1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defined the types Store and StoreManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 20 21 using namespace clang; 22 using namespace ento; 23 24 StoreManager::StoreManager(ProgramStateManager &stateMgr) 25 : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr), 26 MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {} 27 28 StoreRef StoreManager::enterStackFrame(Store OldStore, 29 const CallEvent &Call, 30 const StackFrameContext *LCtx) { 31 StoreRef Store = StoreRef(OldStore, *this); 32 33 SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings; 34 Call.getInitialStackFrameContents(LCtx, InitialBindings); 35 36 for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(), 37 E = InitialBindings.end(); 38 I != E; ++I) { 39 Store = Bind(Store.getStore(), I->first, I->second); 40 } 41 42 return Store; 43 } 44 45 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base, 46 QualType EleTy, uint64_t index) { 47 NonLoc idx = svalBuilder.makeArrayIndex(index); 48 return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext()); 49 } 50 51 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) { 52 return StoreRef(store, *this); 53 } 54 55 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R, 56 QualType T) { 57 NonLoc idx = svalBuilder.makeZeroArrayIndex(); 58 assert(!T.isNull()); 59 return MRMgr.getElementRegion(T, idx, R, Ctx); 60 } 61 62 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) { 63 64 ASTContext &Ctx = StateMgr.getContext(); 65 66 // Handle casts to Objective-C objects. 67 if (CastToTy->isObjCObjectPointerType()) 68 return R->StripCasts(); 69 70 if (CastToTy->isBlockPointerType()) { 71 // FIXME: We may need different solutions, depending on the symbol 72 // involved. Blocks can be casted to/from 'id', as they can be treated 73 // as Objective-C objects. This could possibly be handled by enhancing 74 // our reasoning of downcasts of symbolic objects. 75 if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R)) 76 return R; 77 78 // We don't know what to make of it. Return a NULL region, which 79 // will be interpretted as UnknownVal. 80 return nullptr; 81 } 82 83 // Now assume we are casting from pointer to pointer. Other cases should 84 // already be handled. 85 QualType PointeeTy = CastToTy->getPointeeType(); 86 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 87 88 // Handle casts to void*. We just pass the region through. 89 if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy) 90 return R; 91 92 // Handle casts from compatible types. 93 if (R->isBoundable()) 94 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 95 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 96 if (CanonPointeeTy == ObjTy) 97 return R; 98 } 99 100 // Process region cast according to the kind of the region being cast. 101 switch (R->getKind()) { 102 case MemRegion::CXXThisRegionKind: 103 case MemRegion::GenericMemSpaceRegionKind: 104 case MemRegion::StackLocalsSpaceRegionKind: 105 case MemRegion::StackArgumentsSpaceRegionKind: 106 case MemRegion::HeapSpaceRegionKind: 107 case MemRegion::UnknownSpaceRegionKind: 108 case MemRegion::StaticGlobalSpaceRegionKind: 109 case MemRegion::GlobalInternalSpaceRegionKind: 110 case MemRegion::GlobalSystemSpaceRegionKind: 111 case MemRegion::GlobalImmutableSpaceRegionKind: { 112 llvm_unreachable("Invalid region cast"); 113 } 114 115 case MemRegion::FunctionTextRegionKind: 116 case MemRegion::BlockTextRegionKind: 117 case MemRegion::BlockDataRegionKind: 118 case MemRegion::StringRegionKind: 119 // FIXME: Need to handle arbitrary downcasts. 120 case MemRegion::SymbolicRegionKind: 121 case MemRegion::AllocaRegionKind: 122 case MemRegion::CompoundLiteralRegionKind: 123 case MemRegion::FieldRegionKind: 124 case MemRegion::ObjCIvarRegionKind: 125 case MemRegion::ObjCStringRegionKind: 126 case MemRegion::VarRegionKind: 127 case MemRegion::CXXTempObjectRegionKind: 128 case MemRegion::CXXBaseObjectRegionKind: 129 return MakeElementRegion(R, PointeeTy); 130 131 case MemRegion::ElementRegionKind: { 132 // If we are casting from an ElementRegion to another type, the 133 // algorithm is as follows: 134 // 135 // (1) Compute the "raw offset" of the ElementRegion from the 136 // base region. This is done by calling 'getAsRawOffset()'. 