 0 && "Divide by zero?"); 1942 uint64_t QuotVal = LHS.VAL / RHS.VAL; 1943 uint64_t RemVal = LHS.VAL % RHS.VAL; 1944 Quotient = APInt(LHS.BitWidth, QuotVal); 1945 Remainder = APInt(LHS.BitWidth, RemVal); 1946 return; 1947 } 1948 1949 // Get some size facts about the dividend and divisor 1950 unsigned lhsBits = LHS.getActiveBits(); 1951 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1952 unsigned rhsBits = RHS.getActiveBits(); 1953 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1954 1955 // Check the degenerate cases 1956 if (lhsWords == 0) { 1957 Quotient = 0; // 0 / Y ===> 0 1958 Remainder = 0; // 0 % Y ===> 0 1959 return; 1960 } 1961 1962 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1963 Remainder = LHS; // X % Y ===> X, iff X < Y 1964 Quotient = 0; // X / Y ===> 0, iff X < Y 1965 return; 1966 } 1967 1968 if (LHS == RHS) { 1969 Quotient = 1; // X / X ===> 1 1970 Remainder = 0; // X % X ===> 0; 1971 return; 1972 } 1973 1974 if (lhsWords == 1 && rhsWords == 1) { 1975 // There is only one word to consider so use the native versions. 1976 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 1977 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 1978 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 1979 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 1980 return; 1981 } 1982 1983 // Okay, lets do it the long way 1984 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 1985 } 1986 1987 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1988 APInt &Quotient, APInt &Remainder) { 1989 if (LHS.isNegative()) { 1990 if (RHS.isNegative()) 1991 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1992 else { 1993 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1994 Quotient = -Quotient; 1995 } 1996 Remainder = -Remainder; 1997 } else if (RHS.isNegative()) { 1998 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1999 Quotient = -Quotient; 2000 } else { 2001 APInt::udivrem(LHS, RHS, Quotient, Remainder); 2002 } 2003 } 2004 2005 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 2006 APInt Res = *this+RHS; 2007 Overflow = isNonNegative() == RHS.isNonNegative() && 2008 Res.isNonNegative() != isNonNegative(); 2009 return Res; 2010 } 2011 2012 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 2013 APInt Res = *this+RHS; 2014 Overflow = Res.ult(RHS); 2015 return Res; 2016 } 2017 2018 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 2019 APInt Res = *this - RHS; 2020 Overflow = isNonNegative() != RHS.isNonNegative() && 2021 Res.isNonNegative() != isNonNegative(); 2022 return Res; 2023 } 2024 2025 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 2026 APInt Res = *this-RHS; 2027 Overflow = Res.ugt(*this); 2028 return Res; 2029 } 2030 2031 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2032 // MININT/-1 --> overflow. 2033 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2034 return sdiv(RHS); 2035 } 2036 2037 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2038 APInt Res = *this * RHS; 2039 2040 if (*this != 0 && RHS != 0) 2041 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2042 else 2043 Overflow = false; 2044 return Res; 2045 } 2046 2047 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2048 APInt Res = *this * RHS; 2049 2050 if (*this != 0 && RHS != 0) 2051 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2052 else 2053 Overflow = false; 2054 return Res; 2055 } 2056 2057 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 2058 Overflow = ShAmt.uge(getBitWidth()); 2059 if (Overflow) 2060 return APInt(BitWidth, 0); 2061 2062 if (isNonNegative()) // Don't allow sign change. 