1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ASTContext interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "CXXABI.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Comment.h" 20 #include "clang/AST/CommentCommandTraits.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExternalASTSource.h" 27 #include "clang/AST/Mangle.h" 28 #include "clang/AST/MangleNumberingContext.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/AST/RecursiveASTVisitor.h" 31 #include "clang/AST/TypeLoc.h" 32 #include "clang/AST/VTableBuilder.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/SmallString.h" 37 #include "llvm/ADT/StringExtras.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Support/Capacity.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <map> 43 44 using namespace clang; 45 46 unsigned ASTContext::NumImplicitDefaultConstructors; 47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; 48 unsigned ASTContext::NumImplicitCopyConstructors; 49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared; 50 unsigned ASTContext::NumImplicitMoveConstructors; 51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared; 52 unsigned ASTContext::NumImplicitCopyAssignmentOperators; 53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; 54 unsigned ASTContext::NumImplicitMoveAssignmentOperators; 55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; 56 unsigned ASTContext::NumImplicitDestructors; 57 unsigned ASTContext::NumImplicitDestructorsDeclared; 58 59 enum FloatingRank { 60 HalfRank, FloatRank, DoubleRank, LongDoubleRank 61 }; 62 63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { 64 if (!CommentsLoaded && ExternalSource) { 65 ExternalSource->ReadComments(); 66 67 #ifndef NDEBUG 68 ArrayRef<RawComment *> RawComments = Comments.getComments(); 69 assert(std::is_sorted(RawComments.begin(), RawComments.end(), 70 BeforeThanCompare<RawComment>(SourceMgr))); 71 #endif 72 73 CommentsLoaded = true; 74 } 75 76 assert(D); 77 78 // User can not attach documentation to implicit declarations. 79 if (D->isImplicit()) 80 return nullptr; 81 82 // User can not attach documentation to implicit instantiations. 83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 85 return nullptr; 86 } 87 88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 89 if (VD->isStaticDataMember() && 90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 91 return nullptr; 92 } 93 94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 96 return nullptr; 97 } 98 99 if (const ClassTemplateSpecializationDecl *CTSD = 100 dyn_cast<ClassTemplateSpecializationDecl>(D)) { 101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); 102 if (TSK == TSK_ImplicitInstantiation || 103 TSK == TSK_Undeclared) 104 return nullptr; 105 } 106 107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 109 return nullptr; 110 } 111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 112 // When tag declaration (but not definition!) is part of the 113 // decl-specifier-seq of some other declaration, it doesn't get comment 114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) 115 return nullptr; 116 } 117 // TODO: handle comments for function parameters properly. 118 if (isa<ParmVarDecl>(D)) 119 return nullptr; 120 121 // TODO: we could look up template parameter documentation in the template 122 // documentation. 123 if (isa<TemplateTypeParmDecl>(D) || 124 isa<NonTypeTemplateParmDecl>(D) || 125 isa<TemplateTemplateParmDecl>(D)) 126 return nullptr; 127 128 ArrayRef<RawComment *> RawComments = Comments.getComments(); 129 130 // If there are no comments anywhere, we won't find anything. 131 if (RawComments.empty()) 132 return nullptr; 133 134 // Find declaration location. 135 // For Objective-C declarations we generally don't expect to have multiple 136 // declarators, thus use declaration starting location as the "declaration 137 // location". 138 // For all other declarations multiple declarators are used quite frequently, 139 // so we use the location of the identifier as the "declaration location". 140 SourceLocation DeclLoc; 141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || 142 isa<ObjCPropertyDecl>(D) || 143 isa<RedeclarableTemplateDecl>(D) || 144 isa<ClassTemplateSpecializationDecl>(D)) 145 DeclLoc = D->getLocStart(); 146 else { 147 DeclLoc = D->getLocation(); 148 if (DeclLoc.isMacroID()) { 149 if (isa<TypedefDecl>(D)) { 150 // If location of the typedef name is in a macro, it is because being 151 // declared via a macro. Try using declaration's starting location as 152 // the "declaration location". 153 DeclLoc = D->getLocStart(); 154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 155 // If location of the tag decl is inside a macro, but the spelling of 156 // the tag name comes from a macro argument, it looks like a special 157 // macro like NS_ENUM is being used to define the tag decl. In that 158 // case, adjust the source location to the expansion loc so that we can 159 // attach the comment to the tag decl. 160 if (SourceMgr.isMacroArgExpansion(DeclLoc) && 161 TD->isCompleteDefinition()) 162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc); 163 } 164 } 165 } 166 167 // If the declaration doesn't map directly to a location in a file, we 168 // can't find the comment. 169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 170 return nullptr; 171 172 // Find the comment that occurs just after this declaration. 173 ArrayRef<RawComment *>::iterator Comment; 174 { 175 // When searching for comments during parsing, the comment we are looking 176 // for is usually among the last two comments we parsed -- check them 177 // first. 178 RawComment CommentAtDeclLoc( 179 SourceMgr, SourceRange(DeclLoc), false, 180 LangOpts.CommentOpts.ParseAllComments); 181 BeforeThanCompare<RawComment> Compare(SourceMgr); 182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1; 183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 184 if (!Found && RawComments.size() >= 2) { 185 MaybeBeforeDecl--; 186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 187 } 188 189 if (Found) { 190 Comment = MaybeBeforeDecl + 1; 191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(), 192 &CommentAtDeclLoc, Compare)); 193 } else { 194 // Slow path. 195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(), 196 &CommentAtDeclLoc, Compare); 197 } 198 } 199 200 // Decompose the location for the declaration and find the beginning of the 201 // file buffer. 202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc); 203 204 // First check whether we have a trailing comment. 205 if (Comment != RawComments.end() && 206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() && 207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || 208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { 209 std::pair<FileID, unsigned> CommentBeginDecomp 210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin()); 211 // Check that Doxygen trailing comment comes after the declaration, starts 212 // on the same line and in the same file as the declaration. 213 if (DeclLocDecomp.first == CommentBeginDecomp.first && 214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) 215 == SourceMgr.getLineNumber(CommentBeginDecomp.first, 216 CommentBeginDecomp.second)) { 217 return *Comment; 218 } 219 } 220 221 // The comment just after the declaration was not a trailing comment. 222 // Let's look at the previous comment. 223 if (Comment == RawComments.begin()) 224 return nullptr; 225 --Comment; 226 227 // Check that we actually have a non-member Doxygen comment. 228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment()) 229 return nullptr; 230 231 // Decompose the end of the comment. 232 std::pair<FileID, unsigned> CommentEndDecomp 233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd()); 234 235 // If the comment and the declaration aren't in the same file, then they 236 // aren't related. 237 if (DeclLocDecomp.first != CommentEndDecomp.first) 238 return nullptr; 239 240 // Get the corresponding buffer. 241 bool Invalid = false; 242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, 243 &Invalid).data(); 244 if (Invalid) 245 return nullptr; 246 247 // Extract text between the comment and declaration. 248 StringRef Text(Buffer + CommentEndDecomp.second, 249 DeclLocDecomp.second - CommentEndDecomp.second); 250 251 // There should be no other declarations or preprocessor directives between 252 // comment and declaration. 253 if (Text.find_first_of(";{}#@") != StringRef::npos) 254 return nullptr; 255 256 return *Comment; 257 } 258 259 namespace { 260 /// If we have a 'templated' declaration for a template, adjust 'D' to 261 /// refer to the actual template. 262 /// If we have an implicit instantiation, adjust 'D' to refer to template. 263 const Decl *adjustDeclToTemplate(const Decl *D) { 264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 265 // Is this function declaration part of a function template? 266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 267 return FTD; 268 269 // Nothing to do if function is not an implicit instantiation. 270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 271 return D; 272 273 // Function is an implicit instantiation of a function template? 274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) 275 return FTD; 276 277 // Function is instantiated from a member definition of a class template? 278 if (const FunctionDecl *MemberDecl = 279 FD->getInstantiatedFromMemberFunction()) 280 return MemberDecl; 281 282 return D; 283 } 284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 285 // Static data member is instantiated from a member definition of a class 286 // template? 287 if (VD->isStaticDataMember()) 288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) 289 return MemberDecl; 290 291 return D; 292 } 293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 294 // Is this class declaration part of a class template? 295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) 296 return CTD; 297 298 // Class is an implicit instantiation of a class template or partial 299 // specialization? 300 if (const ClassTemplateSpecializationDecl *CTSD = 301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { 302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) 303 return D; 304 llvm::PointerUnion<ClassTemplateDecl *, 305 ClassTemplatePartialSpecializationDecl *> 306 PU = CTSD->getSpecializedTemplateOrPartial(); 307 return PU.is<ClassTemplateDecl*>() ? 308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) : 309 static_cast<const Decl*>( 310 PU.get<ClassTemplatePartialSpecializationDecl *>()); 311 } 312 313 // Class is instantiated from a member definition of a class template? 314 if (const MemberSpecializationInfo *Info = 315 CRD->getMemberSpecializationInfo()) 316 return Info->getInstantiatedFrom(); 317 318 return D; 319 } 320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 321 // Enum is instantiated from a member definition of a class template? 322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) 323 return MemberDecl; 324 325 return D; 326 } 327 // FIXME: Adjust alias templates? 328 return D; 329 } 330 } // anonymous namespace 331 332 const RawComment *ASTContext::getRawCommentForAnyRedecl( 333 const Decl *D, 334 const Decl **OriginalDecl) const { 335 D = adjustDeclToTemplate(D); 336 337 // Check whether we have cached a comment for this declaration already. 338 { 339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 340 RedeclComments.find(D); 341 if (Pos != RedeclComments.end()) { 342 const RawCommentAndCacheFlags &Raw = Pos->second; 343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 344 if (OriginalDecl) 345 *OriginalDecl = Raw.getOriginalDecl(); 346 return Raw.getRaw(); 347 } 348 } 349 } 350 351 // Search for comments attached to declarations in the redeclaration chain. 352 const RawComment *RC = nullptr; 353 const Decl *OriginalDeclForRC = nullptr; 354 for (auto I : D->redecls()) { 355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 356 RedeclComments.find(I); 357 if (Pos != RedeclComments.end()) { 358 const RawCommentAndCacheFlags &Raw = Pos->second; 359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 360 RC = Raw.getRaw(); 361 OriginalDeclForRC = Raw.getOriginalDecl(); 362 break; 363 } 364 } else { 365 RC = getRawCommentForDeclNoCache(I); 366 OriginalDeclForRC = I; 367 RawCommentAndCacheFlags Raw; 368 if (RC) { 369 // Call order swapped to work around ICE in VS2015 RTM (Release Win32) 370 // https://connect.microsoft.com/VisualStudio/feedback/details/1741530 371 Raw.setKind(RawCommentAndCacheFlags::FromDecl); 372 Raw.setRaw(RC); 373 } else 374 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl); 375 Raw.setOriginalDecl(I); 376 RedeclComments[I] = Raw; 377 if (RC) 378 break; 379 } 380 } 381 382 // If we found a comment, it should be a documentation comment. 383 assert(!RC || RC->isDocumentation()); 384 385 if (OriginalDecl) 386 *OriginalDecl = OriginalDeclForRC; 387 388 // Update cache for every declaration in the redeclaration chain. 389 RawCommentAndCacheFlags Raw; 390 Raw.setRaw(RC); 391 Raw.setKind(RawCommentAndCacheFlags::FromRedecl); 392 Raw.setOriginalDecl(OriginalDeclForRC); 393 394 for (auto I : D->redecls()) { 395 RawCommentAndCacheFlags &R = RedeclComments[I]; 396 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl) 397 R = Raw; 398 } 399 400 return RC; 401 } 402 403 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, 404 SmallVectorImpl<const NamedDecl *> &Redeclared) { 405 const DeclContext *DC = ObjCMethod->getDeclContext(); 406 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) { 407 const ObjCInterfaceDecl *ID = IMD->getClassInterface(); 408 if (!ID) 409 return; 410 // Add redeclared method here. 411 for (const auto *Ext : ID->known_extensions()) { 412 if (ObjCMethodDecl *RedeclaredMethod = 413 Ext->getMethod(ObjCMethod->getSelector(), 414 ObjCMethod->isInstanceMethod())) 415 Redeclared.push_back(RedeclaredMethod); 416 } 417 } 418 } 419 420 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, 421 const Decl *D) const { 422 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo; 423 ThisDeclInfo->CommentDecl = D; 424 ThisDeclInfo->IsFilled = false; 425 ThisDeclInfo->fill(); 426 ThisDeclInfo->CommentDecl = FC->getDecl(); 427 if (!ThisDeclInfo->TemplateParameters) 428 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; 429 comments::FullComment *CFC = 430 new (*this) comments::FullComment(FC->getBlocks(), 431 ThisDeclInfo); 432 return CFC; 433 } 434 435 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { 436 const RawComment *RC = getRawCommentForDeclNoCache(D); 437 return RC ? RC->parse(*this, nullptr, D) : nullptr; 438 } 439 440 comments::FullComment *ASTContext::getCommentForDecl( 441 const Decl *D, 442 const Preprocessor *PP) const { 443 if (D->isInvalidDecl()) 444 return nullptr; 445 D = adjustDeclToTemplate(D); 446 447 const Decl *Canonical = D->getCanonicalDecl(); 448 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = 449 ParsedComments.find(Canonical); 450 451 if (Pos != ParsedComments.end()) { 452 if (Canonical != D) { 453 comments::FullComment *FC = Pos->second; 454 comments::FullComment *CFC = cloneFullComment(FC, D); 455 return CFC; 456 } 457 return Pos->second; 458 } 459 460 const Decl *OriginalDecl; 461 462 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); 463 if (!RC) { 464 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { 465 SmallVector<const NamedDecl*, 8> Overridden; 466 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D); 467 if (OMD && OMD->isPropertyAccessor()) 468 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) 469 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) 470 return cloneFullComment(FC, D); 471 if (OMD) 472 addRedeclaredMethods(OMD, Overridden); 473 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); 474 for (unsigned i = 0, e = Overridden.size(); i < e; i++) 475 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) 476 return cloneFullComment(FC, D); 477 } 478 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 479 // Attach any tag type's documentation to its typedef if latter 480 // does not have one of its own. 481 QualType QT = TD->getUnderlyingType(); 482 if (const TagType *TT = QT->getAs<TagType>()) 483 if (const Decl *TD = TT->getDecl()) 484 if (comments::FullComment *FC = getCommentForDecl(TD, PP)) 485 return cloneFullComment(FC, D); 486 } 487 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) { 488 while (IC->getSuperClass()) { 489 IC = IC->getSuperClass(); 490 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 491 return cloneFullComment(FC, D); 492 } 493 } 494 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) { 495 if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) 496 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 497 return cloneFullComment(FC, D); 498 } 499 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 500 if (!(RD = RD->getDefinition())) 501 return nullptr; 502 // Check non-virtual bases. 503 for (const auto &I : RD->bases()) { 504 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) 505 continue; 506 QualType Ty = I.getType(); 507 if (Ty.isNull()) 508 continue; 509 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { 510 if (!(NonVirtualBase= NonVirtualBase->getDefinition())) 511 continue; 512 513 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) 514 return cloneFullComment(FC, D); 515 } 516 } 517 // Check virtual bases. 518 for (const auto &I : RD->vbases()) { 519 if (I.getAccessSpecifier() != AS_public) 520 continue; 521 QualType Ty = I.getType(); 522 if (Ty.isNull()) 523 continue; 524 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { 525 if (!(VirtualBase= VirtualBase->getDefinition())) 526 continue; 527 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) 528 return cloneFullComment(FC, D); 529 } 530 } 531 } 532 return nullptr; 533 } 534 535 // If the RawComment was attached to other redeclaration of this Decl, we 536 // should parse the comment in context of that other Decl. This is important 537 // because comments can contain references to parameter names which can be 538 // different across redeclarations. 539 if (D != OriginalDecl) 540 return getCommentForDecl(OriginalDecl, PP); 541 542 comments::FullComment *FC = RC->parse(*this, PP, D); 543 ParsedComments[Canonical] = FC; 544 return FC; 545 } 546 547 void 548 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, 549 TemplateTemplateParmDecl *Parm) { 550 ID.AddInteger(Parm->getDepth()); 551 ID.AddInteger(Parm->getPosition()); 552 ID.AddBoolean(Parm->isParameterPack()); 553 554 TemplateParameterList *Params = Parm->getTemplateParameters(); 555 ID.AddInteger(Params->size()); 556 for (TemplateParameterList::const_iterator P = Params->begin(), 557 PEnd = Params->end(); 558 P != PEnd; ++P) { 559 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 560 ID.AddInteger(0); 561 ID.AddBoolean(TTP->isParameterPack()); 562 continue; 563 } 564 565 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 566 ID.AddInteger(1); 567 ID.AddBoolean(NTTP->isParameterPack()); 568 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); 569 if (NTTP->isExpandedParameterPack()) { 570 ID.AddBoolean(true); 571 ID.AddInteger(NTTP->getNumExpansionTypes()); 572 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 573 QualType T = NTTP->getExpansionType(I); 574 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); 575 } 576 } else 577 ID.AddBoolean(false); 578 continue; 579 } 580 581 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); 582 ID.AddInteger(2); 583 Profile(ID, TTP); 584 } 585 } 586 587 TemplateTemplateParmDecl * 588 ASTContext::getCanonicalTemplateTemplateParmDecl( 589 TemplateTemplateParmDecl *TTP) const { 590 // Check if we already have a canonical template template parameter. 591 llvm::FoldingSetNodeID ID; 592 CanonicalTemplateTemplateParm::Profile(ID, TTP); 593 void *InsertPos = nullptr; 594 CanonicalTemplateTemplateParm *Canonical 595 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 596 if (Canonical) 597 return Canonical->getParam(); 598 599 // Build a canonical template parameter list. 600 TemplateParameterList *Params = TTP->getTemplateParameters(); 601 SmallVector<NamedDecl *, 4> CanonParams; 602 CanonParams.reserve(Params->size()); 603 for (TemplateParameterList::const_iterator P = Params->begin(), 604 PEnd = Params->end(); 605 P != PEnd; ++P) { 606 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) 607 CanonParams.push_back( 608 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), 609 SourceLocation(), 610 SourceLocation(), 611 TTP->getDepth(), 612 TTP->getIndex(), nullptr, false, 613 TTP->isParameterPack())); 614 else if (NonTypeTemplateParmDecl *NTTP 615 = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 616 QualType T = getCanonicalType(NTTP->getType()); 617 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 618 NonTypeTemplateParmDecl *Param; 619 if (NTTP->isExpandedParameterPack()) { 620 SmallVector<QualType, 2> ExpandedTypes; 621 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; 622 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 623 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); 624 ExpandedTInfos.push_back( 625 getTrivialTypeSourceInfo(ExpandedTypes.back())); 626 } 627 628 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 629 SourceLocation(), 630 SourceLocation(), 631 NTTP->getDepth(), 632 NTTP->getPosition(), nullptr, 633 T, 634 TInfo, 635 ExpandedTypes.data(), 636 ExpandedTypes.size(), 637 ExpandedTInfos.data()); 638 } else { 639 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 640 SourceLocation(), 641 SourceLocation(), 642 NTTP->getDepth(), 643 NTTP->getPosition(), nullptr, 644 T, 645 NTTP->isParameterPack(), 646 TInfo); 647 } 648 CanonParams.push_back(Param); 649 650 } else 651 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( 652 cast<TemplateTemplateParmDecl>(*P))); 653 } 654 655 TemplateTemplateParmDecl *CanonTTP 656 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 657 SourceLocation(), TTP->getDepth(), 658 TTP->getPosition(), 659 TTP->isParameterPack(), 660 nullptr, 661 TemplateParameterList::Create(*this, SourceLocation(), 662 SourceLocation(), 663 CanonParams.data(), 664 CanonParams.size(), 665 SourceLocation())); 666 667 // Get the new insert position for the node we care about. 668 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 669 assert(!Canonical && "Shouldn't be in the map!"); 670 (void)Canonical; 671 672 // Create the canonical template template parameter entry. 673 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); 674 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); 675 return CanonTTP; 676 } 677 678 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { 679 if (!LangOpts.CPlusPlus) return nullptr; 680 681 switch (T.getCXXABI().getKind()) { 682 case TargetCXXABI::GenericARM: // Same as Itanium at this level 683 case TargetCXXABI::iOS: 684 case TargetCXXABI::iOS64: 685 case TargetCXXABI::WatchOS: 686 case TargetCXXABI::GenericAArch64: 687 case TargetCXXABI::GenericMIPS: 688 case TargetCXXABI::GenericItanium: 689 case TargetCXXABI::WebAssembly: 690 return CreateItaniumCXXABI(*this); 691 case TargetCXXABI::Microsoft: 692 return CreateMicrosoftCXXABI(*this); 693 } 694 llvm_unreachable("Invalid CXXABI type!"); 695 } 696 697 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T, 698 const LangOptions &LOpts) { 699 if (LOpts.FakeAddressSpaceMap) { 700 // The fake address space map must have a distinct entry for each 701 // language-specific address space. 702 static const unsigned FakeAddrSpaceMap[] = { 703 1, // opencl_global 704 2, // opencl_local 705 3, // opencl_constant 706 4, // opencl_generic 707 5, // cuda_device 708 6, // cuda_constant 709 7 // cuda_shared 710 }; 711 return &FakeAddrSpaceMap; 712 } else { 713 return &T.getAddressSpaceMap(); 714 } 715 } 716 717 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, 718 const LangOptions &LangOpts) { 719 switch (LangOpts.getAddressSpaceMapMangling()) { 720 case LangOptions::ASMM_Target: 721 return TI.useAddressSpaceMapMangling(); 722 case LangOptions::ASMM_On: 723 return true; 724 case LangOptions::ASMM_Off: 725 return false; 726 } 727 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); 728 } 729 730 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, 731 IdentifierTable &idents, SelectorTable &sels, 732 Builtin::Context &builtins) 733 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()), 734 DependentTemplateSpecializationTypes(this_()), 735 SubstTemplateTemplateParmPacks(this_()), 736 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr), 737 UInt128Decl(nullptr), Float128StubDecl(nullptr), 738 BuiltinVaListDecl(nullptr), BuiltinMSVaListDecl(nullptr), 739 ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr), 740 ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr), 741 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr), 742 FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), 743 ucontext_tDecl(nullptr), BlockDescriptorType(nullptr), 744 BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr), 745 FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr), 746 MakeIntegerSeqDecl(nullptr), SourceMgr(SM), LangOpts(LOpts), 747 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)), 748 AddrSpaceMap(nullptr), Target(nullptr), AuxTarget(nullptr), 749 PrintingPolicy(LOpts), Idents(idents), Selectors(sels), 750 BuiltinInfo(builtins), DeclarationNames(*this), ExternalSource(nullptr), 751 Listener(nullptr), Comments(SM), CommentsLoaded(false), 752 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) { 753 TUDecl = TranslationUnitDecl::Create(*this); 754 } 755 756 ASTContext::~ASTContext() { 757 ReleaseParentMapEntries(); 758 759 // Release the DenseMaps associated with DeclContext objects. 760 // FIXME: Is this the ideal solution? 761 ReleaseDeclContextMaps(); 762 763 // Call all of the deallocation functions on all of their targets. 764 for (DeallocationMap::const_iterator I = Deallocations.begin(), 765 E = Deallocations.end(); I != E; ++I) 766 for (unsigned J = 0, N = I->second.size(); J != N; ++J) 767 (I->first)((I->second)[J]); 768 769 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed 770 // because they can contain DenseMaps. 771 for (llvm::DenseMap<const ObjCContainerDecl*, 772 const ASTRecordLayout*>::iterator 773 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) 774 // Increment in loop to prevent using deallocated memory. 775 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 776 R->Destroy(*this); 777 778 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator 779 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { 780 // Increment in loop to prevent using deallocated memory. 781 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 782 R->Destroy(*this); 783 } 784 785 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), 786 AEnd = DeclAttrs.end(); 787 A != AEnd; ++A) 788 A->second->~AttrVec(); 789 790 for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair : 791 MaterializedTemporaryValues) 792 MTVPair.second->~APValue(); 793 794 llvm::DeleteContainerSeconds(MangleNumberingContexts); 795 } 796 797 void ASTContext::ReleaseParentMapEntries() { 798 if (!PointerParents) return; 799 for (const auto &Entry : *PointerParents) { 800 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { 801 delete Entry.second.get<ast_type_traits::DynTypedNode *>(); 802 } else if (Entry.second.is<ParentVector *>()) { 803 delete Entry.second.get<ParentVector *>(); 804 } 805 } 806 for (const auto &Entry : *OtherParents) { 807 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { 808 delete Entry.second.get<ast_type_traits::DynTypedNode *>(); 809 } else if (Entry.second.is<ParentVector *>()) { 810 delete Entry.second.get<ParentVector *>(); 811 } 812 } 813 } 814 815 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { 816 Deallocations[Callback].push_back(Data); 817 } 818 819 void 820 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { 821 ExternalSource = Source; 822 } 823 824 void ASTContext::PrintStats() const { 825 llvm::errs() << "\n*** AST Context Stats:\n"; 826 llvm::errs() << " " << Types.size() << " types total.\n"; 827 828 unsigned counts[] = { 829 #define TYPE(Name, Parent) 0, 830 #define ABSTRACT_TYPE(Name, Parent) 831 #include "clang/AST/TypeNodes.def" 832 0 // Extra 833 }; 834 835 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 836 Type *T = Types[i]; 837 counts[(unsigned)T->getTypeClass()]++; 838 } 839 840 unsigned Idx = 0; 841 unsigned TotalBytes = 0; 842 #define TYPE(Name, Parent) \ 843 if (counts[Idx]) \ 844 llvm::errs() << " " << counts[Idx] << " " << #Name \ 845 << " types\n"; \ 846 TotalBytes += counts[Idx] * sizeof(Name##Type); \ 847 ++Idx; 848 #define ABSTRACT_TYPE(Name, Parent) 849 #include "clang/AST/TypeNodes.def" 850 851 llvm::errs() << "Total bytes = " << TotalBytes << "\n"; 852 853 // Implicit special member functions. 854 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" 855 << NumImplicitDefaultConstructors 856 << " implicit default constructors created\n"; 857 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" 858 << NumImplicitCopyConstructors 859 << " implicit copy constructors created\n"; 860 if (getLangOpts().CPlusPlus) 861 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" 862 << NumImplicitMoveConstructors 863 << " implicit move constructors created\n"; 864 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" 865 << NumImplicitCopyAssignmentOperators 866 << " implicit copy assignment operators created\n"; 867 if (getLangOpts().CPlusPlus) 868 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" 869 << NumImplicitMoveAssignmentOperators 870 << " implicit move assignment operators created\n"; 871 llvm::errs() << NumImplicitDestructorsDeclared << "/" 872 << NumImplicitDestructors 873 << " implicit destructors created\n"; 874 875 if (ExternalSource) { 876 llvm::errs() << "\n"; 877 ExternalSource->PrintStats(); 878 } 879 880 BumpAlloc.PrintStats(); 881 } 882 883 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, 884 bool NotifyListeners) { 885 if (NotifyListeners) 886 if (auto *Listener = getASTMutationListener()) 887 Listener->RedefinedHiddenDefinition(ND, M); 888 889 if (getLangOpts().ModulesLocalVisibility) 890 MergedDefModules[ND].push_back(M); 891 else 892 ND->setHidden(false); 893 } 894 895 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { 896 auto It = MergedDefModules.find(ND); 897 if (It == MergedDefModules.end()) 898 return; 899 900 auto &Merged = It->second; 901 llvm::DenseSet<Module*> Found; 902 for (Module *&M : Merged) 903 if (!Found.insert(M).second) 904 M = nullptr; 905 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end()); 906 } 907 908 ExternCContextDecl *ASTContext::getExternCContextDecl() const { 909 if (!ExternCContext) 910 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); 911 912 return ExternCContext; 913 } 914 915 BuiltinTemplateDecl * 916 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, 917 const IdentifierInfo *II) const { 918 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK); 919 BuiltinTemplate->setImplicit(); 920 TUDecl->addDecl(BuiltinTemplate); 921 922 return BuiltinTemplate; 923 } 924 925 BuiltinTemplateDecl * 926 ASTContext::getMakeIntegerSeqDecl() const { 927 if (!MakeIntegerSeqDecl) 928 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, 929 getMakeIntegerSeqName()); 930 return MakeIntegerSeqDecl; 931 } 932 933 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, 934 RecordDecl::TagKind TK) const { 935 SourceLocation Loc; 936 RecordDecl *NewDecl; 937 if (getLangOpts().CPlusPlus) 938 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, 939 Loc, &Idents.get(Name)); 940 else 941 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, 942 &Idents.get(Name)); 943 NewDecl->setImplicit(); 944 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( 945 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); 946 return NewDecl; 947 } 948 949 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, 950 StringRef Name) const { 951 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 952 TypedefDecl *NewDecl = TypedefDecl::Create( 953 const_cast<ASTContext &>(*this), getTranslationUnitDecl(), 954 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); 955 NewDecl->setImplicit(); 956 return NewDecl; 957 } 958 959 TypedefDecl *ASTContext::getInt128Decl() const { 960 if (!Int128Decl) 961 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); 962 return Int128Decl; 963 } 964 965 TypedefDecl *ASTContext::getUInt128Decl() const { 966 if (!UInt128Decl) 967 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); 968 return UInt128Decl; 969 } 970 971 TypeDecl *ASTContext::getFloat128StubType() const { 972 assert(LangOpts.CPlusPlus && "should only be called for c++"); 973 if (!Float128StubDecl) 974 Float128StubDecl = buildImplicitRecord("__float128"); 975 976 return Float128StubDecl; 977 } 978 979 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { 980 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K); 981 R = CanQualType::CreateUnsafe(QualType(Ty, 0)); 982 Types.push_back(Ty); 983 } 984 985 void ASTContext::InitBuiltinTypes(const TargetInfo &Target, 986 const TargetInfo *AuxTarget) { 987 assert((!this->Target || this->Target == &Target) && 988 "Incorrect target reinitialization"); 989 assert(VoidTy.isNull() && "Context reinitialized?"); 990 991 this->Target = &Target; 992 this->AuxTarget = AuxTarget; 993 994 ABI.reset(createCXXABI(Target)); 995 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); 996 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); 997 998 // C99 6.2.5p19. 999 InitBuiltinType(VoidTy, BuiltinType::Void); 1000 1001 // C99 6.2.5p2. 1002 InitBuiltinType(BoolTy, BuiltinType::Bool); 1003 // C99 6.2.5p3. 1004 if (LangOpts.CharIsSigned) 1005 InitBuiltinType(CharTy, BuiltinType::Char_S); 1006 else 1007 InitBuiltinType(CharTy, BuiltinType::Char_U); 1008 // C99 6.2.5p4. 1009 InitBuiltinType(SignedCharTy, BuiltinType::SChar); 1010 InitBuiltinType(ShortTy, BuiltinType::Short); 1011 InitBuiltinType(IntTy, BuiltinType::Int); 1012 InitBuiltinType(LongTy, BuiltinType::Long); 1013 InitBuiltinType(LongLongTy, BuiltinType::LongLong); 1014 1015 // C99 6.2.5p6. 1016 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); 1017 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); 1018 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); 1019 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); 1020 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); 1021 1022 // C99 6.2.5p10. 1023 InitBuiltinType(FloatTy, BuiltinType::Float); 1024 InitBuiltinType(DoubleTy, BuiltinType::Double); 1025 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); 1026 1027 // GNU extension, 128-bit integers. 1028 InitBuiltinType(Int128Ty, BuiltinType::Int128); 1029 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); 1030 1031 // C++ 3.9.1p5 1032 if (TargetInfo::isTypeSigned(Target.getWCharType())) 1033 InitBuiltinType(WCharTy, BuiltinType::WChar_S); 1034 else // -fshort-wchar makes wchar_t be unsigned. 1035 InitBuiltinType(WCharTy, BuiltinType::WChar_U); 1036 if (LangOpts.CPlusPlus && LangOpts.WChar) 1037 WideCharTy = WCharTy; 1038 else { 1039 // C99 (or C++ using -fno-wchar). 1040 WideCharTy = getFromTargetType(Target.getWCharType()); 1041 } 1042 1043 WIntTy = getFromTargetType(Target.getWIntType()); 1044 1045 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1046 InitBuiltinType(Char16Ty, BuiltinType::Char16); 1047 else // C99 1048 Char16Ty = getFromTargetType(Target.getChar16Type()); 1049 1050 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1051 InitBuiltinType(Char32Ty, BuiltinType::Char32); 1052 else // C99 1053 Char32Ty = getFromTargetType(Target.getChar32Type()); 1054 1055 // Placeholder type for type-dependent expressions whose type is 1056 // completely unknown. No code should ever check a type against 1057 // DependentTy and users should never see it; however, it is here to 1058 // help diagnose failures to properly check for type-dependent 1059 // expressions. 1060 InitBuiltinType(DependentTy, BuiltinType::Dependent); 1061 1062 // Placeholder type for functions. 1063 InitBuiltinType(OverloadTy, BuiltinType::Overload); 1064 1065 // Placeholder type for bound members. 1066 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); 1067 1068 // Placeholder type for pseudo-objects. 1069 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); 1070 1071 // "any" type; useful for debugger-like clients. 1072 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); 1073 1074 // Placeholder type for unbridged ARC casts. 