Home | History | Annotate | Download | only in ADT
      1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines classes to implement an intrusive doubly linked list class
     11 // (i.e. each node of the list must contain a next and previous field for the
     12 // list.
     13 //
     14 // The ilist_traits trait class is used to gain access to the next and previous
     15 // fields of the node type that the list is instantiated with.  If it is not
     16 // specialized, the list defaults to using the getPrev(), getNext() method calls
     17 // to get the next and previous pointers.
     18 //
     19 // The ilist class itself, should be a plug in replacement for list, assuming
     20 // that the nodes contain next/prev pointers.  This list replacement does not
     21 // provide a constant time size() method, so be careful to use empty() when you
     22 // really want to know if it's empty.
     23 //
     24 // The ilist class is implemented by allocating a 'tail' node when the list is
     25 // created (using ilist_traits<>::createSentinel()).  This tail node is
     26 // absolutely required because the user must be able to compute end()-1. Because
     27 // of this, users of the direct next/prev links will see an extra link on the
     28 // end of the list, which should be ignored.
     29 //
     30 // Requirements for a user of this list:
     31 //
     32 //   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
     33 //      ilist_traits to provide an alternate way of getting and setting next and
     34 //      prev links.
     35 //
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_ADT_ILIST_H
     39 #define LLVM_ADT_ILIST_H
     40 
     41 #include "llvm/Support/Compiler.h"
     42 #include <algorithm>
     43 #include <cassert>
     44 #include <cstddef>
     45 #include <iterator>
     46 
     47 namespace llvm {
     48 
     49 template<typename NodeTy, typename Traits> class iplist;
     50 template<typename NodeTy> class ilist_iterator;
     51 
     52 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
     53 /// that provides default next/prev implementations for common operations.
     54 ///
     55 template<typename NodeTy>
     56 struct ilist_nextprev_traits {
     57   static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
     58   static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
     59   static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
     60   static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
     61 
     62   static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
     63   static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
     64 };
     65 
     66 template<typename NodeTy>
     67 struct ilist_traits;
     68 
     69 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
     70 /// that provides default sentinel implementations for common operations.
     71 ///
     72 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
     73 /// strategy. The sentinel is stored in the prev field of ilist's Head.
     74 ///
     75 template<typename NodeTy>
     76 struct ilist_sentinel_traits {
     77   /// createSentinel - create the dynamic sentinel
     78   static NodeTy *createSentinel() { return new NodeTy(); }
     79 
     80   /// destroySentinel - deallocate the dynamic sentinel
     81   static void destroySentinel(NodeTy *N) { delete N; }
     82 
     83   /// provideInitialHead - when constructing an ilist, provide a starting
     84   /// value for its Head
     85   /// @return null node to indicate that it needs to be allocated later
     86   static NodeTy *provideInitialHead() { return nullptr; }
     87 
     88   /// ensureHead - make sure that Head is either already
     89   /// initialized or assigned a fresh sentinel
     90   /// @return the sentinel
     91   static NodeTy *ensureHead(NodeTy *&Head) {
     92     if (!Head) {
     93       Head = ilist_traits<NodeTy>::createSentinel();
     94       ilist_traits<NodeTy>::noteHead(Head, Head);
     95       ilist_traits<NodeTy>::setNext(Head, nullptr);
     96       return Head;
     97     }
     98     return ilist_traits<NodeTy>::getPrev(Head);
     99   }
    100 
    101   /// noteHead - stash the sentinel into its default location
    102   static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
    103     ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
    104   }
    105 };
    106 
    107 template <typename NodeTy> class ilist_half_node;
    108 template <typename NodeTy> class ilist_node;
    109 
    110 /// Traits with an embedded ilist_node as a sentinel.
    111 ///
    112 /// FIXME: The downcast in createSentinel() is UB.
    113 template <typename NodeTy> struct ilist_embedded_sentinel_traits {
    114   /// Get hold of the node that marks the end of the list.
    115   NodeTy *createSentinel() const {
    116     // Since i(p)lists always publicly derive from their corresponding traits,
    117     // placing a data member in this class will augment the i(p)list.  But since
    118     // the NodeTy is expected to be publicly derive from ilist_node<NodeTy>,
    119     // there is a legal viable downcast from it to NodeTy. We use this trick to
    120     // superimpose an i(p)list with a "ghostly" NodeTy, which becomes the
    121     // sentinel. Dereferencing the sentinel is forbidden (save the
    122     // ilist_node<NodeTy>), so no one will ever notice the superposition.