2063 Overflow = ShAmt.uge(countLeadingZeros()); 2064 else 2065 Overflow = ShAmt.uge(countLeadingOnes()); 2066 2067 return *this << ShAmt; 2068 } 2069 2070 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 2071 Overflow = ShAmt.uge(getBitWidth()); 2072 if (Overflow) 2073 return APInt(BitWidth, 0); 2074 2075 Overflow = ShAmt.ugt(countLeadingZeros()); 2076 2077 return *this << ShAmt; 2078 } 2079 2080 2081 2082 2083 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2084 // Check our assumptions here 2085 assert(!str.empty() && "Invalid string length"); 2086 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2087 radix == 36) && 2088 "Radix should be 2, 8, 10, 16, or 36!"); 2089 2090 StringRef::iterator p = str.begin(); 2091 size_t slen = str.size(); 2092 bool isNeg = *p == '-'; 2093 if (*p == '-' || *p == '+') { 2094 p++; 2095 slen--; 2096 assert(slen && "String is only a sign, needs a value."); 2097 } 2098 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2099 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2100 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2101 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2102 "Insufficient bit width"); 2103 2104 // Allocate memory 2105 if (!isSingleWord()) 2106 pVal = getClearedMemory(getNumWords()); 2107 2108 // Figure out if we can shift instead of multiply 2109 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2110 2111 // Set up an APInt for the digit to add outside the loop so we don't 2112 // constantly construct/destruct it. 2113 APInt apdigit(getBitWidth(), 0); 2114 APInt apradix(getBitWidth(), radix); 2115 2116 // Enter digit traversal loop 2117 for (StringRef::iterator e = str.end(); p != e; ++p) { 2118 unsigned digit = getDigit(*p, radix); 2119 assert(digit < radix && "Invalid character in digit string"); 2120 2121 // Shift or multiply the value by the radix 2122 if (slen > 1) { 2123 if (shift) 2124 *this <<= shift; 2125 else 2126 *this *= apradix; 2127 } 2128 2129 // Add in the digit we just interpreted 2130 if (apdigit.isSingleWord()) 2131 apdigit.VAL = digit; 2132 else 2133 apdigit.pVal[0] = digit; 2134 *this += apdigit; 2135 } 2136 // If its negative, put it in two's complement form 2137 if (isNeg) { 2138 --(*this); 2139 this->flipAllBits(); 2140 } 2141 } 2142 2143 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2144 bool Signed, bool formatAsCLiteral) const { 2145 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2146 Radix == 36) && 2147 "Radix should be 2, 8, 10, 16, or 36!"); 2148 2149 const char *Prefix = ""; 2150 if (formatAsCLiteral) { 2151 switch (Radix) { 2152 case 2: 2153 // Binary literals are a non-standard extension added in gcc 4.3: 2154 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2155 Prefix = "0b"; 2156 break; 2157 case 8: 2158 Prefix = "0"; 2159 break; 2160 case 10: 2161 break; // No prefix 2162 case 16: 2163 Prefix = "0x"; 2164 break; 2165 default: 2166 llvm_unreachable("Invalid radix!"); 2167 } 2168 } 2169 2170 // First, check for a zero value and just short circuit the logic below. 2171 if (*this == 0) { 2172 while (*Prefix) { 2173 Str.push_back(*Prefix); 2174 ++Prefix; 2175 }; 2176 Str.push_back('0'); 2177 return; 2178 } 2179 2180 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2181 2182 if (isSingleWord()) { 2183 char Buffer[65]; 2184 char *BufPtr = Buffer+65; 2185 2186 uint64_t N; 2187 if (!Signed) { 2188 N = getZExtValue(); 2189 } else { 2190 int64_t I = getSExtValue(); 2191 if (I >= 0) { 2192 N = I; 2193 } else { 2194 Str.push_back('-'); 2195 N = -(uint64_t)I; 2196 } 2197 } 2198 2199 while (*Prefix) { 2200 Str.push_back(*Prefix); 2201 ++Prefix; 2202 }; 2203 2204 while (N) { 2205 *--BufPtr = Digits[N % Radix]; 2206 N /= Radix; 2207 } 2208 Str.append(BufPtr, Buffer+65); 2209 return; 2210 } 2211 2212 APInt Tmp(*this); 2213 2214 if (Signed && isNegative()) { 2215 // They want to print the signed version and it is a negative value 2216 // Flip the bits and add one to turn it into the equivalent positive 2217 // value and put a '-' in the result. 