1075 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); 1076 1077 // Placeholder type for builtin functions. 1078 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); 1079 1080 // Placeholder type for OMP array sections. 1081 if (LangOpts.OpenMP) 1082 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); 1083 1084 // C99 6.2.5p11. 1085 FloatComplexTy = getComplexType(FloatTy); 1086 DoubleComplexTy = getComplexType(DoubleTy); 1087 LongDoubleComplexTy = getComplexType(LongDoubleTy); 1088 1089 // Builtin types for 'id', 'Class', and 'SEL'. 1090 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); 1091 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); 1092 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); 1093 1094 if (LangOpts.OpenCL) { 1095 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d); 1096 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray); 1097 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer); 1098 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d); 1099 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray); 1100 InitBuiltinType(OCLImage2dDepthTy, BuiltinType::OCLImage2dDepth); 1101 InitBuiltinType(OCLImage2dArrayDepthTy, BuiltinType::OCLImage2dArrayDepth); 1102 InitBuiltinType(OCLImage2dMSAATy, BuiltinType::OCLImage2dMSAA); 1103 InitBuiltinType(OCLImage2dArrayMSAATy, BuiltinType::OCLImage2dArrayMSAA); 1104 InitBuiltinType(OCLImage2dMSAADepthTy, BuiltinType::OCLImage2dMSAADepth); 1105 InitBuiltinType(OCLImage2dArrayMSAADepthTy, 1106 BuiltinType::OCLImage2dArrayMSAADepth); 1107 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d); 1108 1109 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); 1110 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); 1111 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); 1112 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); 1113 InitBuiltinType(OCLNDRangeTy, BuiltinType::OCLNDRange); 1114 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); 1115 } 1116 1117 // Builtin type for __objc_yes and __objc_no 1118 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? 1119 SignedCharTy : BoolTy); 1120 1121 ObjCConstantStringType = QualType(); 1122 1123 ObjCSuperType = QualType(); 1124 1125 // void * type 1126 VoidPtrTy = getPointerType(VoidTy); 1127 1128 // nullptr type (C++0x 2.14.7) 1129 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); 1130 1131 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 1132 InitBuiltinType(HalfTy, BuiltinType::Half); 1133 1134 // Builtin type used to help define __builtin_va_list. 1135 VaListTagDecl = nullptr; 1136 } 1137 1138 DiagnosticsEngine &ASTContext::getDiagnostics() const { 1139 return SourceMgr.getDiagnostics(); 1140 } 1141 1142 AttrVec& ASTContext::getDeclAttrs(const Decl *D) { 1143 AttrVec *&Result = DeclAttrs[D]; 1144 if (!Result) { 1145 void *Mem = Allocate(sizeof(AttrVec)); 1146 Result = new (Mem) AttrVec; 1147 } 1148 1149 return *Result; 1150 } 1151 1152 /// \brief Erase the attributes corresponding to the given declaration. 1153 void ASTContext::eraseDeclAttrs(const Decl *D) { 1154 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); 1155 if (Pos != DeclAttrs.end()) { 1156 Pos->second->~AttrVec(); 1157 DeclAttrs.erase(Pos); 1158 } 1159 } 1160 1161 // FIXME: Remove ? 1162 MemberSpecializationInfo * 1163 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { 1164 assert(Var->isStaticDataMember() && "Not a static data member"); 1165 return getTemplateOrSpecializationInfo(Var) 1166 .dyn_cast<MemberSpecializationInfo *>(); 1167 } 1168 1169 ASTContext::TemplateOrSpecializationInfo 1170 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { 1171 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = 1172 TemplateOrInstantiation.find(Var); 1173 if (Pos == TemplateOrInstantiation.end()) 1174 return TemplateOrSpecializationInfo(); 1175 1176 return Pos->second; 1177 } 1178 1179 void 1180 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, 1181 TemplateSpecializationKind TSK, 1182 SourceLocation PointOfInstantiation) { 1183 assert(Inst->isStaticDataMember() && "Not a static data member"); 1184 assert(Tmpl->isStaticDataMember() && "Not a static data member"); 1185 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( 1186 Tmpl, TSK, PointOfInstantiation)); 1187 } 1188 1189 void 1190 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, 1191 TemplateOrSpecializationInfo TSI) { 1192 assert(!TemplateOrInstantiation[Inst] && 1193 "Already noted what the variable was instantiated from"); 1194 TemplateOrInstantiation[Inst] = TSI; 1195 } 1196 1197 FunctionDecl *ASTContext::getClassScopeSpecializationPattern( 1198 const FunctionDecl *FD){ 1199 assert(FD && "Specialization is 0"); 1200 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos 1201 = ClassScopeSpecializationPattern.find(FD); 1202 if (Pos == ClassScopeSpecializationPattern.end()) 1203 return nullptr; 1204 1205 return Pos->second; 1206 } 1207 1208 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, 1209 FunctionDecl *Pattern) { 1210 assert(FD && "Specialization is 0"); 1211 assert(Pattern && "Class scope specialization pattern is 0"); 1212 ClassScopeSpecializationPattern[FD] = Pattern; 1213 } 1214 1215 NamedDecl * 1216 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) { 1217 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos 1218 = InstantiatedFromUsingDecl.find(UUD); 1219 if (Pos == InstantiatedFromUsingDecl.end()) 1220 return nullptr; 1221 1222 return Pos->second; 1223 } 1224 1225 void 1226 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) { 1227 assert((isa<UsingDecl>(Pattern) || 1228 isa<UnresolvedUsingValueDecl>(Pattern) || 1229 isa<UnresolvedUsingTypenameDecl>(Pattern)) && 1230 "pattern decl is not a using decl"); 1231 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); 1232 InstantiatedFromUsingDecl[Inst] = Pattern; 1233 } 1234 1235 UsingShadowDecl * 1236 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { 1237 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos 1238 = InstantiatedFromUsingShadowDecl.find(Inst); 1239 if (Pos == InstantiatedFromUsingShadowDecl.end()) 1240 return nullptr; 1241 1242 return Pos->second; 1243 } 1244 1245 void 1246 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, 1247 UsingShadowDecl *Pattern) { 1248 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); 1249 InstantiatedFromUsingShadowDecl[Inst] = Pattern; 1250 } 1251 1252 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { 1253 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos 1254 = InstantiatedFromUnnamedFieldDecl.find(Field); 1255 if (Pos == InstantiatedFromUnnamedFieldDecl.end()) 1256 return nullptr; 1257 1258 return Pos->second; 1259 } 1260 1261 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, 1262 FieldDecl *Tmpl) { 1263 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); 1264 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); 1265 assert(!InstantiatedFromUnnamedFieldDecl[Inst] && 1266 "Already noted what unnamed field was instantiated from"); 1267 1268 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; 1269 } 1270 1271 ASTContext::overridden_cxx_method_iterator 1272 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { 1273 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 1274 = OverriddenMethods.find(Method->getCanonicalDecl()); 1275 if (Pos == OverriddenMethods.end()) 1276 return nullptr; 1277 1278 return Pos->second.begin(); 1279 } 1280 1281 ASTContext::overridden_cxx_method_iterator 1282 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { 1283 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 1284 = OverriddenMethods.find(Method->getCanonicalDecl()); 1285 if (Pos == OverriddenMethods.end()) 1286 return nullptr; 1287 1288 return Pos->second.end(); 1289 } 1290 1291 unsigned 1292 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { 1293 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 1294 = OverriddenMethods.find(Method->getCanonicalDecl()); 1295 if (Pos == OverriddenMethods.end()) 1296 return 0; 1297 1298 return Pos->second.size(); 1299 } 1300 1301 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, 1302 const CXXMethodDecl *Overridden) { 1303 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); 1304 OverriddenMethods[Method].push_back(Overridden); 1305 } 1306 1307 void ASTContext::getOverriddenMethods( 1308 const NamedDecl *D, 1309 SmallVectorImpl<const NamedDecl *> &Overridden) const { 1310 assert(D); 1311 1312 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { 1313 Overridden.append(overridden_methods_begin(CXXMethod), 1314 overridden_methods_end(CXXMethod)); 1315 return; 1316 } 1317 1318 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D); 1319 if (!Method) 1320 return; 1321 1322 SmallVector<const ObjCMethodDecl *, 8> OverDecls; 1323 Method->getOverriddenMethods(OverDecls); 1324 Overridden.append(OverDecls.begin(), OverDecls.end()); 1325 } 1326 1327 void ASTContext::addedLocalImportDecl(ImportDecl *Import) { 1328 assert(!Import->NextLocalImport && "Import declaration already in the chain"); 1329 assert(!Import->isFromASTFile() && "Non-local import declaration"); 1330 if (!FirstLocalImport) { 1331 FirstLocalImport = Import; 1332 LastLocalImport = Import; 1333 return; 1334 } 1335 1336 LastLocalImport->NextLocalImport = Import; 1337 LastLocalImport = Import; 1338 } 1339 1340 //===----------------------------------------------------------------------===// 1341 // Type Sizing and Analysis 1342 //===----------------------------------------------------------------------===// 1343 1344 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified 1345 /// scalar floating point type. 1346 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { 1347 const BuiltinType *BT = T->getAs<BuiltinType>(); 1348 assert(BT && "Not a floating point type!"); 1349 switch (BT->getKind()) { 1350 default: llvm_unreachable("Not a floating point type!"); 1351 case BuiltinType::Half: return Target->getHalfFormat(); 1352 case BuiltinType::Float: return Target->getFloatFormat(); 1353 case BuiltinType::Double: return Target->getDoubleFormat(); 1354 case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); 1355 } 1356 } 1357 1358 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { 1359 unsigned Align = Target->getCharWidth(); 1360 1361 bool UseAlignAttrOnly = false; 1362 if (unsigned AlignFromAttr = D->getMaxAlignment()) { 1363 Align = AlignFromAttr; 1364 1365 // __attribute__((aligned)) can increase or decrease alignment 1366 // *except* on a struct or struct member, where it only increases 1367 // alignment unless 'packed' is also specified. 1368 // 1369 // It is an error for alignas to decrease alignment, so we can 1370 // ignore that possibility; Sema should diagnose it. 1371 if (isa<FieldDecl>(D)) { 1372 UseAlignAttrOnly = D->hasAttr<PackedAttr>() || 1373 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1374 } else { 1375 UseAlignAttrOnly = true; 1376 } 1377 } 1378 else if (isa<FieldDecl>(D)) 1379 UseAlignAttrOnly = 1380 D->hasAttr<PackedAttr>() || 1381 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1382 1383 // If we're using the align attribute only, just ignore everything 1384 // else about the declaration and its type. 1385 if (UseAlignAttrOnly) { 1386 // do nothing 1387 1388 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { 1389 QualType T = VD->getType(); 1390 if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 1391 if (ForAlignof) 1392 T = RT->getPointeeType(); 1393 else 1394 T = getPointerType(RT->getPointeeType()); 1395 } 1396 QualType BaseT = getBaseElementType(T); 1397 if (!BaseT->isIncompleteType() && !T->isFunctionType()) { 1398 // Adjust alignments of declarations with array type by the 1399 // large-array alignment on the target. 1400 if (const ArrayType *arrayType = getAsArrayType(T)) { 1401 unsigned MinWidth = Target->getLargeArrayMinWidth(); 1402 if (!ForAlignof && MinWidth) { 1403 if (isa<VariableArrayType>(arrayType)) 1404 Align = std::max(Align, Target->getLargeArrayAlign()); 1405 else if (isa<ConstantArrayType>(arrayType) && 1406 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) 1407 Align = std::max(Align, Target->getLargeArrayAlign()); 1408 } 1409 } 1410 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); 1411 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1412 if (VD->hasGlobalStorage() && !ForAlignof) 1413 Align = std::max(Align, getTargetInfo().getMinGlobalAlign()); 1414 } 1415 } 1416 1417 // Fields can be subject to extra alignment constraints, like if 1418 // the field is packed, the struct is packed, or the struct has a 1419 // a max-field-alignment constraint (#pragma pack). So calculate 1420 // the actual alignment of the field within the struct, and then 1421 // (as we're expected to) constrain that by the alignment of the type. 1422 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { 1423 const RecordDecl *Parent = Field->getParent(); 1424 // We can only produce a sensible answer if the record is valid. 1425 if (!Parent->isInvalidDecl()) { 1426 const ASTRecordLayout &Layout = getASTRecordLayout(Parent); 1427 1428 // Start with the record's overall alignment. 1429 unsigned FieldAlign = toBits(Layout.getAlignment()); 1430 1431 // Use the GCD of that and the offset within the record. 1432 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); 1433 if (Offset > 0) { 1434 // Alignment is always a power of 2, so the GCD will be a power of 2, 1435 // which means we get to do this crazy thing instead of Euclid's. 1436 uint64_t LowBitOfOffset = Offset & (~Offset + 1); 1437 if (LowBitOfOffset < FieldAlign) 1438 FieldAlign = static_cast<unsigned>(LowBitOfOffset); 1439 } 1440 1441 Align = std::min(Align, FieldAlign); 1442 } 1443 } 1444 } 1445 1446 return toCharUnitsFromBits(Align); 1447 } 1448 1449 // getTypeInfoDataSizeInChars - Return the size of a type, in 1450 // chars. If the type is a record, its data size is returned. This is 1451 // the size of the memcpy that's performed when assigning this type 1452 // using a trivial copy/move assignment operator. 1453 std::pair<CharUnits, CharUnits> 1454 ASTContext::getTypeInfoDataSizeInChars(QualType T) const { 1455 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T); 1456 1457 // In C++, objects can sometimes be allocated into the tail padding 1458 // of a base-class subobject. We decide whether that's possible 1459 // during class layout, so here we can just trust the layout results. 1460 if (getLangOpts().CPlusPlus) { 1461 if (const RecordType *RT = T->getAs<RecordType>()) { 1462 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); 1463 sizeAndAlign.first = layout.getDataSize(); 1464 } 1465 } 1466 1467 return sizeAndAlign; 1468 } 1469 1470 /// getConstantArrayInfoInChars - Performing the computation in CharUnits 1471 /// instead of in bits prevents overflowing the uint64_t for some large arrays. 1472 std::pair<CharUnits, CharUnits> 1473 static getConstantArrayInfoInChars(const ASTContext &Context, 1474 const ConstantArrayType *CAT) { 1475 std::pair<CharUnits, CharUnits> EltInfo = 1476 Context.getTypeInfoInChars(CAT->getElementType()); 1477 uint64_t Size = CAT->getSize().getZExtValue(); 1478 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= 1479 (uint64_t)(-1)/Size) && 1480 "Overflow in array type char size evaluation"); 1481 uint64_t Width = EltInfo.first.getQuantity() * Size; 1482 unsigned Align = EltInfo.second.getQuantity(); 1483 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || 1484 Context.getTargetInfo().getPointerWidth(0) == 64) 1485 Width = llvm::RoundUpToAlignment(Width, Align); 1486 return std::make_pair(CharUnits::fromQuantity(Width), 1487 CharUnits::fromQuantity(Align)); 1488 } 1489 1490 std::pair<CharUnits, CharUnits> 1491 ASTContext::getTypeInfoInChars(const Type *T) const { 1492 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) 1493 return getConstantArrayInfoInChars(*this, CAT); 1494 TypeInfo Info = getTypeInfo(T); 1495 return std::make_pair(toCharUnitsFromBits(Info.Width), 1496 toCharUnitsFromBits(Info.Align)); 1497 } 1498 1499 std::pair<CharUnits, CharUnits> 1500 ASTContext::getTypeInfoInChars(QualType T) const { 1501 return getTypeInfoInChars(T.getTypePtr()); 1502 } 1503 1504 bool ASTContext::isAlignmentRequired(const Type *T) const { 1505 return getTypeInfo(T).AlignIsRequired; 1506 } 1507 1508 bool ASTContext::isAlignmentRequired(QualType T) const { 1509 return isAlignmentRequired(T.getTypePtr()); 1510 } 1511 1512 TypeInfo ASTContext::getTypeInfo(const Type *T) const { 1513 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); 1514 if (I != MemoizedTypeInfo.end()) 1515 return I->second; 1516 1517 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. 1518 TypeInfo TI = getTypeInfoImpl(T); 1519 MemoizedTypeInfo[T] = TI; 1520 return TI; 1521 } 1522 1523 /// getTypeInfoImpl - Return the size of the specified type, in bits. This 1524 /// method does not work on incomplete types. 1525 /// 1526 /// FIXME: Pointers into different addr spaces could have different sizes and 1527 /// alignment requirements: getPointerInfo should take an AddrSpace, this 1528 /// should take a QualType, &c. 1529 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { 1530 uint64_t Width = 0; 1531 unsigned Align = 8; 1532 bool AlignIsRequired = false; 1533 switch (T->getTypeClass()) { 1534 #define TYPE(Class, Base) 1535 #define ABSTRACT_TYPE(Class, Base) 1536 #define NON_CANONICAL_TYPE(Class, Base) 1537 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1538 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ 1539 case Type::Class: \ 1540 assert(!T->isDependentType() && "should not see dependent types here"); \ 1541 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); 1542 #include "clang/AST/TypeNodes.def" 1543 llvm_unreachable("Should not see dependent types"); 1544 1545 case Type::FunctionNoProto: 1546 case Type::FunctionProto: 1547 // GCC extension: alignof(function) = 32 bits 1548 Width = 0; 1549 Align = 32; 1550 break; 1551 1552 case Type::IncompleteArray: 1553 case Type::VariableArray: 1554 Width = 0; 1555 Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); 1556 break; 1557 1558 case Type::ConstantArray: { 1559 const ConstantArrayType *CAT = cast<ConstantArrayType>(T); 1560 1561 TypeInfo EltInfo = getTypeInfo(CAT->getElementType()); 1562 uint64_t Size = CAT->getSize().getZExtValue(); 1563 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && 1564 "Overflow in array type bit size evaluation"); 1565 Width = EltInfo.Width * Size; 1566 Align = EltInfo.Align; 1567 if (!getTargetInfo().getCXXABI().isMicrosoft() || 1568 getTargetInfo().getPointerWidth(0) == 64) 1569 Width = llvm::RoundUpToAlignment(Width, Align); 1570 break; 1571 } 1572 case Type::ExtVector: 1573 case Type::Vector: { 1574 const VectorType *VT = cast<VectorType>(T); 1575 TypeInfo EltInfo = getTypeInfo(VT->getElementType()); 1576 Width = EltInfo.Width * VT->getNumElements(); 1577 Align = Width; 1578 // If the alignment is not a power of 2, round up to the next power of 2. 1579 // This happens for non-power-of-2 length vectors. 1580 if (Align & (Align-1)) { 1581 Align = llvm::NextPowerOf2(Align); 1582 Width = llvm::RoundUpToAlignment(Width, Align); 1583 } 1584 // Adjust the alignment based on the target max. 1585 uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); 1586 if (TargetVectorAlign && TargetVectorAlign < Align) 1587 Align = TargetVectorAlign; 1588 break; 1589 } 1590 1591 case Type::Builtin: 1592 switch (cast<BuiltinType>(T)->getKind()) { 1593 default: llvm_unreachable("Unknown builtin type!"); 1594 case BuiltinType::Void: 1595 // GCC extension: alignof(void) = 8 bits. 1596 Width = 0; 1597 Align = 8; 1598 break; 1599 1600 case BuiltinType::Bool: 1601 Width = Target->getBoolWidth(); 1602 Align = Target->getBoolAlign(); 1603 break; 1604 case BuiltinType::Char_S: 1605 case BuiltinType::Char_U: 1606 case BuiltinType::UChar: 1607 case BuiltinType::SChar: 1608 Width = Target->getCharWidth(); 1609 Align = Target->getCharAlign(); 1610 break; 1611 case BuiltinType::WChar_S: 1612 case BuiltinType::WChar_U: 1613 Width = Target->getWCharWidth(); 1614 Align = Target->getWCharAlign(); 1615 break; 1616 case BuiltinType::Char16: 1617 Width = Target->getChar16Width(); 1618 Align = Target->getChar16Align(); 1619 break; 1620 case BuiltinType::Char32: 1621 Width = Target->getChar32Width(); 1622 Align = Target->getChar32Align(); 1623 break; 1624 case BuiltinType::UShort: 1625 case BuiltinType::Short: 1626 Width = Target->getShortWidth(); 1627 Align = Target->getShortAlign(); 1628 break; 1629 case BuiltinType::UInt: 1630 case BuiltinType::Int: 1631 Width = Target->getIntWidth(); 1632 Align = Target->getIntAlign(); 1633 break; 1634 case BuiltinType::ULong: 1635 case BuiltinType::Long: 1636 Width = Target->getLongWidth(); 1637 Align = Target->getLongAlign(); 1638 break; 1639 case BuiltinType::ULongLong: 1640 case BuiltinType::LongLong: 1641 Width = Target->getLongLongWidth(); 1642 Align = Target->getLongLongAlign(); 1643 break; 1644 case BuiltinType::Int128: 1645 case BuiltinType::UInt128: 1646 Width = 128; 1647 Align = 128; // int128_t is 128-bit aligned on all targets. 1648 break; 1649 case BuiltinType::Half: 1650 Width = Target->getHalfWidth(); 1651 Align = Target->getHalfAlign(); 1652 break; 1653 case BuiltinType::Float: 1654 Width = Target->getFloatWidth(); 1655 Align = Target->getFloatAlign(); 1656 break; 1657 case BuiltinType::Double: 1658 Width = Target->getDoubleWidth(); 1659 Align = Target->getDoubleAlign(); 1660 break; 1661 case BuiltinType::LongDouble: 1662 Width = Target->getLongDoubleWidth(); 1663 Align = Target->getLongDoubleAlign(); 1664 break; 1665 case BuiltinType::NullPtr: 1666 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) 1667 Align = Target->getPointerAlign(0); // == sizeof(void*) 1668 break; 1669 case BuiltinType::ObjCId: 1670 case BuiltinType::ObjCClass: 1671 case BuiltinType::ObjCSel: 1672 Width = Target->getPointerWidth(0); 1673 Align = Target->getPointerAlign(0); 1674 break; 1675 case BuiltinType::OCLSampler: 1676 // Samplers are modeled as integers. 1677 Width = Target->getIntWidth(); 1678 Align = Target->getIntAlign(); 1679 break; 1680 case BuiltinType::OCLEvent: 1681 case BuiltinType::OCLClkEvent: 1682 case BuiltinType::OCLQueue: 1683 case BuiltinType::OCLNDRange: 1684 case BuiltinType::OCLReserveID: 1685 case BuiltinType::OCLImage1d: 1686 case BuiltinType::OCLImage1dArray: 1687 case BuiltinType::OCLImage1dBuffer: 1688 case BuiltinType::OCLImage2d: 1689 case BuiltinType::OCLImage2dArray: 1690 case BuiltinType::OCLImage2dDepth: 1691 case BuiltinType::OCLImage2dArrayDepth: 1692 case BuiltinType::OCLImage2dMSAA: 1693 case BuiltinType::OCLImage2dArrayMSAA: 1694 case BuiltinType::OCLImage2dMSAADepth: 1695 case BuiltinType::OCLImage2dArrayMSAADepth: 1696 case BuiltinType::OCLImage3d: 1697 // Currently these types are pointers to opaque types. 1698 Width = Target->getPointerWidth(0); 1699 Align = Target->getPointerAlign(0); 1700 break; 1701 } 1702 break; 1703 case Type::ObjCObjectPointer: 1704 Width = Target->getPointerWidth(0); 1705 Align = Target->getPointerAlign(0); 1706 break; 1707 case Type::BlockPointer: { 1708 unsigned AS = getTargetAddressSpace( 1709 cast<BlockPointerType>(T)->getPointeeType()); 1710 Width = Target->getPointerWidth(AS); 1711 Align = Target->getPointerAlign(AS); 1712 break; 1713 } 1714 case Type::LValueReference: 1715 case Type::RValueReference: { 1716 // alignof and sizeof should never enter this code path here, so we go 1717 // the pointer route. 1718 unsigned AS = getTargetAddressSpace( 1719 cast<ReferenceType>(T)->getPointeeType()); 1720 Width = Target->getPointerWidth(AS); 1721 Align = Target->getPointerAlign(AS); 1722 break; 1723 } 1724 case Type::Pointer: { 1725 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); 1726 Width = Target->getPointerWidth(AS); 1727 Align = Target->getPointerAlign(AS); 1728 break; 1729 } 1730 case Type::MemberPointer: { 1731 const MemberPointerType *MPT = cast<MemberPointerType>(T); 1732 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT); 1733 break; 1734 } 1735 case Type::Complex: { 1736 // Complex types have the same alignment as their elements, but twice the 1737 // size. 1738 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); 1739 Width = EltInfo.Width * 2; 1740 Align = EltInfo.Align; 1741 break; 1742 } 1743 case Type::ObjCObject: 1744 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); 1745 case Type::Adjusted: 1746 case Type::Decayed: 1747 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); 1748 case Type::ObjCInterface: { 1749 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); 1750 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 1751 Width = toBits(Layout.getSize()); 1752 Align = toBits(Layout.getAlignment()); 1753 break; 1754 } 1755 case Type::Record: 1756 case Type::Enum: { 1757 const TagType *TT = cast<TagType>(T); 1758 1759 if (TT->getDecl()->isInvalidDecl()) { 1760 Width = 8; 1761 Align = 8; 1762 break; 1763 } 1764 1765 if (const EnumType *ET = dyn_cast<EnumType>(TT)) { 1766 const EnumDecl *ED = ET->getDecl(); 1767 TypeInfo Info = 1768 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); 1769 if (unsigned AttrAlign = ED->getMaxAlignment()) { 1770 Info.Align = AttrAlign; 1771 Info.AlignIsRequired = true; 1772 } 1773 return Info; 1774 } 1775 1776 const RecordType *RT = cast<RecordType>(TT); 1777 const RecordDecl *RD = RT->getDecl(); 1778 const ASTRecordLayout &Layout = getASTRecordLayout(RD); 1779 Width = toBits(Layout.getSize()); 1780 Align = toBits(Layout.getAlignment()); 1781 AlignIsRequired = RD->hasAttr<AlignedAttr>(); 1782 break; 1783 } 1784 1785 case Type::SubstTemplateTypeParm: 1786 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> 1787 getReplacementType().getTypePtr()); 1788 1789 case Type::Auto: { 1790 const AutoType *A = cast<AutoType>(T); 1791 assert(!A->getDeducedType().isNull() && 1792 "cannot request the size of an undeduced or dependent auto type"); 1793 return getTypeInfo(A->getDeducedType().getTypePtr()); 1794 } 1795 1796 case Type::Paren: 1797 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); 1798 1799 case Type::Typedef: { 1800 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); 1801 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); 1802 // If the typedef has an aligned attribute on it, it overrides any computed 1803 // alignment we have. This violates the GCC documentation (which says that 1804 // attribute(aligned) can only round up) but matches its implementation. 1805 if (unsigned AttrAlign = Typedef->getMaxAlignment()) { 1806 Align = AttrAlign; 1807 AlignIsRequired = true; 1808 } else { 1809 Align = Info.Align; 1810 AlignIsRequired = Info.AlignIsRequired; 1811 } 1812 Width = Info.Width; 1813 break; 1814 } 1815 1816 case Type::Elaborated: 1817 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); 1818 1819 case Type::Attributed: 1820 return getTypeInfo( 1821 cast<AttributedType>(T)->getEquivalentType().getTypePtr()); 1822 1823 case Type::Atomic: { 1824 // Start with the base type information. 1825 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); 1826 Width = Info.Width; 1827 Align = Info.Align; 1828 1829 // If the size of the type doesn't exceed the platform's max 1830 // atomic promotion width, make the size and alignment more 1831 // favorable to atomic operations: 1832 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) { 1833 // Round the size up to a power of 2. 1834 if (!llvm::isPowerOf2_64(Width)) 1835 Width = llvm::NextPowerOf2(Width); 1836 1837 // Set the alignment equal to the size. 1838 Align = static_cast<unsigned>(Width); 1839 } 1840 } 1841 1842 } 1843 1844 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); 1845 return TypeInfo(Width, Align, AlignIsRequired); 1846 } 1847 1848 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { 1849 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign(); 1850 // Target ppc64 with QPX: simd default alignment for pointer to double is 32. 1851 if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 || 1852 getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) && 1853 getTargetInfo().getABI() == "elfv1-qpx" && 1854 T->isSpecificBuiltinType(BuiltinType::Double)) 1855 SimdAlign = 256; 1856 return SimdAlign; 1857 } 1858 1859 /// toCharUnitsFromBits - Convert a size in bits to a size in characters. 1860 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { 1861 return CharUnits::fromQuantity(BitSize / getCharWidth()); 1862 } 1863 1864 /// toBits - Convert a size in characters to a size in characters. 1865 int64_t ASTContext::toBits(CharUnits CharSize) const { 1866 return CharSize.getQuantity() * getCharWidth(); 1867 } 1868 1869 /// getTypeSizeInChars - Return the size of the specified type, in characters. 1870 /// This method does not work on incomplete types. 1871 CharUnits ASTContext::getTypeSizeInChars(QualType T) const { 1872 return getTypeInfoInChars(T).first; 1873 } 1874 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { 1875 return getTypeInfoInChars(T).first; 1876 } 1877 1878 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 1879 /// characters. This method does not work on incomplete types. 1880 CharUnits ASTContext::getTypeAlignInChars(QualType T) const { 1881 return toCharUnitsFromBits(getTypeAlign(T)); 1882 } 1883 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { 1884 return toCharUnitsFromBits(getTypeAlign(T)); 1885 } 1886 1887 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified 1888 /// type for the current target in bits. This can be different than the ABI 1889 /// alignment in cases where it is beneficial for performance to overalign 1890 /// a data type. 1891 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { 1892 TypeInfo TI = getTypeInfo(T); 1893 unsigned ABIAlign = TI.Align; 1894 1895 T = T->getBaseElementTypeUnsafe(); 1896 1897 // The preferred alignment of member pointers is that of a pointer. 1898 if (T->isMemberPointerType()) 1899 return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); 1900 1901 if (Target->getTriple().getArch() == llvm::Triple::xcore) 1902 return ABIAlign; // Never overalign on XCore. 1903 1904 // Double and long long should be naturally aligned if possible. 1905 if (const ComplexType *CT = T->getAs<ComplexType>()) 1906 T = CT->getElementType().getTypePtr(); 1907 if (const EnumType *ET = T->getAs<EnumType>()) 1908 T = ET->getDecl()->getIntegerType().getTypePtr(); 1909 if (T->isSpecificBuiltinType(BuiltinType::Double) || 1910 T->isSpecificBuiltinType(BuiltinType::LongLong) || 1911 T->isSpecificBuiltinType(BuiltinType::ULongLong)) 1912 // Don't increase the alignment if an alignment attribute was specified on a 1913 // typedef declaration. 1914 if (!TI.AlignIsRequired) 1915 return std::max(ABIAlign, (unsigned)getTypeSize(T)); 1916 1917 return ABIAlign; 1918 } 1919 1920 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment 1921 /// for __attribute__((aligned)) on this target, to be used if no alignment 1922 /// value is specified. 1923 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { 1924 return getTargetInfo().getDefaultAlignForAttributeAligned(); 1925 } 1926 1927 /// getAlignOfGlobalVar - Return the alignment in bits that should be given 1928 /// to a global variable of the specified type. 1929 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { 1930 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign()); 1931 } 1932 1933 /// getAlignOfGlobalVarInChars - Return the alignment in characters that 1934 /// should be given to a global variable of the specified type. 1935 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { 1936 return toCharUnitsFromBits(getAlignOfGlobalVar(T)); 1937 } 1938 1939 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { 1940 CharUnits Offset = CharUnits::Zero(); 1941 const ASTRecordLayout *Layout = &getASTRecordLayout(RD); 1942 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { 1943 Offset += Layout->getBaseClassOffset(Base); 1944 Layout = &getASTRecordLayout(Base); 1945 } 1946 return Offset; 1947 } 1948 1949 /// DeepCollectObjCIvars - 1950 /// This routine first collects all declared, but not synthesized, ivars in 1951 /// super class and then collects all ivars, including those synthesized for 1952 /// current class. This routine is used for implementation of current class 1953 /// when all ivars, declared and synthesized are known. 1954 /// 1955 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, 1956 bool leafClass, 1957 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { 1958 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) 1959 DeepCollectObjCIvars(SuperClass, false, Ivars); 1960 if (!leafClass) { 1961 for (const auto *I : OI->ivars()) 1962 Ivars.push_back(I); 1963 } else { 1964 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI); 1965 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; 1966 Iv= Iv->getNextIvar()) 1967 Ivars.push_back(Iv); 1968 } 1969 } 1970 1971 /// CollectInheritedProtocols - Collect all protocols in current class and 1972 /// those inherited by it. 1973 void ASTContext::CollectInheritedProtocols(const Decl *CDecl, 1974 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { 1975 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 1976 // We can use protocol_iterator here instead of 1977 // all_referenced_protocol_iterator since we are walking all categories. 1978 for (auto *Proto : OI->all_referenced_protocols()) { 1979 CollectInheritedProtocols(Proto, Protocols); 1980 } 1981 1982 // Categories of this Interface. 1983 for (const auto *Cat : OI->visible_categories()) 1984 CollectInheritedProtocols(Cat, Protocols); 1985 1986 if (ObjCInterfaceDecl *SD = OI->getSuperClass()) 1987 while (SD) { 1988 CollectInheritedProtocols(SD, Protocols); 1989 SD = SD->getSuperClass(); 1990 } 1991 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1992 for (auto *Proto : OC->protocols()) { 1993 CollectInheritedProtocols(Proto, Protocols); 1994 } 1995 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { 1996 // Insert the protocol. 1997 if (!Protocols.insert( 1998 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) 1999 return; 2000 2001 for (auto *Proto : OP->protocols()) 2002 CollectInheritedProtocols(Proto, Protocols); 2003 } 2004 } 2005 2006 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { 2007 unsigned count = 0; 2008 // Count ivars declared in class extension. 2009 for (const auto *Ext : OI->known_extensions()) 2010 count += Ext->ivar_size(); 2011 2012 // Count ivar defined in this class's implementation. This 2013 // includes synthesized ivars. 2014 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) 2015 count += ImplDecl->ivar_size(); 2016 2017 return count; 2018 } 2019 2020 bool ASTContext::isSentinelNullExpr(const Expr *E) { 2021 if (!E) 2022 return false; 2023 2024 // nullptr_t is always treated as null. 2025 if (E->getType()->isNullPtrType()) return true; 2026 2027 if (E->getType()->isAnyPointerType() && 2028 E->IgnoreParenCasts()->isNullPointerConstant(*this, 2029 Expr::NPC_ValueDependentIsNull)) 2030 return true; 2031 2032 // Unfortunately, __null has type 'int'. 2033 if (isa<GNUNullExpr>(E)) return true; 2034 2035 return false; 2036 } 2037 2038 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists. 2039 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { 2040 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2041 I = ObjCImpls.find(D); 2042 if (I != ObjCImpls.end()) 2043 return cast<ObjCImplementationDecl>(I->second); 2044 return nullptr; 2045 } 2046 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists. 2047 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { 2048 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2049 I = ObjCImpls.find(D); 2050 if (I != ObjCImpls.end()) 2051 return cast<ObjCCategoryImplDecl>(I->second); 2052 return nullptr; 2053 } 2054 2055 /// \brief Set the implementation of ObjCInterfaceDecl. 2056 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, 2057 ObjCImplementationDecl *ImplD) { 2058 assert(IFaceD && ImplD && "Passed null params"); 2059 ObjCImpls[IFaceD] = ImplD; 2060 } 2061 /// \brief Set the implementation of ObjCCategoryDecl. 2062 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, 2063 ObjCCategoryImplDecl *ImplD) { 2064 assert(CatD && ImplD && "Passed null params"); 2065 ObjCImpls[CatD] = ImplD; 2066 } 2067 2068 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( 2069 const NamedDecl *ND) const { 2070 if (const ObjCInterfaceDecl *ID = 2071 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) 2072 return ID; 2073 if (const ObjCCategoryDecl *CD = 2074 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) 2075 return CD->getClassInterface(); 2076 if (const ObjCImplDecl *IMD = 2077 dyn_cast<ObjCImplDecl>(ND->getDeclContext())) 2078 return IMD->getClassInterface(); 2079 2080 return nullptr; 2081 } 2082 2083 /// \brief Get the copy initialization expression of VarDecl,or NULL if 2084 /// none exists. 