1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // Intel License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000, Intel Corporation, all rights reserved. 14 // Third party copyrights are property of their respective owners. 15 // 16 // Redistribution and use in source and binary forms, with or without modification, 17 // are permitted provided that the following conditions are met: 18 // 19 // * Redistribution's of source code must retain the above copyright notice, 20 // this list of conditions and the following disclaimer. 21 // 22 // * Redistribution's in binary form must reproduce the above copyright notice, 23 // this list of conditions and the following disclaimer in the documentation 24 // and/or other materials provided with the distribution. 25 // 26 // * The name of Intel Corporation may not be used to endorse or promote products 27 // derived from this software without specific prior written permission. 28 // 29 // This software is provided by the copyright holders and contributors "as is" and 30 // any express or implied warranties, including, but not limited to, the implied 31 // warranties of merchantability and fitness for a particular purpose are disclaimed. 32 // In no event shall the Intel Corporation or contributors be liable for any direct, 33 // indirect, incidental, special, exemplary, or consequential damages 34 // (including, but not limited to, procurement of substitute goods or services; 35 // loss of use, data, or profits; or business interruption) however caused 36 // and on any theory of liability, whether in contract, strict liability, 37 // or tort (including negligence or otherwise) arising in any way out of 38 // the use of this software, even if advised of the possibility of such damage. 39 // 40 //M*/ 41 42 /****************************************************************************************\ 43 44 Calculation of a texture descriptors from GLCM (Grey Level Co-occurrence Matrix'es) 45 The code was submitted by Daniel Eaton [danieljameseaton (at) yahoo.com] 46 47 \****************************************************************************************/ 48 49 #include "_cvaux.h" 50 51 #include <math.h> 52 #include <assert.h> 53 54 #define CV_MAX_NUM_GREY_LEVELS_8U 256 55 56 struct CvGLCM 57 { 58 int matrixSideLength; 59 int numMatrices; 60 double*** matrices; 61 62 int numLookupTableElements; 63 int forwardLookupTable[CV_MAX_NUM_GREY_LEVELS_8U]; 64 int reverseLookupTable[CV_MAX_NUM_GREY_LEVELS_8U]; 65 66 double** descriptors; 67 int numDescriptors; 68 int descriptorOptimizationType; 69 int optimizationType; 70 }; 71 72 73 static void icvCreateGLCM_LookupTable_8u_C1R( const uchar* srcImageData, int srcImageStep, 74 CvSize srcImageSize, CvGLCM* destGLCM, 75 int* steps, int numSteps, int* memorySteps ); 76 77 static void 78 icvCreateGLCMDescriptors_AllowDoubleNest( CvGLCM* destGLCM, int matrixIndex ); 79 80 81 CV_IMPL CvGLCM* 82 cvCreateGLCM( const IplImage* srcImage, 83 int stepMagnitude, 84 const int* srcStepDirections,/* should be static array.. 