    123     return static_cast<NodeTy *>(&Sentinel);
    124   }
    125   static void destroySentinel(NodeTy *) {}
    126 
    127   NodeTy *provideInitialHead() const { return createSentinel(); }
    128   NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
    129   static void noteHead(NodeTy *, NodeTy *) {}
    130 
    131 private:
    132   mutable ilist_node<NodeTy> Sentinel;
    133 };
    134 
    135 /// Trait with an embedded ilist_half_node as a sentinel.
    136 ///
    137 /// FIXME: The downcast in createSentinel() is UB.
    138 template <typename NodeTy> struct ilist_half_embedded_sentinel_traits {
    139   /// Get hold of the node that marks the end of the list.
    140   NodeTy *createSentinel() const {
    141     // See comment in ilist_embedded_sentinel_traits::createSentinel().
    142     return static_cast<NodeTy *>(&Sentinel);
    143   }
    144   static void destroySentinel(NodeTy *) {}
    145 
    146   NodeTy *provideInitialHead() const { return createSentinel(); }
    147   NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
    148   static void noteHead(NodeTy *, NodeTy *) {}
    149 
    150 private:
    151   mutable ilist_half_node<NodeTy> Sentinel;
    152 };
    153 
    154 /// ilist_node_traits - A fragment for template traits for intrusive list
    155 /// that provides default node related operations.
    156 ///
    157 template<typename NodeTy>
    158 struct ilist_node_traits {
    159   static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
    160   static void deleteNode(NodeTy *V) { delete V; }
    161 
    162   void addNodeToList(NodeTy *) {}
    163   void removeNodeFromList(NodeTy *) {}
    164   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
    165                              ilist_iterator<NodeTy> /*first*/,
    166                              ilist_iterator<NodeTy> /*last*/) {}
    167 };
    168 
    169 /// ilist_default_traits - Default template traits for intrusive list.
    170 /// By inheriting from this, you can easily use default implementations
    171 /// for all common operations.
    172 ///
    173 template<typename NodeTy>
    174 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
    175                               public ilist_sentinel_traits<NodeTy>,
    176                               public ilist_node_traits<NodeTy> {
    177 };
    178 
    179 // Template traits for intrusive list.  By specializing this template class, you
    180 // can change what next/prev fields are used to store the links...
    181 template<typename NodeTy>
    182 struct ilist_traits : public ilist_default_traits<NodeTy> {};
    183 
    184 // Const traits are the same as nonconst traits...
    185 template<typename Ty>
    186 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
    187 
    188 //===----------------------------------------------------------------------===//
    189 // ilist_iterator<Node> - Iterator for intrusive list.
    190 //
    191 template<typename NodeTy>
    192 class ilist_iterator
    193   : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
    194 
    195 public:
    196   typedef ilist_traits<NodeTy> Traits;
    197   typedef std::iterator<std::bidirectional_iterator_tag,
    198                         NodeTy, ptrdiff_t> super;
    199 
    200   typedef typename super::value_type value_type;
    201   typedef typename super::difference_type difference_type;
    202   typedef typename super::pointer pointer;
    203   typedef typename super::reference reference;
    204 private:
    205   pointer NodePtr;
    206 
    207   // ilist_iterator is not a random-access iterator, but it has an
    208   // implicit conversion to pointer-type, which is. Declare (but
    209   // don't define) these functions as private to help catch
    210   // accidental misuse.
    211   void operator[](difference_type) const;
    212   void operator+(difference_type) const;
    213   void operator-(difference_type) const;
    214   void operator+=(difference_type) const;
    215   void operator-=(difference_type) const;
    216   template<class T> void operator<(T) const;
    217   template<class T> void operator<=(T) const;
    218   template<class T> void operator>(T) const;
    219   template<class T> void operator>=(T) const;
    220   template<class T> void operator-(T) const;
    221 public:
    222 
    223   explicit ilist_iterator(pointer NP) : NodePtr(NP) {}
    224   explicit ilist_iterator(reference NR) : NodePtr(&NR) {}
    225   ilist_iterator() : NodePtr(nullptr) {}
    226 
    227   // This is templated so that we can allow constructing a const iterator from
    228   // a nonconst iterator...
