1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains both code to deal with invoking "external" functions, but 11 // also contains code that implements "exported" external functions. 12 // 13 // There are currently two mechanisms for handling external functions in the 14 // Interpreter. The first is to implement lle_* wrapper functions that are 15 // specific to well-known library functions which manually translate the 16 // arguments from GenericValues and make the call. If such a wrapper does 17 // not exist, and libffi is available, then the Interpreter will attempt to 18 // invoke the function using libffi, after finding its address. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "Interpreter.h" 23 #include "llvm/Config/config.h" // Detect libffi 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/DynamicLibrary.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/Mutex.h" 31 #include "llvm/Support/UniqueLock.h" 32 #include <cmath> 33 #include <csignal> 34 #include <cstdio> 35 #include <cstring> 36 #include <map> 37 38 #ifdef HAVE_FFI_CALL 39 #ifdef HAVE_FFI_H 40 #include <ffi.h> 41 #define USE_LIBFFI 42 #elif HAVE_FFI_FFI_H 43 #include <ffi/ffi.h> 44 #define USE_LIBFFI 45 #endif 46 #endif 47 48 using namespace llvm; 49 50 static ManagedStatic<sys::Mutex> FunctionsLock; 51 52 typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>); 53 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 54 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames; 55 56 #ifdef USE_LIBFFI 57 typedef void (*RawFunc)(); 58 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 59 #endif 60 61 static Interpreter *TheInterpreter; 62 63 static char getTypeID(Type *Ty) { 64 switch (Ty->getTypeID()) { 65 case Type::VoidTyID: return 'V'; 66 case Type::IntegerTyID: 67 switch (cast<IntegerType>(Ty)->getBitWidth()) { 68 case 1: return 'o'; 69 case 8: return 'B'; 70 case 16: return 'S'; 71 case 32: return 'I'; 72 case 64: return 'L'; 73 default: return 'N'; 74 } 75 case Type::FloatTyID: return 'F'; 76 case Type::DoubleTyID: return 'D'; 77 case Type::PointerTyID: return 'P'; 78 case Type::FunctionTyID:return 'M'; 79 case Type::StructTyID: return 'T'; 80 case Type::ArrayTyID: return 'A'; 81 default: return 'U'; 82 } 83 } 84 85 // Try to find address of external function given a Function object. 86 // Please note, that interpreter doesn't know how to assemble a 87 // real call in general case (this is JIT job), that's why it assumes, 88 // that all external functions has the same (and pretty "general") signature. 89 // The typical example of such functions are "lle_X_" ones. 90 static ExFunc lookupFunction(const Function *F) { 91 // Function not found, look it up... start by figuring out what the 92 // composite function name should be. 93 std::string ExtName = "lle_"; 94 FunctionType *FT = F->getFunctionType(); 95 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) 96 ExtName += getTypeID(FT->getContainedType(i)); 97 ExtName += ("_" + F->getName()).str(); 98 99 sys::ScopedLock Writer(*FunctionsLock); 100 ExFunc FnPtr = (*FuncNames)[ExtName]; 101 if (!FnPtr) 102 FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()]; 103 if (!FnPtr) // Try calling a generic function... if it exists... 104 FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( 105 ("lle_X_" + F->getName()).str()); 106 if (FnPtr) 107 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 108 return FnPtr; 109 } 110 111 #ifdef USE_LIBFFI 112 static ffi_type *ffiTypeFor(Type *Ty) { 113 switch (Ty->getTypeID()) { 114 case Type::VoidTyID: return &ffi_type_void; 115 case Type::IntegerTyID: 116 switch (cast<IntegerType>(Ty)->getBitWidth()) { 117 case 8: return &ffi_type_sint8; 118 case 16: return &ffi_type_sint16; 119 case 32: return &ffi_type_sint32; 120 case 64: return &ffi_type_sint64; 121 } 122 case Type::FloatTyID: return &ffi_type_float; 123 case Type::DoubleTyID: return &ffi_type_double; 124 case Type::PointerTyID: return &ffi_type_pointer; 125 default: break; 126 } 127 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 