85 or if not the user should handle de-allocation */ 86 int numStepDirections, 87 int optimizationType ) 88 { 89 static const int defaultStepDirections[] = { 0,1, -1,1, -1,0, -1,-1 }; 90 91 int* memorySteps = 0; 92 CvGLCM* newGLCM = 0; 93 int* stepDirections = 0; 94 95 CV_FUNCNAME( "cvCreateGLCM" ); 96 97 __BEGIN__; 98 99 uchar* srcImageData = 0; 100 CvSize srcImageSize; 101 int srcImageStep; 102 int stepLoop; 103 const int maxNumGreyLevels8u = CV_MAX_NUM_GREY_LEVELS_8U; 104 105 if( !srcImage ) 106 CV_ERROR( CV_StsNullPtr, "" ); 107 108 if( srcImage->nChannels != 1 ) 109 CV_ERROR( CV_BadNumChannels, "Number of channels must be 1"); 110 111 if( srcImage->depth != IPL_DEPTH_8U ) 112 CV_ERROR( CV_BadDepth, "Depth must be equal IPL_DEPTH_8U"); 113 114 // no Directions provided, use the default ones - 0 deg, 45, 90, 135 115 if( !srcStepDirections ) 116 { 117 srcStepDirections = defaultStepDirections; 118 } 119 120 CV_CALL( stepDirections = (int*)cvAlloc( numStepDirections*2*sizeof(stepDirections[0]))); 121 memcpy( stepDirections, srcStepDirections, numStepDirections*2*sizeof(stepDirections[0])); 122 123 cvGetImageRawData( srcImage, &srcImageData, &srcImageStep, &srcImageSize ); 124 125 // roll together Directions and magnitudes together with knowledge of image (step) 126 CV_CALL( memorySteps = (int*)cvAlloc( numStepDirections*sizeof(memorySteps[0]))); 127 128 for( stepLoop = 0; stepLoop < numStepDirections; stepLoop++ ) 129 { 130 stepDirections[stepLoop*2 + 0] *= stepMagnitude; 131 stepDirections[stepLoop*2 + 1] *= stepMagnitude; 132 133 memorySteps[stepLoop] = stepDirections[stepLoop*2 + 0]*srcImageStep + 134 stepDirections[stepLoop*2 + 1]; 135 } 136 137 CV_CALL( newGLCM = (CvGLCM*)cvAlloc(sizeof(newGLCM))); 138 memset( newGLCM, 0, sizeof(newGLCM) ); 139 140 newGLCM->matrices = 0; 141 newGLCM->numMatrices = numStepDirections; 142 newGLCM->optimizationType = optimizationType; 143 144 if( optimizationType <= CV_GLCM_OPTIMIZATION_LUT ) 145 { 146 int lookupTableLoop, imageColLoop, imageRowLoop, lineOffset = 0; 147 148 // if optimization type is set to lut, then make one for the image 149 if( optimizationType == CV_GLCM_OPTIMIZATION_LUT ) 150 { 151 for( imageRowLoop = 0; imageRowLoop < srcImageSize.height; 152 imageRowLoop++, lineOffset += srcImageStep ) 153 { 154 for( imageColLoop = 0; imageColLoop < srcImageSize.width; imageColLoop++ ) 155 { 156 newGLCM->forwardLookupTable[srcImageData[lineOffset+imageColLoop]]=1; 157 } 158 } 159 160 newGLCM->numLookupTableElements = 0; 161 162 for( lookupTableLoop = 0; lookupTableLoop < maxNumGreyLevels8u; lookupTableLoop++ ) 163 { 164 if( newGLCM->forwardLookupTable[ lookupTableLoop ] != 0 ) 165 { 166 newGLCM->forwardLookupTable[ lookupTableLoop ] = 167 