    229   template<class node_ty>
    230   ilist_iterator(const ilist_iterator<node_ty> &RHS)
    231     : NodePtr(RHS.getNodePtrUnchecked()) {}
    232 
    233   // This is templated so that we can allow assigning to a const iterator from
    234   // a nonconst iterator...
    235   template<class node_ty>
    236   const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
    237     NodePtr = RHS.getNodePtrUnchecked();
    238     return *this;
    239   }
    240 
    241   void reset(pointer NP) { NodePtr = NP; }
    242 
    243   // Accessors...
    244   explicit operator pointer() const {
    245     return NodePtr;
    246   }
    247 
    248   reference operator*() const {
    249     return *NodePtr;
    250   }
    251   pointer operator->() const { return &operator*(); }
    252 
    253   // Comparison operators
    254   template <class Y> bool operator==(const ilist_iterator<Y> &RHS) const {
    255     return NodePtr == RHS.getNodePtrUnchecked();
    256   }
    257   template <class Y> bool operator!=(const ilist_iterator<Y> &RHS) const {
    258     return NodePtr != RHS.getNodePtrUnchecked();
    259   }
    260 
    261   // Increment and decrement operators...
    262   ilist_iterator &operator--() {      // predecrement - Back up
    263     NodePtr = Traits::getPrev(NodePtr);
    264     assert(NodePtr && "--'d off the beginning of an ilist!");
    265     return *this;
    266   }
    267   ilist_iterator &operator++() {      // preincrement - Advance
    268     NodePtr = Traits::getNext(NodePtr);
    269     return *this;
    270   }
    271   ilist_iterator operator--(int) {    // postdecrement operators...
    272     ilist_iterator tmp = *this;
    273     --*this;
    274     return tmp;
    275   }
    276   ilist_iterator operator++(int) {    // postincrement operators...
    277     ilist_iterator tmp = *this;
    278     ++*this;
    279     return tmp;
    280   }
    281 
    282   // Internal interface, do not use...
    283   pointer getNodePtrUnchecked() const { return NodePtr; }
    284 };
    285 
    286 // These are to catch errors when people try to use them as random access
    287 // iterators.
    288 template<typename T>
    289 void operator-(int, ilist_iterator<T>) = delete;
    290 template<typename T>
    291 void operator-(ilist_iterator<T>,int) = delete;
    292 
    293 template<typename T>
    294 void operator+(int, ilist_iterator<T>) = delete;
    295 template<typename T>
    296 void operator+(ilist_iterator<T>,int) = delete;
    297 
    298 // operator!=/operator== - Allow mixed comparisons without dereferencing
    299 // the iterator, which could very likely be pointing to end().
    300 template<typename T>
    301 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
    302   return LHS != RHS.getNodePtrUnchecked();
    303 }
    304 template<typename T>
    305 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
    306   return LHS == RHS.getNodePtrUnchecked();
    307 }
    308 template<typename T>
    309 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
    310   return LHS != RHS.getNodePtrUnchecked();
    311 }
    312 template<typename T>
    313 bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
    314   return LHS == RHS.getNodePtrUnchecked();
    315 }
    316 
    317 
    318 // Allow ilist_iterators to convert into pointers to a node automatically when
    319 // used by the dyn_cast, cast, isa mechanisms...
    320 
    321 template<typename From> struct simplify_type;
    322 
    323 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
    324   typedef NodeTy* SimpleType;
    325 
    326   static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
    327     return &*Node;
    328   }
    329 };
    330 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
    331   typedef /*const*/ NodeTy* SimpleType;
    332 
    333   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
    334     return &*Node;
    335   }
    336 };
    337 
    338 
    339 //===----------------------------------------------------------------------===//
    340 //
    341 /// iplist - The subset of list functionality that can safely be used on nodes
    342 /// of polymorphic types, i.e. a heterogeneous list with a common base class that
    343 /// holds the next/prev pointers.  The only state of the list itself is a single
    344 /// pointer to the head of the list.