2085 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { 2086 assert(VD && "Passed null params"); 2087 assert(VD->hasAttr<BlocksAttr>() && 2088 "getBlockVarCopyInits - not __block var"); 2089 llvm::DenseMap<const VarDecl*, Expr*>::iterator 2090 I = BlockVarCopyInits.find(VD); 2091 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr; 2092 } 2093 2094 /// \brief Set the copy inialization expression of a block var decl. 2095 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { 2096 assert(VD && Init && "Passed null params"); 2097 assert(VD->hasAttr<BlocksAttr>() && 2098 "setBlockVarCopyInits - not __block var"); 2099 BlockVarCopyInits[VD] = Init; 2100 } 2101 2102 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, 2103 unsigned DataSize) const { 2104 if (!DataSize) 2105 DataSize = TypeLoc::getFullDataSizeForType(T); 2106 else 2107 assert(DataSize == TypeLoc::getFullDataSizeForType(T) && 2108 "incorrect data size provided to CreateTypeSourceInfo!"); 2109 2110 TypeSourceInfo *TInfo = 2111 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); 2112 new (TInfo) TypeSourceInfo(T); 2113 return TInfo; 2114 } 2115 2116 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, 2117 SourceLocation L) const { 2118 TypeSourceInfo *DI = CreateTypeSourceInfo(T); 2119 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); 2120 return DI; 2121 } 2122 2123 const ASTRecordLayout & 2124 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { 2125 return getObjCLayout(D, nullptr); 2126 } 2127 2128 const ASTRecordLayout & 2129 ASTContext::getASTObjCImplementationLayout( 2130 const ObjCImplementationDecl *D) const { 2131 return getObjCLayout(D->getClassInterface(), D); 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // Type creation/memoization methods 2136 //===----------------------------------------------------------------------===// 2137 2138 QualType 2139 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { 2140 unsigned fastQuals = quals.getFastQualifiers(); 2141 quals.removeFastQualifiers(); 2142 2143 // Check if we've already instantiated this type. 2144 llvm::FoldingSetNodeID ID; 2145 ExtQuals::Profile(ID, baseType, quals); 2146 void *insertPos = nullptr; 2147 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { 2148 assert(eq->getQualifiers() == quals); 2149 return QualType(eq, fastQuals); 2150 } 2151 2152 // If the base type is not canonical, make the appropriate canonical type. 2153 QualType canon; 2154 if (!baseType->isCanonicalUnqualified()) { 2155 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); 2156 canonSplit.Quals.addConsistentQualifiers(quals); 2157 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); 2158 2159 // Re-find the insert position. 2160 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); 2161 } 2162 2163 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); 2164 ExtQualNodes.InsertNode(eq, insertPos); 2165 return QualType(eq, fastQuals); 2166 } 2167 2168 QualType 2169 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const { 2170 QualType CanT = getCanonicalType(T); 2171 if (CanT.getAddressSpace() == AddressSpace) 2172 return T; 2173 2174 // If we are composing extended qualifiers together, merge together 2175 // into one ExtQuals node. 2176 QualifierCollector Quals; 2177 const Type *TypeNode = Quals.strip(T); 2178 2179 // If this type already has an address space specified, it cannot get 2180 // another one. 2181 assert(!Quals.hasAddressSpace() && 2182 "Type cannot be in multiple addr spaces!"); 2183 Quals.addAddressSpace(AddressSpace); 2184 2185 return getExtQualType(TypeNode, Quals); 2186 } 2187 2188 QualType ASTContext::getObjCGCQualType(QualType T, 2189 Qualifiers::GC GCAttr) const { 2190 QualType CanT = getCanonicalType(T); 2191 if (CanT.getObjCGCAttr() == GCAttr) 2192 return T; 2193 2194 if (const PointerType *ptr = T->getAs<PointerType>()) { 2195 QualType Pointee = ptr->getPointeeType(); 2196 if (Pointee->isAnyPointerType()) { 2197 QualType ResultType = getObjCGCQualType(Pointee, GCAttr); 2198 return getPointerType(ResultType); 2199 } 2200 } 2201 2202 // If we are composing extended qualifiers together, merge together 2203 // into one ExtQuals node. 2204 QualifierCollector Quals; 2205 const Type *TypeNode = Quals.strip(T); 2206 2207 // If this type already has an ObjCGC specified, it cannot get 2208 // another one. 2209 assert(!Quals.hasObjCGCAttr() && 2210 "Type cannot have multiple ObjCGCs!"); 2211 Quals.addObjCGCAttr(GCAttr); 2212 2213 return getExtQualType(TypeNode, Quals); 2214 } 2215 2216 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, 2217 FunctionType::ExtInfo Info) { 2218 if (T->getExtInfo() == Info) 2219 return T; 2220 2221 QualType Result; 2222 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) { 2223 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); 2224 } else { 2225 const FunctionProtoType *FPT = cast<FunctionProtoType>(T); 2226 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 2227 EPI.ExtInfo = Info; 2228 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); 2229 } 2230 2231 return cast<FunctionType>(Result.getTypePtr()); 2232 } 2233 2234 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, 2235 QualType ResultType) { 2236 FD = FD->getMostRecentDecl(); 2237 while (true) { 2238 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 2239 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 2240 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); 2241 if (FunctionDecl *Next = FD->getPreviousDecl()) 2242 FD = Next; 2243 else 2244 break; 2245 } 2246 if (ASTMutationListener *L = getASTMutationListener()) 2247 L->DeducedReturnType(FD, ResultType); 2248 } 2249 2250 /// Get a function type and produce the equivalent function type with the 2251 /// specified exception specification. Type sugar that can be present on a 2252 /// declaration of a function with an exception specification is permitted 2253 /// and preserved. Other type sugar (for instance, typedefs) is not. 2254 static QualType getFunctionTypeWithExceptionSpec( 2255 ASTContext &Context, QualType Orig, 2256 const FunctionProtoType::ExceptionSpecInfo &ESI) { 2257 // Might have some parens. 2258 if (auto *PT = dyn_cast<ParenType>(Orig)) 2259 return Context.getParenType( 2260 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI)); 2261 2262 // Might have a calling-convention attribute. 2263 if (auto *AT = dyn_cast<AttributedType>(Orig)) 2264 return Context.getAttributedType( 2265 AT->getAttrKind(), 2266 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI), 2267 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(), 2268 ESI)); 2269 2270 // Anything else must be a function type. Rebuild it with the new exception 2271 // specification. 2272 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig); 2273 return Context.getFunctionType( 2274 Proto->getReturnType(), Proto->getParamTypes(), 2275 Proto->getExtProtoInfo().withExceptionSpec(ESI)); 2276 } 2277 2278 void ASTContext::adjustExceptionSpec( 2279 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, 2280 bool AsWritten) { 2281 // Update the type. 2282 QualType Updated = 2283 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI); 2284 FD->setType(Updated); 2285 2286 if (!AsWritten) 2287 return; 2288 2289 // Update the type in the type source information too. 2290 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { 2291 // If the type and the type-as-written differ, we may need to update 2292 // the type-as-written too. 2293 if (TSInfo->getType() != FD->getType()) 2294 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI); 2295 2296 // FIXME: When we get proper type location information for exceptions, 2297 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch 2298 // up the TypeSourceInfo; 2299 assert(TypeLoc::getFullDataSizeForType(Updated) == 2300 TypeLoc::getFullDataSizeForType(TSInfo->getType()) && 2301 "TypeLoc size mismatch from updating exception specification"); 2302 TSInfo->overrideType(Updated); 2303 } 2304 } 2305 2306 /// getComplexType - Return the uniqued reference to the type for a complex 2307 /// number with the specified element type. 2308 QualType ASTContext::getComplexType(QualType T) const { 2309 // Unique pointers, to guarantee there is only one pointer of a particular 2310 // structure. 2311 llvm::FoldingSetNodeID ID; 2312 ComplexType::Profile(ID, T); 2313 2314 void *InsertPos = nullptr; 2315 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) 2316 return QualType(CT, 0); 2317 2318 // If the pointee type isn't canonical, this won't be a canonical type either, 2319 // so fill in the canonical type field. 2320 QualType Canonical; 2321 if (!T.isCanonical()) { 2322 Canonical = getComplexType(getCanonicalType(T)); 2323 2324 // Get the new insert position for the node we care about. 2325 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); 2326 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2327 } 2328 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical); 2329 Types.push_back(New); 2330 ComplexTypes.InsertNode(New, InsertPos); 2331 return QualType(New, 0); 2332 } 2333 2334 /// getPointerType - Return the uniqued reference to the type for a pointer to 2335 /// the specified type. 2336 QualType ASTContext::getPointerType(QualType T) const { 2337 // Unique pointers, to guarantee there is only one pointer of a particular 2338 // structure. 2339 llvm::FoldingSetNodeID ID; 2340 PointerType::Profile(ID, T); 2341 2342 void *InsertPos = nullptr; 2343 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2344 return QualType(PT, 0); 2345 2346 // If the pointee type isn't canonical, this won't be a canonical type either, 2347 // so fill in the canonical type field. 2348 QualType Canonical; 2349 if (!T.isCanonical()) { 2350 Canonical = getPointerType(getCanonicalType(T)); 2351 2352 // Get the new insert position for the node we care about. 2353 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2354 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2355 } 2356 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical); 2357 Types.push_back(New); 2358 PointerTypes.InsertNode(New, InsertPos); 2359 return QualType(New, 0); 2360 } 2361 2362 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { 2363 llvm::FoldingSetNodeID ID; 2364 AdjustedType::Profile(ID, Orig, New); 2365 void *InsertPos = nullptr; 2366 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2367 if (AT) 2368 return QualType(AT, 0); 2369 2370 QualType Canonical = getCanonicalType(New); 2371 2372 // Get the new insert position for the node we care about. 2373 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2374 assert(!AT && "Shouldn't be in the map!"); 2375 2376 AT = new (*this, TypeAlignment) 2377 AdjustedType(Type::Adjusted, Orig, New, Canonical); 2378 Types.push_back(AT); 2379 AdjustedTypes.InsertNode(AT, InsertPos); 2380 return QualType(AT, 0); 2381 } 2382 2383 QualType ASTContext::getDecayedType(QualType T) const { 2384 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); 2385 2386 QualType Decayed; 2387 2388 // C99 6.7.5.3p7: 2389 // A declaration of a parameter as "array of type" shall be 2390 // adjusted to "qualified pointer to type", where the type 2391 // qualifiers (if any) are those specified within the [ and ] of 2392 // the array type derivation. 2393 if (T->isArrayType()) 2394 Decayed = getArrayDecayedType(T); 2395 2396 // C99 6.7.5.3p8: 2397 // A declaration of a parameter as "function returning type" 2398 // shall be adjusted to "pointer to function returning type", as 2399 // in 6.3.2.1. 2400 if (T->isFunctionType()) 2401 Decayed = getPointerType(T); 2402 2403 llvm::FoldingSetNodeID ID; 2404 AdjustedType::Profile(ID, T, Decayed); 2405 void *InsertPos = nullptr; 2406 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2407 if (AT) 2408 return QualType(AT, 0); 2409 2410 QualType Canonical = getCanonicalType(Decayed); 2411 2412 // Get the new insert position for the node we care about. 2413 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2414 assert(!AT && "Shouldn't be in the map!"); 2415 2416 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); 2417 Types.push_back(AT); 2418 AdjustedTypes.InsertNode(AT, InsertPos); 2419 return QualType(AT, 0); 2420 } 2421 2422 /// getBlockPointerType - Return the uniqued reference to the type for 2423 /// a pointer to the specified block. 2424 QualType ASTContext::getBlockPointerType(QualType T) const { 2425 assert(T->isFunctionType() && "block of function types only"); 2426 // Unique pointers, to guarantee there is only one block of a particular 2427 // structure. 2428 llvm::FoldingSetNodeID ID; 2429 BlockPointerType::Profile(ID, T); 2430 2431 void *InsertPos = nullptr; 2432 if (BlockPointerType *PT = 2433 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2434 return QualType(PT, 0); 2435 2436 // If the block pointee type isn't canonical, this won't be a canonical 2437 // type either so fill in the canonical type field. 2438 QualType Canonical; 2439 if (!T.isCanonical()) { 2440 Canonical = getBlockPointerType(getCanonicalType(T)); 2441 2442 // Get the new insert position for the node we care about. 2443 BlockPointerType *NewIP = 2444 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2445 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2446 } 2447 BlockPointerType *New 2448 = new (*this, TypeAlignment) BlockPointerType(T, Canonical); 2449 Types.push_back(New); 2450 BlockPointerTypes.InsertNode(New, InsertPos); 2451 return QualType(New, 0); 2452 } 2453 2454 /// getLValueReferenceType - Return the uniqued reference to the type for an 2455 /// lvalue reference to the specified type. 2456 QualType 2457 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { 2458 assert(getCanonicalType(T) != OverloadTy && 2459 "Unresolved overloaded function type"); 2460 2461 // Unique pointers, to guarantee there is only one pointer of a particular 2462 // structure. 2463 llvm::FoldingSetNodeID ID; 2464 ReferenceType::Profile(ID, T, SpelledAsLValue); 2465 2466 void *InsertPos = nullptr; 2467 if (LValueReferenceType *RT = 2468 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 2469 return QualType(RT, 0); 2470 2471 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 2472 2473 // If the referencee type isn't canonical, this won't be a canonical type 2474 // either, so fill in the canonical type field. 2475 QualType Canonical; 2476 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { 2477 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 2478 Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); 2479 2480 // Get the new insert position for the node we care about. 2481 LValueReferenceType *NewIP = 2482 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 2483 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2484 } 2485 2486 LValueReferenceType *New 2487 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, 2488 SpelledAsLValue); 2489 Types.push_back(New); 2490 LValueReferenceTypes.InsertNode(New, InsertPos); 2491 2492 return QualType(New, 0); 2493 } 2494 2495 /// getRValueReferenceType - Return the uniqued reference to the type for an 2496 /// rvalue reference to the specified type. 2497 QualType ASTContext::getRValueReferenceType(QualType T) const { 2498 // Unique pointers, to guarantee there is only one pointer of a particular 2499 // structure. 2500 llvm::FoldingSetNodeID ID; 2501 ReferenceType::Profile(ID, T, false); 2502 2503 void *InsertPos = nullptr; 2504 if (RValueReferenceType *RT = 2505 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 2506 return QualType(RT, 0); 2507 2508 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 2509 2510 // If the referencee type isn't canonical, this won't be a canonical type 2511 // either, so fill in the canonical type field. 2512 QualType Canonical; 2513 if (InnerRef || !T.isCanonical()) { 2514 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 2515 Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); 2516 2517 // Get the new insert position for the node we care about. 2518 RValueReferenceType *NewIP = 2519 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 2520 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2521 } 2522 2523 RValueReferenceType *New 2524 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); 2525 Types.push_back(New); 2526 RValueReferenceTypes.InsertNode(New, InsertPos); 2527 return QualType(New, 0); 2528 } 2529 2530 /// getMemberPointerType - Return the uniqued reference to the type for a 2531 /// member pointer to the specified type, in the specified class. 2532 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { 2533 // Unique pointers, to guarantee there is only one pointer of a particular 2534 // structure. 2535 llvm::FoldingSetNodeID ID; 2536 MemberPointerType::Profile(ID, T, Cls); 2537 2538 void *InsertPos = nullptr; 2539 if (MemberPointerType *PT = 2540 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2541 return QualType(PT, 0); 2542 2543 // If the pointee or class type isn't canonical, this won't be a canonical 2544 // type either, so fill in the canonical type field. 2545 QualType Canonical; 2546 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { 2547 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); 2548 2549 // Get the new insert position for the node we care about. 2550 MemberPointerType *NewIP = 2551 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2552 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2553 } 2554 MemberPointerType *New 2555 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); 2556 Types.push_back(New); 2557 MemberPointerTypes.InsertNode(New, InsertPos); 2558 return QualType(New, 0); 2559 } 2560 2561 /// getConstantArrayType - Return the unique reference to the type for an 2562 /// array of the specified element type. 2563 QualType ASTContext::getConstantArrayType(QualType EltTy, 2564 const llvm::APInt &ArySizeIn, 2565 ArrayType::ArraySizeModifier ASM, 2566 unsigned IndexTypeQuals) const { 2567 assert((EltTy->isDependentType() || 2568 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && 2569 "Constant array of VLAs is illegal!"); 2570 2571 // Convert the array size into a canonical width matching the pointer size for 2572 // the target. 2573 llvm::APInt ArySize(ArySizeIn); 2574 ArySize = 2575 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy))); 2576 2577 llvm::FoldingSetNodeID ID; 2578 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); 2579 2580 void *InsertPos = nullptr; 2581 if (ConstantArrayType *ATP = 2582 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) 2583 return QualType(ATP, 0); 2584 2585 // If the element type isn't canonical or has qualifiers, this won't 2586 // be a canonical type either, so fill in the canonical type field. 2587 QualType Canon; 2588 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 2589 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 2590 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, 2591 ASM, IndexTypeQuals); 2592 Canon = getQualifiedType(Canon, canonSplit.Quals); 2593 2594 // Get the new insert position for the node we care about. 2595 ConstantArrayType *NewIP = 2596 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); 2597 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2598 } 2599 2600 ConstantArrayType *New = new(*this,TypeAlignment) 2601 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); 2602 ConstantArrayTypes.InsertNode(New, InsertPos); 2603 Types.push_back(New); 2604 return QualType(New, 0); 2605 } 2606 2607 /// getVariableArrayDecayedType - Turns the given type, which may be 2608 /// variably-modified, into the corresponding type with all the known 2609 /// sizes replaced with [*]. 2610 QualType ASTContext::getVariableArrayDecayedType(QualType type) const { 2611 // Vastly most common case. 2612 if (!type->isVariablyModifiedType()) return type; 2613 2614 QualType result; 2615 2616 SplitQualType split = type.getSplitDesugaredType(); 2617 const Type *ty = split.Ty; 2618 switch (ty->getTypeClass()) { 2619 #define TYPE(Class, Base) 2620 #define ABSTRACT_TYPE(Class, Base) 2621 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 2622 #include "clang/AST/TypeNodes.def" 2623 llvm_unreachable("didn't desugar past all non-canonical types?"); 2624 2625 // These types should never be variably-modified. 2626 case Type::Builtin: 2627 case Type::Complex: 2628 case Type::Vector: 2629 case Type::ExtVector: 2630 case Type::DependentSizedExtVector: 2631 case Type::ObjCObject: 2632 case Type::ObjCInterface: 2633 case Type::ObjCObjectPointer: 2634 case Type::Record: 2635 case Type::Enum: 2636 case Type::UnresolvedUsing: 2637 case Type::TypeOfExpr: 2638 case Type::TypeOf: 2639 case Type::Decltype: 2640 case Type::UnaryTransform: 2641 case Type::DependentName: 2642 case Type::InjectedClassName: 2643 case Type::TemplateSpecialization: 2644 case Type::DependentTemplateSpecialization: 2645 case Type::TemplateTypeParm: 2646 case Type::SubstTemplateTypeParmPack: 2647 case Type::Auto: 2648 case Type::PackExpansion: 2649 llvm_unreachable("type should never be variably-modified"); 2650 2651 // These types can be variably-modified but should never need to 2652 // further decay. 2653 case Type::FunctionNoProto: 2654 case Type::FunctionProto: 2655 case Type::BlockPointer: 2656 case Type::MemberPointer: 2657 return type; 2658 2659 // These types can be variably-modified. All these modifications 2660 // preserve structure except as noted by comments. 2661 // TODO: if we ever care about optimizing VLAs, there are no-op 2662 // optimizations available here. 2663 case Type::Pointer: 2664 result = getPointerType(getVariableArrayDecayedType( 2665 cast<PointerType>(ty)->getPointeeType())); 2666 break; 2667 2668 case Type::LValueReference: { 2669 const LValueReferenceType *lv = cast<LValueReferenceType>(ty); 2670 result = getLValueReferenceType( 2671 getVariableArrayDecayedType(lv->getPointeeType()), 2672 lv->isSpelledAsLValue()); 2673 break; 2674 } 2675 2676 case Type::RValueReference: { 2677 const RValueReferenceType *lv = cast<RValueReferenceType>(ty); 2678 result = getRValueReferenceType( 2679 getVariableArrayDecayedType(lv->getPointeeType())); 2680 break; 2681 } 2682 2683 case Type::Atomic: { 2684 const AtomicType *at = cast<AtomicType>(ty); 2685 result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); 2686 break; 2687 } 2688 2689 case Type::ConstantArray: { 2690 const ConstantArrayType *cat = cast<ConstantArrayType>(ty); 2691 result = getConstantArrayType( 2692 getVariableArrayDecayedType(cat->getElementType()), 2693 cat->getSize(), 2694 cat->getSizeModifier(), 2695 cat->getIndexTypeCVRQualifiers()); 2696 break; 2697 } 2698 2699 case Type::DependentSizedArray: { 2700 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty); 2701 result = getDependentSizedArrayType( 2702 getVariableArrayDecayedType(dat->getElementType()), 2703 dat->getSizeExpr(), 2704 dat->getSizeModifier(), 2705 dat->getIndexTypeCVRQualifiers(), 2706 dat->getBracketsRange()); 2707 break; 2708 } 2709 2710 // Turn incomplete types into [*] types. 2711 case Type::IncompleteArray: { 2712 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty); 2713 result = getVariableArrayType( 2714 getVariableArrayDecayedType(iat->getElementType()), 2715 /*size*/ nullptr, 2716 ArrayType::Normal, 2717 iat->getIndexTypeCVRQualifiers(), 2718 SourceRange()); 2719 break; 2720 } 2721 2722 // Turn VLA types into [*] types. 2723 case Type::VariableArray: { 2724 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2725 result = getVariableArrayType( 2726 getVariableArrayDecayedType(vat->getElementType()), 2727 /*size*/ nullptr, 2728 ArrayType::Star, 2729 vat->getIndexTypeCVRQualifiers(), 2730 vat->getBracketsRange()); 2731 break; 2732 } 2733 } 2734 2735 // Apply the top-level qualifiers from the original. 2736 return getQualifiedType(result, split.Quals); 2737 } 2738 2739 /// getVariableArrayType - Returns a non-unique reference to the type for a 2740 /// variable array of the specified element type. 2741 QualType ASTContext::getVariableArrayType(QualType EltTy, 2742 Expr *NumElts, 2743 ArrayType::ArraySizeModifier ASM, 2744 unsigned IndexTypeQuals, 2745 SourceRange Brackets) const { 2746 // Since we don't unique expressions, it isn't possible to unique VLA's 2747 // that have an expression provided for their size. 2748 QualType Canon; 2749 2750 // Be sure to pull qualifiers off the element type. 2751 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 2752 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 2753 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, 2754 IndexTypeQuals, Brackets); 2755 Canon = getQualifiedType(Canon, canonSplit.Quals); 2756 } 2757 2758 VariableArrayType *New = new(*this, TypeAlignment) 2759 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); 2760 2761 VariableArrayTypes.push_back(New); 2762 Types.push_back(New); 2763 return QualType(New, 0); 2764 } 2765 2766 /// getDependentSizedArrayType - Returns a non-unique reference to 2767 /// the type for a dependently-sized array of the specified element 2768 /// type. 2769 QualType ASTContext::getDependentSizedArrayType(QualType elementType, 2770 Expr *numElements, 2771 ArrayType::ArraySizeModifier ASM, 2772 unsigned elementTypeQuals, 2773 SourceRange brackets) const { 2774 assert((!numElements || numElements->isTypeDependent() || 2775 numElements->isValueDependent()) && 2776 "Size must be type- or value-dependent!"); 2777 2778 // Dependently-sized array types that do not have a specified number 2779 // of elements will have their sizes deduced from a dependent 2780 // initializer. We do no canonicalization here at all, which is okay 2781 // because they can't be used in most locations. 2782 if (!numElements) { 2783 DependentSizedArrayType *newType 2784 = new (*this, TypeAlignment) 2785 DependentSizedArrayType(*this, elementType, QualType(), 2786 numElements, ASM, elementTypeQuals, 2787 brackets); 2788 Types.push_back(newType); 2789 return QualType(newType, 0); 2790 } 2791 2792 // Otherwise, we actually build a new type every time, but we 2793 // also build a canonical type. 2794 2795 SplitQualType canonElementType = getCanonicalType(elementType).split(); 2796 2797 void *insertPos = nullptr; 2798 llvm::FoldingSetNodeID ID; 2799 DependentSizedArrayType::Profile(ID, *this, 2800 QualType(canonElementType.Ty, 0), 2801 ASM, elementTypeQuals, numElements); 2802 2803 // Look for an existing type with these properties. 2804 DependentSizedArrayType *canonTy = 2805 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); 2806 2807 // If we don't have one, build one. 2808 if (!canonTy) { 2809 canonTy = new (*this, TypeAlignment) 2810 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), 2811 QualType(), numElements, ASM, elementTypeQuals, 2812 brackets); 2813 DependentSizedArrayTypes.InsertNode(canonTy, insertPos); 2814 Types.push_back(canonTy); 2815 } 2816 2817 // Apply qualifiers from the element type to the array. 2818 QualType canon = getQualifiedType(QualType(canonTy,0), 2819 canonElementType.Quals); 2820 2821 // If we didn't need extra canonicalization for the element type or the size 2822 // expression, then just use that as our result. 2823 if (QualType(canonElementType.Ty, 0) == elementType && 2824 canonTy->getSizeExpr() == numElements) 2825 return canon; 2826 2827 // Otherwise, we need to build a type which follows the spelling 2828 // of the element type. 2829 DependentSizedArrayType *sugaredType 2830 = new (*this, TypeAlignment) 2831 DependentSizedArrayType(*this, elementType, canon, numElements, 2832 ASM, elementTypeQuals, brackets); 2833 Types.push_back(sugaredType); 2834 return QualType(sugaredType, 0); 2835 } 2836 2837 QualType ASTContext::getIncompleteArrayType(QualType elementType, 2838 ArrayType::ArraySizeModifier ASM, 2839 unsigned elementTypeQuals) const { 2840 llvm::FoldingSetNodeID ID; 2841 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); 2842 2843 void *insertPos = nullptr; 2844 if (IncompleteArrayType *iat = 2845 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) 2846 return QualType(iat, 0); 2847 2848 // If the element type isn't canonical, this won't be a canonical type 2849 // either, so fill in the canonical type field. We also have to pull 2850 // qualifiers off the element type. 2851 QualType canon; 2852 2853 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { 2854 SplitQualType canonSplit = getCanonicalType(elementType).split(); 2855 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), 2856 ASM, elementTypeQuals); 2857 canon = getQualifiedType(canon, canonSplit.Quals); 2858 2859 // Get the new insert position for the node we care about. 2860 IncompleteArrayType *existing = 2861 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); 2862 assert(!existing && "Shouldn't be in the map!"); (void) existing; 2863 } 2864 2865 IncompleteArrayType *newType = new (*this, TypeAlignment) 2866 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); 2867 2868 IncompleteArrayTypes.InsertNode(newType, insertPos); 2869 Types.push_back(newType); 2870 return QualType(newType, 0); 2871 } 2872 2873 /// getVectorType - Return the unique reference to a vector type of 2874 /// the specified element type and size. VectorType must be a built-in type. 2875 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, 2876 VectorType::VectorKind VecKind) const { 2877 assert(vecType->isBuiltinType()); 2878 2879 // Check if we've already instantiated a vector of this type. 2880 llvm::FoldingSetNodeID ID; 2881 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); 2882 2883 void *InsertPos = nullptr; 2884 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 2885 return QualType(VTP, 0); 2886 2887 // If the element type isn't canonical, this won't be a canonical type either, 2888 // so fill in the canonical type field. 2889 QualType Canonical; 2890 if (!vecType.isCanonical()) { 2891 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); 2892 2893 // Get the new insert position for the node we care about. 2894 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2895 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2896 } 2897 VectorType *New = new (*this, TypeAlignment) 2898 VectorType(vecType, NumElts, Canonical, VecKind); 2899 VectorTypes.InsertNode(New, InsertPos); 2900 Types.push_back(New); 2901 return QualType(New, 0); 2902 } 2903 2904 /// getExtVectorType - Return the unique reference to an extended vector type of 2905 /// the specified element type and size. VectorType must be a built-in type. 2906 QualType 2907 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { 2908 assert(vecType->isBuiltinType() || vecType->isDependentType()); 2909 2910 // Check if we've already instantiated a vector of this type. 2911 llvm::FoldingSetNodeID ID; 2912 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, 2913 VectorType::GenericVector); 2914 void *InsertPos = nullptr; 2915 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 2916 return QualType(VTP, 0); 2917 2918 // If the element type isn't canonical, this won't be a canonical type either, 2919 // so fill in the canonical type field. 2920 QualType Canonical; 2921 if (!vecType.isCanonical()) { 2922 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); 2923 2924 // Get the new insert position for the node we care about. 2925 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2926 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2927 } 2928 ExtVectorType *New = new (*this, TypeAlignment) 2929 ExtVectorType(vecType, NumElts, Canonical); 2930 VectorTypes.InsertNode(New, InsertPos); 2931 Types.push_back(New); 2932 return QualType(New, 0); 2933 } 2934 2935 QualType 2936 ASTContext::getDependentSizedExtVectorType(QualType vecType, 2937 Expr *SizeExpr, 2938 SourceLocation AttrLoc) const { 2939 llvm::FoldingSetNodeID ID; 2940 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), 2941 SizeExpr); 2942 2943 void *InsertPos = nullptr; 2944 DependentSizedExtVectorType *Canon 2945 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2946 DependentSizedExtVectorType *New; 2947 if (Canon) { 2948 // We already have a canonical version of this array type; use it as 2949 // the canonical type for a newly-built type. 2950 New = new (*this, TypeAlignment) 2951 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), 2952 SizeExpr, AttrLoc); 2953 } else { 2954 QualType CanonVecTy = getCanonicalType(vecType); 2955 if (CanonVecTy == vecType) { 2956 New = new (*this, TypeAlignment) 2957 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, 2958 AttrLoc); 2959 2960 DependentSizedExtVectorType *CanonCheck 2961 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2962 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); 2963 (void)CanonCheck; 2964 DependentSizedExtVectorTypes.InsertNode(New, InsertPos); 2965 } else { 2966 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, 2967 SourceLocation()); 2968 New = new (*this, TypeAlignment) 2969 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); 2970 } 2971 } 2972 2973 Types.push_back(New); 2974 return QualType(New, 0); 2975 } 2976 2977 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. 2978 /// 2979 QualType 2980 ASTContext::getFunctionNoProtoType(QualType ResultTy, 2981 const FunctionType::ExtInfo &Info) const { 2982 const CallingConv CallConv = Info.getCC(); 2983 2984 // Unique functions, to guarantee there is only one function of a particular 2985 // structure. 2986 llvm::FoldingSetNodeID ID; 2987 FunctionNoProtoType::Profile(ID, ResultTy, Info); 2988 2989 void *InsertPos = nullptr; 2990 if (FunctionNoProtoType *FT = 2991 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 2992 return QualType(FT, 0); 2993 2994 QualType Canonical; 2995 if (!ResultTy.isCanonical()) { 2996 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info); 2997 2998 // Get the new insert position for the node we care about. 2999 FunctionNoProtoType *NewIP = 3000 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 3001 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3002 } 3003 3004 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv); 3005 FunctionNoProtoType *New = new (*this, TypeAlignment) 3006 FunctionNoProtoType(ResultTy, Canonical, newInfo); 3007 Types.push_back(New); 3008 FunctionNoProtoTypes.InsertNode(New, InsertPos); 3009 return QualType(New, 0); 3010 } 3011 3012 /// \brief Determine whether \p T is canonical as the result type of a function. 3013 static bool isCanonicalResultType(QualType T) { 3014 return T.isCanonical() && 3015 (T.getObjCLifetime() == Qualifiers::OCL_None || 3016 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); 3017 } 3018 3019 CanQualType 3020 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { 3021 CanQualType CanResultType = getCanonicalType(ResultType); 3022 3023 // Canonical result types do not have ARC lifetime qualifiers. 3024 if (CanResultType.getQualifiers().hasObjCLifetime()) { 3025 Qualifiers Qs = CanResultType.getQualifiers(); 3026 Qs.removeObjCLifetime(); 3027 return CanQualType::CreateUnsafe( 3028 getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); 3029 } 3030 3031 return CanResultType; 3032 } 3033 3034 QualType 3035 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray, 3036 const FunctionProtoType::ExtProtoInfo &EPI) const { 3037 size_t NumArgs = ArgArray.size(); 3038 3039 // Unique functions, to guarantee there is only one function of a particular 3040 // structure. 3041 llvm::FoldingSetNodeID ID; 3042 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, 3043 *this); 3044 3045 void *InsertPos = nullptr; 3046 if (FunctionProtoType *FTP = 3047 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 3048 return QualType(FTP, 0); 3049 3050 // Determine whether the type being created is already canonical or not. 3051 bool isCanonical = 3052 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) && 3053 !EPI.HasTrailingReturn; 3054 for (unsigned i = 0; i != NumArgs && isCanonical; ++i) 3055 if (!ArgArray[i].isCanonicalAsParam()) 3056 isCanonical = false; 3057 3058 // If this type isn't canonical, get the canonical version of it. 3059 // The exception spec is not part of the canonical type. 3060 QualType Canonical; 3061 if (!isCanonical) { 3062 SmallVector<QualType, 16> CanonicalArgs; 3063 CanonicalArgs.reserve(NumArgs); 3064 for (unsigned i = 0; i != NumArgs; ++i) 3065 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); 3066 3067 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; 3068 CanonicalEPI.HasTrailingReturn = false; 3069 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); 3070 3071 // Adjust the canonical function result type. 3072 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); 3073 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI); 3074 3075 // Get the new insert position for the node we care about. 