2218 Tmp.flipAllBits(); 2219 ++Tmp; 2220 Str.push_back('-'); 2221 } 2222 2223 while (*Prefix) { 2224 Str.push_back(*Prefix); 2225 ++Prefix; 2226 }; 2227 2228 // We insert the digits backward, then reverse them to get the right order. 2229 unsigned StartDig = Str.size(); 2230 2231 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2232 // because the number of bits per digit (1, 3 and 4 respectively) divides 2233 // equaly. We just shift until the value is zero. 2234 if (Radix == 2 || Radix == 8 || Radix == 16) { 2235 // Just shift tmp right for each digit width until it becomes zero 2236 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2237 unsigned MaskAmt = Radix - 1; 2238 2239 while (Tmp != 0) { 2240 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2241 Str.push_back(Digits[Digit]); 2242 Tmp = Tmp.lshr(ShiftAmt); 2243 } 2244 } else { 2245 APInt divisor(Radix == 10? 4 : 8, Radix); 2246 while (Tmp != 0) { 2247 APInt APdigit(1, 0); 2248 APInt tmp2(Tmp.getBitWidth(), 0); 2249 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2250 &APdigit); 2251 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2252 assert(Digit < Radix && "divide failed"); 2253 Str.push_back(Digits[Digit]); 2254 Tmp = tmp2; 2255 } 2256 } 2257 2258 // Reverse the digits before returning. 2259 std::reverse(Str.begin()+StartDig, Str.end()); 2260 } 2261 2262 /// Returns the APInt as a std::string. Note that this is an inefficient method. 2263 /// It is better to pass in a SmallVector/SmallString to the methods above. 2264 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2265 SmallString<40> S; 2266 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2267 return S.str(); 2268 } 2269 2270 2271 void APInt::dump() const { 2272 SmallString<40> S, U; 2273 this->toStringUnsigned(U); 2274 this->toStringSigned(S); 2275 dbgs() << "APInt(" << BitWidth << "b, " 2276 << U << "u " << S << "s)"; 2277 } 2278 2279 void APInt::print(raw_ostream &OS, bool isSigned) const { 2280 SmallString<40> S; 2281 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2282 OS << S; 2283 } 2284 2285 // This implements a variety of operations on a representation of 2286 // arbitrary precision, two's-complement, bignum integer values. 2287 2288 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2289 // and unrestricting assumption. 2290 static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!"); 2291 2292 /* Some handy functions local to this file. */ 2293 namespace { 2294 2295 /* Returns the integer part with the least significant BITS set. 2296 BITS cannot be zero. */ 2297 static inline integerPart 2298 lowBitMask(unsigned int bits) 2299 { 2300 assert(bits != 0 && bits <= integerPartWidth); 2301 2302 return ~(integerPart) 0 >> (integerPartWidth - bits); 2303 } 2304 2305 /* Returns the value of the lower half of PART. */ 2306 static inline integerPart 2307 lowHalf(integerPart part) 2308 { 2309 return part & lowBitMask(integerPartWidth / 2); 2310 } 2311 2312 /* Returns the value of the upper half of PART. */ 2313 static inline integerPart 2314 highHalf(integerPart part) 2315 { 2316 return part >> (integerPartWidth / 2); 2317 } 2318 2319 /* Returns the bit number of the most significant set bit of a part. 2320 If the input number has no bits set -1U is returned. */ 2321 static unsigned int 2322 partMSB(integerPart value) 2323 { 2324 return findLastSet(value, ZB_Max); 2325 } 2326 2327 /* Returns the bit number of the least significant set bit of a 2328 part. If the input number has no bits set -1U is returned. */ 2329 