    345 ///
    346 /// This list can be in one of three interesting states:
    347 /// 1. The list may be completely unconstructed.  In this case, the head
    348 ///    pointer is null.  When in this form, any query for an iterator (e.g.
    349 ///    begin() or end()) causes the list to transparently change to state #2.
    350 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
    351 ///    sentinel is created by the Traits::createSentinel method and is a link
    352 ///    in the list.  When the list is empty, the pointer in the iplist points
    353 ///    to the sentinel.  Once the sentinel is constructed, it
    354 ///    is not destroyed until the list is.
    355 /// 3. The list may contain actual objects in it, which are stored as a doubly
    356 ///    linked list of nodes.  One invariant of the list is that the predecessor
    357 ///    of the first node in the list always points to the last node in the list,
    358 ///    and the successor pointer for the sentinel (which always stays at the
    359 ///    end of the list) is always null.
    360 ///
    361 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
    362 class iplist : public Traits {
    363   mutable NodeTy *Head;
    364 
    365   // Use the prev node pointer of 'head' as the tail pointer.  This is really a
    366   // circularly linked list where we snip the 'next' link from the sentinel node
    367   // back to the first node in the list (to preserve assertions about going off
    368   // the end of the list).
    369   NodeTy *getTail() { return this->ensureHead(Head); }
    370   const NodeTy *getTail() const { return this->ensureHead(Head); }
    371   void setTail(NodeTy *N) const { this->noteHead(Head, N); }
    372 
    373   /// CreateLazySentinel - This method verifies whether the sentinel for the
    374   /// list has been created and lazily makes it if not.
    375   void CreateLazySentinel() const {
    376     this->ensureHead(Head);
    377   }
    378 
    379   static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
    380   static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
    381 
    382   // No fundamental reason why iplist can't be copyable, but the default
    383   // copy/copy-assign won't do.
    384   iplist(const iplist &) = delete;
    385   void operator=(const iplist &) = delete;
    386 
    387 public:
    388   typedef NodeTy *pointer;
    389   typedef const NodeTy *const_pointer;
    390   typedef NodeTy &reference;
    391   typedef const NodeTy &const_reference;
    392   typedef NodeTy value_type;
    393   typedef ilist_iterator<NodeTy> iterator;
    394   typedef ilist_iterator<const NodeTy> const_iterator;
    395   typedef size_t size_type;
    396   typedef ptrdiff_t difference_type;
    397   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
    398   typedef std::reverse_iterator<iterator>  reverse_iterator;
    399 
    400   iplist() : Head(this->provideInitialHead()) {}
    401   ~iplist() {
    402     if (!Head) return;
    403     clear();
    404     Traits::destroySentinel(getTail());
    405   }
    406 
    407   // Iterator creation methods.
    408   iterator begin() {
    409     CreateLazySentinel();
    410     return iterator(Head);
    411   }
    412   const_iterator begin() const {
    413     CreateLazySentinel();
    414     return const_iterator(Head);
    415   }
    416   iterator end() {
    417     CreateLazySentinel();
    418     return iterator(getTail());
    419   }
    420   const_iterator end() const {
    421     CreateLazySentinel();
    422     return const_iterator(getTail());
    423   }
    424 
    425   // reverse iterator creation methods.
    426   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    427   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    428   reverse_iterator rend()              { return reverse_iterator(begin()); }
    429   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    430 
    431 
    432   // Miscellaneous inspection routines.
    433   size_type max_size() const { return size_type(-1); }
    434   bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
    435     return !Head || Head == getTail();
    436   }
    437 
    438   // Front and back accessor functions...
    439   reference front() {
    440     assert(!empty() && "Called front() on empty list!");
    441     return *Head;
    442   }
    443   const_reference front() const {
    444     assert(!empty() && "Called front() on empty list!");
    445     return *Head;
    446   }
    447   reference back() {
    448     assert(!empty() && "Called back() on empty list!");
    449     return *this->getPrev(getTail());
    450   }
    451   const_reference back() const {
    452     assert(!empty() && "Called back() on empty list!");
    453     return *this->getPrev(getTail());
    454   }
    455 
    456   void swap(iplist &RHS) {
    457     assert(0 && "Swap does not use list traits callback correctly yet!");
    458     std::swap(Head, RHS.Head);
    459   }
    460 
    461   iterator insert(iterator where, NodeTy *New) {
    462     NodeTy *CurNode = where.getNodePtrUnchecked();
    463     NodeTy *PrevNode = this->getPrev(CurNode);
    464     this->setNext(New, CurNode);
    465     this->setPrev(New, PrevNode);
    466 
    467     if (CurNode != Head)  // Is PrevNode off the beginning of the list?