137 // 138 // (2a) If we get a 'RegionRawOffset' after calling 139 // 'getAsRawOffset()', determine if the absolute offset 140 // can be exactly divided into chunks of the size of the 141 // casted-pointee type. If so, create a new ElementRegion with 142 // the pointee-cast type as the new ElementType and the index 143 // being the offset divded by the chunk size. If not, create 144 // a new ElementRegion at offset 0 off the raw offset region. 145 // 146 // (2b) If we don't a get a 'RegionRawOffset' after calling 147 // 'getAsRawOffset()', it means that we are at offset 0. 148 // 149 // FIXME: Handle symbolic raw offsets. 150 151 const ElementRegion *elementR = cast<ElementRegion>(R); 152 const RegionRawOffset &rawOff = elementR->getAsArrayOffset(); 153 const MemRegion *baseR = rawOff.getRegion(); 154 155 // If we cannot compute a raw offset, throw up our hands and return 156 // a NULL MemRegion*. 157 if (!baseR) 158 return nullptr; 159 160 CharUnits off = rawOff.getOffset(); 161 162 if (off.isZero()) { 163 // Edge case: we are at 0 bytes off the beginning of baseR. We 164 // check to see if type we are casting to is the same as the base 165 // region. If so, just return the base region. 166 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) { 167 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 168 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 169 if (CanonPointeeTy == ObjTy) 170 return baseR; 171 } 172 173 // Otherwise, create a new ElementRegion at offset 0. 174 return MakeElementRegion(baseR, PointeeTy); 175 } 176 177 // We have a non-zero offset from the base region. We want to determine 178 // if the offset can be evenly divided by sizeof(PointeeTy). If so, 179 // we create an ElementRegion whose index is that value. Otherwise, we 180 // create two ElementRegions, one that reflects a raw offset and the other 181 // that reflects the cast. 182 183 // Compute the index for the new ElementRegion. 184 int64_t newIndex = 0; 185 const MemRegion *newSuperR = nullptr; 186 187 // We can only compute sizeof(PointeeTy) if it is a complete type. 188 if (!PointeeTy->isIncompleteType()) { 189 // Compute the size in **bytes**. 190 CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy); 191 if (!pointeeTySize.isZero()) { 192 // Is the offset a multiple of the size? If so, we can layer the 193 // ElementRegion (with elementType == PointeeTy) directly on top of 194 // the base region. 195 if (off % pointeeTySize == 0) { 196 newIndex = off / pointeeTySize; 197 newSuperR = baseR; 198 } 199 } 200 } 201 202 if (!newSuperR) { 203 // Create an intermediate ElementRegion to represent the raw byte. 204 // This will be the super region of the final ElementRegion. 205 newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity()); 206 } 207 208 return MakeElementRegion(newSuperR, PointeeTy, newIndex); 209 } 210 } 211 212 llvm_unreachable("unreachable"); 213 } 214 215 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) { 216 const MemRegion *MR = V.getAsRegion(); 217 if (!MR) 218 return true; 219 220 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 221 if (!TVR) 222 return true; 223 224 const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl(); 225 if (!RD) 226 return true; 227 228 const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl(); 229 if (!Expected) 230 Expected = Ty->getAsCXXRecordDecl(); 231 232 return Expected->getCanonicalDecl() == RD->getCanonicalDecl(); 233 } 234 235 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) { 236 // Sanity check to avoid doing the wrong thing in the face of 237 // reinterpret_cast. 238 if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType())) 239 return UnknownVal(); 240 241 // Walk through the cast path to create nested CXXBaseRegions. 242 SVal Result = Derived; 243 for (CastExpr::path_const_iterator I = Cast->path_begin(), 244 E = Cast->path_end(); 245 I != E; ++I) { 246 Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual()); 247 } 248 return Result; 249 } 250 251 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) { 252 // Walk through the path to create nested CXXBaseRegions. 