128 report_fatal_error("Type could not be mapped for use with libffi."); 129 return NULL; 130 } 131 132 static void *ffiValueFor(Type *Ty, const GenericValue &AV, 133 void *ArgDataPtr) { 134 switch (Ty->getTypeID()) { 135 case Type::IntegerTyID: 136 switch (cast<IntegerType>(Ty)->getBitWidth()) { 137 case 8: { 138 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 139 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 140 return ArgDataPtr; 141 } 142 case 16: { 143 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 144 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 145 return ArgDataPtr; 146 } 147 case 32: { 148 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 149 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 150 return ArgDataPtr; 151 } 152 case 64: { 153 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 154 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 155 return ArgDataPtr; 156 } 157 } 158 case Type::FloatTyID: { 159 float *FloatPtr = (float *) ArgDataPtr; 160 *FloatPtr = AV.FloatVal; 161 return ArgDataPtr; 162 } 163 case Type::DoubleTyID: { 164 double *DoublePtr = (double *) ArgDataPtr; 165 *DoublePtr = AV.DoubleVal; 166 return ArgDataPtr; 167 } 168 case Type::PointerTyID: { 169 void **PtrPtr = (void **) ArgDataPtr; 170 *PtrPtr = GVTOP(AV); 171 return ArgDataPtr; 172 } 173 default: break; 174 } 175 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 176 report_fatal_error("Type value could not be mapped for use with libffi."); 177 return NULL; 178 } 179 180 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals, 181 const DataLayout &TD, GenericValue &Result) { 182 ffi_cif cif; 183 FunctionType *FTy = F->getFunctionType(); 184 const unsigned NumArgs = F->arg_size(); 185 186 // TODO: We don't have type information about the remaining arguments, because 187 // this information is never passed into ExecutionEngine::runFunction(). 188 if (ArgVals.size() > NumArgs && F->isVarArg()) { 189 report_fatal_error("Calling external var arg function '" + F->getName() 190 + "' is not supported by the Interpreter."); 191 } 192 193 unsigned ArgBytes = 0; 194 195 std::vector<ffi_type*> args(NumArgs); 196 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 197 A != E; ++A) { 198 const unsigned ArgNo = A->getArgNo(); 199 Type *ArgTy = FTy->getParamType(ArgNo); 200 args[ArgNo] = ffiTypeFor(ArgTy); 201 ArgBytes += TD.getTypeStoreSize(ArgTy); 202 } 203 204 SmallVector<uint8_t, 128> ArgData; 205 ArgData.resize(ArgBytes); 206 uint8_t *ArgDataPtr = ArgData.data(); 207 SmallVector<void*, 16> values(NumArgs); 208 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 209 A != E; ++A) { 210 const unsigned ArgNo = A->getArgNo(); 211 Type *ArgTy = FTy->getParamType(ArgNo); 212 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 213 ArgDataPtr += TD.getTypeStoreSize(ArgTy); 214 } 215 216 Type *RetTy = FTy->getReturnType(); 217 ffi_type *rtype = ffiTypeFor(RetTy); 218 219 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { 220 SmallVector<uint8_t, 128> ret; 221 if (RetTy->getTypeID() != Type::VoidTyID) 222 ret.resize(TD.getTypeStoreSize(RetTy)); 223 ffi_call(&cif, Fn, ret.data(), values.data()); 224 switch (RetTy->getTypeID()) { 225 case Type::IntegerTyID: 226 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 227 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; 228 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; 229 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; 230 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; 231 } 232 break; 233 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; 234 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; 235 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; 236 default: break; 237 } 238 return true; 239 } 240 241 return false; 242 } 243 #endif // USE_LIBFFI 244 245 GenericValue Interpreter::callExternalFunction(Function *F, 246 ArrayRef<GenericValue> ArgVals) { 247 TheInterpreter = this; 248 249 unique_lock<sys::Mutex> Guard(*FunctionsLock); 250 251 // Do a lookup to see if the function is in our cache... this should just be a 252 // deferred annotation! 