static unsigned int 2330 partLSB(integerPart value) 2331 { 2332 return findFirstSet(value, ZB_Max); 2333 } 2334 } 2335 2336 /* Sets the least significant part of a bignum to the input value, and 2337 zeroes out higher parts. */ 2338 void 2339 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) 2340 { 2341 unsigned int i; 2342 2343 assert(parts > 0); 2344 2345 dst[0] = part; 2346 for (i = 1; i < parts; i++) 2347 dst[i] = 0; 2348 } 2349 2350 /* Assign one bignum to another. */ 2351 void 2352 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) 2353 { 2354 unsigned int i; 2355 2356 for (i = 0; i < parts; i++) 2357 dst[i] = src[i]; 2358 } 2359 2360 /* Returns true if a bignum is zero, false otherwise. */ 2361 bool 2362 APInt::tcIsZero(const integerPart *src, unsigned int parts) 2363 { 2364 unsigned int i; 2365 2366 for (i = 0; i < parts; i++) 2367 if (src[i]) 2368 return false; 2369 2370 return true; 2371 } 2372 2373 /* Extract the given bit of a bignum; returns 0 or 1. */ 2374 int 2375 APInt::tcExtractBit(const integerPart *parts, unsigned int bit) 2376 { 2377 return (parts[bit / integerPartWidth] & 2378 ((integerPart) 1 << bit % integerPartWidth)) != 0; 2379 } 2380 2381 /* Set the given bit of a bignum. */ 2382 void 2383 APInt::tcSetBit(integerPart *parts, unsigned int bit) 2384 { 2385 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); 2386 } 2387 2388 /* Clears the given bit of a bignum. */ 2389 void 2390 APInt::tcClearBit(integerPart *parts, unsigned int bit) 2391 { 2392 parts[bit / integerPartWidth] &= 2393 ~((integerPart) 1 << (bit % integerPartWidth)); 2394 } 2395 2396 /* Returns the bit number of the least significant set bit of a 2397 number. If the input number has no bits set -1U is returned. */ 2398 unsigned int 2399 APInt::tcLSB(const integerPart *parts, unsigned int n) 2400 { 2401 unsigned int i, lsb; 2402 2403 for (i = 0; i < n; i++) { 2404 if (parts[i] != 0) { 2405 lsb = partLSB(parts[i]); 2406 2407 return lsb + i * integerPartWidth; 2408 } 2409 } 2410 2411 return -1U; 2412 } 2413 2414 /* Returns the bit number of the most significant set bit of a number. 2415 If the input number has no bits set -1U is returned. */ 2416 unsigned int 2417 APInt::tcMSB(const integerPart *parts, unsigned int n) 2418 { 2419 unsigned int msb; 2420 2421 do { 2422 --n; 2423 2424 if (parts[n] != 0) { 2425 msb = partMSB(parts[n]); 2426 2427 return msb + n * integerPartWidth; 2428 } 2429 } while (n); 2430 2431 return -1U; 2432 } 2433 2434 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2435 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2436 the least significant bit of DST. All high bits above srcBITS in 2437 DST are zero-filled. */ 2438 void 2439 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, 2440 unsigned int srcBits, unsigned int srcLSB) 2441 { 2442 unsigned int firstSrcPart, dstParts, shift, n; 2443 2444 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; 2445 assert(dstParts <= dstCount); 2446 2447 firstSrcPart = srcLSB / integerPartWidth; 2448 tcAssign (dst, src + firstSrcPart, dstParts); 2449 2450 shift = srcLSB % integerPartWidth; 2451 tcShiftRight (dst, dstParts, shift); 2452 2453 /* We now have (dstParts * integerPartWidth - shift) bits from SRC 2454 in DST. If this is less that srcBits, append the rest, else 2455 clear the high bits. */ 2456 n = dstParts * integerPartWidth - shift; 2457 if (n < srcBits) { 2458 integerPart mask = lowBitMask (srcBits - n); 2459 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2460 << n % integerPartWidth); 2461 } else if (n > srcBits) { 2462 if (srcBits % integerPartWidth) 2463 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); 2464 } 2465 2466 /* Clear high parts. */ 2467 while (dstParts < dstCount) 2468 dst[dstParts++] = 0; 2469 } 2470 2471 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2472 integerPart 2473 APInt::tcAdd(integerPart *dst, const integerPart *rhs, 2474 integerPart c, unsigned int parts) 2475 { 2476 unsigned int i; 2477 2478 assert(c <= 1); 2479 2480 for (i = 0; i < parts; i++) { 2481 integerPart l; 2482 2483 l = dst[i]; 2484 if (c) { 2485 dst[i] += rhs[i] + 1; 2486 c = (dst[i] <= l); 2487 } else { 2488 dst[i] += rhs[i]; 2489 c = (dst[i] < l); 2490 } 2491 } 2492 2493 return c; 2494 } 2495 2496 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2497 integerPart 2498 APInt::tcSubtract(integerPart *dst, const integerPart *rhs, 2499 integerPart c, unsigned int parts) 2500 { 2501 unsigned int i; 2502 2503 assert(c <= 1); 2504 2505 for (i = 0; i < parts; i++) { 2506 integerPart l; 2507 2508 l = dst[i]; 2509 if (c) { 2510 dst[i] -= rhs[i] + 1; 2511 c = (dst[i] >= l); 2512 } else { 2513 dst[i] -= rhs[i]; 2514 c = (dst[i] > l); 2515 } 2516 } 2517 2518 return c; 2519 } 2520 2521 /* Negate a bignum in-place. */ 2522 void 2523 APInt::tcNegate(integerPart *dst, unsigned int parts) 2524 { 2525 tcComplement(dst, parts); 2526 tcIncrement(dst, parts); 2527 } 2528 2529 /* DST += SRC * MULTIPLIER + CARRY if add is true 2530 DST = SRC * MULTIPLIER + CARRY if add is false 2531 2532 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2533 they must start at the same point, i.e. DST == SRC. 2534 2535 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2536 returned. Otherwise DST is filled with the least significant 2537 DSTPARTS parts of the result, and if all of the omitted higher 2538 parts were zero return zero, otherwise overflow occurred and 2539 return one. */ 2540 int 2541 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, 2542 integerPart multiplier, integerPart carry, 2543 unsigned int srcParts, unsigned int dstParts, 2544 bool add) 2545 { 2546 unsigned int i, n; 2547 2548 /* Otherwise our writes of DST kill our later reads of SRC. */ 2549 assert(dst <= src || dst >= src + srcParts); 2550 assert(dstParts <= srcParts + 1); 2551 2552 /* N loops; minimum of dstParts and srcParts. */ 2553 n = dstParts < srcParts ? dstParts: srcParts; 2554 2555 for (i = 0; i < n; i++) { 2556 integerPart low, mid, high, srcPart; 2557 2558 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2559 2560 This cannot overflow, because 2561 2562 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2563 2564 which is less than n^2. */ 2565 2566 srcPart = src[i]; 2567 2568 if (multiplier == 0 || srcPart == 0) { 2569 low = carry; 2570 high = 0; 2571 } else { 2572 low = lowHalf(srcPart) * lowHalf(multiplier); 2573 high = highHalf(srcPart) * highHalf(multiplier); 2574 2575 mid = lowHalf(srcPart) * highHalf(multiplier); 2576 high += highHalf(mid); 2577 mid <<= integerPartWidth / 2; 2578 if (low + mid < low) 2579 high++; 2580 low += mid; 2581 2582 mid = highHalf(srcPart) * lowHalf(multiplier); 2583 high += highHalf(mid); 2584 mid <<= integerPartWidth / 2; 2585 if (low + mid < low) 2586 high++; 2587 low += mid; 2588 2589 /* Now add carry. */ 2590 if (low + carry < low) 2591 high++; 2592 low += carry; 2593 } 2594 2595 if (add) { 2596 /* And now DST[i], and store the new low part there. */ 2597 if (low + dst[i] < low) 2598 high++; 2599 dst[i] += low; 2600 } else 2601 dst[i] = low; 2602 2603 carry = high; 2604 } 2605 2606 if (i < dstParts) { 2607 /* Full multiplication, there is no overflow. */ 2608 assert(i + 1 == dstParts); 2609 dst[i] = carry; 2610 return 0; 2611 } else { 2612 /* We overflowed if there is carry. */ 2613 if (carry) 2614 return 1; 2615 2616 /* We would overflow if any significant unwritten parts would be 2617 non-zero. This is true if any remaining