    468       this->setNext(PrevNode, New);
    469     else
    470       Head = New;
    471     this->setPrev(CurNode, New);
    472 
    473     this->addNodeToList(New);  // Notify traits that we added a node...
    474     return iterator(New);
    475   }
    476 
    477   iterator insertAfter(iterator where, NodeTy *New) {
    478     if (empty())
    479       return insert(begin(), New);
    480     else
    481       return insert(++where, New);
    482   }
    483 
    484   NodeTy *remove(iterator &IT) {
    485     assert(IT != end() && "Cannot remove end of list!");
    486     NodeTy *Node = &*IT;
    487     NodeTy *NextNode = this->getNext(Node);
    488     NodeTy *PrevNode = this->getPrev(Node);
    489 
    490     if (Node != Head)  // Is PrevNode off the beginning of the list?
    491       this->setNext(PrevNode, NextNode);
    492     else
    493       Head = NextNode;
    494     this->setPrev(NextNode, PrevNode);
    495     IT.reset(NextNode);
    496     this->removeNodeFromList(Node);  // Notify traits that we removed a node...
    497 
    498     // Set the next/prev pointers of the current node to null.  This isn't
    499     // strictly required, but this catches errors where a node is removed from
    500     // an ilist (and potentially deleted) with iterators still pointing at it.
    501     // When those iterators are incremented or decremented, they will assert on
    502     // the null next/prev pointer instead of "usually working".
    503     this->setNext(Node, nullptr);
    504     this->setPrev(Node, nullptr);
    505     return Node;
    506   }
    507 
    508   NodeTy *remove(const iterator &IT) {
    509     iterator MutIt = IT;
    510     return remove(MutIt);
    511   }
    512 
    513   NodeTy *remove(NodeTy *IT) { return remove(iterator(IT)); }
    514   NodeTy *remove(NodeTy &IT) { return remove(iterator(IT)); }
    515 
    516   // erase - remove a node from the controlled sequence... and delete it.
    517   iterator erase(iterator where) {
    518     this->deleteNode(remove(where));
    519     return where;
    520   }
    521 
    522   iterator erase(NodeTy *IT) { return erase(iterator(IT)); }
    523   iterator erase(NodeTy &IT) { return erase(iterator(IT)); }
    524 
    525   /// Remove all nodes from the list like clear(), but do not call
    526   /// removeNodeFromList() or deleteNode().
    527   ///
    528   /// This should only be used immediately before freeing nodes in bulk to
    529   /// avoid traversing the list and bringing all the nodes into cache.
    530   void clearAndLeakNodesUnsafely() {
    531     if (Head) {
    532       Head = getTail();
    533       this->setPrev(Head, Head);
    534     }
    535   }
    536 
    537 private:
    538   // transfer - The heart of the splice function.  Move linked list nodes from
    539   // [first, last) into position.
    540   //
    541   void transfer(iterator position, iplist &L2, iterator first, iterator last) {
    542     assert(first != last && "Should be checked by callers");
    543     // Position cannot be contained in the range to be transferred.
    544     // Check for the most common mistake.
    545     assert(position != first &&
    546            "Insertion point can't be one of the transferred nodes");
    547 
    548     if (position != last) {
    549       // Note: we have to be careful about the case when we move the first node
    550       // in the list.  This node is the list sentinel node and we can't move it.
    551       NodeTy *ThisSentinel = getTail();
    552       setTail(nullptr);
    553       NodeTy *L2Sentinel = L2.getTail();
    554       L2.setTail(nullptr);
    555 
    556       // Remove [first, last) from its old position.
    557       NodeTy *First = &*first, *Prev = this->getPrev(First);
    558       NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
    559       if (Prev)
    560         this->setNext(Prev, Next);
    561       else
    562         L2.Head = Next;
    563       this->setPrev(Next, Prev);
    564 
    565       // Splice [first, last) into its new position.