253 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 254 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 255 : FI->second) { 256 Guard.unlock(); 257 return Fn(F->getFunctionType(), ArgVals); 258 } 259 260 #ifdef USE_LIBFFI 261 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 262 RawFunc RawFn; 263 if (RF == RawFunctions->end()) { 264 RawFn = (RawFunc)(intptr_t) 265 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); 266 if (!RawFn) 267 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); 268 if (RawFn != 0) 269 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 270 } else { 271 RawFn = RF->second; 272 } 273 274 Guard.unlock(); 275 276 GenericValue Result; 277 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) 278 return Result; 279 #endif // USE_LIBFFI 280 281 if (F->getName() == "__main") 282 errs() << "Tried to execute an unknown external function: " 283 << *F->getType() << " __main\n"; 284 else 285 report_fatal_error("Tried to execute an unknown external function: " + 286 F->getName()); 287 #ifndef USE_LIBFFI 288 errs() << "Recompiling LLVM with --enable-libffi might help.\n"; 289 #endif 290 return GenericValue(); 291 } 292 293 294 //===----------------------------------------------------------------------===// 295 // Functions "exported" to the running application... 296 // 297 298 // void atexit(Function*) 299 static GenericValue lle_X_atexit(FunctionType *FT, 300 ArrayRef<GenericValue> Args) { 301 assert(Args.size() == 1); 302 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 303 GenericValue GV; 304 GV.IntVal = 0; 305 return GV; 306 } 307 308 // void exit(int) 309 static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) { 310 TheInterpreter->exitCalled(Args[0]); 311 return GenericValue(); 312 } 313 314 // void abort(void) 315 static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) { 316 //FIXME: should we report or raise here? 317 //report_fatal_error("Interpreted program raised SIGABRT"); 318 raise (SIGABRT); 319 return GenericValue(); 320 } 321 322 // int sprintf(char *, const char *, ...) - a very rough implementation to make 323 // output useful. 324 static GenericValue lle_X_sprintf(FunctionType *FT, 325 ArrayRef<GenericValue> Args) { 326 char *OutputBuffer = (char *)GVTOP(Args[0]); 327 const char *FmtStr = (const char *)GVTOP(Args[1]); 328 unsigned ArgNo = 2; 329 330 // printf should return # chars printed. This is completely incorrect, but 331 // close enough for now. 332 GenericValue GV; 333 GV.IntVal = APInt(32, strlen(FmtStr)); 334 while (1) { 335 switch (*FmtStr) { 336 case 0: return GV; // Null terminator... 337 default: // Normal nonspecial character 338 sprintf(OutputBuffer++, "%c", *FmtStr++); 339 break; 340 case '\\': { // Handle escape codes 341 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 342 FmtStr += 2; OutputBuffer += 2; 343 break; 344 } 345 case '%': { // Handle format specifiers 346 char FmtBuf[100] = "", Buffer[1000] = ""; 347 char *FB = FmtBuf; 348 *FB++ = *FmtStr++; 349 char Last = *FB++ = *FmtStr++; 350 unsigned HowLong = 0; 351 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 352 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 353 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 354 Last != 'p' && Last != 's' && Last != '%') { 355 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 356 Last = *FB++ = *FmtStr++; 357 } 358 *FB = 0; 359 360 switch (Last) { 361 case '%': 362 memcpy(Buffer, "%", 2); break; 363 case 'c': 364 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 365 break; 366 case 'd': case 'i': 367 case 'u': case 'o': 368 case 'x': case 'X': 369 if (HowLong >= 1) { 370 if (HowLong == 1 && 371 TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 && 372 sizeof(long) < sizeof(int64_t)) { 373 // Make sure we use %lld with a 64 bit argument because we might be 374 // compiling LLI on a 32 bit compiler. 