3076 FunctionProtoType *NewIP = 3077 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 3078 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3079 } 3080 3081 // FunctionProtoType objects are allocated with extra bytes after 3082 // them for three variable size arrays at the end: 3083 // - parameter types 3084 // - exception types 3085 // - consumed-arguments flags 3086 // Instead of the exception types, there could be a noexcept 3087 // expression, or information used to resolve the exception 3088 // specification. 3089 size_t Size = sizeof(FunctionProtoType) + 3090 NumArgs * sizeof(QualType); 3091 if (EPI.ExceptionSpec.Type == EST_Dynamic) { 3092 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType); 3093 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) { 3094 Size += sizeof(Expr*); 3095 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) { 3096 Size += 2 * sizeof(FunctionDecl*); 3097 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) { 3098 Size += sizeof(FunctionDecl*); 3099 } 3100 if (EPI.ConsumedParameters) 3101 Size += NumArgs * sizeof(bool); 3102 3103 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment); 3104 FunctionProtoType::ExtProtoInfo newEPI = EPI; 3105 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); 3106 Types.push_back(FTP); 3107 FunctionProtoTypes.InsertNode(FTP, InsertPos); 3108 return QualType(FTP, 0); 3109 } 3110 3111 #ifndef NDEBUG 3112 static bool NeedsInjectedClassNameType(const RecordDecl *D) { 3113 if (!isa<CXXRecordDecl>(D)) return false; 3114 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D); 3115 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) 3116 return true; 3117 if (RD->getDescribedClassTemplate() && 3118 !isa<ClassTemplateSpecializationDecl>(RD)) 3119 return true; 3120 return false; 3121 } 3122 #endif 3123 3124 /// getInjectedClassNameType - Return the unique reference to the 3125 /// injected class name type for the specified templated declaration. 3126 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, 3127 QualType TST) const { 3128 assert(NeedsInjectedClassNameType(Decl)); 3129 if (Decl->TypeForDecl) { 3130 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 3131 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { 3132 assert(PrevDecl->TypeForDecl && "previous declaration has no type"); 3133 Decl->TypeForDecl = PrevDecl->TypeForDecl; 3134 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 3135 } else { 3136 Type *newType = 3137 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); 3138 Decl->TypeForDecl = newType; 3139 Types.push_back(newType); 3140 } 3141 return QualType(Decl->TypeForDecl, 0); 3142 } 3143 3144 /// getTypeDeclType - Return the unique reference to the type for the 3145 /// specified type declaration. 3146 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { 3147 assert(Decl && "Passed null for Decl param"); 3148 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); 3149 3150 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl)) 3151 return getTypedefType(Typedef); 3152 3153 assert(!isa<TemplateTypeParmDecl>(Decl) && 3154 "Template type parameter types are always available."); 3155 3156 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { 3157 assert(Record->isFirstDecl() && "struct/union has previous declaration"); 3158 assert(!NeedsInjectedClassNameType(Record)); 3159 return getRecordType(Record); 3160 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { 3161 assert(Enum->isFirstDecl() && "enum has previous declaration"); 3162 return getEnumType(Enum); 3163 } else if (const UnresolvedUsingTypenameDecl *Using = 3164 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { 3165 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); 3166 Decl->TypeForDecl = newType; 3167 Types.push_back(newType); 3168 } else 3169 llvm_unreachable("TypeDecl without a type?"); 3170 3171 return QualType(Decl->TypeForDecl, 0); 3172 } 3173 3174 /// getTypedefType - Return the unique reference to the type for the 3175 /// specified typedef name decl. 3176 QualType 3177 ASTContext::getTypedefType(const TypedefNameDecl *Decl, 3178 QualType Canonical) const { 3179 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3180 3181 if (Canonical.isNull()) 3182 Canonical = getCanonicalType(Decl->getUnderlyingType()); 3183 TypedefType *newType = new(*this, TypeAlignment) 3184 TypedefType(Type::Typedef, Decl, Canonical); 3185 Decl->TypeForDecl = newType; 3186 Types.push_back(newType); 3187 return QualType(newType, 0); 3188 } 3189 3190 QualType ASTContext::getRecordType(const RecordDecl *Decl) const { 3191 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3192 3193 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) 3194 if (PrevDecl->TypeForDecl) 3195 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 3196 3197 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl); 3198 Decl->TypeForDecl = newType; 3199 Types.push_back(newType); 3200 return QualType(newType, 0); 3201 } 3202 3203 QualType ASTContext::getEnumType(const EnumDecl *Decl) const { 3204 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3205 3206 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) 3207 if (PrevDecl->TypeForDecl) 3208 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 3209 3210 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl); 3211 Decl->TypeForDecl = newType; 3212 Types.push_back(newType); 3213 return QualType(newType, 0); 3214 } 3215 3216 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, 3217 QualType modifiedType, 3218 QualType equivalentType) { 3219 llvm::FoldingSetNodeID id; 3220 AttributedType::Profile(id, attrKind, modifiedType, equivalentType); 3221 3222 void *insertPos = nullptr; 3223 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); 3224 if (type) return QualType(type, 0); 3225 3226 QualType canon = getCanonicalType(equivalentType); 3227 type = new (*this, TypeAlignment) 3228 AttributedType(canon, attrKind, modifiedType, equivalentType); 3229 3230 Types.push_back(type); 3231 AttributedTypes.InsertNode(type, insertPos); 3232 3233 return QualType(type, 0); 3234 } 3235 3236 /// \brief Retrieve a substitution-result type. 3237 QualType 3238 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, 3239 QualType Replacement) const { 3240 assert(Replacement.isCanonical() 3241 && "replacement types must always be canonical"); 3242 3243 llvm::FoldingSetNodeID ID; 3244 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); 3245 void *InsertPos = nullptr; 3246 SubstTemplateTypeParmType *SubstParm 3247 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3248 3249 if (!SubstParm) { 3250 SubstParm = new (*this, TypeAlignment) 3251 SubstTemplateTypeParmType(Parm, Replacement); 3252 Types.push_back(SubstParm); 3253 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 3254 } 3255 3256 return QualType(SubstParm, 0); 3257 } 3258 3259 /// \brief Retrieve a 3260 QualType ASTContext::getSubstTemplateTypeParmPackType( 3261 const TemplateTypeParmType *Parm, 3262 const TemplateArgument &ArgPack) { 3263 #ifndef NDEBUG 3264 for (const auto &P : ArgPack.pack_elements()) { 3265 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"); 3266 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type"); 3267 } 3268 #endif 3269 3270 llvm::FoldingSetNodeID ID; 3271 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); 3272 void *InsertPos = nullptr; 3273 if (SubstTemplateTypeParmPackType *SubstParm 3274 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) 3275 return QualType(SubstParm, 0); 3276 3277 QualType Canon; 3278 if (!Parm->isCanonicalUnqualified()) { 3279 Canon = getCanonicalType(QualType(Parm, 0)); 3280 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), 3281 ArgPack); 3282 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); 3283 } 3284 3285 SubstTemplateTypeParmPackType *SubstParm 3286 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, 3287 ArgPack); 3288 Types.push_back(SubstParm); 3289 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 3290 return QualType(SubstParm, 0); 3291 } 3292 3293 /// \brief Retrieve the template type parameter type for a template 3294 /// parameter or parameter pack with the given depth, index, and (optionally) 3295 /// name. 3296 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 3297 bool ParameterPack, 3298 TemplateTypeParmDecl *TTPDecl) const { 3299 llvm::FoldingSetNodeID ID; 3300 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); 3301 void *InsertPos = nullptr; 3302 TemplateTypeParmType *TypeParm 3303 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3304 3305 if (TypeParm) 3306 return QualType(TypeParm, 0); 3307 3308 if (TTPDecl) { 3309 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); 3310 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); 3311 3312 TemplateTypeParmType *TypeCheck 3313 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3314 assert(!TypeCheck && "Template type parameter canonical type broken"); 3315 (void)TypeCheck; 3316 } else 3317 TypeParm = new (*this, TypeAlignment) 3318 TemplateTypeParmType(Depth, Index, ParameterPack); 3319 3320 Types.push_back(TypeParm); 3321 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); 3322 3323 return QualType(TypeParm, 0); 3324 } 3325 3326 TypeSourceInfo * 3327 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, 3328 SourceLocation NameLoc, 3329 const TemplateArgumentListInfo &Args, 3330 QualType Underlying) const { 3331 assert(!Name.getAsDependentTemplateName() && 3332 "No dependent template names here!"); 3333 QualType TST = getTemplateSpecializationType(Name, Args, Underlying); 3334 3335 TypeSourceInfo *DI = CreateTypeSourceInfo(TST); 3336 TemplateSpecializationTypeLoc TL = 3337 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); 3338 TL.setTemplateKeywordLoc(SourceLocation()); 3339 TL.setTemplateNameLoc(NameLoc); 3340 TL.setLAngleLoc(Args.getLAngleLoc()); 3341 TL.setRAngleLoc(Args.getRAngleLoc()); 3342 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 3343 TL.setArgLocInfo(i, Args[i].getLocInfo()); 3344 return DI; 3345 } 3346 3347 QualType 3348 ASTContext::getTemplateSpecializationType(TemplateName Template, 3349 const TemplateArgumentListInfo &Args, 3350 QualType Underlying) const { 3351 assert(!Template.getAsDependentTemplateName() && 3352 "No dependent template names here!"); 3353 3354 unsigned NumArgs = Args.size(); 3355 3356 SmallVector<TemplateArgument, 4> ArgVec; 3357 ArgVec.reserve(NumArgs); 3358 for (unsigned i = 0; i != NumArgs; ++i) 3359 ArgVec.push_back(Args[i].getArgument()); 3360 3361 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, 3362 Underlying); 3363 } 3364 3365 #ifndef NDEBUG 3366 static bool hasAnyPackExpansions(const TemplateArgument *Args, 3367 unsigned NumArgs) { 3368 for (unsigned I = 0; I != NumArgs; ++I) 3369 if (Args[I].isPackExpansion()) 3370 return true; 3371 3372 return true; 3373 } 3374 #endif 3375 3376 QualType 3377 ASTContext::getTemplateSpecializationType(TemplateName Template, 3378 const TemplateArgument *Args, 3379 unsigned NumArgs, 3380 QualType Underlying) const { 3381 assert(!Template.getAsDependentTemplateName() && 3382 "No dependent template names here!"); 3383 // Look through qualified template names. 3384 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 3385 Template = TemplateName(QTN->getTemplateDecl()); 3386 3387 bool IsTypeAlias = 3388 Template.getAsTemplateDecl() && 3389 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); 3390 QualType CanonType; 3391 if (!Underlying.isNull()) 3392 CanonType = getCanonicalType(Underlying); 3393 else { 3394 // We can get here with an alias template when the specialization contains 3395 // a pack expansion that does not match up with a parameter pack. 3396 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && 3397 "Caller must compute aliased type"); 3398 IsTypeAlias = false; 3399 CanonType = getCanonicalTemplateSpecializationType(Template, Args, 3400 NumArgs); 3401 } 3402 3403 // Allocate the (non-canonical) template specialization type, but don't 3404 // try to unique it: these types typically have location information that 3405 // we don't unique and don't want to lose. 3406 void *Mem = Allocate(sizeof(TemplateSpecializationType) + 3407 sizeof(TemplateArgument) * NumArgs + 3408 (IsTypeAlias? sizeof(QualType) : 0), 3409 TypeAlignment); 3410 TemplateSpecializationType *Spec 3411 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType, 3412 IsTypeAlias ? Underlying : QualType()); 3413 3414 Types.push_back(Spec); 3415 return QualType(Spec, 0); 3416 } 3417 3418 QualType 3419 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template, 3420 const TemplateArgument *Args, 3421 unsigned NumArgs) const { 3422 assert(!Template.getAsDependentTemplateName() && 3423 "No dependent template names here!"); 3424 3425 // Look through qualified template names. 3426 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 3427 Template = TemplateName(QTN->getTemplateDecl()); 3428 3429 // Build the canonical template specialization type. 3430 TemplateName CanonTemplate = getCanonicalTemplateName(Template); 3431 SmallVector<TemplateArgument, 4> CanonArgs; 3432 CanonArgs.reserve(NumArgs); 3433 for (unsigned I = 0; I != NumArgs; ++I) 3434 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I])); 3435 3436 // Determine whether this canonical template specialization type already 3437 // exists. 3438 llvm::FoldingSetNodeID ID; 3439 TemplateSpecializationType::Profile(ID, CanonTemplate, 3440 CanonArgs.data(), NumArgs, *this); 3441 3442 void *InsertPos = nullptr; 3443 TemplateSpecializationType *Spec 3444 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3445 3446 if (!Spec) { 3447 // Allocate a new canonical template specialization type. 3448 void *Mem = Allocate((sizeof(TemplateSpecializationType) + 3449 sizeof(TemplateArgument) * NumArgs), 3450 TypeAlignment); 3451 Spec = new (Mem) TemplateSpecializationType(CanonTemplate, 3452 CanonArgs.data(), NumArgs, 3453 QualType(), QualType()); 3454 Types.push_back(Spec); 3455 TemplateSpecializationTypes.InsertNode(Spec, InsertPos); 3456 } 3457 3458 assert(Spec->isDependentType() && 3459 "Non-dependent template-id type must have a canonical type"); 3460 return QualType(Spec, 0); 3461 } 3462 3463 QualType 3464 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, 3465 NestedNameSpecifier *NNS, 3466 QualType NamedType) const { 3467 llvm::FoldingSetNodeID ID; 3468 ElaboratedType::Profile(ID, Keyword, NNS, NamedType); 3469 3470 void *InsertPos = nullptr; 3471 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 3472 if (T) 3473 return QualType(T, 0); 3474 3475 QualType Canon = NamedType; 3476 if (!Canon.isCanonical()) { 3477 Canon = getCanonicalType(NamedType); 3478 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 3479 assert(!CheckT && "Elaborated canonical type broken"); 3480 (void)CheckT; 3481 } 3482 3483 T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon); 3484 Types.push_back(T); 3485 ElaboratedTypes.InsertNode(T, InsertPos); 3486 return QualType(T, 0); 3487 } 3488 3489 QualType 3490 ASTContext::getParenType(QualType InnerType) const { 3491 llvm::FoldingSetNodeID ID; 3492 ParenType::Profile(ID, InnerType); 3493 3494 void *InsertPos = nullptr; 3495 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 3496 if (T) 3497 return QualType(T, 0); 3498 3499 QualType Canon = InnerType; 3500 if (!Canon.isCanonical()) { 3501 Canon = getCanonicalType(InnerType); 3502 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 3503 assert(!CheckT && "Paren canonical type broken"); 3504 (void)CheckT; 3505 } 3506 3507 T = new (*this, TypeAlignment) ParenType(InnerType, Canon); 3508 Types.push_back(T); 3509 ParenTypes.InsertNode(T, InsertPos); 3510 return QualType(T, 0); 3511 } 3512 3513 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, 3514 NestedNameSpecifier *NNS, 3515 const IdentifierInfo *Name, 3516 QualType Canon) const { 3517 if (Canon.isNull()) { 3518 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 3519 ElaboratedTypeKeyword CanonKeyword = Keyword; 3520 if (Keyword == ETK_None) 3521 CanonKeyword = ETK_Typename; 3522 3523 if (CanonNNS != NNS || CanonKeyword != Keyword) 3524 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); 3525 } 3526 3527 llvm::FoldingSetNodeID ID; 3528 DependentNameType::Profile(ID, Keyword, NNS, Name); 3529 3530 void *InsertPos = nullptr; 3531 DependentNameType *T 3532 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); 3533 if (T) 3534 return QualType(T, 0); 3535 3536 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); 3537 Types.push_back(T); 3538 DependentNameTypes.InsertNode(T, InsertPos); 3539 return QualType(T, 0); 3540 } 3541 3542 QualType 3543 ASTContext::getDependentTemplateSpecializationType( 3544 ElaboratedTypeKeyword Keyword, 3545 NestedNameSpecifier *NNS, 3546 const IdentifierInfo *Name, 3547 const TemplateArgumentListInfo &Args) const { 3548 // TODO: avoid this copy 3549 SmallVector<TemplateArgument, 16> ArgCopy; 3550 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3551 ArgCopy.push_back(Args[I].getArgument()); 3552 return getDependentTemplateSpecializationType(Keyword, NNS, Name, 3553 ArgCopy.size(), 3554 ArgCopy.data()); 3555 } 3556 3557 QualType 3558 ASTContext::getDependentTemplateSpecializationType( 3559 ElaboratedTypeKeyword Keyword, 3560 NestedNameSpecifier *NNS, 3561 const IdentifierInfo *Name, 3562 unsigned NumArgs, 3563 const TemplateArgument *Args) const { 3564 assert((!NNS || NNS->isDependent()) && 3565 "nested-name-specifier must be dependent"); 3566 3567 llvm::FoldingSetNodeID ID; 3568 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, 3569 Name, NumArgs, Args); 3570 3571 void *InsertPos = nullptr; 3572 DependentTemplateSpecializationType *T 3573 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3574 if (T) 3575 return QualType(T, 0); 3576 3577 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 3578 3579 ElaboratedTypeKeyword CanonKeyword = Keyword; 3580 if (Keyword == ETK_None) CanonKeyword = ETK_Typename; 3581 3582 bool AnyNonCanonArgs = false; 3583 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); 3584 for (unsigned I = 0; I != NumArgs; ++I) { 3585 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); 3586 if (!CanonArgs[I].structurallyEquals(Args[I])) 3587 AnyNonCanonArgs = true; 3588 } 3589 3590 QualType Canon; 3591 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { 3592 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, 3593 Name, NumArgs, 3594 CanonArgs.data()); 3595 3596 // Find the insert position again. 3597 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3598 } 3599 3600 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + 3601 sizeof(TemplateArgument) * NumArgs), 3602 TypeAlignment); 3603 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, 3604 Name, NumArgs, Args, Canon); 3605 Types.push_back(T); 3606 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); 3607 return QualType(T, 0); 3608 } 3609 3610 QualType ASTContext::getPackExpansionType(QualType Pattern, 3611 Optional<unsigned> NumExpansions) { 3612 llvm::FoldingSetNodeID ID; 3613 PackExpansionType::Profile(ID, Pattern, NumExpansions); 3614 3615 assert(Pattern->containsUnexpandedParameterPack() && 3616 "Pack expansions must expand one or more parameter packs"); 3617 void *InsertPos = nullptr; 3618 PackExpansionType *T 3619 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 3620 if (T) 3621 return QualType(T, 0); 3622 3623 QualType Canon; 3624 if (!Pattern.isCanonical()) { 3625 Canon = getCanonicalType(Pattern); 3626 // The canonical type might not contain an unexpanded parameter pack, if it 3627 // contains an alias template specialization which ignores one of its 3628 // parameters. 3629 if (Canon->containsUnexpandedParameterPack()) { 3630 Canon = getPackExpansionType(Canon, NumExpansions); 3631 3632 // Find the insert position again, in case we inserted an element into 3633 // PackExpansionTypes and invalidated our insert position. 3634 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 3635 } 3636 } 3637 3638 T = new (*this, TypeAlignment) 3639 PackExpansionType(Pattern, Canon, NumExpansions); 3640 Types.push_back(T); 3641 PackExpansionTypes.InsertNode(T, InsertPos); 3642 return QualType(T, 0); 3643 } 3644 3645 /// CmpProtocolNames - Comparison predicate for sorting protocols 3646 /// alphabetically. 3647 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, 3648 ObjCProtocolDecl *const *RHS) { 3649 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); 3650 } 3651 3652 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols, 3653 unsigned NumProtocols) { 3654 if (NumProtocols == 0) return true; 3655 3656 if (Protocols[0]->getCanonicalDecl() != Protocols[0]) 3657 return false; 3658 3659 for (unsigned i = 1; i != NumProtocols; ++i) 3660 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || 3661 Protocols[i]->getCanonicalDecl() != Protocols[i]) 3662 return false; 3663 return true; 3664 } 3665 3666 static void 3667 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { 3668 // Sort protocols, keyed by name. 3669 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); 3670 3671 // Canonicalize. 3672 for (ObjCProtocolDecl *&P : Protocols) 3673 P = P->getCanonicalDecl(); 3674 3675 // Remove duplicates. 3676 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); 3677 Protocols.erase(ProtocolsEnd, Protocols.end()); 3678 } 3679 3680 QualType ASTContext::getObjCObjectType(QualType BaseType, 3681 ObjCProtocolDecl * const *Protocols, 3682 unsigned NumProtocols) const { 3683 return getObjCObjectType(BaseType, { }, 3684 llvm::makeArrayRef(Protocols, NumProtocols), 3685 /*isKindOf=*/false); 3686 } 3687 3688 QualType ASTContext::getObjCObjectType( 3689 QualType baseType, 3690 ArrayRef<QualType> typeArgs, 3691 ArrayRef<ObjCProtocolDecl *> protocols, 3692 bool isKindOf) const { 3693 // If the base type is an interface and there aren't any protocols or 3694 // type arguments to add, then the interface type will do just fine. 3695 if (typeArgs.empty() && protocols.empty() && !isKindOf && 3696 isa<ObjCInterfaceType>(baseType)) 3697 return baseType; 3698 3699 // Look in the folding set for an existing type. 3700 llvm::FoldingSetNodeID ID; 3701 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); 3702 void *InsertPos = nullptr; 3703 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) 3704 return QualType(QT, 0); 3705 3706 // Determine the type arguments to be used for canonicalization, 3707 // which may be explicitly specified here or written on the base 3708 // type. 3709 ArrayRef<QualType> effectiveTypeArgs = typeArgs; 3710 if (effectiveTypeArgs.empty()) { 3711 if (auto baseObject = baseType->getAs<ObjCObjectType>()) 3712 effectiveTypeArgs = baseObject->getTypeArgs(); 3713 } 3714 3715 // Build the canonical type, which has the canonical base type and a 3716 // sorted-and-uniqued list of protocols and the type arguments 3717 // canonicalized. 3718 QualType canonical; 3719 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(), 3720 effectiveTypeArgs.end(), 3721 [&](QualType type) { 3722 return type.isCanonical(); 3723 }); 3724 bool protocolsSorted = areSortedAndUniqued(protocols.data(), 3725 protocols.size()); 3726 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { 3727 // Determine the canonical type arguments. 3728 ArrayRef<QualType> canonTypeArgs; 3729 SmallVector<QualType, 4> canonTypeArgsVec; 3730 if (!typeArgsAreCanonical) { 3731 canonTypeArgsVec.reserve(effectiveTypeArgs.size()); 3732 for (auto typeArg : effectiveTypeArgs) 3733 canonTypeArgsVec.push_back(getCanonicalType(typeArg)); 3734 canonTypeArgs = canonTypeArgsVec; 3735 } else { 3736 canonTypeArgs = effectiveTypeArgs; 3737 } 3738 3739 ArrayRef<ObjCProtocolDecl *> canonProtocols; 3740 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; 3741 if (!protocolsSorted) { 3742 canonProtocolsVec.append(protocols.begin(), protocols.end()); 3743 SortAndUniqueProtocols(canonProtocolsVec); 3744 canonProtocols = canonProtocolsVec; 3745 } else { 3746 canonProtocols = protocols; 3747 } 3748 3749 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, 3750 canonProtocols, isKindOf); 3751 3752 // Regenerate InsertPos. 3753 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); 3754 } 3755 3756 unsigned size = sizeof(ObjCObjectTypeImpl); 3757 size += typeArgs.size() * sizeof(QualType); 3758 size += protocols.size() * sizeof(ObjCProtocolDecl *); 3759 void *mem = Allocate(size, TypeAlignment); 3760 ObjCObjectTypeImpl *T = 3761 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, 3762 isKindOf); 3763 3764 Types.push_back(T); 3765 ObjCObjectTypes.InsertNode(T, InsertPos); 3766 return QualType(T, 0); 3767 } 3768 3769 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's 3770 /// protocol list adopt all protocols in QT's qualified-id protocol 3771 /// list. 3772 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, 3773 ObjCInterfaceDecl *IC) { 3774 if (!QT->isObjCQualifiedIdType()) 3775 return false; 3776 3777 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) { 3778 // If both the right and left sides have qualifiers. 3779 for (auto *Proto : OPT->quals()) { 3780 if (!IC->ClassImplementsProtocol(Proto, false)) 3781 return false; 3782 } 3783 return true; 3784 } 3785 return false; 3786 } 3787 3788 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in 3789 /// QT's qualified-id protocol list adopt all protocols in IDecl's list 3790 /// of protocols. 3791 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, 3792 ObjCInterfaceDecl *IDecl) { 3793 if (!QT->isObjCQualifiedIdType()) 3794 return false; 3795 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>(); 3796 if (!OPT) 3797 return false; 3798 if (!IDecl->hasDefinition()) 3799 return false; 3800 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; 3801 CollectInheritedProtocols(IDecl, InheritedProtocols); 3802 if (InheritedProtocols.empty()) 3803 return false; 3804 // Check that if every protocol in list of id<plist> conforms to a protcol 3805 // of IDecl's, then bridge casting is ok. 3806 bool Conforms = false; 3807 for (auto *Proto : OPT->quals()) { 3808 Conforms = false; 3809 for (auto *PI : InheritedProtocols) { 3810 if (ProtocolCompatibleWithProtocol(Proto, PI)) { 3811 Conforms = true; 3812 break; 3813 } 3814 } 3815 if (!Conforms) 3816 break; 3817 } 3818 if (Conforms) 3819 return true; 3820 3821 for (auto *PI : InheritedProtocols) { 3822 // If both the right and left sides have qualifiers. 3823 bool Adopts = false; 3824 for (auto *Proto : OPT->quals()) { 3825 // return 'true' if 'PI' is in the inheritance hierarchy of Proto 3826 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) 3827 break; 3828 } 3829 if (!Adopts) 3830 return false; 3831 } 3832 return true; 3833 } 3834 3835 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for 3836 /// the given object type. 3837 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { 3838 llvm::FoldingSetNodeID ID; 3839 ObjCObjectPointerType::Profile(ID, ObjectT); 3840 3841 void *InsertPos = nullptr; 3842 if (ObjCObjectPointerType *QT = 3843 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3844 return QualType(QT, 0); 3845 3846 // Find the canonical object type. 3847 QualType Canonical; 3848 if (!ObjectT.isCanonical()) { 3849 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); 3850 3851 // Regenerate InsertPos. 3852 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3853 } 3854 3855 // No match. 3856 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); 3857 ObjCObjectPointerType *QType = 3858 new (Mem) ObjCObjectPointerType(Canonical, ObjectT); 3859 3860 Types.push_back(QType); 3861 ObjCObjectPointerTypes.InsertNode(QType, InsertPos); 3862 return QualType(QType, 0); 3863 } 3864 3865 /// getObjCInterfaceType - Return the unique reference to the type for the 3866 /// specified ObjC interface decl. The list of protocols is optional. 3867 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, 3868 ObjCInterfaceDecl *PrevDecl) const { 3869 if (Decl->TypeForDecl) 3870 return QualType(Decl->TypeForDecl, 0); 3871 3872 if (PrevDecl) { 3873 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); 3874 Decl->TypeForDecl = PrevDecl->TypeForDecl; 3875 return QualType(PrevDecl->TypeForDecl, 0); 3876 } 3877 3878 // Prefer the definition, if there is one. 3879 if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) 3880 Decl = Def; 3881 3882 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); 3883 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl); 3884 Decl->TypeForDecl = T; 3885 Types.push_back(T); 3886 return QualType(T, 0); 3887 } 3888 3889 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique 3890 /// TypeOfExprType AST's (since expression's are never shared). For example, 3891 /// multiple declarations that refer to "typeof(x)" all contain different 3892 /// DeclRefExpr's. This doesn't effect the type checker, since it operates 3893 /// on canonical type's (which are always unique). 3894 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { 3895 TypeOfExprType *toe; 3896 if (tofExpr->isTypeDependent()) { 3897 llvm::FoldingSetNodeID ID; 3898 DependentTypeOfExprType::Profile(ID, *this, tofExpr); 3899 3900 void *InsertPos = nullptr; 3901 DependentTypeOfExprType *Canon 3902 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); 3903 if (Canon) { 3904 // We already have a "canonical" version of an identical, dependent 3905 // typeof(expr) type. Use that as our canonical type. 3906 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, 3907 QualType((TypeOfExprType*)Canon, 0)); 3908 } else { 3909 // Build a new, canonical typeof(expr) type. 3910 Canon 3911 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); 3912 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); 3913 toe = Canon; 3914 } 3915 } else { 3916 QualType Canonical = getCanonicalType(tofExpr->getType()); 3917 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); 3918 } 3919 Types.push_back(toe); 3920 return QualType(toe, 0); 3921 } 3922 3923 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique 3924 /// TypeOfType nodes. The only motivation to unique these nodes would be 3925 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be 3926 /// an issue. This doesn't affect the type checker, since it operates 3927 /// on canonical types (which are always unique). 3928 QualType ASTContext::getTypeOfType(QualType tofType) const { 3929 QualType Canonical = getCanonicalType(tofType); 3930 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); 3931 Types.push_back(tot); 3932 return QualType(tot, 0); 3933 } 3934 3935 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType 3936 /// nodes. This would never be helpful, since each such type has its own 3937 /// expression, and would not give a significant memory saving, since there 3938 /// is an Expr tree under each such type. 3939 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { 3940 DecltypeType *dt; 3941 3942 // C++11 [temp.type]p2: 3943 // If an expression e involves a template parameter, decltype(e) denotes a 3944 // unique dependent type. Two such decltype-specifiers refer to the same 3945 // type only if their expressions are equivalent (14.5.6.1). 3946 if (e->isInstantiationDependent()) { 3947 llvm::FoldingSetNodeID ID; 3948 DependentDecltypeType::Profile(ID, *this, e); 3949 3950 void *InsertPos = nullptr; 3951 DependentDecltypeType *Canon 3952 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); 3953 if (!Canon) { 3954 // Build a new, canonical typeof(expr) type. 3955 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); 3956 DependentDecltypeTypes.InsertNode(Canon, InsertPos); 3957 } 3958 dt = new (*this, TypeAlignment) 3959 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); 3960 } else { 3961 dt = new (*this, TypeAlignment) 3962 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); 3963 } 3964 Types.push_back(dt); 3965 return QualType(dt, 0); 3966 } 3967 3968 /// getUnaryTransformationType - We don't unique these, since the memory 3969 /// savings are minimal and these are rare. 3970 QualType ASTContext::getUnaryTransformType(QualType BaseType, 3971 QualType UnderlyingType, 3972 UnaryTransformType::UTTKind Kind) 3973 const { 3974 UnaryTransformType *Ty = 3975 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType, 3976 Kind, 3977 UnderlyingType->isDependentType() ? 3978 QualType() : getCanonicalType(UnderlyingType)); 3979 Types.push_back(Ty); 3980 return QualType(Ty, 0); 3981 } 3982 3983 /// getAutoType - Return the uniqued reference to the 'auto' type which has been 3984 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the 3985 /// canonical deduced-but-dependent 'auto' type. 3986 QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, 3987 bool IsDependent) const { 3988 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent) 3989 return getAutoDeductType(); 3990 3991 // Look in the folding set for an existing type. 3992 void *InsertPos = nullptr; 3993 llvm::FoldingSetNodeID ID; 3994 AutoType::Profile(ID, DeducedType, Keyword, IsDependent); 3995 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) 3996 return QualType(AT, 0); 3997 3998 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType, 3999 Keyword, 4000 IsDependent); 4001 Types.push_back(AT); 4002 if (InsertPos) 4003 AutoTypes.InsertNode(AT, InsertPos); 4004 return QualType(AT, 0); 4005 } 4006 4007 /// getAtomicType - Return the uniqued reference to the atomic type for 4008 /// the given value type. 4009 QualType ASTContext::getAtomicType(QualType T) const { 4010 // Unique pointers, to guarantee there is only one pointer of a particular 4011 // structure. 4012 llvm::FoldingSetNodeID ID; 4013 AtomicType::Profile(ID, T); 4014 4015 void *InsertPos = nullptr; 4016 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) 4017 return QualType(AT, 0); 4018 4019 // If the atomic value type isn't canonical, this won't be a canonical type 4020 // either, so fill in the canonical type field. 4021 QualType Canonical; 4022 if (!T.isCanonical()) { 4023 Canonical = getAtomicType(getCanonicalType(T)); 4024 4025 // Get the new insert position for the node we care about. 4026 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); 4027 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 4028 } 4029 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical); 4030 Types.push_back(New); 4031 AtomicTypes.InsertNode(New, InsertPos); 4032 return QualType(New, 0); 4033 } 4034 4035 /// getAutoDeductType - Get type pattern for deducing against 'auto'. 4036 QualType ASTContext::getAutoDeductType() const { 4037 if (AutoDeductTy.isNull()) 4038 AutoDeductTy = QualType( 4039 new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto, 4040 /*dependent*/false), 4041 0); 4042 return AutoDeductTy; 4043 } 4044 4045 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. 4046 QualType ASTContext::getAutoRRefDeductType() const { 4047 if (AutoRRefDeductTy.isNull()) 4048 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); 4049 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); 4050 return AutoRRefDeductTy; 4051 } 4052 4053 /// getTagDeclType - Return the unique reference to the type for the 4054 /// specified TagDecl (struct/union/class/enum) decl. 4055 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { 4056 assert (Decl); 4057 // FIXME: What is the design on getTagDeclType when it requires casting 4058 // away const? mutable? 4059 return getTypeDeclType(const_cast<TagDecl*>(Decl)); 4060 } 4061 4062 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 4063 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 4064 /// needs to agree with the definition in <stddef.h>. 4065 CanQualType ASTContext::getSizeType() const { 4066 return getFromTargetType(Target->getSizeType()); 4067 } 4068 4069 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). 4070 CanQualType ASTContext::getIntMaxType() const { 4071 return getFromTargetType(Target->getIntMaxType()); 4072 } 4073 4074 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). 4075 CanQualType ASTContext::getUIntMaxType() const { 4076 return getFromTargetType(Target->getUIntMaxType()); 4077 } 4078 4079 /// getSignedWCharType - Return the type of "signed wchar_t". 4080 /// Used when in C++, as a GCC extension. 4081 QualType ASTContext::getSignedWCharType() const { 4082 // FIXME: derive from "Target" ? 4083 return WCharTy; 4084 } 4085 4086 /// getUnsignedWCharType - Return the type of "unsigned wchar_t". 