newGLCM->numLookupTableElements; 168 newGLCM->reverseLookupTable[ newGLCM->numLookupTableElements ] = 169 lookupTableLoop; 170 171 newGLCM->numLookupTableElements++; 172 } 173 } 174 } 175 // otherwise make a "LUT" which contains all the gray-levels (for code-reuse) 176 else if( optimizationType == CV_GLCM_OPTIMIZATION_NONE ) 177 { 178 for( lookupTableLoop = 0; lookupTableLoop <maxNumGreyLevels8u; lookupTableLoop++ ) 179 { 180 newGLCM->forwardLookupTable[ lookupTableLoop ] = lookupTableLoop; 181 newGLCM->reverseLookupTable[ lookupTableLoop ] = lookupTableLoop; 182 } 183 newGLCM->numLookupTableElements = maxNumGreyLevels8u; 184 } 185 186 newGLCM->matrixSideLength = newGLCM->numLookupTableElements; 187 icvCreateGLCM_LookupTable_8u_C1R( srcImageData, srcImageStep, srcImageSize, 188 newGLCM, stepDirections, 189 numStepDirections, memorySteps ); 190 } 191 else if( optimizationType == CV_GLCM_OPTIMIZATION_HISTOGRAM ) 192 { 193 CV_ERROR( CV_StsBadFlag, "Histogram-based method is not implemented" ); 194 195 /* newGLCM->numMatrices *= 2; 196 newGLCM->matrixSideLength = maxNumGreyLevels8u*2; 197 198 icvCreateGLCM_Histogram_8uC1R( srcImageStep, srcImageSize, srcImageData, 199 newGLCM, numStepDirections, 200 stepDirections, memorySteps ); 201 */ 202 } 203 204 __END__; 205 206 cvFree( &memorySteps ); 207 cvFree( &stepDirections ); 208 209 if( cvGetErrStatus() < 0 ) 210 { 211 cvFree( &newGLCM ); 212 } 213 214 return newGLCM; 215 } 216 217 218 CV_IMPL void 219 cvReleaseGLCM( CvGLCM** GLCM, int flag ) 220 { 221 CV_FUNCNAME( "cvReleaseGLCM" ); 222 223 __BEGIN__; 224 225 int matrixLoop; 226 227 if( !GLCM ) 228 CV_ERROR( CV_StsNullPtr, "" ); 229 230 if( *GLCM ) 231 EXIT; // repeated deallocation: just skip it. 232 233 if( (flag == CV_GLCM_GLCM || flag == CV_GLCM_ALL) && (*GLCM)->matrices ) 234 { 235 for( matrixLoop = 0; matrixLoop < (*GLCM)->numMatrices; matrixLoop++ ) 236 { 237 if( (*GLCM)->matrices[ matrixLoop ] ) 238 { 239 cvFree( (*GLCM)->matrices[matrixLoop] ); 240 cvFree( (*GLCM)->matrices + matrixLoop ); 241 } 242 } 243 244 cvFree( &((*GLCM)->matrices) ); 245 } 246 247 if( (flag == CV_GLCM_DESC || flag == CV_GLCM_ALL) && (*GLCM)->descriptors ) 248 { 249 for( matrixLoop = 0; matrixLoop < (*GLCM)->numMatrices; matrixLoop++ ) 250 { 251 cvFree( (*GLCM)->descriptors + matrixLoop ); 252 } 253 cvFree( &((*GLCM)->descriptors) ); 254 } 255 256 if( flag == CV_GLCM_ALL ) 257 { 258 cvFree( GLCM ); 259 } 260 261 __END__; 262 } 263 264 265 static void 266 icvCreateGLCM_LookupTable_8u_C1R( const uchar* srcImageData, 267 int srcImageStep, 268 CvSize srcImageSize, 269 CvGLCM* destGLCM, 270 int* steps, 271 int numSteps, 272 int* memorySteps ) 273 { 274 int* stepIncrementsCounter = 0; 275 276 CV_FUNCNAME( "icvCreateGLCM_LookupTable_8u_C1R" ); 277 278 __BEGIN__; 279 280 int matrixSideLength = destGLCM->matrixSideLength; 281 int stepLoop, sideLoop1, sideLoop2; 282 int colLoop, rowLoop, lineOffset = 0; 283 double*** matrices = 0; 284 285 // allocate memory to the matrices 286 CV_CALL( destGLCM->matrices = (double***)cvAlloc( sizeof(matrices[0])*numSteps )); 287 matrices = destGLCM->matrices; 288 289 for( stepLoop=0; stepLoop<numSteps; stepLoop++ ) 290 { 291 CV_CALL( matrices[stepLoop] = (double**)cvAlloc( sizeof(matrices[0])*matrixSideLength )); 292 CV_CALL( matrices[stepLoop][0] = (double*)cvAlloc( sizeof(matrices[0][0])* 293 matrixSideLength*matrixSideLength )); 294 295 memset( matrices[stepLoop][0], 0, matrixSideLength*matrixSideLength* 296 sizeof(matrices[0][0]) ); 297 298 for( sideLoop1 = 1; sideLoop1 < matrixSideLength; sideLoop1++ ) 299 { 300 matrices[stepLoop][sideLoop1] = matrices[stepLoop][sideLoop1-1] + matrixSideLength; 301 } 302 } 303 304 CV_CALL( stepIncrementsCounter = (int*)cvAlloc( numSteps*sizeof(stepIncrementsCounter[0]))); 305 memset( stepIncrementsCounter, 0, numSteps*sizeof(stepIncrementsCounter[0]) ); 306 307 // generate GLCM for each step 308 for( rowLoop=0; rowLoop<srcImageSize.height; rowLoop++, lineOffset+=srcImageStep ) 309 { 310 for( colLoop=0; colLoop<srcImageSize.width; colLoop++ ) 311 { 312 int pixelValue1 = destGLCM->forwardLookupTable[srcImageData[lineOffset + colLoop]]; 313 314 for( stepLoop=0; stepLoop<numSteps; stepLoop++ ) 315 { 316 int col2, row2; 317 row2 = rowLoop + steps[stepLoop*2 + 0]; 318 col2 = colLoop + steps[stepLoop*2 + 1]; 319 320 if( col2>=0 && row2>=0 && col2<srcImageSize.width && row2<srcImageSize.height ) 321 { 322 int memoryStep = memorySteps[ stepLoop ]; 323 int pixelValue2 = destGLCM->forwardLookupTable[ srcImageData[ lineOffset + colLoop + memoryStep ] ]; 324 325 // maintain symmetry 326 matrices[stepLoop][pixelValue1][pixelValue2] ++; 327 matrices[stepLoop][pixelValue2][pixelValue1] ++; 328 329 // incremenet counter of total number of increments 330 stepIncrementsCounter[stepLoop] += 2; 331 } 332 } 333 } 334 } 335 336 // normalize matrices. each element is a probability of gray value i,j adjacency in direction/magnitude k 337 for( sideLoop1=0; sideLoop1<matrixSideLength; sideLoop1++ ) 338 { 339 for( sideLoop2=0; sideLoop2<matrixSideLength; sideLoop2++ ) 340 { 341 for( stepLoop=0; stepLoop<numSteps; stepLoop++ ) 342 { 343 matrices[stepLoop][sideLoop1][sideLoop2] /= double(stepIncrementsCounter[stepLoop]); 344 } 345 } 346 } 347 348 destGLCM->matrices = matrices; 349 350 __END__; 351 352 cvFree( &stepIncrementsCounter ); 353 354 if( cvGetErrStatus() < 0 ) 355 cvReleaseGLCM( &destGLCM, CV_GLCM_GLCM ); 356 } 357 358 359 CV_IMPL void 360 cvCreateGLCMDescriptors( CvGLCM* destGLCM, int descriptorOptimizationType ) 361 { 362 CV_FUNCNAME( "cvCreateGLCMDescriptors" ); 363 364 __BEGIN__; 365 366 int matrixLoop; 367 368 if( !destGLCM ) 369 CV_ERROR( CV_StsNullPtr, "" ); 370 371 if( !