253 SVal Result = Derived; 254 for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end(); 255 I != E; ++I) { 256 Result = evalDerivedToBase(Result, I->Base->getType(), 257 I->Base->isVirtual()); 258 } 259 return Result; 260 } 261 262 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType, 263 bool IsVirtual) { 264 Optional<loc::MemRegionVal> DerivedRegVal = 265 Derived.getAs<loc::MemRegionVal>(); 266 if (!DerivedRegVal) 267 return Derived; 268 269 const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl(); 270 if (!BaseDecl) 271 BaseDecl = BaseType->getAsCXXRecordDecl(); 272 assert(BaseDecl && "not a C++ object?"); 273 274 const MemRegion *BaseReg = 275 MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(), 276 IsVirtual); 277 278 return loc::MemRegionVal(BaseReg); 279 } 280 281 /// Returns the static type of the given region, if it represents a C++ class 282 /// object. 283 /// 284 /// This handles both fully-typed regions, where the dynamic type is known, and 285 /// symbolic regions, where the dynamic type is merely bounded (and even then, 286 /// only ostensibly!), but does not take advantage of any dynamic type info. 287 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) { 288 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR)) 289 return TVR->getValueType()->getAsCXXRecordDecl(); 290 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR)) 291 return SR->getSymbol()->getType()->getPointeeCXXRecordDecl(); 292 return nullptr; 293 } 294 295 SVal StoreManager::evalDynamicCast(SVal Base, QualType TargetType, 296 bool &Failed) { 297 Failed = false; 298 299 const MemRegion *MR = Base.getAsRegion(); 300 if (!MR) 301 return UnknownVal(); 302 303 // Assume the derived class is a pointer or a reference to a CXX record. 304 TargetType = TargetType->getPointeeType(); 305 assert(!TargetType.isNull()); 306 const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl(); 307 if (!TargetClass && !TargetType->isVoidType()) 308 return UnknownVal(); 309 310 // Drill down the CXXBaseObject chains, which represent upcasts (casts from 311 // derived to base). 312 while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) { 313 // If found the derived class, the cast succeeds. 314 if (MRClass == TargetClass) 315 return loc::MemRegionVal(MR); 316 317 // We skip over incomplete types. They must be the result of an earlier 318 // reinterpret_cast, as one can only dynamic_cast between types in the same 319 // class hierarchy. 320 if (!TargetType->isVoidType() && MRClass->hasDefinition()) { 321 // Static upcasts are marked as DerivedToBase casts by Sema, so this will 322 // only happen when multiple or virtual inheritance is involved. 323 CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true, 324 /*DetectVirtual=*/false); 325 if (MRClass->isDerivedFrom(TargetClass, Paths)) 326 return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front()); 327 } 328 329 if (const CXXBaseObjectRegion *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) { 330 // Drill down the chain to get the derived classes. 331 MR = BaseR->getSuperRegion(); 332 continue; 333 } 334 335 // If this is a cast to void*, return the region. 336 if (TargetType->isVoidType()) 337 return loc::MemRegionVal(MR); 338 339 // Strange use of reinterpret_cast can give us paths we don't reason 340 // about well, by putting in ElementRegions where we'd expect 341 // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the 342 // derived class has a zero offset from the base class), then it's safe 343 // to strip the cast; if it's invalid, -Wreinterpret-base-class should 344 // catch it. In the interest of performance, the analyzer will silently 345 // do the wrong thing in the invalid case (because offsets for subregions 346 // will be wrong). 347 const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false); 348 if (Uncasted == MR) { 349 // We reached the bottom of the hierarchy and did not find the derived 350 // class. We we must be casting the base to derived, so the cast should 351 // fail. 352 break; 353 } 354 355 MR = Uncasted; 356 } 357 358 // We failed if the region we ended up with has perfect type info. 359 Failed = isa<TypedValueRegion>(MR); 360 return UnknownVal(); 361 } 362 363 364 /// CastRetrievedVal - Used by subclasses of StoreManager to implement 365 /// implicit casts that arise from loads from regions that are reinterpreted 366 /// as another region. 