4087 /// Used when in C++, as a GCC extension. 4088 QualType ASTContext::getUnsignedWCharType() const { 4089 // FIXME: derive from "Target" ? 4090 return UnsignedIntTy; 4091 } 4092 4093 QualType ASTContext::getIntPtrType() const { 4094 return getFromTargetType(Target->getIntPtrType()); 4095 } 4096 4097 QualType ASTContext::getUIntPtrType() const { 4098 return getCorrespondingUnsignedType(getIntPtrType()); 4099 } 4100 4101 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) 4102 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). 4103 QualType ASTContext::getPointerDiffType() const { 4104 return getFromTargetType(Target->getPtrDiffType(0)); 4105 } 4106 4107 /// \brief Return the unique type for "pid_t" defined in 4108 /// <sys/types.h>. We need this to compute the correct type for vfork(). 4109 QualType ASTContext::getProcessIDType() const { 4110 return getFromTargetType(Target->getProcessIDType()); 4111 } 4112 4113 //===----------------------------------------------------------------------===// 4114 // Type Operators 4115 //===----------------------------------------------------------------------===// 4116 4117 CanQualType ASTContext::getCanonicalParamType(QualType T) const { 4118 // Push qualifiers into arrays, and then discard any remaining 4119 // qualifiers. 4120 T = getCanonicalType(T); 4121 T = getVariableArrayDecayedType(T); 4122 const Type *Ty = T.getTypePtr(); 4123 QualType Result; 4124 if (isa<ArrayType>(Ty)) { 4125 Result = getArrayDecayedType(QualType(Ty,0)); 4126 } else if (isa<FunctionType>(Ty)) { 4127 Result = getPointerType(QualType(Ty, 0)); 4128 } else { 4129 Result = QualType(Ty, 0); 4130 } 4131 4132 return CanQualType::CreateUnsafe(Result); 4133 } 4134 4135 QualType ASTContext::getUnqualifiedArrayType(QualType type, 4136 Qualifiers &quals) { 4137 SplitQualType splitType = type.getSplitUnqualifiedType(); 4138 4139 // FIXME: getSplitUnqualifiedType() actually walks all the way to 4140 // the unqualified desugared type and then drops it on the floor. 4141 // We then have to strip that sugar back off with 4142 // getUnqualifiedDesugaredType(), which is silly. 4143 const ArrayType *AT = 4144 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); 4145 4146 // If we don't have an array, just use the results in splitType. 4147 if (!AT) { 4148 quals = splitType.Quals; 4149 return QualType(splitType.Ty, 0); 4150 } 4151 4152 // Otherwise, recurse on the array's element type. 4153 QualType elementType = AT->getElementType(); 4154 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); 4155 4156 // If that didn't change the element type, AT has no qualifiers, so we 4157 // can just use the results in splitType. 4158 if (elementType == unqualElementType) { 4159 assert(quals.empty()); // from the recursive call 4160 quals = splitType.Quals; 4161 return QualType(splitType.Ty, 0); 4162 } 4163 4164 // Otherwise, add in the qualifiers from the outermost type, then 4165 // build the type back up. 4166 quals.addConsistentQualifiers(splitType.Quals); 4167 4168 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 4169 return getConstantArrayType(unqualElementType, CAT->getSize(), 4170 CAT->getSizeModifier(), 0); 4171 } 4172 4173 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 4174 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); 4175 } 4176 4177 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) { 4178 return getVariableArrayType(unqualElementType, 4179 VAT->getSizeExpr(), 4180 VAT->getSizeModifier(), 4181 VAT->getIndexTypeCVRQualifiers(), 4182 VAT->getBracketsRange()); 4183 } 4184 4185 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT); 4186 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), 4187 DSAT->getSizeModifier(), 0, 4188 SourceRange()); 4189 } 4190 4191 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that 4192 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that 4193 /// they point to and return true. If T1 and T2 aren't pointer types 4194 /// or pointer-to-member types, or if they are not similar at this 4195 /// level, returns false and leaves T1 and T2 unchanged. Top-level 4196 /// qualifiers on T1 and T2 are ignored. This function will typically 4197 /// be called in a loop that successively "unwraps" pointer and 4198 /// pointer-to-member types to compare them at each level. 4199 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) { 4200 const PointerType *T1PtrType = T1->getAs<PointerType>(), 4201 *T2PtrType = T2->getAs<PointerType>(); 4202 if (T1PtrType && T2PtrType) { 4203 T1 = T1PtrType->getPointeeType(); 4204 T2 = T2PtrType->getPointeeType(); 4205 return true; 4206 } 4207 4208 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), 4209 *T2MPType = T2->getAs<MemberPointerType>(); 4210 if (T1MPType && T2MPType && 4211 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), 4212 QualType(T2MPType->getClass(), 0))) { 4213 T1 = T1MPType->getPointeeType(); 4214 T2 = T2MPType->getPointeeType(); 4215 return true; 4216 } 4217 4218 if (getLangOpts().ObjC1) { 4219 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(), 4220 *T2OPType = T2->getAs<ObjCObjectPointerType>(); 4221 if (T1OPType && T2OPType) { 4222 T1 = T1OPType->getPointeeType(); 4223 T2 = T2OPType->getPointeeType(); 4224 return true; 4225 } 4226 } 4227 4228 // FIXME: Block pointers, too? 4229 4230 return false; 4231 } 4232 4233 DeclarationNameInfo 4234 ASTContext::getNameForTemplate(TemplateName Name, 4235 SourceLocation NameLoc) const { 4236 switch (Name.getKind()) { 4237 case TemplateName::QualifiedTemplate: 4238 case TemplateName::Template: 4239 // DNInfo work in progress: CHECKME: what about DNLoc? 4240 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), 4241 NameLoc); 4242 4243 case TemplateName::OverloadedTemplate: { 4244 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); 4245 // DNInfo work in progress: CHECKME: what about DNLoc? 4246 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); 4247 } 4248 4249 case TemplateName::DependentTemplate: { 4250 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 4251 DeclarationName DName; 4252 if (DTN->isIdentifier()) { 4253 DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); 4254 return DeclarationNameInfo(DName, NameLoc); 4255 } else { 4256 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); 4257 // DNInfo work in progress: FIXME: source locations? 4258 DeclarationNameLoc DNLoc; 4259 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); 4260 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); 4261 return DeclarationNameInfo(DName, NameLoc, DNLoc); 4262 } 4263 } 4264 4265 case TemplateName::SubstTemplateTemplateParm: { 4266 SubstTemplateTemplateParmStorage *subst 4267 = Name.getAsSubstTemplateTemplateParm(); 4268 return DeclarationNameInfo(subst->getParameter()->getDeclName(), 4269 NameLoc); 4270 } 4271 4272 case TemplateName::SubstTemplateTemplateParmPack: { 4273 SubstTemplateTemplateParmPackStorage *subst 4274 = Name.getAsSubstTemplateTemplateParmPack(); 4275 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), 4276 NameLoc); 4277 } 4278 } 4279 4280 llvm_unreachable("bad template name kind!"); 4281 } 4282 4283 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { 4284 switch (Name.getKind()) { 4285 case TemplateName::QualifiedTemplate: 4286 case TemplateName::Template: { 4287 TemplateDecl *Template = Name.getAsTemplateDecl(); 4288 if (TemplateTemplateParmDecl *TTP 4289 = dyn_cast<TemplateTemplateParmDecl>(Template)) 4290 Template = getCanonicalTemplateTemplateParmDecl(TTP); 4291 4292 // The canonical template name is the canonical template declaration. 4293 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); 4294 } 4295 4296 case TemplateName::OverloadedTemplate: 4297 llvm_unreachable("cannot canonicalize overloaded template"); 4298 4299 case TemplateName::DependentTemplate: { 4300 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 4301 assert(DTN && "Non-dependent template names must refer to template decls."); 4302 return DTN->CanonicalTemplateName; 4303 } 4304 4305 case TemplateName::SubstTemplateTemplateParm: { 4306 SubstTemplateTemplateParmStorage *subst 4307 = Name.getAsSubstTemplateTemplateParm(); 4308 return getCanonicalTemplateName(subst->getReplacement()); 4309 } 4310 4311 case TemplateName::SubstTemplateTemplateParmPack: { 4312 SubstTemplateTemplateParmPackStorage *subst 4313 = Name.getAsSubstTemplateTemplateParmPack(); 4314 TemplateTemplateParmDecl *canonParameter 4315 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); 4316 TemplateArgument canonArgPack 4317 = getCanonicalTemplateArgument(subst->getArgumentPack()); 4318 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); 4319 } 4320 } 4321 4322 llvm_unreachable("bad template name!"); 4323 } 4324 4325 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { 4326 X = getCanonicalTemplateName(X); 4327 Y = getCanonicalTemplateName(Y); 4328 return X.getAsVoidPointer() == Y.getAsVoidPointer(); 4329 } 4330 4331 TemplateArgument 4332 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { 4333 switch (Arg.getKind()) { 4334 case TemplateArgument::Null: 4335 return Arg; 4336 4337 case TemplateArgument::Expression: 4338 return Arg; 4339 4340 case TemplateArgument::Declaration: { 4341 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); 4342 return TemplateArgument(D, Arg.getParamTypeForDecl()); 4343 } 4344 4345 case TemplateArgument::NullPtr: 4346 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), 4347 /*isNullPtr*/true); 4348 4349 case TemplateArgument::Template: 4350 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); 4351 4352 case TemplateArgument::TemplateExpansion: 4353 return TemplateArgument(getCanonicalTemplateName( 4354 Arg.getAsTemplateOrTemplatePattern()), 4355 Arg.getNumTemplateExpansions()); 4356 4357 case TemplateArgument::Integral: 4358 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); 4359 4360 case TemplateArgument::Type: 4361 return TemplateArgument(getCanonicalType(Arg.getAsType())); 4362 4363 case TemplateArgument::Pack: { 4364 if (Arg.pack_size() == 0) 4365 return Arg; 4366 4367 TemplateArgument *CanonArgs 4368 = new (*this) TemplateArgument[Arg.pack_size()]; 4369 unsigned Idx = 0; 4370 for (TemplateArgument::pack_iterator A = Arg.pack_begin(), 4371 AEnd = Arg.pack_end(); 4372 A != AEnd; (void)++A, ++Idx) 4373 CanonArgs[Idx] = getCanonicalTemplateArgument(*A); 4374 4375 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size())); 4376 } 4377 } 4378 4379 // Silence GCC warning 4380 llvm_unreachable("Unhandled template argument kind"); 4381 } 4382 4383 NestedNameSpecifier * 4384 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { 4385 if (!NNS) 4386 return nullptr; 4387 4388 switch (NNS->getKind()) { 4389 case NestedNameSpecifier::Identifier: 4390 // Canonicalize the prefix but keep the identifier the same. 4391 return NestedNameSpecifier::Create(*this, 4392 getCanonicalNestedNameSpecifier(NNS->getPrefix()), 4393 NNS->getAsIdentifier()); 4394 4395 case NestedNameSpecifier::Namespace: 4396 // A namespace is canonical; build a nested-name-specifier with 4397 // this namespace and no prefix. 4398 return NestedNameSpecifier::Create(*this, nullptr, 4399 NNS->getAsNamespace()->getOriginalNamespace()); 4400 4401 case NestedNameSpecifier::NamespaceAlias: 4402 // A namespace is canonical; build a nested-name-specifier with 4403 // this namespace and no prefix. 4404 return NestedNameSpecifier::Create(*this, nullptr, 4405 NNS->getAsNamespaceAlias()->getNamespace() 4406 ->getOriginalNamespace()); 4407 4408 case NestedNameSpecifier::TypeSpec: 4409 case NestedNameSpecifier::TypeSpecWithTemplate: { 4410 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); 4411 4412 // If we have some kind of dependent-named type (e.g., "typename T::type"), 4413 // break it apart into its prefix and identifier, then reconsititute those 4414 // as the canonical nested-name-specifier. This is required to canonicalize 4415 // a dependent nested-name-specifier involving typedefs of dependent-name 4416 // types, e.g., 4417 // typedef typename T::type T1; 4418 // typedef typename T1::type T2; 4419 if (const DependentNameType *DNT = T->getAs<DependentNameType>()) 4420 return NestedNameSpecifier::Create(*this, DNT->getQualifier(), 4421 const_cast<IdentifierInfo *>(DNT->getIdentifier())); 4422 4423 // Otherwise, just canonicalize the type, and force it to be a TypeSpec. 4424 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the 4425 // first place? 4426 return NestedNameSpecifier::Create(*this, nullptr, false, 4427 const_cast<Type *>(T.getTypePtr())); 4428 } 4429 4430 case NestedNameSpecifier::Global: 4431 case NestedNameSpecifier::Super: 4432 // The global specifier and __super specifer are canonical and unique. 4433 return NNS; 4434 } 4435 4436 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 4437 } 4438 4439 const ArrayType *ASTContext::getAsArrayType(QualType T) const { 4440 // Handle the non-qualified case efficiently. 4441 if (!T.hasLocalQualifiers()) { 4442 // Handle the common positive case fast. 4443 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) 4444 return AT; 4445 } 4446 4447 // Handle the common negative case fast. 4448 if (!isa<ArrayType>(T.getCanonicalType())) 4449 return nullptr; 4450 4451 // Apply any qualifiers from the array type to the element type. This 4452 // implements C99 6.7.3p8: "If the specification of an array type includes 4453 // any type qualifiers, the element type is so qualified, not the array type." 4454 4455 // If we get here, we either have type qualifiers on the type, or we have 4456 // sugar such as a typedef in the way. If we have type qualifiers on the type 4457 // we must propagate them down into the element type. 4458 4459 SplitQualType split = T.getSplitDesugaredType(); 4460 Qualifiers qs = split.Quals; 4461 4462 // If we have a simple case, just return now. 4463 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty); 4464 if (!ATy || qs.empty()) 4465 return ATy; 4466 4467 // Otherwise, we have an array and we have qualifiers on it. Push the 4468 // qualifiers into the array element type and return a new array type. 4469 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); 4470 4471 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) 4472 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), 4473 CAT->getSizeModifier(), 4474 CAT->getIndexTypeCVRQualifiers())); 4475 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) 4476 return cast<ArrayType>(getIncompleteArrayType(NewEltTy, 4477 IAT->getSizeModifier(), 4478 IAT->getIndexTypeCVRQualifiers())); 4479 4480 if (const DependentSizedArrayType *DSAT 4481 = dyn_cast<DependentSizedArrayType>(ATy)) 4482 return cast<ArrayType>( 4483 getDependentSizedArrayType(NewEltTy, 4484 DSAT->getSizeExpr(), 4485 DSAT->getSizeModifier(), 4486 DSAT->getIndexTypeCVRQualifiers(), 4487 DSAT->getBracketsRange())); 4488 4489 const VariableArrayType *VAT = cast<VariableArrayType>(ATy); 4490 return cast<ArrayType>(getVariableArrayType(NewEltTy, 4491 VAT->getSizeExpr(), 4492 VAT->getSizeModifier(), 4493 VAT->getIndexTypeCVRQualifiers(), 4494 VAT->getBracketsRange())); 4495 } 4496 4497 QualType ASTContext::getAdjustedParameterType(QualType T) const { 4498 if (T->isArrayType() || T->isFunctionType()) 4499 return getDecayedType(T); 4500 return T; 4501 } 4502 4503 QualType ASTContext::getSignatureParameterType(QualType T) const { 4504 T = getVariableArrayDecayedType(T); 4505 T = getAdjustedParameterType(T); 4506 return T.getUnqualifiedType(); 4507 } 4508 4509 QualType ASTContext::getExceptionObjectType(QualType T) const { 4510 // C++ [except.throw]p3: 4511 // A throw-expression initializes a temporary object, called the exception 4512 // object, the type of which is determined by removing any top-level 4513 // cv-qualifiers from the static type of the operand of throw and adjusting 4514 // the type from "array of T" or "function returning T" to "pointer to T" 4515 // or "pointer to function returning T", [...] 4516 T = getVariableArrayDecayedType(T); 4517 if (T->isArrayType() || T->isFunctionType()) 4518 T = getDecayedType(T); 4519 return T.getUnqualifiedType(); 4520 } 4521 4522 /// getArrayDecayedType - Return the properly qualified result of decaying the 4523 /// specified array type to a pointer. This operation is non-trivial when 4524 /// handling typedefs etc. The canonical type of "T" must be an array type, 4525 /// this returns a pointer to a properly qualified element of the array. 4526 /// 4527 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. 4528 QualType ASTContext::getArrayDecayedType(QualType Ty) const { 4529 // Get the element type with 'getAsArrayType' so that we don't lose any 4530 // typedefs in the element type of the array. This also handles propagation 4531 // of type qualifiers from the array type into the element type if present 4532 // (C99 6.7.3p8). 4533 const ArrayType *PrettyArrayType = getAsArrayType(Ty); 4534 assert(PrettyArrayType && "Not an array type!"); 4535 4536 QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); 4537 4538 // int x[restrict 4] -> int *restrict 4539 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers()); 4540 } 4541 4542 QualType ASTContext::getBaseElementType(const ArrayType *array) const { 4543 return getBaseElementType(array->getElementType()); 4544 } 4545 4546 QualType ASTContext::getBaseElementType(QualType type) const { 4547 Qualifiers qs; 4548 while (true) { 4549 SplitQualType split = type.getSplitDesugaredType(); 4550 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); 4551 if (!array) break; 4552 4553 type = array->getElementType(); 4554 qs.addConsistentQualifiers(split.Quals); 4555 } 4556 4557 return getQualifiedType(type, qs); 4558 } 4559 4560 /// getConstantArrayElementCount - Returns number of constant array elements. 4561 uint64_t 4562 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { 4563 uint64_t ElementCount = 1; 4564 do { 4565 ElementCount *= CA->getSize().getZExtValue(); 4566 CA = dyn_cast_or_null<ConstantArrayType>( 4567 CA->getElementType()->getAsArrayTypeUnsafe()); 4568 } while (CA); 4569 return ElementCount; 4570 } 4571 4572 /// getFloatingRank - Return a relative rank for floating point types. 4573 /// This routine will assert if passed a built-in type that isn't a float. 4574 static FloatingRank getFloatingRank(QualType T) { 4575 if (const ComplexType *CT = T->getAs<ComplexType>()) 4576 return getFloatingRank(CT->getElementType()); 4577 4578 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); 4579 switch (T->getAs<BuiltinType>()->getKind()) { 4580 default: llvm_unreachable("getFloatingRank(): not a floating type"); 4581 case BuiltinType::Half: return HalfRank; 4582 case BuiltinType::Float: return FloatRank; 4583 case BuiltinType::Double: return DoubleRank; 4584 case BuiltinType::LongDouble: return LongDoubleRank; 4585 } 4586 } 4587 4588 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating 4589 /// point or a complex type (based on typeDomain/typeSize). 4590 /// 'typeDomain' is a real floating point or complex type. 4591 /// 'typeSize' is a real floating point or complex type. 4592 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, 4593 QualType Domain) const { 4594 FloatingRank EltRank = getFloatingRank(Size); 4595 if (Domain->isComplexType()) { 4596 switch (EltRank) { 4597 case HalfRank: llvm_unreachable("Complex half is not supported"); 4598 case FloatRank: return FloatComplexTy; 4599 case DoubleRank: return DoubleComplexTy; 4600 case LongDoubleRank: return LongDoubleComplexTy; 4601 } 4602 } 4603 4604 assert(Domain->isRealFloatingType() && "Unknown domain!"); 4605 switch (EltRank) { 4606 case HalfRank: return HalfTy; 4607 case FloatRank: return FloatTy; 4608 case DoubleRank: return DoubleTy; 4609 case LongDoubleRank: return LongDoubleTy; 4610 } 4611 llvm_unreachable("getFloatingRank(): illegal value for rank"); 4612 } 4613 4614 /// getFloatingTypeOrder - Compare the rank of the two specified floating 4615 /// point types, ignoring the domain of the type (i.e. 'double' == 4616 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If 4617 /// LHS < RHS, return -1. 4618 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { 4619 FloatingRank LHSR = getFloatingRank(LHS); 4620 FloatingRank RHSR = getFloatingRank(RHS); 4621 4622 if (LHSR == RHSR) 4623 return 0; 4624 if (LHSR > RHSR) 4625 return 1; 4626 return -1; 4627 } 4628 4629 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This 4630 /// routine will assert if passed a built-in type that isn't an integer or enum, 4631 /// or if it is not canonicalized. 4632 unsigned ASTContext::getIntegerRank(const Type *T) const { 4633 assert(T->isCanonicalUnqualified() && "T should be canonicalized"); 4634 4635 switch (cast<BuiltinType>(T)->getKind()) { 4636 default: llvm_unreachable("getIntegerRank(): not a built-in integer"); 4637 case BuiltinType::Bool: 4638 return 1 + (getIntWidth(BoolTy) << 3); 4639 case BuiltinType::Char_S: 4640 case BuiltinType::Char_U: 4641 case BuiltinType::SChar: 4642 case BuiltinType::UChar: 4643 return 2 + (getIntWidth(CharTy) << 3); 4644 case BuiltinType::Short: 4645 case BuiltinType::UShort: 4646 return 3 + (getIntWidth(ShortTy) << 3); 4647 case BuiltinType::Int: 4648 case BuiltinType::UInt: 4649 return 4 + (getIntWidth(IntTy) << 3); 4650 case BuiltinType::Long: 4651 case BuiltinType::ULong: 4652 return 5 + (getIntWidth(LongTy) << 3); 4653 case BuiltinType::LongLong: 4654 case BuiltinType::ULongLong: 4655 return 6 + (getIntWidth(LongLongTy) << 3); 4656 case BuiltinType::Int128: 4657 case BuiltinType::UInt128: 4658 return 7 + (getIntWidth(Int128Ty) << 3); 4659 } 4660 } 4661 4662 /// \brief Whether this is a promotable bitfield reference according 4663 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). 4664 /// 4665 /// \returns the type this bit-field will promote to, or NULL if no 4666 /// promotion occurs. 4667 QualType ASTContext::isPromotableBitField(Expr *E) const { 4668 if (E->isTypeDependent() || E->isValueDependent()) 4669 return QualType(); 4670 4671 // FIXME: We should not do this unless E->refersToBitField() is true. This 4672 // matters in C where getSourceBitField() will find bit-fields for various 4673 // cases where the source expression is not a bit-field designator. 4674 4675 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? 4676 if (!Field) 4677 return QualType(); 4678 4679 QualType FT = Field->getType(); 4680 4681 uint64_t BitWidth = Field->getBitWidthValue(*this); 4682 uint64_t IntSize = getTypeSize(IntTy); 4683 // C++ [conv.prom]p5: 4684 // A prvalue for an integral bit-field can be converted to a prvalue of type 4685 // int if int can represent all the values of the bit-field; otherwise, it 4686 // can be converted to unsigned int if unsigned int can represent all the 4687 // values of the bit-field. If the bit-field is larger yet, no integral 4688 // promotion applies to it. 4689 // C11 6.3.1.1/2: 4690 // [For a bit-field of type _Bool, int, signed int, or unsigned int:] 4691 // If an int can represent all values of the original type (as restricted by 4692 // the width, for a bit-field), the value is converted to an int; otherwise, 4693 // it is converted to an unsigned int. 4694 // 4695 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. 4696 // We perform that promotion here to match GCC and C++. 4697 if (BitWidth < IntSize) 4698 return IntTy; 4699 4700 if (BitWidth == IntSize) 4701 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; 4702 4703 // Types bigger than int are not subject to promotions, and therefore act 4704 // like the base type. GCC has some weird bugs in this area that we 4705 // deliberately do not follow (GCC follows a pre-standard resolution to 4706 // C's DR315 which treats bit-width as being part of the type, and this leaks 4707 // into their semantics in some cases). 4708 return QualType(); 4709 } 4710 4711 /// getPromotedIntegerType - Returns the type that Promotable will 4712 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable 4713 /// integer type. 4714 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { 4715 assert(!Promotable.isNull()); 4716 assert(Promotable->isPromotableIntegerType()); 4717 if (const EnumType *ET = Promotable->getAs<EnumType>()) 4718 return ET->getDecl()->getPromotionType(); 4719 4720 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) { 4721 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t 4722 // (3.9.1) can be converted to a prvalue of the first of the following 4723 // types that can represent all the values of its underlying type: 4724 // int, unsigned int, long int, unsigned long int, long long int, or 4725 // unsigned long long int [...] 4726 // FIXME: Is there some better way to compute this? 4727 if (BT->getKind() == BuiltinType::WChar_S || 4728 BT->getKind() == BuiltinType::WChar_U || 4729 BT->getKind() == BuiltinType::Char16 || 4730 BT->getKind() == BuiltinType::Char32) { 4731 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; 4732 uint64_t FromSize = getTypeSize(BT); 4733 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, 4734 LongLongTy, UnsignedLongLongTy }; 4735 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { 4736 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); 4737 if (FromSize < ToSize || 4738 (FromSize == ToSize && 4739 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) 4740 return PromoteTypes[Idx]; 4741 } 4742 llvm_unreachable("char type should fit into long long"); 4743 } 4744 } 4745 4746 // At this point, we should have a signed or unsigned integer type. 4747 if (Promotable->isSignedIntegerType()) 4748 return IntTy; 4749 uint64_t PromotableSize = getIntWidth(Promotable); 4750 uint64_t IntSize = getIntWidth(IntTy); 4751 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); 4752 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; 4753 } 4754 4755 /// \brief Recurses in pointer/array types until it finds an objc retainable 4756 /// type and returns its ownership. 4757 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { 4758 while (!T.isNull()) { 4759 if (T.getObjCLifetime() != Qualifiers::OCL_None) 4760 return T.getObjCLifetime(); 4761 if (T->isArrayType()) 4762 T = getBaseElementType(T); 4763 else if (const PointerType *PT = T->getAs<PointerType>()) 4764 T = PT->getPointeeType(); 4765 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 4766 T = RT->getPointeeType(); 4767 else 4768 break; 4769 } 4770 4771 return Qualifiers::OCL_None; 4772 } 4773 4774 static const Type *getIntegerTypeForEnum(const EnumType *ET) { 4775 // Incomplete enum types are not treated as integer types. 4776 // FIXME: In C++, enum types are never integer types. 4777 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) 4778 return ET->getDecl()->getIntegerType().getTypePtr(); 4779 return nullptr; 4780 } 4781 4782 /// getIntegerTypeOrder - Returns the highest ranked integer type: 4783 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If 4784 /// LHS < RHS, return -1. 4785 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { 4786 const Type *LHSC = getCanonicalType(LHS).getTypePtr(); 4787 const Type *RHSC = getCanonicalType(RHS).getTypePtr(); 4788 4789 // Unwrap enums to their underlying type. 4790 if (const EnumType *ET = dyn_cast<EnumType>(LHSC)) 4791 LHSC = getIntegerTypeForEnum(ET); 4792 if (const EnumType *ET = dyn_cast<EnumType>(RHSC)) 4793 RHSC = getIntegerTypeForEnum(ET); 4794 4795 if (LHSC == RHSC) return 0; 4796 4797 bool LHSUnsigned = LHSC->isUnsignedIntegerType(); 4798 bool RHSUnsigned = RHSC->isUnsignedIntegerType(); 4799 4800 unsigned LHSRank = getIntegerRank(LHSC); 4801 unsigned RHSRank = getIntegerRank(RHSC); 4802 4803 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. 4804 if (LHSRank == RHSRank) return 0; 4805 return LHSRank > RHSRank ? 1 : -1; 4806 } 4807 4808 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. 4809 if (LHSUnsigned) { 4810 // If the unsigned [LHS] type is larger, return it. 4811 if (LHSRank >= RHSRank) 4812 return 1; 4813 4814 // If the signed type can represent all values of the unsigned type, it 4815 // wins. Because we are dealing with 2's complement and types that are 4816 // powers of two larger than each other, this is always safe. 4817 return -1; 4818 } 4819 4820 // If the unsigned [RHS] type is larger, return it. 4821 if (RHSRank >= LHSRank) 4822 return -1; 4823 4824 // If the signed type can represent all values of the unsigned type, it 4825 // wins. Because we are dealing with 2's complement and types that are 4826 // powers of two larger than each other, this is always safe. 4827 return 1; 4828 } 4829 4830 // getCFConstantStringType - Return the type used for constant CFStrings. 4831 QualType ASTContext::getCFConstantStringType() const { 4832 if (!CFConstantStringTypeDecl) { 4833 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString"); 4834 CFConstantStringTypeDecl->startDefinition(); 4835 4836 QualType FieldTypes[4]; 4837 4838 // const int *isa; 4839 FieldTypes[0] = getPointerType(IntTy.withConst()); 4840 // int flags; 4841 FieldTypes[1] = IntTy; 4842 // const char *str; 4843 FieldTypes[2] = getPointerType(CharTy.withConst()); 4844 // long length; 4845 FieldTypes[3] = LongTy; 4846 4847 // Create fields 4848 for (unsigned i = 0; i < 4; ++i) { 4849 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, 4850 SourceLocation(), 4851 SourceLocation(), nullptr, 4852 FieldTypes[i], /*TInfo=*/nullptr, 4853 /*BitWidth=*/nullptr, 4854 /*Mutable=*/false, 4855 ICIS_NoInit); 4856 Field->setAccess(AS_public); 4857 CFConstantStringTypeDecl->addDecl(Field); 4858 } 4859 4860 CFConstantStringTypeDecl->completeDefinition(); 4861 } 4862 4863 return getTagDeclType(CFConstantStringTypeDecl); 4864 } 4865 4866 QualType ASTContext::getObjCSuperType() const { 4867 if (ObjCSuperType.isNull()) { 4868 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); 4869 TUDecl->addDecl(ObjCSuperTypeDecl); 4870 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); 4871 } 4872 return ObjCSuperType; 4873 } 4874 4875 void ASTContext::setCFConstantStringType(QualType T) { 4876 const RecordType *Rec = T->getAs<RecordType>(); 4877 assert(Rec && "Invalid CFConstantStringType"); 4878 CFConstantStringTypeDecl = Rec->getDecl(); 4879 } 4880 4881 QualType ASTContext::getBlockDescriptorType() const { 4882 if (BlockDescriptorType) 4883 return getTagDeclType(BlockDescriptorType); 4884 4885 RecordDecl *RD; 4886 // FIXME: Needs the FlagAppleBlock bit. 4887 RD = buildImplicitRecord("__block_descriptor"); 4888 RD->startDefinition(); 4889 4890 QualType FieldTypes[] = { 4891 UnsignedLongTy, 4892 UnsignedLongTy, 4893 }; 4894 4895 static const char *const FieldNames[] = { 4896 "reserved", 4897 "Size" 4898 }; 4899 4900 for (size_t i = 0; i < 2; ++i) { 4901 FieldDecl *Field = FieldDecl::Create( 4902 *this, RD, SourceLocation(), SourceLocation(), 4903 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 4904 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 4905 Field->setAccess(AS_public); 4906 RD->addDecl(Field); 4907 } 4908 4909 RD->completeDefinition(); 4910 4911 BlockDescriptorType = RD; 4912 4913 return getTagDeclType(BlockDescriptorType); 4914 } 4915 4916 QualType ASTContext::getBlockDescriptorExtendedType() const { 4917 if (BlockDescriptorExtendedType) 4918 return getTagDeclType(BlockDescriptorExtendedType); 4919 4920 RecordDecl *RD; 4921 // FIXME: Needs the FlagAppleBlock bit. 4922 RD = buildImplicitRecord("__block_descriptor_withcopydispose"); 4923 RD->startDefinition(); 4924 4925 QualType FieldTypes[] = { 4926 UnsignedLongTy, 4927 UnsignedLongTy, 4928 getPointerType(VoidPtrTy), 4929 getPointerType(VoidPtrTy) 4930 }; 4931 4932 static const char *const FieldNames[] = { 4933 "reserved", 4934 "Size", 4935 "CopyFuncPtr", 4936 "DestroyFuncPtr" 4937 }; 4938 4939 for (size_t i = 0; i < 4; ++i) { 4940 FieldDecl *Field = FieldDecl::Create( 4941 *this, RD, SourceLocation(), SourceLocation(), 4942 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 4943 /*BitWidth=*/nullptr, 4944 /*Mutable=*/false, ICIS_NoInit); 4945 Field->setAccess(AS_public); 4946 RD->addDecl(Field); 4947 } 4948 4949 RD->completeDefinition(); 4950 4951 BlockDescriptorExtendedType = RD; 4952 return getTagDeclType(BlockDescriptorExtendedType); 4953 } 4954 4955 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" 4956 /// requires copy/dispose. Note that this must match the logic 4957 /// in buildByrefHelpers. 4958 bool ASTContext::BlockRequiresCopying(QualType Ty, 4959 const VarDecl *D) { 4960 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { 4961 const Expr *copyExpr = getBlockVarCopyInits(D); 4962 if (!copyExpr && record->hasTrivialDestructor()) return false; 4963 4964 return true; 4965 } 4966 4967 if (!Ty->isObjCRetainableType()) return false; 4968 4969 Qualifiers qs = Ty.getQualifiers(); 4970 4971 // If we have lifetime, that dominates. 4972 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 4973 switch (lifetime) { 4974 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 4975 4976 // These are just bits as far as the runtime is concerned. 4977 case Qualifiers::OCL_ExplicitNone: 4978 case Qualifiers::OCL_Autoreleasing: 4979 return false; 4980 4981 // Tell the runtime that this is ARC __weak, called by the 4982 // byref routines. 4983 case Qualifiers::OCL_Weak: 4984 // ARC __strong __block variables need to be retained. 4985 case Qualifiers::OCL_Strong: 4986 return true; 4987 } 4988 llvm_unreachable("fell out of lifetime switch!"); 4989 } 4990 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || 4991 Ty->isObjCObjectPointerType()); 4992 } 4993 4994 bool ASTContext::getByrefLifetime(QualType Ty, 4995 Qualifiers::ObjCLifetime &LifeTime, 4996 bool &HasByrefExtendedLayout) const { 4997 4998 if (!getLangOpts().ObjC1 || 4999 getLangOpts().getGC() != LangOptions::NonGC) 5000 return false; 5001 5002 HasByrefExtendedLayout = false; 5003 if (Ty->isRecordType()) { 5004 HasByrefExtendedLayout = true; 5005 LifeTime = Qualifiers::OCL_None; 5006 } else if ((LifeTime = Ty.getObjCLifetime())) { 5007 // Honor the ARC qualifiers. 5008 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { 5009 // The MRR rule. 5010 LifeTime = Qualifiers::OCL_ExplicitNone; 5011 } else { 5012 LifeTime = Qualifiers::OCL_None; 5013 } 5014 return true; 5015 } 5016 5017 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { 5018 if (!ObjCInstanceTypeDecl) 5019 ObjCInstanceTypeDecl = 5020 buildImplicitTypedef(getObjCIdType(), "instancetype"); 5021 return ObjCInstanceTypeDecl; 5022 } 5023 5024 // This returns true if a type has been typedefed to BOOL: 5025 // typedef <type> BOOL; 5026 static bool isTypeTypedefedAsBOOL(QualType T) { 5027 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 5028 if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) 5029 return II->isStr("BOOL"); 5030 5031 return false; 5032 } 5033 5034 /// getObjCEncodingTypeSize returns size of type for objective-c encoding 5035 /// purpose. 5036 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { 5037 if (!type->isIncompleteArrayType() && type->isIncompleteType()) 5038 return CharUnits::Zero(); 5039 5040 CharUnits sz = getTypeSizeInChars(type); 5041 5042 // Make all integer and enum types at least as large as an int 5043 if (sz.isPositive() && type->isIntegralOrEnumerationType()) 5044 sz = std::max(sz, getTypeSizeInChars(IntTy)); 5045 // Treat arrays as pointers, since that's how they're passed in. 5046 else if (type->isArrayType()) 5047 sz = getTypeSizeInChars(VoidPtrTy); 5048 return sz; 5049 } 5050 5051 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { 5052 return getTargetInfo().getCXXABI().isMicrosoft() && 5053 VD->isStaticDataMember() && 5054 VD->getType()->isIntegralOrEnumerationType() && 5055 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); 5056 } 5057 5058 static inline 5059 std::string charUnitsToString(const CharUnits &CU) { 5060 return llvm::itostr(CU.getQuantity()); 5061 } 5062 5063 /// getObjCEncodingForBlock - Return the encoded type for this block 5064 /// declaration. 5065 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { 5066 std::string S; 5067 5068 const BlockDecl *Decl = Expr->getBlockDecl(); 5069 QualType BlockTy = 5070 Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); 5071 // Encode result type. 5072 if (getLangOpts().EncodeExtendedBlockSig) 5073 getObjCEncodingForMethodParameter( 5074 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S, 5075 true /*Extended*/); 5076 else 5077 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S); 5078 // Compute size of all parameters. 5079 // Start with computing size of a pointer in number of bytes. 5080 // FIXME: There might(should) be a better way of doing this computation! 