(destGLCM->matrices) ) 372 CV_ERROR( CV_StsNullPtr, "Matrices are not allocated" ); 373 374 CV_CALL( cvReleaseGLCM( &destGLCM, CV_GLCM_DESC )); 375 376 if( destGLCM->optimizationType != CV_GLCM_OPTIMIZATION_HISTOGRAM ) 377 { 378 destGLCM->descriptorOptimizationType = destGLCM->numDescriptors = descriptorOptimizationType; 379 } 380 else 381 { 382 CV_ERROR( CV_StsBadFlag, "Histogram-based method is not implemented" ); 383 // destGLCM->descriptorOptimizationType = destGLCM->numDescriptors = CV_GLCMDESC_OPTIMIZATION_HISTOGRAM; 384 } 385 386 CV_CALL( destGLCM->descriptors = (double**) 387 cvAlloc( destGLCM->numMatrices*sizeof(destGLCM->descriptors[0]))); 388 389 for( matrixLoop = 0; matrixLoop < destGLCM->numMatrices; matrixLoop ++ ) 390 { 391 CV_CALL( destGLCM->descriptors[ matrixLoop ] = 392 (double*)cvAlloc( destGLCM->numDescriptors*sizeof(destGLCM->descriptors[0][0]))); 393 memset( destGLCM->descriptors[matrixLoop], 0, destGLCM->numDescriptors*sizeof(double) ); 394 395 switch( destGLCM->descriptorOptimizationType ) 396 { 397 case CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST: 398 icvCreateGLCMDescriptors_AllowDoubleNest( destGLCM, matrixLoop ); 399 break; 400 default: 401 CV_ERROR( CV_StsBadFlag, 402 "descriptorOptimizationType different from CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST\n" 403 "is not supported" ); 404 /* 405 case CV_GLCMDESC_OPTIMIZATION_ALLOWTRIPLENEST: 406 icvCreateGLCMDescriptors_AllowTripleNest( destGLCM, matrixLoop ); 407 break; 408 case CV_GLCMDESC_OPTIMIZATION_HISTOGRAM: 409 if(matrixLoop < destGLCM->numMatrices>>1) 410 icvCreateGLCMDescriptors_Histogram( destGLCM, matrixLoop); 411 break; 412 */ 413 } 414 } 415 416 __END__; 417 418 if( cvGetErrStatus() < 0 ) 419 cvReleaseGLCM( &destGLCM, CV_GLCM_DESC ); 420 } 421 422 423 static void 424 icvCreateGLCMDescriptors_AllowDoubleNest( CvGLCM* destGLCM, int matrixIndex ) 425 { 426 int sideLoop1, sideLoop2; 427 int matrixSideLength = destGLCM->matrixSideLength; 428 429 double** matrix = destGLCM->matrices[ matrixIndex ]; 430 double* descriptors = destGLCM->descriptors[ matrixIndex ]; 431 432 double* marginalProbability = 433 (double*)cvAlloc( matrixSideLength * sizeof(marginalProbability[0])); 434 memset( marginalProbability, 0, matrixSideLength * sizeof(double) ); 435 436 double maximumProbability = 0; 437 double marginalProbabilityEntropy = 0; 438 double correlationMean = 0, correlationStdDeviation = 0, correlationProductTerm = 0; 439 440 for( sideLoop1=0; sideLoop1<matrixSideLength; sideLoop1++ ) 441 { 442 int actualSideLoop1 = destGLCM->reverseLookupTable[ sideLoop1 ]; 443 444 for( sideLoop2=0; sideLoop2<matrixSideLength; sideLoop2++ ) 445 { 446 double entryValue = matrix[ sideLoop1 ][ sideLoop2 ]; 447 448 int actualSideLoop2 = destGLCM->reverseLookupTable[ sideLoop2 ]; 449 int sideLoopDifference = actualSideLoop1 - actualSideLoop2; 450 int sideLoopDifferenceSquared = sideLoopDifference*sideLoopDifference; 451 452 marginalProbability[ sideLoop1 ] += entryValue; 453 correlationMean += actualSideLoop1*entryValue; 454 455 maximumProbability = MAX( maximumProbability, entryValue ); 456 457 if( actualSideLoop2 > actualSideLoop1 ) 458 { 459 descriptors[ CV_GLCMDESC_CONTRAST ] += sideLoopDifferenceSquared * entryValue; 460 } 461 462 descriptors[ CV_GLCMDESC_HOMOGENITY ] += entryValue / ( 1.0 + sideLoopDifferenceSquared ); 463 464 if( entryValue > 0 ) 465 { 466 descriptors[ CV_GLCMDESC_ENTROPY ] += entryValue * log( entryValue ); 467 } 468 469 descriptors[ CV_GLCMDESC_ENERGY ] += entryValue*entryValue; 470 } 471 472 if( marginalProbability>0 ) 473 marginalProbabilityEntropy += marginalProbability[ actualSideLoop1 ]*log(marginalProbability[ actualSideLoop1 ]); 474 } 475 476 marginalProbabilityEntropy = -marginalProbabilityEntropy; 477 478 descriptors[ CV_GLCMDESC_CONTRAST ] += descriptors[ CV_GLCMDESC_CONTRAST ]; 479 descriptors[ CV_GLCMDESC_ENTROPY ] = -descriptors[ CV_GLCMDESC_ENTROPY ]; 480 descriptors[ CV_GLCMDESC_MAXIMUMPROBABILITY ] = maximumProbability; 481 482 double HXY = 0, HXY1 = 0, HXY2 = 0; 483 484 HXY = descriptors[ CV_GLCMDESC_ENTROPY ]; 485 486 for( sideLoop1=0; sideLoop1<matrixSideLength; sideLoop1++ ) 487 { 488 double sideEntryValueSum = 0; 489 int actualSideLoop1 = destGLCM->reverseLookupTable[ sideLoop1 ]; 490 491 for( sideLoop2=0; sideLoop2<matrixSideLength; sideLoop2++ ) 492 { 493 double entryValue = matrix[ sideLoop1 ][ sideLoop2 ]; 494 495 sideEntryValueSum += entryValue; 496 497 int actualSideLoop2 = destGLCM->reverseLookupTable[ sideLoop2 ]; 498 499 correlationProductTerm += (actualSideLoop1 - correlationMean) * (actualSideLoop2 - correlationMean) * entryValue; 500 501 double clusterTerm = actualSideLoop1 + actualSideLoop2 - correlationMean - correlationMean; 502 503 descriptors[ CV_GLCMDESC_CLUSTERTENDENCY ] += clusterTerm * clusterTerm * entryValue; 504 descriptors[ CV_GLCMDESC_CLUSTERSHADE ] += clusterTerm * clusterTerm * clusterTerm * entryValue; 505 506 double HXYValue = marginalProbability[ actualSideLoop1 ] * marginalProbability[ actualSideLoop2 ]; 507 if( HXYValue>0 ) 508 { 509 double HXYValueLog = log( HXYValue ); 510 HXY1 += entryValue * HXYValueLog; 511 HXY2 += HXYValue * HXYValueLog; 512 } 513 } 514 515 correlationStdDeviation += (actualSideLoop1-correlationMean) * (actualSideLoop1-correlationMean) * sideEntryValueSum; 516 } 517 518 HXY1 =- HXY1; 519 HXY2 =- HXY2; 520 521 descriptors[ CV_GLCMDESC_CORRELATIONINFO1 ] = ( HXY - HXY1 ) / ( correlationMean ); 522 descriptors[ CV_GLCMDESC_CORRELATIONINFO2 ] = sqrt( 1.0 - exp( -2.0 * (HXY2 - HXY ) ) ); 523 524 correlationStdDeviation = sqrt( correlationStdDeviation ); 525 526 descriptors[ CV_GLCMDESC_CORRELATION ] = correlationProductTerm / (correlationStdDeviation*correlationStdDeviation ); 527 528 delete [] marginalProbability; 529 } 530 531 532 CV_IMPL double cvGetGLCMDescriptor( CvGLCM* GLCM, int step, int descriptor ) 533 { 534 double value = DBL_MAX; 535 536 CV_FUNCNAME( "cvGetGLCMDescriptor" ); 537 538 __BEGIN__; 539 540 if( !GLCM ) 541 CV_ERROR( CV_StsNullPtr, "" ); 542 543 if( !