    566       NodeTy *PosNext = position.getNodePtrUnchecked();
    567       NodeTy *PosPrev = this->getPrev(PosNext);
    568 
    569       // Fix head of list...
    570       if (PosPrev)
    571         this->setNext(PosPrev, First);
    572       else
    573         Head = First;
    574       this->setPrev(First, PosPrev);
    575 
    576       // Fix end of list...
    577       this->setNext(Last, PosNext);
    578       this->setPrev(PosNext, Last);
    579 
    580       this->transferNodesFromList(L2, iterator(First), iterator(PosNext));
    581 
    582       // Now that everything is set, restore the pointers to the list sentinels.
    583       L2.setTail(L2Sentinel);
    584       setTail(ThisSentinel);
    585     }
    586   }
    587 
    588 public:
    589 
    590   //===----------------------------------------------------------------------===
    591   // Functionality derived from other functions defined above...
    592   //
    593 
    594   size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
    595     if (!Head) return 0; // Don't require construction of sentinel if empty.
    596     return std::distance(begin(), end());
    597   }
    598 
    599   iterator erase(iterator first, iterator last) {
    600     while (first != last)
    601       first = erase(first);
    602     return last;
    603   }
    604 
    605   void clear() { if (Head) erase(begin(), end()); }
    606 
    607   // Front and back inserters...
    608   void push_front(NodeTy *val) { insert(begin(), val); }
    609   void push_back(NodeTy *val) { insert(end(), val); }
    610   void pop_front() {
    611     assert(!empty() && "pop_front() on empty list!");
    612     erase(begin());
    613   }
    614   void pop_back() {
    615     assert(!empty() && "pop_back() on empty list!");
    616     iterator t = end(); erase(--t);
    617   }
    618 
    619   // Special forms of insert...
    620   template<class InIt> void insert(iterator where, InIt first, InIt last) {
    621     for (; first != last; ++first) insert(where, *first);
    622   }
    623 
    624   // Splice members - defined in terms of transfer...
    625   void splice(iterator where, iplist &L2) {
    626     if (!L2.empty())
    627       transfer(where, L2, L2.begin(), L2.end());
    628   }
    629   void splice(iterator where, iplist &L2, iterator first) {
    630     iterator last = first; ++last;
    631     if (where == first || where == last) return; // No change
    632     transfer(where, L2, first, last);
    633   }
    634   void splice(iterator where, iplist &L2, iterator first, iterator last) {
    635     if (first != last) transfer(where, L2, first, last);
    636   }
    637   void splice(iterator where, iplist &L2, NodeTy &N) {
    638     splice(where, L2, iterator(N));
    639   }
    640   void splice(iterator where, iplist &L2, NodeTy *N) {
    641     splice(where, L2, iterator(N));
    642   }
    643 
    644   template <class Compare>
    645   void merge(iplist &Right, Compare comp) {
    646     if (this == &Right)
    647       return;
    648     iterator First1 = begin(), Last1 = end();
    649     iterator First2 = Right.begin(), Last2 = Right.end();
    650     while (First1 != Last1 && First2 != Last2) {
    651       if (comp(*First2, *First1)) {
    652         iterator Next = First2;
    653         transfer(First1, Right, First2, ++Next);
    654         First2 = Next;
    655       } else {
    656         ++First1;
    657       }
    658     }
    659     if (First2 != Last2)
    660       transfer(Last1, Right, First2, Last2);
    661   }
    662   void merge(iplist &Right) { return merge(Right, op_less); }
    663 
    664   template <class Compare>
    665   void sort(Compare comp) {
    666     // The list is empty, vacuously sorted.
    667     if (empty())
    668       return;
    669     // The list has a single element, vacuously sorted.
    670     if (std::next(begin()) == end())
    671       return;
    672     // Find the split point for the list.
    673     iterator Center = begin(), End = begin();
    674     while (End != end() && std::next(End) != end()) {
    675       Center = std::next(Center);
    676       End = std::next(std::next(End));
    677     }
    678     // Split the list into two.
    679     iplist RightHalf;
    680     RightHalf.splice(RightHalf.begin(), *this, Center, end());
    681 
    682     // Sort the two sublists.