5081 SourceLocation Loc; 5082 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 5083 CharUnits ParmOffset = PtrSize; 5084 for (auto PI : Decl->params()) { 5085 QualType PType = PI->getType(); 5086 CharUnits sz = getObjCEncodingTypeSize(PType); 5087 if (sz.isZero()) 5088 continue; 5089 assert (sz.isPositive() && "BlockExpr - Incomplete param type"); 5090 ParmOffset += sz; 5091 } 5092 // Size of the argument frame 5093 S += charUnitsToString(ParmOffset); 5094 // Block pointer and offset. 5095 S += "@?0"; 5096 5097 // Argument types. 5098 ParmOffset = PtrSize; 5099 for (auto PVDecl : Decl->params()) { 5100 QualType PType = PVDecl->getOriginalType(); 5101 if (const ArrayType *AT = 5102 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 5103 // Use array's original type only if it has known number of 5104 // elements. 5105 if (!isa<ConstantArrayType>(AT)) 5106 PType = PVDecl->getType(); 5107 } else if (PType->isFunctionType()) 5108 PType = PVDecl->getType(); 5109 if (getLangOpts().EncodeExtendedBlockSig) 5110 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, 5111 S, true /*Extended*/); 5112 else 5113 getObjCEncodingForType(PType, S); 5114 S += charUnitsToString(ParmOffset); 5115 ParmOffset += getObjCEncodingTypeSize(PType); 5116 } 5117 5118 return S; 5119 } 5120 5121 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, 5122 std::string& S) { 5123 // Encode result type. 5124 getObjCEncodingForType(Decl->getReturnType(), S); 5125 CharUnits ParmOffset; 5126 // Compute size of all parameters. 5127 for (auto PI : Decl->params()) { 5128 QualType PType = PI->getType(); 5129 CharUnits sz = getObjCEncodingTypeSize(PType); 5130 if (sz.isZero()) 5131 continue; 5132 5133 assert (sz.isPositive() && 5134 "getObjCEncodingForFunctionDecl - Incomplete param type"); 5135 ParmOffset += sz; 5136 } 5137 S += charUnitsToString(ParmOffset); 5138 ParmOffset = CharUnits::Zero(); 5139 5140 // Argument types. 5141 for (auto PVDecl : Decl->params()) { 5142 QualType PType = PVDecl->getOriginalType(); 5143 if (const ArrayType *AT = 5144 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 5145 // Use array's original type only if it has known number of 5146 // elements. 5147 if (!isa<ConstantArrayType>(AT)) 5148 PType = PVDecl->getType(); 5149 } else if (PType->isFunctionType()) 5150 PType = PVDecl->getType(); 5151 getObjCEncodingForType(PType, S); 5152 S += charUnitsToString(ParmOffset); 5153 ParmOffset += getObjCEncodingTypeSize(PType); 5154 } 5155 5156 return false; 5157 } 5158 5159 /// getObjCEncodingForMethodParameter - Return the encoded type for a single 5160 /// method parameter or return type. If Extended, include class names and 5161 /// block object types. 5162 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, 5163 QualType T, std::string& S, 5164 bool Extended) const { 5165 // Encode type qualifer, 'in', 'inout', etc. for the parameter. 5166 getObjCEncodingForTypeQualifier(QT, S); 5167 // Encode parameter type. 5168 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 5169 true /*OutermostType*/, 5170 false /*EncodingProperty*/, 5171 false /*StructField*/, 5172 Extended /*EncodeBlockParameters*/, 5173 Extended /*EncodeClassNames*/); 5174 } 5175 5176 /// getObjCEncodingForMethodDecl - Return the encoded type for this method 5177 /// declaration. 5178 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 5179 std::string& S, 5180 bool Extended) const { 5181 // FIXME: This is not very efficient. 5182 // Encode return type. 5183 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), 5184 Decl->getReturnType(), S, Extended); 5185 // Compute size of all parameters. 5186 // Start with computing size of a pointer in number of bytes. 5187 // FIXME: There might(should) be a better way of doing this computation! 5188 SourceLocation Loc; 5189 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 5190 // The first two arguments (self and _cmd) are pointers; account for 5191 // their size. 5192 CharUnits ParmOffset = 2 * PtrSize; 5193 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 5194 E = Decl->sel_param_end(); PI != E; ++PI) { 5195 QualType PType = (*PI)->getType(); 5196 CharUnits sz = getObjCEncodingTypeSize(PType); 5197 if (sz.isZero()) 5198 continue; 5199 5200 assert (sz.isPositive() && 5201 "getObjCEncodingForMethodDecl - Incomplete param type"); 5202 ParmOffset += sz; 5203 } 5204 S += charUnitsToString(ParmOffset); 5205 S += "@0:"; 5206 S += charUnitsToString(PtrSize); 5207 5208 // Argument types. 5209 ParmOffset = 2 * PtrSize; 5210 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 5211 E = Decl->sel_param_end(); PI != E; ++PI) { 5212 const ParmVarDecl *PVDecl = *PI; 5213 QualType PType = PVDecl->getOriginalType(); 5214 if (const ArrayType *AT = 5215 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 5216 // Use array's original type only if it has known number of 5217 // elements. 5218 if (!isa<ConstantArrayType>(AT)) 5219 PType = PVDecl->getType(); 5220 } else if (PType->isFunctionType()) 5221 PType = PVDecl->getType(); 5222 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), 5223 PType, S, Extended); 5224 S += charUnitsToString(ParmOffset); 5225 ParmOffset += getObjCEncodingTypeSize(PType); 5226 } 5227 5228 return false; 5229 } 5230 5231 ObjCPropertyImplDecl * 5232 ASTContext::getObjCPropertyImplDeclForPropertyDecl( 5233 const ObjCPropertyDecl *PD, 5234 const Decl *Container) const { 5235 if (!Container) 5236 return nullptr; 5237 if (const ObjCCategoryImplDecl *CID = 5238 dyn_cast<ObjCCategoryImplDecl>(Container)) { 5239 for (auto *PID : CID->property_impls()) 5240 if (PID->getPropertyDecl() == PD) 5241 return PID; 5242 } else { 5243 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); 5244 for (auto *PID : OID->property_impls()) 5245 if (PID->getPropertyDecl() == PD) 5246 return PID; 5247 } 5248 return nullptr; 5249 } 5250 5251 /// getObjCEncodingForPropertyDecl - Return the encoded type for this 5252 /// property declaration. If non-NULL, Container must be either an 5253 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be 5254 /// NULL when getting encodings for protocol properties. 5255 /// Property attributes are stored as a comma-delimited C string. The simple 5256 /// attributes readonly and bycopy are encoded as single characters. The 5257 /// parametrized attributes, getter=name, setter=name, and ivar=name, are 5258 /// encoded as single characters, followed by an identifier. Property types 5259 /// are also encoded as a parametrized attribute. The characters used to encode 5260 /// these attributes are defined by the following enumeration: 5261 /// @code 5262 /// enum PropertyAttributes { 5263 /// kPropertyReadOnly = 'R', // property is read-only. 5264 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned 5265 /// kPropertyByref = '&', // property is a reference to the value last assigned 5266 /// kPropertyDynamic = 'D', // property is dynamic 5267 /// kPropertyGetter = 'G', // followed by getter selector name 5268 /// kPropertySetter = 'S', // followed by setter selector name 5269 /// kPropertyInstanceVariable = 'V' // followed by instance variable name 5270 /// kPropertyType = 'T' // followed by old-style type encoding. 5271 /// kPropertyWeak = 'W' // 'weak' property 5272 /// kPropertyStrong = 'P' // property GC'able 5273 /// kPropertyNonAtomic = 'N' // property non-atomic 5274 /// }; 5275 /// @endcode 5276 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 5277 const Decl *Container, 5278 std::string& S) const { 5279 // Collect information from the property implementation decl(s). 5280 bool Dynamic = false; 5281 ObjCPropertyImplDecl *SynthesizePID = nullptr; 5282 5283 if (ObjCPropertyImplDecl *PropertyImpDecl = 5284 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { 5285 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) 5286 Dynamic = true; 5287 else 5288 SynthesizePID = PropertyImpDecl; 5289 } 5290 5291 // FIXME: This is not very efficient. 5292 S = "T"; 5293 5294 // Encode result type. 5295 // GCC has some special rules regarding encoding of properties which 5296 // closely resembles encoding of ivars. 5297 getObjCEncodingForPropertyType(PD->getType(), S); 5298 5299 if (PD->isReadOnly()) { 5300 S += ",R"; 5301 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) 5302 S += ",C"; 5303 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) 5304 S += ",&"; 5305 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak) 5306 S += ",W"; 5307 } else { 5308 switch (PD->getSetterKind()) { 5309 case ObjCPropertyDecl::Assign: break; 5310 case ObjCPropertyDecl::Copy: S += ",C"; break; 5311 case ObjCPropertyDecl::Retain: S += ",&"; break; 5312 case ObjCPropertyDecl::Weak: S += ",W"; break; 5313 } 5314 } 5315 5316 // It really isn't clear at all what this means, since properties 5317 // are "dynamic by default". 5318 if (Dynamic) 5319 S += ",D"; 5320 5321 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) 5322 S += ",N"; 5323 5324 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { 5325 S += ",G"; 5326 S += PD->getGetterName().getAsString(); 5327 } 5328 5329 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { 5330 S += ",S"; 5331 S += PD->getSetterName().getAsString(); 5332 } 5333 5334 if (SynthesizePID) { 5335 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); 5336 S += ",V"; 5337 S += OID->getNameAsString(); 5338 } 5339 5340 // FIXME: OBJCGC: weak & strong 5341 } 5342 5343 /// getLegacyIntegralTypeEncoding - 5344 /// Another legacy compatibility encoding: 32-bit longs are encoded as 5345 /// 'l' or 'L' , but not always. For typedefs, we need to use 5346 /// 'i' or 'I' instead if encoding a struct field, or a pointer! 5347 /// 5348 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { 5349 if (isa<TypedefType>(PointeeTy.getTypePtr())) { 5350 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) { 5351 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) 5352 PointeeTy = UnsignedIntTy; 5353 else 5354 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) 5355 PointeeTy = IntTy; 5356 } 5357 } 5358 } 5359 5360 void ASTContext::getObjCEncodingForType(QualType T, std::string& S, 5361 const FieldDecl *Field, 5362 QualType *NotEncodedT) const { 5363 // We follow the behavior of gcc, expanding structures which are 5364 // directly pointed to, and expanding embedded structures. Note that 5365 // these rules are sufficient to prevent recursive encoding of the 5366 // same type. 5367 getObjCEncodingForTypeImpl(T, S, true, true, Field, 5368 true /* outermost type */, false, false, 5369 false, false, false, NotEncodedT); 5370 } 5371 5372 void ASTContext::getObjCEncodingForPropertyType(QualType T, 5373 std::string& S) const { 5374 // Encode result type. 5375 // GCC has some special rules regarding encoding of properties which 5376 // closely resembles encoding of ivars. 5377 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 5378 true /* outermost type */, 5379 true /* encoding property */); 5380 } 5381 5382 static char getObjCEncodingForPrimitiveKind(const ASTContext *C, 5383 BuiltinType::Kind kind) { 5384 switch (kind) { 5385 case BuiltinType::Void: return 'v'; 5386 case BuiltinType::Bool: return 'B'; 5387 case BuiltinType::Char_U: 5388 case BuiltinType::UChar: return 'C'; 5389 case BuiltinType::Char16: 5390 case BuiltinType::UShort: return 'S'; 5391 case BuiltinType::Char32: 5392 case BuiltinType::UInt: return 'I'; 5393 case BuiltinType::ULong: 5394 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; 5395 case BuiltinType::UInt128: return 'T'; 5396 case BuiltinType::ULongLong: return 'Q'; 5397 case BuiltinType::Char_S: 5398 case BuiltinType::SChar: return 'c'; 5399 case BuiltinType::Short: return 's'; 5400 case BuiltinType::WChar_S: 5401 case BuiltinType::WChar_U: 5402 case BuiltinType::Int: return 'i'; 5403 case BuiltinType::Long: 5404 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; 5405 case BuiltinType::LongLong: return 'q'; 5406 case BuiltinType::Int128: return 't'; 5407 case BuiltinType::Float: return 'f'; 5408 case BuiltinType::Double: return 'd'; 5409 case BuiltinType::LongDouble: return 'D'; 5410 case BuiltinType::NullPtr: return '*'; // like char* 5411 5412 case BuiltinType::Half: 5413 // FIXME: potentially need @encodes for these! 5414 return ' '; 5415 5416 case BuiltinType::ObjCId: 5417 case BuiltinType::ObjCClass: 5418 case BuiltinType::ObjCSel: 5419 llvm_unreachable("@encoding ObjC primitive type"); 5420 5421 // OpenCL and placeholder types don't need @encodings. 5422 case BuiltinType::OCLImage1d: 5423 case BuiltinType::OCLImage1dArray: 5424 case BuiltinType::OCLImage1dBuffer: 5425 case BuiltinType::OCLImage2d: 5426 case BuiltinType::OCLImage2dArray: 5427 case BuiltinType::OCLImage2dDepth: 5428 case BuiltinType::OCLImage2dArrayDepth: 5429 case BuiltinType::OCLImage2dMSAA: 5430 case BuiltinType::OCLImage2dArrayMSAA: 5431 case BuiltinType::OCLImage2dMSAADepth: 5432 case BuiltinType::OCLImage2dArrayMSAADepth: 5433 case BuiltinType::OCLImage3d: 5434 case BuiltinType::OCLEvent: 5435 case BuiltinType::OCLClkEvent: 5436 case BuiltinType::OCLQueue: 5437 case BuiltinType::OCLNDRange: 5438 case BuiltinType::OCLReserveID: 5439 case BuiltinType::OCLSampler: 5440 case BuiltinType::Dependent: 5441 #define BUILTIN_TYPE(KIND, ID) 5442 #define PLACEHOLDER_TYPE(KIND, ID) \ 5443 case BuiltinType::KIND: 5444 #include "clang/AST/BuiltinTypes.def" 5445 llvm_unreachable("invalid builtin type for @encode"); 5446 } 5447 llvm_unreachable("invalid BuiltinType::Kind value"); 5448 } 5449 5450 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { 5451 EnumDecl *Enum = ET->getDecl(); 5452 5453 // The encoding of an non-fixed enum type is always 'i', regardless of size. 5454 if (!Enum->isFixed()) 5455 return 'i'; 5456 5457 // The encoding of a fixed enum type matches its fixed underlying type. 5458 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>(); 5459 return getObjCEncodingForPrimitiveKind(C, BT->getKind()); 5460 } 5461 5462 static void EncodeBitField(const ASTContext *Ctx, std::string& S, 5463 QualType T, const FieldDecl *FD) { 5464 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); 5465 S += 'b'; 5466 // The NeXT runtime encodes bit fields as b followed by the number of bits. 5467 // The GNU runtime requires more information; bitfields are encoded as b, 5468 // then the offset (in bits) of the first element, then the type of the 5469 // bitfield, then the size in bits. For example, in this structure: 5470 // 5471 // struct 5472 // { 5473 // int integer; 5474 // int flags:2; 5475 // }; 5476 // On a 32-bit system, the encoding for flags would be b2 for the NeXT 5477 // runtime, but b32i2 for the GNU runtime. The reason for this extra 5478 // information is not especially sensible, but we're stuck with it for 5479 // compatibility with GCC, although providing it breaks anything that 5480 // actually uses runtime introspection and wants to work on both runtimes... 5481 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { 5482 const RecordDecl *RD = FD->getParent(); 5483 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); 5484 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex())); 5485 if (const EnumType *ET = T->getAs<EnumType>()) 5486 S += ObjCEncodingForEnumType(Ctx, ET); 5487 else { 5488 const BuiltinType *BT = T->castAs<BuiltinType>(); 5489 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind()); 5490 } 5491 } 5492 S += llvm::utostr(FD->getBitWidthValue(*Ctx)); 5493 } 5494 5495 // FIXME: Use SmallString for accumulating string. 5496 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, 5497 bool ExpandPointedToStructures, 5498 bool ExpandStructures, 5499 const FieldDecl *FD, 5500 bool OutermostType, 5501 bool EncodingProperty, 5502 bool StructField, 5503 bool EncodeBlockParameters, 5504 bool EncodeClassNames, 5505 bool EncodePointerToObjCTypedef, 5506 QualType *NotEncodedT) const { 5507 CanQualType CT = getCanonicalType(T); 5508 switch (CT->getTypeClass()) { 5509 case Type::Builtin: 5510 case Type::Enum: 5511 if (FD && FD->isBitField()) 5512 return EncodeBitField(this, S, T, FD); 5513 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT)) 5514 S += getObjCEncodingForPrimitiveKind(this, BT->getKind()); 5515 else 5516 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); 5517 return; 5518 5519 case Type::Complex: { 5520 const ComplexType *CT = T->castAs<ComplexType>(); 5521 S += 'j'; 5522 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr); 5523 return; 5524 } 5525 5526 case Type::Atomic: { 5527 const AtomicType *AT = T->castAs<AtomicType>(); 5528 S += 'A'; 5529 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr); 5530 return; 5531 } 5532 5533 // encoding for pointer or reference types. 5534 case Type::Pointer: 5535 case Type::LValueReference: 5536 case Type::RValueReference: { 5537 QualType PointeeTy; 5538 if (isa<PointerType>(CT)) { 5539 const PointerType *PT = T->castAs<PointerType>(); 5540 if (PT->isObjCSelType()) { 5541 S += ':'; 5542 return; 5543 } 5544 PointeeTy = PT->getPointeeType(); 5545 } else { 5546 PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); 5547 } 5548 5549 bool isReadOnly = false; 5550 // For historical/compatibility reasons, the read-only qualifier of the 5551 // pointee gets emitted _before_ the '^'. The read-only qualifier of 5552 // the pointer itself gets ignored, _unless_ we are looking at a typedef! 5553 // Also, do not emit the 'r' for anything but the outermost type! 5554 if (isa<TypedefType>(T.getTypePtr())) { 5555 if (OutermostType && T.isConstQualified()) { 5556 isReadOnly = true; 5557 S += 'r'; 5558 } 5559 } else if (OutermostType) { 5560 QualType P = PointeeTy; 5561 while (P->getAs<PointerType>()) 5562 P = P->getAs<PointerType>()->getPointeeType(); 5563 if (P.isConstQualified()) { 5564 isReadOnly = true; 5565 S += 'r'; 5566 } 5567 } 5568 if (isReadOnly) { 5569 // Another legacy compatibility encoding. Some ObjC qualifier and type 5570 // combinations need to be rearranged. 5571 // Rewrite "in const" from "nr" to "rn" 5572 if (StringRef(S).endswith("nr")) 5573 S.replace(S.end()-2, S.end(), "rn"); 5574 } 5575 5576 if (PointeeTy->isCharType()) { 5577 // char pointer types should be encoded as '*' unless it is a 5578 // type that has been typedef'd to 'BOOL'. 5579 if (!isTypeTypedefedAsBOOL(PointeeTy)) { 5580 S += '*'; 5581 return; 5582 } 5583 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) { 5584 // GCC binary compat: Need to convert "struct objc_class *" to "#". 5585 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { 5586 S += '#'; 5587 return; 5588 } 5589 // GCC binary compat: Need to convert "struct objc_object *" to "@". 5590 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { 5591 S += '@'; 5592 return; 5593 } 5594 // fall through... 5595 } 5596 S += '^'; 5597 getLegacyIntegralTypeEncoding(PointeeTy); 5598 5599 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, 5600 nullptr, false, false, false, false, false, false, 5601 NotEncodedT); 5602 return; 5603 } 5604 5605 case Type::ConstantArray: 5606 case Type::IncompleteArray: 5607 case Type::VariableArray: { 5608 const ArrayType *AT = cast<ArrayType>(CT); 5609 5610 if (isa<IncompleteArrayType>(AT) && !StructField) { 5611 // Incomplete arrays are encoded as a pointer to the array element. 5612 S += '^'; 5613 5614 getObjCEncodingForTypeImpl(AT->getElementType(), S, 5615 false, ExpandStructures, FD); 5616 } else { 5617 S += '['; 5618 5619 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 5620 S += llvm::utostr(CAT->getSize().getZExtValue()); 5621 else { 5622 //Variable length arrays are encoded as a regular array with 0 elements. 5623 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && 5624 "Unknown array type!"); 5625 S += '0'; 5626 } 5627 5628 getObjCEncodingForTypeImpl(AT->getElementType(), S, 5629 false, ExpandStructures, FD, 5630 false, false, false, false, false, false, 5631 NotEncodedT); 5632 S += ']'; 5633 } 5634 return; 5635 } 5636 5637 case Type::FunctionNoProto: 5638 case Type::FunctionProto: 5639 S += '?'; 5640 return; 5641 5642 case Type::Record: { 5643 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); 5644 S += RDecl->isUnion() ? '(' : '{'; 5645 // Anonymous structures print as '?' 5646 if (const IdentifierInfo *II = RDecl->getIdentifier()) { 5647 S += II->getName(); 5648 if (ClassTemplateSpecializationDecl *Spec 5649 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { 5650 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 5651 llvm::raw_string_ostream OS(S); 5652 TemplateSpecializationType::PrintTemplateArgumentList(OS, 5653 TemplateArgs.data(), 5654 TemplateArgs.size(), 5655 (*this).getPrintingPolicy()); 5656 } 5657 } else { 5658 S += '?'; 5659 } 5660 if (ExpandStructures) { 5661 S += '='; 5662 if (!RDecl->isUnion()) { 5663 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); 5664 } else { 5665 for (const auto *Field : RDecl->fields()) { 5666 if (FD) { 5667 S += '"'; 5668 S += Field->getNameAsString(); 5669 S += '"'; 5670 } 5671 5672 // Special case bit-fields. 5673 if (Field->isBitField()) { 5674 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, 5675 Field); 5676 } else { 5677 QualType qt = Field->getType(); 5678 getLegacyIntegralTypeEncoding(qt); 5679 getObjCEncodingForTypeImpl(qt, S, false, true, 5680 FD, /*OutermostType*/false, 5681 /*EncodingProperty*/false, 5682 /*StructField*/true, 5683 false, false, false, NotEncodedT); 5684 } 5685 } 5686 } 5687 } 5688 S += RDecl->isUnion() ? ')' : '}'; 5689 return; 5690 } 5691 5692 case Type::BlockPointer: { 5693 const BlockPointerType *BT = T->castAs<BlockPointerType>(); 5694 S += "@?"; // Unlike a pointer-to-function, which is "^?". 5695 if (EncodeBlockParameters) { 5696 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>(); 5697 5698 S += '<'; 5699 // Block return type 5700 getObjCEncodingForTypeImpl( 5701 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures, 5702 FD, false /* OutermostType */, EncodingProperty, 5703 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false, 5704 NotEncodedT); 5705 // Block self 5706 S += "@?"; 5707 // Block parameters 5708 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 5709 for (const auto &I : FPT->param_types()) 5710 getObjCEncodingForTypeImpl( 5711 I, S, ExpandPointedToStructures, ExpandStructures, FD, 5712 false /* OutermostType */, EncodingProperty, 5713 false /* StructField */, EncodeBlockParameters, EncodeClassNames, 5714 false, NotEncodedT); 5715 } 5716 S += '>'; 5717 } 5718 return; 5719 } 5720 5721 case Type::ObjCObject: { 5722 // hack to match legacy encoding of *id and *Class 5723 QualType Ty = getObjCObjectPointerType(CT); 5724 if (Ty->isObjCIdType()) { 5725 S += "{objc_object=}"; 5726 return; 5727 } 5728 else if (Ty->isObjCClassType()) { 5729 S += "{objc_class=}"; 5730 return; 5731 } 5732 } 5733 5734 case Type::ObjCInterface: { 5735 // Ignore protocol qualifiers when mangling at this level. 5736 // @encode(class_name) 5737 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); 5738 S += '{'; 5739 S += OI->getObjCRuntimeNameAsString(); 5740 S += '='; 5741 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5742 DeepCollectObjCIvars(OI, true, Ivars); 5743 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 5744 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]); 5745 if (Field->isBitField()) 5746 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); 5747 else 5748 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD, 5749 false, false, false, false, false, 5750 EncodePointerToObjCTypedef, 5751 NotEncodedT); 5752 } 5753 S += '}'; 5754 return; 5755 } 5756 5757 case Type::ObjCObjectPointer: { 5758 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>(); 5759 if (OPT->isObjCIdType()) { 5760 S += '@'; 5761 return; 5762 } 5763 5764 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { 5765 // FIXME: Consider if we need to output qualifiers for 'Class<p>'. 5766 // Since this is a binary compatibility issue, need to consult with runtime 5767 // folks. Fortunately, this is a *very* obsure construct. 5768 S += '#'; 5769 return; 5770 } 5771 5772 if (OPT->isObjCQualifiedIdType()) { 5773 getObjCEncodingForTypeImpl(getObjCIdType(), S, 5774 ExpandPointedToStructures, 5775 ExpandStructures, FD); 5776 if (FD || EncodingProperty || EncodeClassNames) { 5777 // Note that we do extended encoding of protocol qualifer list 5778 // Only when doing ivar or property encoding. 5779 S += '"'; 5780 for (const auto *I : OPT->quals()) { 5781 S += '<'; 5782 S += I->getObjCRuntimeNameAsString(); 5783 S += '>'; 5784 } 5785 S += '"'; 5786 } 5787 return; 5788 } 5789 5790 QualType PointeeTy = OPT->getPointeeType(); 5791 if (!EncodingProperty && 5792 isa<TypedefType>(PointeeTy.getTypePtr()) && 5793 !EncodePointerToObjCTypedef) { 5794 // Another historical/compatibility reason. 5795 // We encode the underlying type which comes out as 5796 // {...}; 5797 S += '^'; 5798 if (FD && OPT->getInterfaceDecl()) { 5799 // Prevent recursive encoding of fields in some rare cases. 5800 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl(); 5801 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5802 DeepCollectObjCIvars(OI, true, Ivars); 5803 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 5804 if (cast<FieldDecl>(Ivars[i]) == FD) { 5805 S += '{'; 5806 S += OI->getObjCRuntimeNameAsString(); 5807 S += '}'; 5808 return; 5809 } 5810 } 5811 } 5812 getObjCEncodingForTypeImpl(PointeeTy, S, 5813 false, ExpandPointedToStructures, 5814 nullptr, 5815 false, false, false, false, false, 5816 /*EncodePointerToObjCTypedef*/true); 5817 return; 5818 } 5819 5820 S += '@'; 5821 if (OPT->getInterfaceDecl() && 5822 (FD || EncodingProperty || EncodeClassNames)) { 5823 S += '"'; 5824 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); 5825 for (const auto *I : OPT->quals()) { 5826 S += '<'; 5827 S += I->getObjCRuntimeNameAsString(); 5828 S += '>'; 5829 } 5830 S += '"'; 5831 } 5832 return; 5833 } 5834 5835 // gcc just blithely ignores member pointers. 5836 // FIXME: we shoul do better than that. 'M' is available. 5837 case Type::MemberPointer: 5838 // This matches gcc's encoding, even though technically it is insufficient. 5839 //FIXME. We should do a better job than gcc. 5840 case Type::Vector: 5841 case Type::ExtVector: 5842 // Until we have a coherent encoding of these three types, issue warning. 5843 { if (NotEncodedT) 5844 *NotEncodedT = T; 5845 return; 5846 } 5847 5848 // We could see an undeduced auto type here during error recovery. 5849 // Just ignore it. 5850 case Type::Auto: 5851 return; 5852 5853 #define ABSTRACT_TYPE(KIND, BASE) 5854 #define TYPE(KIND, BASE) 5855 #define DEPENDENT_TYPE(KIND, BASE) \ 5856 case Type::KIND: 5857 #define NON_CANONICAL_TYPE(KIND, BASE) \ 5858 case Type::KIND: 5859 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ 5860 case Type::KIND: 5861 #include "clang/AST/TypeNodes.def" 5862 llvm_unreachable("@encode for dependent type!"); 5863 } 5864 llvm_unreachable("bad type kind!"); 5865 } 5866 5867 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, 5868 std::string &S, 5869 const FieldDecl *FD, 5870 bool includeVBases, 5871 QualType *NotEncodedT) const { 5872 assert(RDecl && "Expected non-null RecordDecl"); 5873 assert(!RDecl->isUnion() && "Should not be called for unions"); 5874 if (!RDecl->getDefinition()) 5875 return; 5876 5877 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); 5878 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; 5879 const ASTRecordLayout &layout = getASTRecordLayout(RDecl); 5880 5881 if (CXXRec) { 5882 for (const auto &BI : CXXRec->bases()) { 5883 if (!BI.isVirtual()) { 5884 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 5885 if (base->isEmpty()) 5886 continue; 5887 uint64_t offs = toBits(layout.getBaseClassOffset(base)); 5888 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5889 std::make_pair(offs, base)); 5890 } 5891 } 5892 } 5893 5894 unsigned i = 0; 5895 for (auto *Field : RDecl->fields()) { 5896 uint64_t offs = layout.getFieldOffset(i); 5897 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5898 std::make_pair(offs, Field)); 5899 ++i; 5900 } 5901 5902 if (CXXRec && includeVBases) { 5903 for (const auto &BI : CXXRec->vbases()) { 5904 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 5905 if (base->isEmpty()) 5906 continue; 5907 uint64_t offs = toBits(layout.getVBaseClassOffset(base)); 5908 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && 5909 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) 5910 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), 5911 std::make_pair(offs, base)); 5912 } 5913 } 5914 5915 CharUnits size; 5916 if (CXXRec) { 5917 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); 5918 } else { 5919 size = layout.getSize(); 5920 } 5921 5922 #ifndef NDEBUG 5923 uint64_t CurOffs = 0; 5924 #endif 5925 std::multimap<uint64_t, NamedDecl *>::iterator 5926 CurLayObj = FieldOrBaseOffsets.begin(); 5927 5928 if (CXXRec && CXXRec->isDynamicClass() && 5929 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { 5930 if (FD) { 5931 S += "\"_vptr$"; 5932 std::string recname = CXXRec->getNameAsString(); 5933 if (recname.empty()) recname = "?"; 5934 S += recname; 5935 S += '"'; 5936 } 5937 S += "^^?"; 5938 #ifndef NDEBUG 5939 CurOffs += getTypeSize(VoidPtrTy); 5940 #endif 5941 } 5942 5943 if (!RDecl->hasFlexibleArrayMember()) { 5944 // Mark the end of the structure. 5945 uint64_t offs = toBits(size); 5946 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5947 std::make_pair(offs, nullptr)); 5948 } 5949 5950 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { 5951 #ifndef NDEBUG 5952 assert(CurOffs <= CurLayObj->first); 5953 if (CurOffs < CurLayObj->first) { 5954 uint64_t padding = CurLayObj->first - CurOffs; 5955 // FIXME: There doesn't seem to be a way to indicate in the encoding that 5956 // packing/alignment of members is different that normal, in which case 5957 // the encoding will be out-of-sync with the real layout. 5958 // If the runtime switches to just consider the size of types without 5959 // taking into account alignment, we could make padding explicit in the 5960 // encoding (e.g. using arrays of chars). The encoding strings would be 5961 // longer then though. 5962 CurOffs += padding; 5963 } 5964 #endif 5965 5966 NamedDecl *dcl = CurLayObj->second; 5967 if (!dcl) 5968 break; // reached end of structure. 5969 5970 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) { 5971 // We expand the bases without their virtual bases since those are going 5972 // in the initial structure. Note that this differs from gcc which 5973 // expands virtual bases each time one is encountered in the hierarchy, 5974 // making the encoding type bigger than it really is. 5975 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, 5976 NotEncodedT); 5977 assert(!base->isEmpty()); 5978 #ifndef NDEBUG 5979 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); 5980 #endif 5981 } else { 5982 FieldDecl *field = cast<FieldDecl>(dcl); 5983 if (FD) { 5984 S += '"'; 5985 S += field->getNameAsString(); 5986 S += '"'; 5987 } 5988 5989 if (field->isBitField()) { 5990 EncodeBitField(this, S, field->getType(), field); 5991 #ifndef NDEBUG 5992 CurOffs += field->getBitWidthValue(*this); 5993 #endif 5994 } else { 5995 QualType qt = field->getType(); 5996 getLegacyIntegralTypeEncoding(qt); 5997 getObjCEncodingForTypeImpl(qt, S, false, true, FD, 5998 /*OutermostType*/false, 5999 /*EncodingProperty*/false, 6000 /*StructField*/true, 6001 false, false, false, NotEncodedT); 6002 #ifndef NDEBUG 6003 CurOffs += getTypeSize(field->getType()); 6004 #endif 6005 } 6006 } 6007 } 6008 } 6009 6010 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 6011 std::string& S) const { 6012 if (QT & Decl::OBJC_TQ_In) 6013 S += 'n'; 6014 if (QT & Decl::OBJC_TQ_Inout) 6015 S += 'N'; 6016 if (QT & Decl::OBJC_TQ_Out) 6017 S += 'o'; 6018 if (QT & Decl::OBJC_TQ_Bycopy) 6019 S += 'O'; 6020 if (QT & Decl::OBJC_TQ_Byref) 6021 S += 'R'; 6022 if (QT & Decl::OBJC_TQ_Oneway) 6023 S += 'V'; 6024 } 6025 6026 TypedefDecl *ASTContext::getObjCIdDecl() const { 6027 if (!ObjCIdDecl) { 6028 QualType T = getObjCObjectType(ObjCBuiltinIdTy, { }, { }); 6029 T = getObjCObjectPointerType(T); 6030 ObjCIdDecl = buildImplicitTypedef(T, "id"); 6031 } 6032 return ObjCIdDecl; 6033 } 6034 6035 TypedefDecl *ASTContext::getObjCSelDecl() const { 6036 if (!ObjCSelDecl) { 6037 QualType T = getPointerType(ObjCBuiltinSelTy); 6038 ObjCSelDecl = buildImplicitTypedef(T, "SEL"); 6039 } 6040 return ObjCSelDecl; 6041 } 6042 6043 TypedefDecl *ASTContext::getObjCClassDecl() const { 6044 if (!ObjCClassDecl) { 6045 QualType T = getObjCObjectType(ObjCBuiltinClassTy, { }, { }); 6046 T = getObjCObjectPointerType(T); 6047 ObjCClassDecl = buildImplicitTypedef(T, "Class"); 6048 } 6049 return ObjCClassDecl; 6050 } 6051 6052 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { 6053 if (!ObjCProtocolClassDecl) { 6054 ObjCProtocolClassDecl 6055 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), 6056 SourceLocation(), 6057 &Idents.get("Protocol"), 6058 /*typeParamList=*/nullptr, 6059 /*PrevDecl=*/nullptr, 6060 SourceLocation(), true); 6061 } 6062 6063 return ObjCProtocolClassDecl; 6064 } 6065 6066 //===----------------------------------------------------------------------===// 6067 // __builtin_va_list Construction Functions 6068 //===----------------------------------------------------------------------===// 6069 6070 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, 6071 StringRef Name) { 6072 // typedef char* __builtin[_ms]_va_list; 6073 QualType T = Context->getPointerType(Context->CharTy); 6074 return Context->buildImplicitTypedef(T, Name); 6075 } 6076 6077 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { 6078 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); 6079 } 6080 6081 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { 6082 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); 6083 } 6084 6085 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { 6086 // typedef void* __builtin_va_list; 6087 QualType T = Context->getPointerType(Context->VoidTy); 6088 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 6089 } 6090 6091 static TypedefDecl * 6092 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { 6093 // struct __va_list 6094 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); 6095 if (Context->getLangOpts().CPlusPlus) { 6096 // namespace std { struct __va_list { 6097 NamespaceDecl *NS; 6098 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 6099 Context->getTranslationUnitDecl(), 6100 /*Inline*/ false, SourceLocation(), 6101 SourceLocation(), &Context->Idents.get("std"), 6102 /*PrevDecl*/ nullptr); 6103 NS->setImplicit(); 6104 VaListTagDecl->setDeclContext(NS); 6105 } 6106 6107 VaListTagDecl->startDefinition(); 6108 6109 const size_t NumFields = 5; 6110 QualType FieldTypes[NumFields]; 6111 const char *FieldNames[NumFields]; 6112 6113 // void *__stack; 6114 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 6115 FieldNames[0] = "__stack"; 6116 6117 // void *__gr_top; 6118 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 6119 FieldNames[1] = "__gr_top"; 6120 6121 // void *__vr_top; 6122 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6123 FieldNames[2] = "__vr_top"; 6124 6125 // int __gr_offs; 6126 FieldTypes[3] = Context->IntTy; 6127 FieldNames[3] = "__gr_offs"; 6128 6129 // int __vr_offs; 6130 FieldTypes[4] = Context->IntTy; 6131 FieldNames[4] = "__vr_offs"; 6132 6133 // Create fields 6134 for (unsigned i = 0; i < NumFields; ++i) { 6135 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6136 VaListTagDecl, 6137 SourceLocation(), 6138 SourceLocation(), 6139 &Context->Idents.get(FieldNames[i]), 6140 FieldTypes[i], /*TInfo=*/nullptr, 6141 /*BitWidth=*/nullptr, 6142 /*Mutable=*/false, 6143 ICIS_NoInit); 6144 Field->setAccess(AS_public); 6145 VaListTagDecl->addDecl(Field); 6146 } 6147 VaListTagDecl->completeDefinition(); 6148 Context->VaListTagDecl = VaListTagDecl; 6149 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6150 6151 // } __builtin_va_list; 6152 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); 6153 } 6154 6155 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { 6156 // typedef struct __va_list_tag { 6157 RecordDecl *VaListTagDecl; 6158 6159 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6160 VaListTagDecl->startDefinition(); 6161 6162 const size_t NumFields = 5; 6163 QualType FieldTypes[NumFields]; 6164 const char *FieldNames[NumFields]; 6165 6166 // unsigned char gpr; 6167 FieldTypes[0] = Context->UnsignedCharTy; 6168 FieldNames[0] = "gpr"; 6169 6170 // unsigned char fpr; 6171 FieldTypes[1] = Context->UnsignedCharTy; 6172 FieldNames[1] = "fpr"; 6173 6174 // unsigned short reserved; 6175 