(GLCM->descriptors) ) 544 CV_ERROR( CV_StsNullPtr, "" ); 545 546 if( (unsigned)step >= (unsigned)(GLCM->numMatrices)) 547 CV_ERROR( CV_StsOutOfRange, "step is not in 0 .. GLCM->numMatrices - 1" ); 548 549 if( (unsigned)descriptor >= (unsigned)(GLCM->numDescriptors)) 550 CV_ERROR( CV_StsOutOfRange, "descriptor is not in 0 .. GLCM->numDescriptors - 1" ); 551 552 value = GLCM->descriptors[step][descriptor]; 553 554 __END__; 555 556 return value; 557 } 558 559 560 CV_IMPL void 561 cvGetGLCMDescriptorStatistics( CvGLCM* GLCM, int descriptor, 562 double* _average, double* _standardDeviation ) 563 { 564 CV_FUNCNAME( "cvGetGLCMDescriptorStatistics" ); 565 566 if( _average ) 567 *_average = DBL_MAX; 568 569 if( _standardDeviation ) 570 *_standardDeviation = DBL_MAX; 571 572 __BEGIN__; 573 574 int matrixLoop, numMatrices; 575 double average = 0, squareSum = 0; 576 577 if( !GLCM ) 578 CV_ERROR( CV_StsNullPtr, "" ); 579 580 if( !(GLCM->descriptors)) 581 CV_ERROR( CV_StsNullPtr, "Descriptors are not calculated" ); 582 583 if( (unsigned)descriptor >= (unsigned)(GLCM->numDescriptors) ) 584 CV_ERROR( CV_StsOutOfRange, "Descriptor index is out of range" ); 585 586 numMatrices = GLCM->numMatrices; 587 588 for( matrixLoop = 0; matrixLoop < numMatrices; matrixLoop++ ) 589 { 590 double temp = GLCM->descriptors[ matrixLoop ][ descriptor ]; 591 average += temp; 592 squareSum += temp*temp; 593 } 594 595 average /= numMatrices; 596 597 if( _average ) 598 *_average = average; 599 600 if( _standardDeviation ) 601 *_standardDeviation = sqrt( (squareSum - average*average*numMatrices)/(numMatrices-1)); 602 603 __END__; 604 } 605 606 607 CV_IMPL IplImage* 608 cvCreateGLCMImage( CvGLCM* GLCM, int step ) 609 { 610 IplImage* dest = 0; 611 612 CV_FUNCNAME( "cvCreateGLCMImage" ); 613 614 __BEGIN__; 615 616 float* destData; 617 int sideLoop1, sideLoop2; 618 619 if( !GLCM ) 620 CV_ERROR( CV_StsNullPtr, "" ); 621 622 if( !(GLCM->matrices) ) 623 CV_ERROR( CV_StsNullPtr, "Matrices are not allocated" ); 624 625 if( (unsigned)step >= (unsigned)(GLCM->numMatrices) ) 626 CV_ERROR( CV_StsOutOfRange, "The step index is out of range" ); 627 628 dest = cvCreateImage( cvSize( GLCM->matrixSideLength, GLCM->matrixSideLength ), IPL_DEPTH_32F, 1 ); 629 destData = (float*)(dest->imageData); 630 631 for( sideLoop1 = 0; sideLoop1 < GLCM->matrixSideLength; 632 sideLoop1++, (float*&)destData += dest->widthStep ) 633 { 634 for( sideLoop2=0; sideLoop2 < GLCM->matrixSideLength; sideLoop2++ ) 635 { 636 double matrixValue = GLCM->matrices[step][sideLoop1][sideLoop2]; 637 destData[ sideLoop2 ] = (float)matrixValue; 638 } 639 } 640 641 __END__; 642 643 if( cvGetErrStatus() < 0 ) 644 cvReleaseImage( &dest ); 645 646 return dest; 647 } 648 649