src parts are non-zero 2618 and the multiplier is non-zero. */ 2619 if (multiplier) 2620 for (; i < srcParts; i++) 2621 if (src[i]) 2622 return 1; 2623 2624 /* We fitted in the narrow destination. */ 2625 return 0; 2626 } 2627 } 2628 2629 /* DST = LHS * RHS, where DST has the same width as the operands and 2630 is filled with the least significant parts of the result. Returns 2631 one if overflow occurred, otherwise zero. DST must be disjoint 2632 from both operands. */ 2633 int 2634 APInt::tcMultiply(integerPart *dst, const integerPart *lhs, 2635 const integerPart *rhs, unsigned int parts) 2636 { 2637 unsigned int i; 2638 int overflow; 2639 2640 assert(dst != lhs && dst != rhs); 2641 2642 overflow = 0; 2643 tcSet(dst, 0, parts); 2644 2645 for (i = 0; i < parts; i++) 2646 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2647 parts - i, true); 2648 2649 return overflow; 2650 } 2651 2652 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2653 operands. No overflow occurs. DST must be disjoint from both 2654 operands. Returns the number of parts required to hold the 2655 result. */ 2656 unsigned int 2657 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, 2658 const integerPart *rhs, unsigned int lhsParts, 2659 unsigned int rhsParts) 2660 { 2661 /* Put the narrower number on the LHS for less loops below. */ 2662 if (lhsParts > rhsParts) { 2663 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2664 } else { 2665 unsigned int n; 2666 2667 assert(dst != lhs && dst != rhs); 2668 2669 tcSet(dst, 0, rhsParts); 2670 2671 for (n = 0; n < lhsParts; n++) 2672 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); 2673 2674 n = lhsParts + rhsParts; 2675 2676 return n - (dst[n - 1] == 0); 2677 } 2678 } 2679 2680 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2681 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2682 set REMAINDER to the remainder, return zero. i.e. 2683 2684 OLD_LHS = RHS * LHS + REMAINDER 2685 2686 SCRATCH is a bignum of the same size as the operands and result for 2687 use by the routine; its contents need not be initialized and are 2688 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2689 */ 2690 int 2691 APInt::tcDivide(integerPart *lhs, const integerPart *rhs, 2692 integerPart *remainder, integerPart *srhs, 2693 unsigned int parts) 2694 { 2695 unsigned int n, shiftCount; 2696 integerPart mask; 2697 2698 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2699 2700 shiftCount = tcMSB(rhs, parts) + 1; 2701 if (shiftCount == 0) 2702 return true; 2703 2704 shiftCount = parts * integerPartWidth - shiftCount; 2705 n = shiftCount / integerPartWidth; 2706 mask = (integerPart) 1 << (shiftCount % integerPartWidth); 2707 2708 tcAssign(srhs, rhs, parts); 2709 tcShiftLeft(srhs, parts, shiftCount); 2710 tcAssign(remainder, lhs, parts); 2711 tcSet(lhs, 0, parts); 2712 2713 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2714 the total. */ 2715 for (;;) { 2716 int compare; 2717 2718 compare = tcCompare(remainder, srhs, parts); 2719 if (compare >= 0) { 2720 tcSubtract(remainder, srhs, 0, parts); 2721 lhs[n] |= mask; 2722 } 2723 2724 if (shiftCount == 0) 2725 break; 2726 shiftCount--; 2727 tcShiftRight(srhs, parts, 1); 2728 if ((mask >>= 1) == 0) 2729 mask = (integerPart) 1 << (integerPartWidth - 1), n--; 2730 } 2731 2732 return false; 2733 } 2734 2735 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2736 There are no restrictions on COUNT. */ 2737 void 2738 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) 2739 { 2740 if (count) { 2741 unsigned int jump, shift; 2742 2743 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2744 jump = count / integerPartWidth; 2745 shift = count % integerPartWidth; 2746 2747 while (parts > jump) { 