FieldTypes[2] = Context->UnsignedShortTy; 6176 FieldNames[2] = "reserved"; 6177 6178 // void* overflow_arg_area; 6179 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6180 FieldNames[3] = "overflow_arg_area"; 6181 6182 // void* reg_save_area; 6183 FieldTypes[4] = Context->getPointerType(Context->VoidTy); 6184 FieldNames[4] = "reg_save_area"; 6185 6186 // Create fields 6187 for (unsigned i = 0; i < NumFields; ++i) { 6188 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, 6189 SourceLocation(), 6190 SourceLocation(), 6191 &Context->Idents.get(FieldNames[i]), 6192 FieldTypes[i], /*TInfo=*/nullptr, 6193 /*BitWidth=*/nullptr, 6194 /*Mutable=*/false, 6195 ICIS_NoInit); 6196 Field->setAccess(AS_public); 6197 VaListTagDecl->addDecl(Field); 6198 } 6199 VaListTagDecl->completeDefinition(); 6200 Context->VaListTagDecl = VaListTagDecl; 6201 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6202 6203 // } __va_list_tag; 6204 TypedefDecl *VaListTagTypedefDecl = 6205 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 6206 6207 QualType VaListTagTypedefType = 6208 Context->getTypedefType(VaListTagTypedefDecl); 6209 6210 // typedef __va_list_tag __builtin_va_list[1]; 6211 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6212 QualType VaListTagArrayType 6213 = Context->getConstantArrayType(VaListTagTypedefType, 6214 Size, ArrayType::Normal, 0); 6215 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6216 } 6217 6218 static TypedefDecl * 6219 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { 6220 // struct __va_list_tag { 6221 RecordDecl *VaListTagDecl; 6222 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6223 VaListTagDecl->startDefinition(); 6224 6225 const size_t NumFields = 4; 6226 QualType FieldTypes[NumFields]; 6227 const char *FieldNames[NumFields]; 6228 6229 // unsigned gp_offset; 6230 FieldTypes[0] = Context->UnsignedIntTy; 6231 FieldNames[0] = "gp_offset"; 6232 6233 // unsigned fp_offset; 6234 FieldTypes[1] = Context->UnsignedIntTy; 6235 FieldNames[1] = "fp_offset"; 6236 6237 // void* overflow_arg_area; 6238 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6239 FieldNames[2] = "overflow_arg_area"; 6240 6241 // void* reg_save_area; 6242 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6243 FieldNames[3] = "reg_save_area"; 6244 6245 // Create fields 6246 for (unsigned i = 0; i < NumFields; ++i) { 6247 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6248 VaListTagDecl, 6249 SourceLocation(), 6250 SourceLocation(), 6251 &Context->Idents.get(FieldNames[i]), 6252 FieldTypes[i], /*TInfo=*/nullptr, 6253 /*BitWidth=*/nullptr, 6254 /*Mutable=*/false, 6255 ICIS_NoInit); 6256 Field->setAccess(AS_public); 6257 VaListTagDecl->addDecl(Field); 6258 } 6259 VaListTagDecl->completeDefinition(); 6260 Context->VaListTagDecl = VaListTagDecl; 6261 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6262 6263 // }; 6264 6265 // typedef struct __va_list_tag __builtin_va_list[1]; 6266 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6267 QualType VaListTagArrayType = 6268 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0); 6269 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6270 } 6271 6272 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { 6273 // typedef int __builtin_va_list[4]; 6274 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); 6275 QualType IntArrayType 6276 = Context->getConstantArrayType(Context->IntTy, 6277 Size, ArrayType::Normal, 0); 6278 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); 6279 } 6280 6281 static TypedefDecl * 6282 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { 6283 // struct __va_list 6284 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); 6285 if (Context->getLangOpts().CPlusPlus) { 6286 // namespace std { struct __va_list { 6287 NamespaceDecl *NS; 6288 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 6289 Context->getTranslationUnitDecl(), 6290 /*Inline*/false, SourceLocation(), 6291 SourceLocation(), &Context->Idents.get("std"), 6292 /*PrevDecl*/ nullptr); 6293 NS->setImplicit(); 6294 VaListDecl->setDeclContext(NS); 6295 } 6296 6297 VaListDecl->startDefinition(); 6298 6299 // void * __ap; 6300 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6301 VaListDecl, 6302 SourceLocation(), 6303 SourceLocation(), 6304 &Context->Idents.get("__ap"), 6305 Context->getPointerType(Context->VoidTy), 6306 /*TInfo=*/nullptr, 6307 /*BitWidth=*/nullptr, 6308 /*Mutable=*/false, 6309 ICIS_NoInit); 6310 Field->setAccess(AS_public); 6311 VaListDecl->addDecl(Field); 6312 6313 // }; 6314 VaListDecl->completeDefinition(); 6315 6316 // typedef struct __va_list __builtin_va_list; 6317 QualType T = Context->getRecordType(VaListDecl); 6318 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 6319 } 6320 6321 static TypedefDecl * 6322 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { 6323 // struct __va_list_tag { 6324 RecordDecl *VaListTagDecl; 6325 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6326 VaListTagDecl->startDefinition(); 6327 6328 const size_t NumFields = 4; 6329 QualType FieldTypes[NumFields]; 6330 const char *FieldNames[NumFields]; 6331 6332 // long __gpr; 6333 FieldTypes[0] = Context->LongTy; 6334 FieldNames[0] = "__gpr"; 6335 6336 // long __fpr; 6337 FieldTypes[1] = Context->LongTy; 6338 FieldNames[1] = "__fpr"; 6339 6340 // void *__overflow_arg_area; 6341 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6342 FieldNames[2] = "__overflow_arg_area"; 6343 6344 // void *__reg_save_area; 6345 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6346 FieldNames[3] = "__reg_save_area"; 6347 6348 // Create fields 6349 for (unsigned i = 0; i < NumFields; ++i) { 6350 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6351 VaListTagDecl, 6352 SourceLocation(), 6353 SourceLocation(), 6354 &Context->Idents.get(FieldNames[i]), 6355 FieldTypes[i], /*TInfo=*/nullptr, 6356 /*BitWidth=*/nullptr, 6357 /*Mutable=*/false, 6358 ICIS_NoInit); 6359 Field->setAccess(AS_public); 6360 VaListTagDecl->addDecl(Field); 6361 } 6362 VaListTagDecl->completeDefinition(); 6363 Context->VaListTagDecl = VaListTagDecl; 6364 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6365 6366 // }; 6367 6368 // typedef __va_list_tag __builtin_va_list[1]; 6369 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6370 QualType VaListTagArrayType = 6371 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0); 6372 6373 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6374 } 6375 6376 static TypedefDecl *CreateVaListDecl(const ASTContext *Context, 6377 TargetInfo::BuiltinVaListKind Kind) { 6378 switch (Kind) { 6379 case TargetInfo::CharPtrBuiltinVaList: 6380 return CreateCharPtrBuiltinVaListDecl(Context); 6381 case TargetInfo::VoidPtrBuiltinVaList: 6382 return CreateVoidPtrBuiltinVaListDecl(Context); 6383 case TargetInfo::AArch64ABIBuiltinVaList: 6384 return CreateAArch64ABIBuiltinVaListDecl(Context); 6385 case TargetInfo::PowerABIBuiltinVaList: 6386 return CreatePowerABIBuiltinVaListDecl(Context); 6387 case TargetInfo::X86_64ABIBuiltinVaList: 6388 return CreateX86_64ABIBuiltinVaListDecl(Context); 6389 case TargetInfo::PNaClABIBuiltinVaList: 6390 return CreatePNaClABIBuiltinVaListDecl(Context); 6391 case TargetInfo::AAPCSABIBuiltinVaList: 6392 return CreateAAPCSABIBuiltinVaListDecl(Context); 6393 case TargetInfo::SystemZBuiltinVaList: 6394 return CreateSystemZBuiltinVaListDecl(Context); 6395 } 6396 6397 llvm_unreachable("Unhandled __builtin_va_list type kind"); 6398 } 6399 6400 TypedefDecl *ASTContext::getBuiltinVaListDecl() const { 6401 if (!BuiltinVaListDecl) { 6402 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); 6403 assert(BuiltinVaListDecl->isImplicit()); 6404 } 6405 6406 return BuiltinVaListDecl; 6407 } 6408 6409 Decl *ASTContext::getVaListTagDecl() const { 6410 // Force the creation of VaListTagDecl by building the __builtin_va_list 6411 // declaration. 6412 if (!VaListTagDecl) 6413 (void)getBuiltinVaListDecl(); 6414 6415 return VaListTagDecl; 6416 } 6417 6418 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { 6419 if (!BuiltinMSVaListDecl) 6420 BuiltinMSVaListDecl = CreateMSVaListDecl(this); 6421 6422 return BuiltinMSVaListDecl; 6423 } 6424 6425 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { 6426 assert(ObjCConstantStringType.isNull() && 6427 "'NSConstantString' type already set!"); 6428 6429 ObjCConstantStringType = getObjCInterfaceType(Decl); 6430 } 6431 6432 /// \brief Retrieve the template name that corresponds to a non-empty 6433 /// lookup. 6434 TemplateName 6435 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, 6436 UnresolvedSetIterator End) const { 6437 unsigned size = End - Begin; 6438 assert(size > 1 && "set is not overloaded!"); 6439 6440 void *memory = Allocate(sizeof(OverloadedTemplateStorage) + 6441 size * sizeof(FunctionTemplateDecl*)); 6442 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size); 6443 6444 NamedDecl **Storage = OT->getStorage(); 6445 for (UnresolvedSetIterator I = Begin; I != End; ++I) { 6446 NamedDecl *D = *I; 6447 assert(isa<FunctionTemplateDecl>(D) || 6448 (isa<UsingShadowDecl>(D) && 6449 isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); 6450 *Storage++ = D; 6451 } 6452 6453 return TemplateName(OT); 6454 } 6455 6456 /// \brief Retrieve the template name that represents a qualified 6457 /// template name such as \c std::vector. 6458 TemplateName 6459 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 6460 bool TemplateKeyword, 6461 TemplateDecl *Template) const { 6462 assert(NNS && "Missing nested-name-specifier in qualified template name"); 6463 6464 // FIXME: Canonicalization? 6465 llvm::FoldingSetNodeID ID; 6466 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); 6467 6468 void *InsertPos = nullptr; 6469 QualifiedTemplateName *QTN = 6470 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6471 if (!QTN) { 6472 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>()) 6473 QualifiedTemplateName(NNS, TemplateKeyword, Template); 6474 QualifiedTemplateNames.InsertNode(QTN, InsertPos); 6475 } 6476 6477 return TemplateName(QTN); 6478 } 6479 6480 /// \brief Retrieve the template name that represents a dependent 6481 /// template name such as \c MetaFun::template apply. 6482 TemplateName 6483 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 6484 const IdentifierInfo *Name) const { 6485 assert((!NNS || NNS->isDependent()) && 6486 "Nested name specifier must be dependent"); 6487 6488 llvm::FoldingSetNodeID ID; 6489 DependentTemplateName::Profile(ID, NNS, Name); 6490 6491 void *InsertPos = nullptr; 6492 DependentTemplateName *QTN = 6493 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6494 6495 if (QTN) 6496 return TemplateName(QTN); 6497 6498 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 6499 if (CanonNNS == NNS) { 6500 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6501 DependentTemplateName(NNS, Name); 6502 } else { 6503 TemplateName Canon = getDependentTemplateName(CanonNNS, Name); 6504 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6505 DependentTemplateName(NNS, Name, Canon); 6506 DependentTemplateName *CheckQTN = 6507 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6508 assert(!CheckQTN && "Dependent type name canonicalization broken"); 6509 (void)CheckQTN; 6510 } 6511 6512 DependentTemplateNames.InsertNode(QTN, InsertPos); 6513 return TemplateName(QTN); 6514 } 6515 6516 /// \brief Retrieve the template name that represents a dependent 6517 /// template name such as \c MetaFun::template operator+. 6518 TemplateName 6519 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 6520 OverloadedOperatorKind Operator) const { 6521 assert((!NNS || NNS->isDependent()) && 6522 "Nested name specifier must be dependent"); 6523 6524 llvm::FoldingSetNodeID ID; 6525 DependentTemplateName::Profile(ID, NNS, Operator); 6526 6527 void *InsertPos = nullptr; 6528 DependentTemplateName *QTN 6529 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6530 6531 if (QTN) 6532 return TemplateName(QTN); 6533 6534 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 6535 if (CanonNNS == NNS) { 6536 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6537 DependentTemplateName(NNS, Operator); 6538 } else { 6539 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); 6540 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6541 DependentTemplateName(NNS, Operator, Canon); 6542 6543 DependentTemplateName *CheckQTN 6544 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6545 assert(!CheckQTN && "Dependent template name canonicalization broken"); 6546 (void)CheckQTN; 6547 } 6548 6549 DependentTemplateNames.InsertNode(QTN, InsertPos); 6550 return TemplateName(QTN); 6551 } 6552 6553 TemplateName 6554 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, 6555 TemplateName replacement) const { 6556 llvm::FoldingSetNodeID ID; 6557 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); 6558 6559 void *insertPos = nullptr; 6560 SubstTemplateTemplateParmStorage *subst 6561 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); 6562 6563 if (!subst) { 6564 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); 6565 SubstTemplateTemplateParms.InsertNode(subst, insertPos); 6566 } 6567 6568 return TemplateName(subst); 6569 } 6570 6571 TemplateName 6572 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, 6573 const TemplateArgument &ArgPack) const { 6574 ASTContext &Self = const_cast<ASTContext &>(*this); 6575 llvm::FoldingSetNodeID ID; 6576 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); 6577 6578 void *InsertPos = nullptr; 6579 SubstTemplateTemplateParmPackStorage *Subst 6580 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); 6581 6582 if (!Subst) { 6583 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, 6584 ArgPack.pack_size(), 6585 ArgPack.pack_begin()); 6586 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); 6587 } 6588 6589 return TemplateName(Subst); 6590 } 6591 6592 /// getFromTargetType - Given one of the integer types provided by 6593 /// TargetInfo, produce the corresponding type. The unsigned @p Type 6594 /// is actually a value of type @c TargetInfo::IntType. 6595 CanQualType ASTContext::getFromTargetType(unsigned Type) const { 6596 switch (Type) { 6597 case TargetInfo::NoInt: return CanQualType(); 6598 case TargetInfo::SignedChar: return SignedCharTy; 6599 case TargetInfo::UnsignedChar: return UnsignedCharTy; 6600 case TargetInfo::SignedShort: return ShortTy; 6601 case TargetInfo::UnsignedShort: return UnsignedShortTy; 6602 case TargetInfo::SignedInt: return IntTy; 6603 case TargetInfo::UnsignedInt: return UnsignedIntTy; 6604 case TargetInfo::SignedLong: return LongTy; 6605 case TargetInfo::UnsignedLong: return UnsignedLongTy; 6606 case TargetInfo::SignedLongLong: return LongLongTy; 6607 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; 6608 } 6609 6610 llvm_unreachable("Unhandled TargetInfo::IntType value"); 6611 } 6612 6613 //===----------------------------------------------------------------------===// 6614 // Type Predicates. 6615 //===----------------------------------------------------------------------===// 6616 6617 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's 6618 /// garbage collection attribute. 6619 /// 6620 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { 6621 if (getLangOpts().getGC() == LangOptions::NonGC) 6622 return Qualifiers::GCNone; 6623 6624 assert(getLangOpts().ObjC1); 6625 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); 6626 6627 // Default behaviour under objective-C's gc is for ObjC pointers 6628 // (or pointers to them) be treated as though they were declared 6629 // as __strong. 6630 if (GCAttrs == Qualifiers::GCNone) { 6631 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 6632 return Qualifiers::Strong; 6633 else if (Ty->isPointerType()) 6634 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); 6635 } else { 6636 // It's not valid to set GC attributes on anything that isn't a 6637 // pointer. 6638 #ifndef NDEBUG 6639 QualType CT = Ty->getCanonicalTypeInternal(); 6640 while (const ArrayType *AT = dyn_cast<ArrayType>(CT)) 6641 CT = AT->getElementType(); 6642 assert(CT->isAnyPointerType() || CT->isBlockPointerType()); 6643 #endif 6644 } 6645 return GCAttrs; 6646 } 6647 6648 //===----------------------------------------------------------------------===// 6649 // Type Compatibility Testing 6650 //===----------------------------------------------------------------------===// 6651 6652 /// areCompatVectorTypes - Return true if the two specified vector types are 6653 /// compatible. 6654 static bool areCompatVectorTypes(const VectorType *LHS, 6655 const VectorType *RHS) { 6656 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 6657 return LHS->getElementType() == RHS->getElementType() && 6658 LHS->getNumElements() == RHS->getNumElements(); 6659 } 6660 6661 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, 6662 QualType SecondVec) { 6663 assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); 6664 assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); 6665 6666 if (hasSameUnqualifiedType(FirstVec, SecondVec)) 6667 return true; 6668 6669 // Treat Neon vector types and most AltiVec vector types as if they are the 6670 // equivalent GCC vector types. 6671 const VectorType *First = FirstVec->getAs<VectorType>(); 6672 const VectorType *Second = SecondVec->getAs<VectorType>(); 6673 if (First->getNumElements() == Second->getNumElements() && 6674 hasSameType(First->getElementType(), Second->getElementType()) && 6675 First->getVectorKind() != VectorType::AltiVecPixel && 6676 First->getVectorKind() != VectorType::AltiVecBool && 6677 Second->getVectorKind() != VectorType::AltiVecPixel && 6678 Second->getVectorKind() != VectorType::AltiVecBool) 6679 return true; 6680 6681 return false; 6682 } 6683 6684 //===----------------------------------------------------------------------===// 6685 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. 6686 //===----------------------------------------------------------------------===// 6687 6688 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the 6689 /// inheritance hierarchy of 'rProto'. 6690 bool 6691 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, 6692 ObjCProtocolDecl *rProto) const { 6693 if (declaresSameEntity(lProto, rProto)) 6694 return true; 6695 for (auto *PI : rProto->protocols()) 6696 if (ProtocolCompatibleWithProtocol(lProto, PI)) 6697 return true; 6698 return false; 6699 } 6700 6701 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and 6702 /// Class<pr1, ...>. 6703 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, 6704 QualType rhs) { 6705 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>(); 6706 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 6707 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); 6708 6709 for (auto *lhsProto : lhsQID->quals()) { 6710 bool match = false; 6711 for (auto *rhsProto : rhsOPT->quals()) { 6712 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { 6713 match = true; 6714 break; 6715 } 6716 } 6717 if (!match) 6718 return false; 6719 } 6720 return true; 6721 } 6722 6723 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an 6724 /// ObjCQualifiedIDType. 6725 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, 6726 bool compare) { 6727 // Allow id<P..> and an 'id' or void* type in all cases. 6728 if (lhs->isVoidPointerType() || 6729 lhs->isObjCIdType() || lhs->isObjCClassType()) 6730 return true; 6731 else if (rhs->isVoidPointerType() || 6732 rhs->isObjCIdType() || rhs->isObjCClassType()) 6733 return true; 6734 6735 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { 6736 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 6737 6738 if (!rhsOPT) return false; 6739 6740 if (rhsOPT->qual_empty()) { 6741 // If the RHS is a unqualified interface pointer "NSString*", 6742 // make sure we check the class hierarchy. 6743 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 6744 for (auto *I : lhsQID->quals()) { 6745 // when comparing an id<P> on lhs with a static type on rhs, 6746 // see if static class implements all of id's protocols, directly or 6747 // through its super class and categories. 6748 if (!rhsID->ClassImplementsProtocol(I, true)) 6749 return false; 6750 } 6751 } 6752 // If there are no qualifiers and no interface, we have an 'id'. 6753 return true; 6754 } 6755 // Both the right and left sides have qualifiers. 6756 for (auto *lhsProto : lhsQID->quals()) { 6757 bool match = false; 6758 6759 // when comparing an id<P> on lhs with a static type on rhs, 6760 // see if static class implements all of id's protocols, directly or 6761 // through its super class and categories. 6762 for (auto *rhsProto : rhsOPT->quals()) { 6763 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6764 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6765 match = true; 6766 break; 6767 } 6768 } 6769 // If the RHS is a qualified interface pointer "NSString<P>*", 6770 // make sure we check the class hierarchy. 6771 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 6772 for (auto *I : lhsQID->quals()) { 6773 // when comparing an id<P> on lhs with a static type on rhs, 6774 // see if static class implements all of id's protocols, directly or 6775 // through its super class and categories. 6776 if (rhsID->ClassImplementsProtocol(I, true)) { 6777 match = true; 6778 break; 6779 } 6780 } 6781 } 6782 if (!match) 6783 return false; 6784 } 6785 6786 return true; 6787 } 6788 6789 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); 6790 assert(rhsQID && "One of the LHS/RHS should be id<x>"); 6791 6792 if (const ObjCObjectPointerType *lhsOPT = 6793 lhs->getAsObjCInterfacePointerType()) { 6794 // If both the right and left sides have qualifiers. 6795 for (auto *lhsProto : lhsOPT->quals()) { 6796 bool match = false; 6797 6798 // when comparing an id<P> on rhs with a static type on lhs, 6799 // see if static class implements all of id's protocols, directly or 6800 // through its super class and categories. 6801 // First, lhs protocols in the qualifier list must be found, direct 6802 // or indirect in rhs's qualifier list or it is a mismatch. 6803 for (auto *rhsProto : rhsQID->quals()) { 6804 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6805 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6806 match = true; 6807 break; 6808 } 6809 } 6810 if (!match) 6811 return false; 6812 } 6813 6814 // Static class's protocols, or its super class or category protocols 6815 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. 6816 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { 6817 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 6818 CollectInheritedProtocols(lhsID, LHSInheritedProtocols); 6819 // This is rather dubious but matches gcc's behavior. If lhs has 6820 // no type qualifier and its class has no static protocol(s) 6821 // assume that it is mismatch. 6822 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) 6823 return false; 6824 for (auto *lhsProto : LHSInheritedProtocols) { 6825 bool match = false; 6826 for (auto *rhsProto : rhsQID->quals()) { 6827 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6828 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6829 match = true; 6830 break; 6831 } 6832 } 6833 if (!match) 6834 return false; 6835 } 6836 } 6837 return true; 6838 } 6839 return false; 6840 } 6841 6842 /// canAssignObjCInterfaces - Return true if the two interface types are 6843 /// compatible for assignment from RHS to LHS. This handles validation of any 6844 /// protocol qualifiers on the LHS or RHS. 6845 /// 6846 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, 6847 const ObjCObjectPointerType *RHSOPT) { 6848 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 6849 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 6850 6851 // If either type represents the built-in 'id' or 'Class' types, return true. 6852 if (LHS->isObjCUnqualifiedIdOrClass() || 6853 RHS->isObjCUnqualifiedIdOrClass()) 6854 return true; 6855 6856 // Function object that propagates a successful result or handles 6857 // __kindof types. 6858 auto finish = [&](bool succeeded) -> bool { 6859 if (succeeded) 6860 return true; 6861 6862 if (!RHS->isKindOfType()) 6863 return false; 6864 6865 // Strip off __kindof and protocol qualifiers, then check whether 6866 // we can assign the other way. 6867 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), 6868 LHSOPT->stripObjCKindOfTypeAndQuals(*this)); 6869 }; 6870 6871 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { 6872 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 6873 QualType(RHSOPT,0), 6874 false)); 6875 } 6876 6877 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { 6878 return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), 6879 QualType(RHSOPT,0))); 6880 } 6881 6882 // If we have 2 user-defined types, fall into that path. 6883 if (LHS->getInterface() && RHS->getInterface()) { 6884 return finish(canAssignObjCInterfaces(LHS, RHS)); 6885 } 6886 6887 return false; 6888 } 6889 6890 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written 6891 /// for providing type-safety for objective-c pointers used to pass/return 6892 /// arguments in block literals. When passed as arguments, passing 'A*' where 6893 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is 6894 /// not OK. For the return type, the opposite is not OK. 6895 bool ASTContext::canAssignObjCInterfacesInBlockPointer( 6896 const ObjCObjectPointerType *LHSOPT, 6897 const ObjCObjectPointerType *RHSOPT, 6898 bool BlockReturnType) { 6899 6900 // Function object that propagates a successful result or handles 6901 // __kindof types. 6902 auto finish = [&](bool succeeded) -> bool { 6903 if (succeeded) 6904 return true; 6905 6906 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; 6907 if (!Expected->isKindOfType()) 6908 return false; 6909 6910 // Strip off __kindof and protocol qualifiers, then check whether 6911 // we can assign the other way. 6912 return canAssignObjCInterfacesInBlockPointer( 6913 RHSOPT->stripObjCKindOfTypeAndQuals(*this), 6914 LHSOPT->stripObjCKindOfTypeAndQuals(*this), 6915 BlockReturnType); 6916 }; 6917 6918 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) 6919 return true; 6920 6921 if (LHSOPT->isObjCBuiltinType()) { 6922 return finish(RHSOPT->isObjCBuiltinType() || 6923 RHSOPT->isObjCQualifiedIdType()); 6924 } 6925 6926 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) 6927 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 6928 QualType(RHSOPT,0), 6929 false)); 6930 6931 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); 6932 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); 6933 if (LHS && RHS) { // We have 2 user-defined types. 6934 if (LHS != RHS) { 6935 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) 6936 return finish(BlockReturnType); 6937 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) 6938 return finish(!BlockReturnType); 6939 } 6940 else 6941 return true; 6942 } 6943 return false; 6944 } 6945 6946 /// Comparison routine for Objective-C protocols to be used with 6947 /// llvm::array_pod_sort. 6948 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, 6949 ObjCProtocolDecl * const *rhs) { 6950 return (*lhs)->getName().compare((*rhs)->getName()); 6951 6952 } 6953 6954 /// getIntersectionOfProtocols - This routine finds the intersection of set 6955 /// of protocols inherited from two distinct objective-c pointer objects with 6956 /// the given common base. 6957 /// It is used to build composite qualifier list of the composite type of 6958 /// the conditional expression involving two objective-c pointer objects. 6959 static 6960 void getIntersectionOfProtocols(ASTContext &Context, 6961 const ObjCInterfaceDecl *CommonBase, 6962 const ObjCObjectPointerType *LHSOPT, 6963 const ObjCObjectPointerType *RHSOPT, 6964 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { 6965 6966 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 6967 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 6968 assert(LHS->getInterface() && "LHS must have an interface base"); 6969 assert(RHS->getInterface() && "RHS must have an interface base"); 6970 6971 // Add all of the protocols for the LHS. 6972 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; 6973 6974 // Start with the protocol qualifiers. 6975 for (auto proto : LHS->quals()) { 6976 Context.CollectInheritedProtocols(proto, LHSProtocolSet); 6977 } 6978 6979 // Also add the protocols associated with the LHS interface. 6980 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); 6981 6982 // Add all of the protocls for the RHS. 6983 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; 6984 6985 // Start with the protocol qualifiers. 6986 for (auto proto : RHS->quals()) { 6987 Context.CollectInheritedProtocols(proto, RHSProtocolSet); 6988 } 6989 6990 // Also add the protocols associated with the RHS interface. 6991 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); 6992 6993 // Compute the intersection of the collected protocol sets. 6994 for (auto proto : LHSProtocolSet) { 6995 if (RHSProtocolSet.count(proto)) 6996 IntersectionSet.push_back(proto); 6997 } 6998 6999 // Compute the set of protocols that is implied by either the common type or 7000 // the protocols within the intersection. 7001 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; 7002 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); 7003 7004 // Remove any implied protocols from the list of inherited protocols. 7005 if (!ImpliedProtocols.empty()) { 7006 IntersectionSet.erase( 7007 std::remove_if(IntersectionSet.begin(), 7008 IntersectionSet.end(), 7009 [&](ObjCProtocolDecl *proto) -> bool { 7010 return ImpliedProtocols.count(proto) > 0; 7011 }), 7012 IntersectionSet.end()); 7013 } 7014 7015 // Sort the remaining protocols by name. 7016 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), 7017 compareObjCProtocolsByName); 7018 } 7019 7020 /// Determine whether the first type is a subtype of the second. 7021 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, 7022 QualType rhs) { 7023 // Common case: two object pointers. 7024 const ObjCObjectPointerType *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); 7025 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 7026 if (lhsOPT && rhsOPT) 7027 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); 7028 7029 // Two block pointers. 7030 const BlockPointerType *lhsBlock = lhs->getAs<BlockPointerType>(); 7031 const BlockPointerType *rhsBlock = rhs->getAs<BlockPointerType>(); 7032 if (lhsBlock && rhsBlock) 7033 return ctx.typesAreBlockPointerCompatible(lhs, rhs); 7034 7035 // If either is an unqualified 'id' and the other is a block, it's 7036 // acceptable. 7037 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || 7038 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) 7039 return true; 7040 7041 return false; 7042 } 7043 7044 // Check that the given Objective-C type argument lists are equivalent. 7045 static bool sameObjCTypeArgs(ASTContext &ctx, 7046 const ObjCInterfaceDecl *iface, 7047 ArrayRef<QualType> lhsArgs, 7048 ArrayRef<QualType> rhsArgs, 7049 bool stripKindOf) { 7050 if (lhsArgs.size() != rhsArgs.size()) 7051 return false; 7052 7053 ObjCTypeParamList *typeParams = iface->getTypeParamList(); 7054 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { 7055 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) 7056 continue; 7057 7058 switch (typeParams->begin()[i]->getVariance()) { 7059 case ObjCTypeParamVariance::Invariant: 7060 if (!stripKindOf || 7061 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), 7062 rhsArgs[i].stripObjCKindOfType(ctx))) { 7063 return false; 7064 } 7065 break; 7066 7067 case ObjCTypeParamVariance::Covariant: 7068 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) 7069 return false; 7070 break; 7071 7072 case ObjCTypeParamVariance::Contravariant: 7073 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) 7074 return false; 7075 break; 7076 } 7077 } 7078 7079 return true; 7080 } 7081 7082 QualType ASTContext::areCommonBaseCompatible( 7083 const ObjCObjectPointerType *Lptr, 7084 const ObjCObjectPointerType *Rptr) { 7085 const ObjCObjectType *LHS = Lptr->getObjectType(); 7086 const ObjCObjectType *RHS = Rptr->getObjectType(); 7087 const ObjCInterfaceDecl* LDecl = LHS->getInterface(); 7088 const ObjCInterfaceDecl* RDecl = RHS->getInterface(); 7089 7090 if (!LDecl || !RDecl) 7091 return QualType(); 7092 7093 // Follow the left-hand side up the class hierarchy until we either hit a 7094 // root or find the RHS. Record the ancestors in case we don't find it. 7095 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> 7096 LHSAncestors; 7097 while (true) { 7098 // Record this ancestor. We'll need this if the common type isn't in the 7099 // path from the LHS to the root. 7100 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; 7101 7102 if (declaresSameEntity(LHS->getInterface(), RDecl)) { 7103 // Get the type arguments. 7104 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); 7105 bool anyChanges = false; 7106 if (LHS->isSpecialized() && RHS->isSpecialized()) { 7107 // Both have type arguments, compare them. 7108 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 7109 LHS->getTypeArgs(), RHS->getTypeArgs(), 7110 /*stripKindOf=*/true)) 7111 return QualType(); 7112 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 7113 // If only one has type arguments, the result will not have type 7114 // arguments. 7115 LHSTypeArgs = { }; 7116 anyChanges = true; 7117 } 7118 7119 // Compute the intersection of protocols. 7120 SmallVector<ObjCProtocolDecl *, 8> Protocols; 7121 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, 7122 Protocols); 7123 if (!Protocols.empty()) 7124 anyChanges = true; 7125 7126 // If anything in the LHS will have changed, build a new result type. 7127 if (anyChanges) { 7128 QualType Result = getObjCInterfaceType(LHS->getInterface()); 7129 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, 7130 LHS->isKindOfType()); 7131 return getObjCObjectPointerType(Result); 7132 } 7133 7134 return getObjCObjectPointerType(QualType(LHS, 0)); 7135 } 7136 7137 // Find the superclass. 7138 QualType LHSSuperType = LHS->getSuperClassType(); 7139 if (LHSSuperType.isNull()) 7140 break; 7141 7142 LHS = LHSSuperType->castAs<ObjCObjectType>(); 7143 } 7144 7145 // We didn't find anything by following the LHS to its root; now check 7146 // the RHS against the cached set of ancestors. 7147 while (true) { 7148 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); 7149 if (KnownLHS != LHSAncestors.end()) { 7150 LHS = KnownLHS->second; 7151 7152 // Get the type arguments. 7153 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); 7154 bool anyChanges = false; 7155 if (LHS->isSpecialized() && RHS->isSpecialized()) { 7156 // Both have type arguments, compare them. 7157 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 7158 LHS->getTypeArgs(), RHS->getTypeArgs(), 7159 /*stripKindOf=*/true)) 7160 return QualType(); 7161 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 7162 // If only one has type arguments, the result will not have type 7163 // arguments. 7164 RHSTypeArgs = { }; 7165 anyChanges = true; 7166 } 7167 7168 // Compute the intersection of protocols. 7169 SmallVector<ObjCProtocolDecl *, 8> Protocols; 7170 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, 7171 Protocols); 7172 if (!Protocols.empty()) 7173 anyChanges = true; 7174 7175 if (anyChanges) { 7176 QualType Result = getObjCInterfaceType(RHS->getInterface()); 7177 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, 7178 RHS->isKindOfType()); 7179 return getObjCObjectPointerType(Result); 7180 } 7181 7182 return getObjCObjectPointerType(QualType(RHS, 0)); 7183 } 7184 7185 // Find the superclass of the RHS. 7186 QualType RHSSuperType = RHS->getSuperClassType(); 7187 if (RHSSuperType.isNull()) 7188 break; 7189 7190 RHS = RHSSuperType->castAs<ObjCObjectType>(); 7191 } 7192 7193 return QualType(); 7194 } 7195 7196 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, 7197 const ObjCObjectType *RHS) { 7198 assert(LHS->getInterface() && "LHS is not an interface type"); 7199 assert(RHS->getInterface() && "RHS is not an interface type"); 7200 7201 // Verify that the base decls are compatible: the RHS must be a subclass of 7202 // the LHS. 7203 ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); 7204 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); 7205 if (!IsSuperClass) 7206 return false; 7207 7208 // If the LHS has protocol qualifiers, determine whether all of them are 7209 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the 7210 // LHS). 7211 if (LHS->getNumProtocols() > 0) { 7212 // OK if conversion of LHS to SuperClass results in narrowing of types 7213 // ; i.e., SuperClass may implement at least one of the protocols 7214 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. 