    683     sort(comp);
    684     RightHalf.sort(comp);
    685 
    686     // Merge the two sublists back together.
    687     merge(RightHalf, comp);
    688   }
    689   void sort() { sort(op_less); }
    690 
    691   /// \brief Get the previous node, or \c nullptr for the list head.
    692   NodeTy *getPrevNode(NodeTy &N) const {
    693     auto I = N.getIterator();
    694     if (I == begin())
    695       return nullptr;
    696     return &*std::prev(I);
    697   }
    698   /// \brief Get the previous node, or \c nullptr for the list head.
    699   const NodeTy *getPrevNode(const NodeTy &N) const {
    700     return getPrevNode(const_cast<NodeTy &>(N));
    701   }
    702 
    703   /// \brief Get the next node, or \c nullptr for the list tail.
    704   NodeTy *getNextNode(NodeTy &N) const {
    705     auto Next = std::next(N.getIterator());
    706     if (Next == end())
    707       return nullptr;
    708     return &*Next;
    709   }
    710   /// \brief Get the next node, or \c nullptr for the list tail.
    711   const NodeTy *getNextNode(const NodeTy &N) const {
    712     return getNextNode(const_cast<NodeTy &>(N));
    713   }
    714 };
    715 
    716 
    717 template<typename NodeTy>
    718 struct ilist : public iplist<NodeTy> {
    719   typedef typename iplist<NodeTy>::size_type size_type;
    720   typedef typename iplist<NodeTy>::iterator iterator;
    721 
    722   ilist() {}
    723   ilist(const ilist &right) {
    724     insert(this->begin(), right.begin(), right.end());
    725   }
    726   explicit ilist(size_type count) {
    727     insert(this->begin(), count, NodeTy());
    728   }
    729   ilist(size_type count, const NodeTy &val) {
    730     insert(this->begin(), count, val);
    731   }
    732   template<class InIt> ilist(InIt first, InIt last) {
    733     insert(this->begin(), first, last);
    734   }
    735 
    736   // bring hidden functions into scope
    737   using iplist<NodeTy>::insert;
    738   using iplist<NodeTy>::push_front;
    739   using iplist<NodeTy>::push_back;
    740 
    741   // Main implementation here - Insert for a node passed by value...
    742   iterator insert(iterator where, const NodeTy &val) {
    743     return insert(where, this->createNode(val));
    744   }
    745 
    746 
    747   // Front and back inserters...
    748   void push_front(const NodeTy &val) { insert(this->begin(), val); }
    749   void push_back(const NodeTy &val) { insert(this->end(), val); }
    750 
    751   void insert(iterator where, size_type count, const NodeTy &val) {
    752     for (; count != 0; --count) insert(where, val);
    753   }
    754 
    755   // Assign special forms...
    756   void assign(size_type count, const NodeTy &val) {
    757     iterator I = this->begin();
    758     for (; I != this->end() && count != 0; ++I, --count)
    759       *I = val;
    760     if (count != 0)
    761       insert(this->end(), val, val);
    762     else
    763       erase(I, this->end());
    764   }
    765   template<class InIt> void assign(InIt first1, InIt last1) {
    766     iterator first2 = this->begin(), last2 = this->end();
    767     for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
    768       *first1 = *first2;
    769     if (first2 == last2)
    770       erase(first1, last1);
    771     else
    772       insert(last1, first2, last2);
    773   }
    774 
    775 
    776   // Resize members...
    777   void resize(size_type newsize, NodeTy val) {
    778     iterator i = this->begin();
    779     size_type len = 0;
    780     for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
    781 
    782     if (len == newsize)
    783       erase(i, this->end());
    784     else                                          // i == end()
    785       insert(this->end(), newsize - len, val);
    786   }
    787   void resize(size_type newsize) { resize(newsize, NodeTy()); }
    788 };
    789 
    790 } // End llvm namespace
    791 
    792 namespace std {
    793   // Ensure that swap uses the fast list swap...
    794   template<class Ty>
    795   void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
    796     Left.swap(Right);
    797   }
    798 }  // End 'std' extensions...
    799 
    800 #endif // LLVM_ADT_ILIST_H
    801