375 unsigned Size = strlen(FmtBuf); 376 FmtBuf[Size] = FmtBuf[Size-1]; 377 FmtBuf[Size+1] = 0; 378 FmtBuf[Size-1] = 'l'; 379 } 380 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 381 } else 382 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 383 break; 384 case 'e': case 'E': case 'g': case 'G': case 'f': 385 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 386 case 'p': 387 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 388 case 's': 389 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 390 default: 391 errs() << "<unknown printf code '" << *FmtStr << "'!>"; 392 ArgNo++; break; 393 } 394 size_t Len = strlen(Buffer); 395 memcpy(OutputBuffer, Buffer, Len + 1); 396 OutputBuffer += Len; 397 } 398 break; 399 } 400 } 401 return GV; 402 } 403 404 // int printf(const char *, ...) - a very rough implementation to make output 405 // useful. 406 static GenericValue lle_X_printf(FunctionType *FT, 407 ArrayRef<GenericValue> Args) { 408 char Buffer[10000]; 409 std::vector<GenericValue> NewArgs; 410 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 411 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 412 GenericValue GV = lle_X_sprintf(FT, NewArgs); 413 outs() << Buffer; 414 return GV; 415 } 416 417 // int sscanf(const char *format, ...); 418 static GenericValue lle_X_sscanf(FunctionType *FT, 419 ArrayRef<GenericValue> args) { 420 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 421 422 char *Args[10]; 423 for (unsigned i = 0; i < args.size(); ++i) 424 Args[i] = (char*)GVTOP(args[i]); 425 426 GenericValue GV; 427 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 428 Args[5], Args[6], Args[7], Args[8], Args[9])); 429 return GV; 430 } 431 432 // int scanf(const char *format, ...); 433 static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) { 434 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 435 436 char *Args[10]; 437 for (unsigned i = 0; i < args.size(); ++i) 438 Args[i] = (char*)GVTOP(args[i]); 439 440 GenericValue GV; 441 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 442 Args[5], Args[6], Args[7], Args[8], Args[9])); 443 return GV; 444 } 445 446 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make 447 // output useful. 448 static GenericValue lle_X_fprintf(FunctionType *FT, 449 ArrayRef<GenericValue> Args) { 450 assert(Args.size() >= 2); 451 char Buffer[10000]; 452 std::vector<GenericValue> NewArgs; 453 NewArgs.push_back(PTOGV(Buffer)); 454 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 455 GenericValue GV = lle_X_sprintf(FT, NewArgs); 456 457 fputs(Buffer, (FILE *) GVTOP(Args[0])); 458 return GV; 459 } 460 461 static GenericValue lle_X_memset(FunctionType *FT, 462 ArrayRef<GenericValue> Args) { 463 int val = (int)Args[1].IntVal.getSExtValue(); 464 size_t len = (size_t)Args[2].IntVal.getZExtValue(); 465 memset((void *)GVTOP(Args[0]), val, len); 466 // llvm.memset.* returns void, lle_X_* returns GenericValue, 467 // so here we return GenericValue with IntVal set to zero 468 GenericValue GV; 469 GV.IntVal = 0; 470 return GV; 471 } 472 473 static GenericValue lle_X_memcpy(FunctionType *FT, 474 ArrayRef<GenericValue> Args) { 475 memcpy(GVTOP(Args[0]), GVTOP(Args[1]), 476 (size_t)(Args[2].IntVal.getLimitedValue())); 477 478 // llvm.memcpy* returns void, lle_X_* returns GenericValue, 479 // so here we return GenericValue with IntVal set to zero 480 GenericValue GV; 481 GV.IntVal = 0; 482 return GV; 483 } 484 485 void Interpreter::initializeExternalFunctions() { 486 sys::ScopedLock Writer(*FunctionsLock); 487 (*FuncNames)["lle_X_atexit"] = lle_X_atexit; 488 (*FuncNames)["lle_X_exit"] = lle_X_exit; 489 (*FuncNames)["lle_X_abort"] = lle_X_abort; 490 491 (*FuncNames)["lle_X_printf"] = lle_X_printf; 492 (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf; 493 (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf; 494 (*FuncNames)["lle_X_scanf"] = lle_X_scanf; 495 (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf; 496 (*FuncNames)["lle_X_memset"] = lle_X_memset; 497 (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy; 498 } 499