2748 integerPart part; 2749 2750 parts--; 2751 2752 /* dst[i] comes from the two parts src[i - jump] and, if we have 2753 an intra-part shift, src[i - jump - 1]. */ 2754 part = dst[parts - jump]; 2755 if (shift) { 2756 part <<= shift; 2757 if (parts >= jump + 1) 2758 part |= dst[parts - jump - 1] >> (integerPartWidth - shift); 2759 } 2760 2761 dst[parts] = part; 2762 } 2763 2764 while (parts > 0) 2765 dst[--parts] = 0; 2766 } 2767 } 2768 2769 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2770 zero. There are no restrictions on COUNT. */ 2771 void 2772 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) 2773 { 2774 if (count) { 2775 unsigned int i, jump, shift; 2776 2777 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2778 jump = count / integerPartWidth; 2779 shift = count % integerPartWidth; 2780 2781 /* Perform the shift. This leaves the most significant COUNT bits 2782 of the result at zero. */ 2783 for (i = 0; i < parts; i++) { 2784 integerPart part; 2785 2786 if (i + jump >= parts) { 2787 part = 0; 2788 } else { 2789 part = dst[i + jump]; 2790 if (shift) { 2791 part >>= shift; 2792 if (i + jump + 1 < parts) 2793 part |= dst[i + jump + 1] << (integerPartWidth - shift); 2794 } 2795 } 2796 2797 dst[i] = part; 2798 } 2799 } 2800 } 2801 2802 /* Bitwise and of two bignums. */ 2803 void 2804 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) 2805 { 2806 unsigned int i; 2807 2808 for (i = 0; i < parts; i++) 2809 dst[i] &= rhs[i]; 2810 } 2811 2812 /* Bitwise inclusive or of two bignums. */ 2813 void 2814 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) 2815 { 2816 unsigned int i; 2817 2818 for (i = 0; i < parts; i++) 2819 dst[i] |= rhs[i]; 2820 } 2821 2822 /* Bitwise exclusive or of two bignums. */ 2823 void 2824 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) 2825 { 2826 unsigned int i; 2827 2828 for (i = 0; i < parts; i++) 2829 dst[i] ^= rhs[i]; 2830 } 2831 2832 /* Complement a bignum in-place. */ 2833 void 2834 APInt::tcComplement(integerPart *dst, unsigned int parts) 2835 { 2836 unsigned int i; 2837 2838 for (i = 0; i < parts; i++) 2839 dst[i] = ~dst[i]; 2840 } 2841 2842 /* Comparison (unsigned) of two bignums. */ 2843 int 2844 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, 2845 unsigned int parts) 2846 { 2847 while (parts) { 2848 parts--; 2849 if (lhs[parts] == rhs[parts]) 2850 continue; 2851 2852 if (lhs[parts] > rhs[parts]) 2853 return 1; 2854 else 2855 return -1; 2856 } 2857 2858 return 0; 2859 } 2860 2861 /* Increment a bignum in-place, return the carry flag. */ 2862 integerPart 2863 APInt::tcIncrement(integerPart *dst, unsigned int parts) 2864 { 2865 unsigned int i; 2866 2867 for (i = 0; i < parts; i++) 2868 if (++dst[i] != 0) 2869 break; 2870 2871 return i == parts; 2872 } 2873 2874 /* Decrement a bignum in-place, return the borrow flag. */ 2875 integerPart 2876 APInt::tcDecrement(integerPart *dst, unsigned int parts) { 2877 for (unsigned int i = 0; i < parts; i++) { 2878 // If the current word is non-zero, then the decrement has no effect on the 2879 // higher-order words of the integer and no borrow can occur. Exit early. 2880 if (dst[i]--) 2881 return 0; 2882 } 2883 // If every word was zero, then there is a borrow. 2884 return 1; 2885 } 2886 2887 2888 /* Set the least significant BITS bits of a bignum, clear the 2889 rest. */ 2890 void 2891 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, 2892 unsigned int bits) 2893 { 2894 unsigned int i; 2895 2896 i = 0; 2897 while (bits > integerPartWidth) { 2898 dst[i++] = ~(integerPart) 0; 2899 bits -= integerPartWidth; 2900 } 2901 2902 if (bits) 2903 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); 2904 2905 while (i < parts) 2906 dst[i++] = 0; 2907 } 2908