367 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R, 368 QualType castTy, bool performTestOnly) { 369 370 if (castTy.isNull() || V.isUnknownOrUndef()) 371 return V; 372 373 ASTContext &Ctx = svalBuilder.getContext(); 374 375 if (performTestOnly) { 376 // Automatically translate references to pointers. 377 QualType T = R->getValueType(); 378 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 379 T = Ctx.getPointerType(RT->getPointeeType()); 380 381 assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T)); 382 return V; 383 } 384 385 return svalBuilder.dispatchCast(V, castTy); 386 } 387 388 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) { 389 if (Base.isUnknownOrUndef()) 390 return Base; 391 392 Loc BaseL = Base.castAs<Loc>(); 393 const MemRegion* BaseR = nullptr; 394 395 switch (BaseL.getSubKind()) { 396 case loc::MemRegionKind: 397 BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion(); 398 break; 399 400 case loc::GotoLabelKind: 401 // These are anormal cases. Flag an undefined value. 402 return UndefinedVal(); 403 404 case loc::ConcreteIntKind: 405 // While these seem funny, this can happen through casts. 406 // FIXME: What we should return is the field offset. For example, 407 // add the field offset to the integer value. That way funny things 408 // like this work properly: &(((struct foo *) 0xa)->f) 409 return Base; 410 411 default: 412 llvm_unreachable("Unhandled Base."); 413 } 414 415 // NOTE: We must have this check first because ObjCIvarDecl is a subclass 416 // of FieldDecl. 417 if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D)) 418 return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); 419 420 return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR)); 421 } 422 423 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) { 424 return getLValueFieldOrIvar(decl, base); 425 } 426 427 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset, 428 SVal Base) { 429 430 // If the base is an unknown or undefined value, just return it back. 431 // FIXME: For absolute pointer addresses, we just return that value back as 432 // well, although in reality we should return the offset added to that 433 // value. 434 if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>()) 435 return Base; 436 437 const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion(); 438 439 // Pointer of any type can be cast and used as array base. 440 const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion); 441 442 // Convert the offset to the appropriate size and signedness. 443 Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>(); 444 445 if (!ElemR) { 446 // 447 // If the base region is not an ElementRegion, create one. 448 // This can happen in the following example: 449 // 450 // char *p = __builtin_alloc(10); 451 // p[1] = 8; 452 // 453 // Observe that 'p' binds to an AllocaRegion. 454 // 455 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, 456 BaseRegion, Ctx)); 457 } 458 459 SVal BaseIdx = ElemR->getIndex(); 460 461 if (!BaseIdx.getAs<nonloc::ConcreteInt>()) 462 return UnknownVal(); 463 464 const llvm::APSInt &BaseIdxI = 465 BaseIdx.castAs<nonloc::ConcreteInt>().getValue(); 466 467 // Only allow non-integer offsets if the base region has no offset itself. 468 // FIXME: This is a somewhat arbitrary restriction. We should be using 469 // SValBuilder here to add the two offsets without checking their types. 470 if (!Offset.getAs<nonloc::ConcreteInt>()) { 471 if (isa<ElementRegion>(BaseRegion->StripCasts())) 472 return UnknownVal(); 473 474 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, 475 ElemR->getSuperRegion(), 476 Ctx)); 477 } 478 479 const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue(); 480 assert(BaseIdxI.isSigned()); 481 482 // Compute the new index. 483 nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI + 484 OffI)); 485 486 // Construct the new ElementRegion. 487 const MemRegion *ArrayR = ElemR->getSuperRegion(); 488 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR, 489 Ctx)); 490 } 491 492 StoreManager::BindingsHandler::~BindingsHandler() {} 493 494 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr, 495 Store store, 496 const MemRegion* R, 497 SVal val) { 498 SymbolRef SymV = val.getAsLocSymbol(); 499 if (!SymV || SymV != Sym) 500 return true; 501 502 if (Binding) { 503 First = false; 504 return false; 505 } 506 else 507 Binding = R; 508 509 return true; 510 } 511