7215 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. 7216 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; 7217 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); 7218 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's 7219 // qualifiers. 7220 for (auto *RHSPI : RHS->quals()) 7221 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); 7222 // If there is no protocols associated with RHS, it is not a match. 7223 if (SuperClassInheritedProtocols.empty()) 7224 return false; 7225 7226 for (const auto *LHSProto : LHS->quals()) { 7227 bool SuperImplementsProtocol = false; 7228 for (auto *SuperClassProto : SuperClassInheritedProtocols) 7229 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { 7230 SuperImplementsProtocol = true; 7231 break; 7232 } 7233 if (!SuperImplementsProtocol) 7234 return false; 7235 } 7236 } 7237 7238 // If the LHS is specialized, we may need to check type arguments. 7239 if (LHS->isSpecialized()) { 7240 // Follow the superclass chain until we've matched the LHS class in the 7241 // hierarchy. This substitutes type arguments through. 7242 const ObjCObjectType *RHSSuper = RHS; 7243 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) 7244 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); 7245 7246 // If the RHS is specializd, compare type arguments. 7247 if (RHSSuper->isSpecialized() && 7248 !sameObjCTypeArgs(*this, LHS->getInterface(), 7249 LHS->getTypeArgs(), RHSSuper->getTypeArgs(), 7250 /*stripKindOf=*/true)) { 7251 return false; 7252 } 7253 } 7254 7255 return true; 7256 } 7257 7258 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { 7259 // get the "pointed to" types 7260 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); 7261 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); 7262 7263 if (!LHSOPT || !RHSOPT) 7264 return false; 7265 7266 return canAssignObjCInterfaces(LHSOPT, RHSOPT) || 7267 canAssignObjCInterfaces(RHSOPT, LHSOPT); 7268 } 7269 7270 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { 7271 return canAssignObjCInterfaces( 7272 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), 7273 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); 7274 } 7275 7276 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 7277 /// both shall have the identically qualified version of a compatible type. 7278 /// C99 6.2.7p1: Two types have compatible types if their types are the 7279 /// same. See 6.7.[2,3,5] for additional rules. 7280 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, 7281 bool CompareUnqualified) { 7282 if (getLangOpts().CPlusPlus) 7283 return hasSameType(LHS, RHS); 7284 7285 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); 7286 } 7287 7288 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { 7289 return typesAreCompatible(LHS, RHS); 7290 } 7291 7292 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { 7293 return !mergeTypes(LHS, RHS, true).isNull(); 7294 } 7295 7296 /// mergeTransparentUnionType - if T is a transparent union type and a member 7297 /// of T is compatible with SubType, return the merged type, else return 7298 /// QualType() 7299 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, 7300 bool OfBlockPointer, 7301 bool Unqualified) { 7302 if (const RecordType *UT = T->getAsUnionType()) { 7303 RecordDecl *UD = UT->getDecl(); 7304 if (UD->hasAttr<TransparentUnionAttr>()) { 7305 for (const auto *I : UD->fields()) { 7306 QualType ET = I->getType().getUnqualifiedType(); 7307 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); 7308 if (!MT.isNull()) 7309 return MT; 7310 } 7311 } 7312 } 7313 7314 return QualType(); 7315 } 7316 7317 /// mergeFunctionParameterTypes - merge two types which appear as function 7318 /// parameter types 7319 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, 7320 bool OfBlockPointer, 7321 bool Unqualified) { 7322 // GNU extension: two types are compatible if they appear as a function 7323 // argument, one of the types is a transparent union type and the other 7324 // type is compatible with a union member 7325 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, 7326 Unqualified); 7327 if (!lmerge.isNull()) 7328 return lmerge; 7329 7330 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, 7331 Unqualified); 7332 if (!rmerge.isNull()) 7333 return rmerge; 7334 7335 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); 7336 } 7337 7338 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, 7339 bool OfBlockPointer, 7340 bool Unqualified) { 7341 const FunctionType *lbase = lhs->getAs<FunctionType>(); 7342 const FunctionType *rbase = rhs->getAs<FunctionType>(); 7343 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); 7344 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); 7345 bool allLTypes = true; 7346 bool allRTypes = true; 7347 7348 // Check return type 7349 QualType retType; 7350 if (OfBlockPointer) { 7351 QualType RHS = rbase->getReturnType(); 7352 QualType LHS = lbase->getReturnType(); 7353 bool UnqualifiedResult = Unqualified; 7354 if (!UnqualifiedResult) 7355 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); 7356 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); 7357 } 7358 else 7359 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, 7360 Unqualified); 7361 if (retType.isNull()) return QualType(); 7362 7363 if (Unqualified) 7364 retType = retType.getUnqualifiedType(); 7365 7366 CanQualType LRetType = getCanonicalType(lbase->getReturnType()); 7367 CanQualType RRetType = getCanonicalType(rbase->getReturnType()); 7368 if (Unqualified) { 7369 LRetType = LRetType.getUnqualifiedType(); 7370 RRetType = RRetType.getUnqualifiedType(); 7371 } 7372 7373 if (getCanonicalType(retType) != LRetType) 7374 allLTypes = false; 7375 if (getCanonicalType(retType) != RRetType) 7376 allRTypes = false; 7377 7378 // FIXME: double check this 7379 // FIXME: should we error if lbase->getRegParmAttr() != 0 && 7380 // rbase->getRegParmAttr() != 0 && 7381 // lbase->getRegParmAttr() != rbase->getRegParmAttr()? 7382 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); 7383 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); 7384 7385 // Compatible functions must have compatible calling conventions 7386 if (lbaseInfo.getCC() != rbaseInfo.getCC()) 7387 return QualType(); 7388 7389 // Regparm is part of the calling convention. 7390 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) 7391 return QualType(); 7392 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) 7393 return QualType(); 7394 7395 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) 7396 return QualType(); 7397 7398 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. 7399 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); 7400 7401 if (lbaseInfo.getNoReturn() != NoReturn) 7402 allLTypes = false; 7403 if (rbaseInfo.getNoReturn() != NoReturn) 7404 allRTypes = false; 7405 7406 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); 7407 7408 if (lproto && rproto) { // two C99 style function prototypes 7409 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && 7410 "C++ shouldn't be here"); 7411 // Compatible functions must have the same number of parameters 7412 if (lproto->getNumParams() != rproto->getNumParams()) 7413 return QualType(); 7414 7415 // Variadic and non-variadic functions aren't compatible 7416 if (lproto->isVariadic() != rproto->isVariadic()) 7417 return QualType(); 7418 7419 if (lproto->getTypeQuals() != rproto->getTypeQuals()) 7420 return QualType(); 7421 7422 if (LangOpts.ObjCAutoRefCount && 7423 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto)) 7424 return QualType(); 7425 7426 // Check parameter type compatibility 7427 SmallVector<QualType, 10> types; 7428 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { 7429 QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); 7430 QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); 7431 QualType paramType = mergeFunctionParameterTypes( 7432 lParamType, rParamType, OfBlockPointer, Unqualified); 7433 if (paramType.isNull()) 7434 return QualType(); 7435 7436 if (Unqualified) 7437 paramType = paramType.getUnqualifiedType(); 7438 7439 types.push_back(paramType); 7440 if (Unqualified) { 7441 lParamType = lParamType.getUnqualifiedType(); 7442 rParamType = rParamType.getUnqualifiedType(); 7443 } 7444 7445 if (getCanonicalType(paramType) != getCanonicalType(lParamType)) 7446 allLTypes = false; 7447 if (getCanonicalType(paramType) != getCanonicalType(rParamType)) 7448 allRTypes = false; 7449 } 7450 7451 if (allLTypes) return lhs; 7452 if (allRTypes) return rhs; 7453 7454 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); 7455 EPI.ExtInfo = einfo; 7456 return getFunctionType(retType, types, EPI); 7457 } 7458 7459 if (lproto) allRTypes = false; 7460 if (rproto) allLTypes = false; 7461 7462 const FunctionProtoType *proto = lproto ? lproto : rproto; 7463 if (proto) { 7464 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); 7465 if (proto->isVariadic()) return QualType(); 7466 // Check that the types are compatible with the types that 7467 // would result from default argument promotions (C99 6.7.5.3p15). 7468 // The only types actually affected are promotable integer 7469 // types and floats, which would be passed as a different 7470 // type depending on whether the prototype is visible. 7471 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { 7472 QualType paramTy = proto->getParamType(i); 7473 7474 // Look at the converted type of enum types, since that is the type used 7475 // to pass enum values. 7476 if (const EnumType *Enum = paramTy->getAs<EnumType>()) { 7477 paramTy = Enum->getDecl()->getIntegerType(); 7478 if (paramTy.isNull()) 7479 return QualType(); 7480 } 7481 7482 if (paramTy->isPromotableIntegerType() || 7483 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) 7484 return QualType(); 7485 } 7486 7487 if (allLTypes) return lhs; 7488 if (allRTypes) return rhs; 7489 7490 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); 7491 EPI.ExtInfo = einfo; 7492 return getFunctionType(retType, proto->getParamTypes(), EPI); 7493 } 7494 7495 if (allLTypes) return lhs; 7496 if (allRTypes) return rhs; 7497 return getFunctionNoProtoType(retType, einfo); 7498 } 7499 7500 /// Given that we have an enum type and a non-enum type, try to merge them. 7501 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, 7502 QualType other, bool isBlockReturnType) { 7503 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, 7504 // a signed integer type, or an unsigned integer type. 7505 // Compatibility is based on the underlying type, not the promotion 7506 // type. 7507 QualType underlyingType = ET->getDecl()->getIntegerType(); 7508 if (underlyingType.isNull()) return QualType(); 7509 if (Context.hasSameType(underlyingType, other)) 7510 return other; 7511 7512 // In block return types, we're more permissive and accept any 7513 // integral type of the same size. 7514 if (isBlockReturnType && other->isIntegerType() && 7515 Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) 7516 return other; 7517 7518 return QualType(); 7519 } 7520 7521 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, 7522 bool OfBlockPointer, 7523 bool Unqualified, bool BlockReturnType) { 7524 // C++ [expr]: If an expression initially has the type "reference to T", the 7525 // type is adjusted to "T" prior to any further analysis, the expression 7526 // designates the object or function denoted by the reference, and the 7527 // expression is an lvalue unless the reference is an rvalue reference and 7528 // the expression is a function call (possibly inside parentheses). 7529 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); 7530 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); 7531 7532 if (Unqualified) { 7533 LHS = LHS.getUnqualifiedType(); 7534 RHS = RHS.getUnqualifiedType(); 7535 } 7536 7537 QualType LHSCan = getCanonicalType(LHS), 7538 RHSCan = getCanonicalType(RHS); 7539 7540 // If two types are identical, they are compatible. 7541 if (LHSCan == RHSCan) 7542 return LHS; 7543 7544 // If the qualifiers are different, the types aren't compatible... mostly. 7545 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 7546 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 7547 if (LQuals != RQuals) { 7548 // If any of these qualifiers are different, we have a type 7549 // mismatch. 7550 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 7551 LQuals.getAddressSpace() != RQuals.getAddressSpace() || 7552 LQuals.getObjCLifetime() != RQuals.getObjCLifetime()) 7553 return QualType(); 7554 7555 // Exactly one GC qualifier difference is allowed: __strong is 7556 // okay if the other type has no GC qualifier but is an Objective 7557 // C object pointer (i.e. implicitly strong by default). We fix 7558 // this by pretending that the unqualified type was actually 7559 // qualified __strong. 7560 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 7561 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 7562 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 7563 7564 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 7565 return QualType(); 7566 7567 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { 7568 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); 7569 } 7570 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { 7571 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); 7572 } 7573 return QualType(); 7574 } 7575 7576 // Okay, qualifiers are equal. 7577 7578 Type::TypeClass LHSClass = LHSCan->getTypeClass(); 7579 Type::TypeClass RHSClass = RHSCan->getTypeClass(); 7580 7581 // We want to consider the two function types to be the same for these 7582 // comparisons, just force one to the other. 7583 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; 7584 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; 7585 7586 // Same as above for arrays 7587 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) 7588 LHSClass = Type::ConstantArray; 7589 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) 7590 RHSClass = Type::ConstantArray; 7591 7592 // ObjCInterfaces are just specialized ObjCObjects. 7593 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; 7594 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; 7595 7596 // Canonicalize ExtVector -> Vector. 7597 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; 7598 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; 7599 7600 // If the canonical type classes don't match. 7601 if (LHSClass != RHSClass) { 7602 // Note that we only have special rules for turning block enum 7603 // returns into block int returns, not vice-versa. 7604 if (const EnumType* ETy = LHS->getAs<EnumType>()) { 7605 return mergeEnumWithInteger(*this, ETy, RHS, false); 7606 } 7607 if (const EnumType* ETy = RHS->getAs<EnumType>()) { 7608 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); 7609 } 7610 // allow block pointer type to match an 'id' type. 7611 if (OfBlockPointer && !BlockReturnType) { 7612 if (LHS->isObjCIdType() && RHS->isBlockPointerType()) 7613 return LHS; 7614 if (RHS->isObjCIdType() && LHS->isBlockPointerType()) 7615 return RHS; 7616 } 7617 7618 return QualType(); 7619 } 7620 7621 // The canonical type classes match. 7622 switch (LHSClass) { 7623 #define TYPE(Class, Base) 7624 #define ABSTRACT_TYPE(Class, Base) 7625 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 7626 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 7627 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 7628 #include "clang/AST/TypeNodes.def" 7629 llvm_unreachable("Non-canonical and dependent types shouldn't get here"); 7630 7631 case Type::Auto: 7632 case Type::LValueReference: 7633 case Type::RValueReference: 7634 case Type::MemberPointer: 7635 llvm_unreachable("C++ should never be in mergeTypes"); 7636 7637 case Type::ObjCInterface: 7638 case Type::IncompleteArray: 7639 case Type::VariableArray: 7640 case Type::FunctionProto: 7641 case Type::ExtVector: 7642 llvm_unreachable("Types are eliminated above"); 7643 7644 case Type::Pointer: 7645 { 7646 // Merge two pointer types, while trying to preserve typedef info 7647 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); 7648 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); 7649 if (Unqualified) { 7650 LHSPointee = LHSPointee.getUnqualifiedType(); 7651 RHSPointee = RHSPointee.getUnqualifiedType(); 7652 } 7653 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, 7654 Unqualified); 7655 if (ResultType.isNull()) return QualType(); 7656 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 7657 return LHS; 7658 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 7659 return RHS; 7660 return getPointerType(ResultType); 7661 } 7662 case Type::BlockPointer: 7663 { 7664 // Merge two block pointer types, while trying to preserve typedef info 7665 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); 7666 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); 7667 if (Unqualified) { 7668 LHSPointee = LHSPointee.getUnqualifiedType(); 7669 RHSPointee = RHSPointee.getUnqualifiedType(); 7670 } 7671 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, 7672 Unqualified); 7673 if (ResultType.isNull()) return QualType(); 7674 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 7675 return LHS; 7676 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 7677 return RHS; 7678 return getBlockPointerType(ResultType); 7679 } 7680 case Type::Atomic: 7681 { 7682 // Merge two pointer types, while trying to preserve typedef info 7683 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); 7684 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); 7685 if (Unqualified) { 7686 LHSValue = LHSValue.getUnqualifiedType(); 7687 RHSValue = RHSValue.getUnqualifiedType(); 7688 } 7689 QualType ResultType = mergeTypes(LHSValue, RHSValue, false, 7690 Unqualified); 7691 if (ResultType.isNull()) return QualType(); 7692 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) 7693 return LHS; 7694 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) 7695 return RHS; 7696 return getAtomicType(ResultType); 7697 } 7698 case Type::ConstantArray: 7699 { 7700 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); 7701 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); 7702 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) 7703 return QualType(); 7704 7705 QualType LHSElem = getAsArrayType(LHS)->getElementType(); 7706 QualType RHSElem = getAsArrayType(RHS)->getElementType(); 7707 if (Unqualified) { 7708 LHSElem = LHSElem.getUnqualifiedType(); 7709 RHSElem = RHSElem.getUnqualifiedType(); 7710 } 7711 7712 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); 7713 if (ResultType.isNull()) return QualType(); 7714 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 7715 return LHS; 7716 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 7717 return RHS; 7718 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), 7719 ArrayType::ArraySizeModifier(), 0); 7720 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), 7721 ArrayType::ArraySizeModifier(), 0); 7722 const VariableArrayType* LVAT = getAsVariableArrayType(LHS); 7723 const VariableArrayType* RVAT = getAsVariableArrayType(RHS); 7724 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 7725 return LHS; 7726 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 7727 return RHS; 7728 if (LVAT) { 7729 // FIXME: This isn't correct! But tricky to implement because 7730 // the array's size has to be the size of LHS, but the type 7731 // has to be different. 7732 return LHS; 7733 } 7734 if (RVAT) { 7735 // FIXME: This isn't correct! But tricky to implement because 7736 // the array's size has to be the size of RHS, but the type 7737 // has to be different. 7738 return RHS; 7739 } 7740 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; 7741 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; 7742 return getIncompleteArrayType(ResultType, 7743 ArrayType::ArraySizeModifier(), 0); 7744 } 7745 case Type::FunctionNoProto: 7746 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); 7747 case Type::Record: 7748 case Type::Enum: 7749 return QualType(); 7750 case Type::Builtin: 7751 // Only exactly equal builtin types are compatible, which is tested above. 7752 return QualType(); 7753 case Type::Complex: 7754 // Distinct complex types are incompatible. 7755 return QualType(); 7756 case Type::Vector: 7757 // FIXME: The merged type should be an ExtVector! 7758 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), 7759 RHSCan->getAs<VectorType>())) 7760 return LHS; 7761 return QualType(); 7762 case Type::ObjCObject: { 7763 // Check if the types are assignment compatible. 7764 // FIXME: This should be type compatibility, e.g. whether 7765 // "LHS x; RHS x;" at global scope is legal. 7766 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>(); 7767 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>(); 7768 if (canAssignObjCInterfaces(LHSIface, RHSIface)) 7769 return LHS; 7770 7771 return QualType(); 7772 } 7773 case Type::ObjCObjectPointer: { 7774 if (OfBlockPointer) { 7775 if (canAssignObjCInterfacesInBlockPointer( 7776 LHS->getAs<ObjCObjectPointerType>(), 7777 RHS->getAs<ObjCObjectPointerType>(), 7778 BlockReturnType)) 7779 return LHS; 7780 return QualType(); 7781 } 7782 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), 7783 RHS->getAs<ObjCObjectPointerType>())) 7784 return LHS; 7785 7786 return QualType(); 7787 } 7788 } 7789 7790 llvm_unreachable("Invalid Type::Class!"); 7791 } 7792 7793 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs( 7794 const FunctionProtoType *FromFunctionType, 7795 const FunctionProtoType *ToFunctionType) { 7796 if (FromFunctionType->hasAnyConsumedParams() != 7797 ToFunctionType->hasAnyConsumedParams()) 7798 return false; 7799 FunctionProtoType::ExtProtoInfo FromEPI = 7800 FromFunctionType->getExtProtoInfo(); 7801 FunctionProtoType::ExtProtoInfo ToEPI = 7802 ToFunctionType->getExtProtoInfo(); 7803 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters) 7804 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) { 7805 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i]) 7806 return false; 7807 } 7808 return true; 7809 } 7810 7811 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and 7812 /// 'RHS' attributes and returns the merged version; including for function 7813 /// return types. 7814 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { 7815 QualType LHSCan = getCanonicalType(LHS), 7816 RHSCan = getCanonicalType(RHS); 7817 // If two types are identical, they are compatible. 7818 if (LHSCan == RHSCan) 7819 return LHS; 7820 if (RHSCan->isFunctionType()) { 7821 if (!LHSCan->isFunctionType()) 7822 return QualType(); 7823 QualType OldReturnType = 7824 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); 7825 QualType NewReturnType = 7826 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); 7827 QualType ResReturnType = 7828 mergeObjCGCQualifiers(NewReturnType, OldReturnType); 7829 if (ResReturnType.isNull()) 7830 return QualType(); 7831 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { 7832 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); 7833 // In either case, use OldReturnType to build the new function type. 7834 const FunctionType *F = LHS->getAs<FunctionType>(); 7835 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) { 7836 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 7837 EPI.ExtInfo = getFunctionExtInfo(LHS); 7838 QualType ResultType = 7839 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); 7840 return ResultType; 7841 } 7842 } 7843 return QualType(); 7844 } 7845 7846 // If the qualifiers are different, the types can still be merged. 7847 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 7848 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 7849 if (LQuals != RQuals) { 7850 // If any of these qualifiers are different, we have a type mismatch. 7851 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 7852 LQuals.getAddressSpace() != RQuals.getAddressSpace()) 7853 return QualType(); 7854 7855 // Exactly one GC qualifier difference is allowed: __strong is 7856 // okay if the other type has no GC qualifier but is an Objective 7857 // C object pointer (i.e. implicitly strong by default). We fix 7858 // this by pretending that the unqualified type was actually 7859 // qualified __strong. 7860 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 7861 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 7862 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 7863 7864 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 7865 return QualType(); 7866 7867 if (GC_L == Qualifiers::Strong) 7868 return LHS; 7869 if (GC_R == Qualifiers::Strong) 7870 return RHS; 7871 return QualType(); 7872 } 7873 7874 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { 7875 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 7876 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 7877 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); 7878 if (ResQT == LHSBaseQT) 7879 return LHS; 7880 if (ResQT == RHSBaseQT) 7881 return RHS; 7882 } 7883 return QualType(); 7884 } 7885 7886 //===----------------------------------------------------------------------===// 7887 // Integer Predicates 7888 //===----------------------------------------------------------------------===// 7889 7890 unsigned ASTContext::getIntWidth(QualType T) const { 7891 if (const EnumType *ET = T->getAs<EnumType>()) 7892 T = ET->getDecl()->getIntegerType(); 7893 if (T->isBooleanType()) 7894 return 1; 7895 // For builtin types, just use the standard type sizing method 7896 return (unsigned)getTypeSize(T); 7897 } 7898 7899 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { 7900 assert(T->hasSignedIntegerRepresentation() && "Unexpected type"); 7901 7902 // Turn <4 x signed int> -> <4 x unsigned int> 7903 if (const VectorType *VTy = T->getAs<VectorType>()) 7904 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), 7905 VTy->getNumElements(), VTy->getVectorKind()); 7906 7907 // For enums, we return the unsigned version of the base type. 7908 if (const EnumType *ETy = T->getAs<EnumType>()) 7909 T = ETy->getDecl()->getIntegerType(); 7910 7911 const BuiltinType *BTy = T->getAs<BuiltinType>(); 7912 assert(BTy && "Unexpected signed integer type"); 7913 switch (BTy->getKind()) { 7914 case BuiltinType::Char_S: 7915 case BuiltinType::SChar: 7916 return UnsignedCharTy; 7917 case BuiltinType::Short: 7918 return UnsignedShortTy; 7919 case BuiltinType::Int: 7920 return UnsignedIntTy; 7921 case BuiltinType::Long: 7922 return UnsignedLongTy; 7923 case BuiltinType::LongLong: 7924 return UnsignedLongLongTy; 7925 case BuiltinType::Int128: 7926 return UnsignedInt128Ty; 7927 default: 7928 llvm_unreachable("Unexpected signed integer type"); 7929 } 7930 } 7931 7932 ASTMutationListener::~ASTMutationListener() { } 7933 7934 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, 7935 QualType ReturnType) {} 7936 7937 //===----------------------------------------------------------------------===// 7938 // Builtin Type Computation 7939 //===----------------------------------------------------------------------===// 7940 7941 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the 7942 /// pointer over the consumed characters. This returns the resultant type. If 7943 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic 7944 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of 7945 /// a vector of "i*". 7946 /// 7947 /// RequiresICE is filled in on return to indicate whether the value is required 7948 /// to be an Integer Constant Expression. 7949 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, 7950 ASTContext::GetBuiltinTypeError &Error, 7951 bool &RequiresICE, 7952 bool AllowTypeModifiers) { 7953 // Modifiers. 7954 int HowLong = 0; 7955 bool Signed = false, Unsigned = false; 7956 RequiresICE = false; 7957 7958 // Read the prefixed modifiers first. 7959 bool Done = false; 7960 while (!Done) { 7961 switch (*Str++) { 7962 default: Done = true; --Str; break; 7963 case 'I': 7964 RequiresICE = true; 7965 break; 7966 case 'S': 7967 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); 7968 assert(!Signed && "Can't use 'S' modifier multiple times!"); 7969 Signed = true; 7970 break; 7971 case 'U': 7972 assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); 7973 assert(!Unsigned && "Can't use 'U' modifier multiple times!"); 7974 Unsigned = true; 7975 break; 7976 case 'L': 7977 assert(HowLong <= 2 && "Can't have LLLL modifier"); 7978 ++HowLong; 7979 break; 7980 case 'W': 7981 // This modifier represents int64 type. 7982 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); 7983 switch (Context.getTargetInfo().getInt64Type()) { 7984 default: 7985 llvm_unreachable("Unexpected integer type"); 7986 case TargetInfo::SignedLong: 7987 HowLong = 1; 7988 break; 7989 case TargetInfo::SignedLongLong: 7990 HowLong = 2; 7991 break; 7992 } 7993 } 7994 } 7995 7996 QualType Type; 7997 7998 // Read the base type. 7999 switch (*Str++) { 8000 default: llvm_unreachable("Unknown builtin type letter!"); 8001 case 'v': 8002 assert(HowLong == 0 && !Signed && !Unsigned && 8003 "Bad modifiers used with 'v'!"); 8004 Type = Context.VoidTy; 8005 break; 8006 case 'h': 8007 assert(HowLong == 0 && !Signed && !Unsigned && 8008 "Bad modifiers used with 'h'!"); 8009 Type = Context.HalfTy; 8010 break; 8011 case 'f': 8012 assert(HowLong == 0 && !Signed && !Unsigned && 8013 "Bad modifiers used with 'f'!"); 8014 Type = Context.FloatTy; 8015 break; 8016 case 'd': 8017 assert(HowLong < 2 && !Signed && !Unsigned && 8018 "Bad modifiers used with 'd'!"); 8019 if (HowLong) 8020 Type = Context.LongDoubleTy; 8021 else 8022 Type = Context.DoubleTy; 8023 break; 8024 case 's': 8025 assert(HowLong == 0 && "Bad modifiers used with 's'!"); 8026 if (Unsigned) 8027 Type = Context.UnsignedShortTy; 8028 else 8029 Type = Context.ShortTy; 8030 break; 8031 case 'i': 8032 if (HowLong == 3) 8033 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; 8034 else if (HowLong == 2) 8035 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; 8036 else if (HowLong == 1) 8037 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; 8038 else 8039 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; 8040 break; 8041 case 'c': 8042 assert(HowLong == 0 && "Bad modifiers used with 'c'!"); 8043 if (Signed) 8044 Type = Context.SignedCharTy; 8045 else if (Unsigned) 8046 Type = Context.UnsignedCharTy; 8047 else 8048 Type = Context.CharTy; 8049 break; 8050 case 'b': // boolean 8051 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); 8052 Type = Context.BoolTy; 8053 break; 8054 case 'z': // size_t. 8055 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); 8056 Type = Context.getSizeType(); 8057 break; 8058 case 'F': 8059 Type = Context.getCFConstantStringType(); 8060 break; 8061 case 'G': 8062 Type = Context.getObjCIdType(); 8063 break; 8064 case 'H': 8065 Type = Context.getObjCSelType(); 8066 break; 8067 case 'M': 8068 Type = Context.getObjCSuperType(); 8069 break; 8070 case 'a': 8071 Type = Context.getBuiltinVaListType(); 8072 assert(!Type.isNull() && "builtin va list type not initialized!"); 8073 break; 8074 case 'A': 8075 // This is a "reference" to a va_list; however, what exactly 8076 // this means depends on how va_list is defined. There are two 8077 // different kinds of va_list: ones passed by value, and ones 8078 // passed by reference. An example of a by-value va_list is 8079 // x86, where va_list is a char*. An example of by-ref va_list 8080 // is x86-64, where va_list is a __va_list_tag[1]. For x86, 8081 // we want this argument to be a char*&; for x86-64, we want 8082 // it to be a __va_list_tag*. 8083 Type = Context.getBuiltinVaListType(); 8084 assert(!Type.isNull() && "builtin va list type not initialized!"); 8085 if (Type->isArrayType()) 8086 Type = Context.getArrayDecayedType(Type); 8087 else 8088 Type = Context.getLValueReferenceType(Type); 8089 break; 8090 case 'V': { 8091 char *End; 8092 unsigned NumElements = strtoul(Str, &End, 10); 8093 assert(End != Str && "Missing vector size"); 8094 Str = End; 8095 8096 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 8097 RequiresICE, false); 8098 assert(!RequiresICE && "Can't require vector ICE"); 8099 8100 // TODO: No way to make AltiVec vectors in builtins yet. 8101 Type = Context.getVectorType(ElementType, NumElements, 8102 VectorType::GenericVector); 8103 break; 8104 } 8105 case 'E': { 8106 char *End; 8107 8108 unsigned NumElements = strtoul(Str, &End, 10); 8109 assert(End != Str && "Missing vector size"); 8110 8111 Str = End; 8112 8113 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 8114 false); 8115 Type = Context.getExtVectorType(ElementType, NumElements); 8116 break; 8117 } 8118 case 'X': { 8119 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 8120 false); 8121 assert(!RequiresICE && "Can't require complex ICE"); 8122 Type = Context.getComplexType(ElementType); 8123 break; 8124 } 8125 case 'Y' : { 8126 Type = Context.getPointerDiffType(); 8127 break; 8128 } 8129 case 'P': 8130 Type = Context.getFILEType(); 8131 if (Type.isNull()) { 8132 Error = ASTContext::GE_Missing_stdio; 8133 return QualType(); 8134 } 8135 break; 8136 case 'J': 8137 if (Signed) 8138 Type = Context.getsigjmp_bufType(); 8139 else 8140 Type = Context.getjmp_bufType(); 8141 8142 if (Type.isNull()) { 8143 Error = ASTContext::GE_Missing_setjmp; 8144 return QualType(); 8145 } 8146 break; 8147 case 'K': 8148 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); 8149 Type = Context.getucontext_tType(); 8150 8151 if (Type.isNull()) { 8152 Error = ASTContext::GE_Missing_ucontext; 8153 return QualType(); 8154 } 8155 break; 8156 case 'p': 8157 Type = Context.getProcessIDType(); 8158 break; 8159 } 8160 8161 // If there are modifiers and if we're allowed to parse them, go for it. 8162 Done = !AllowTypeModifiers; 8163 while (!Done) { 8164 switch (char c = *Str++) { 8165 default: Done = true; --Str; break; 8166 case '*': 8167 case '&': { 8168 // Both pointers and references can have their pointee types 8169 // qualified with an address space. 8170 char *End; 8171 unsigned AddrSpace = strtoul(Str, &End, 10); 8172 if (End != Str && AddrSpace != 0) { 8173 Type = Context.getAddrSpaceQualType(Type, AddrSpace); 8174 Str = End; 8175 } 8176 if (c == '*') 8177 Type = Context.getPointerType(Type); 8178 else 8179 Type = Context.getLValueReferenceType(Type); 8180 break; 8181 } 8182 // FIXME: There's no way to have a built-in with an rvalue ref arg. 8183 case 'C': 8184 Type = Type.withConst(); 8185 break; 8186 case 'D': 8187 Type = Context.getVolatileType(Type); 8188 break; 8189 case 'R': 8190 Type = Type.withRestrict(); 8191 break; 8192 } 8193 } 8194 8195 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && 8196 "Integer constant 'I' type must be an integer"); 8197 8198 return Type; 8199 } 8200 8201 /// GetBuiltinType - Return the type for the specified builtin. 8202 QualType ASTContext::GetBuiltinType(unsigned Id, 8203 GetBuiltinTypeError &Error, 8204 unsigned *IntegerConstantArgs) const { 8205 const char *TypeStr = BuiltinInfo.getTypeString(Id); 8206 8207 SmallVector<QualType, 8> ArgTypes; 8208 8209 bool RequiresICE = false; 8210 Error = GE_None; 8211 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, 8212 RequiresICE, true); 8213 if (Error != GE_None) 8214 return QualType(); 8215 8216 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); 8217 8218 while (TypeStr[0] && TypeStr[0] != '.') { 8219 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); 8220 if (Error != GE_None) 8221 return QualType(); 8222 8223 // If this argument is required to be an IntegerConstantExpression and the 8224 // caller cares, fill in the bitmask we return. 8225 if (RequiresICE && IntegerConstantArgs) 8226 *IntegerConstantArgs |= 1 << ArgTypes.size(); 8227 8228 // Do array -> pointer decay. The builtin should use the decayed type. 8229 if (Ty->isArrayType()) 8230 Ty = getArrayDecayedType(Ty); 8231 8232 ArgTypes.push_back(Ty); 8233 } 8234 8235 if (Id == Builtin::BI__GetExceptionInfo) 8236 return QualType(); 8237 8238 assert((TypeStr[0] != '.' || TypeStr[1] == 0) && 8239 "'.' should only occur at end of builtin type list!"); 8240 8241 FunctionType::ExtInfo EI(CC_C); 8242 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); 8243 8244 bool Variadic = (TypeStr[0] == '.'); 8245 8246 // We really shouldn't be making a no-proto type here, especially in C++. 8247 if (ArgTypes.empty() && Variadic) 8248 return getFunctionNoProtoType(ResType, EI); 8249 8250 FunctionProtoType::ExtProtoInfo EPI; 8251 EPI.ExtInfo = EI; 8252 EPI.Variadic = Variadic; 8253 8254 return getFunctionType(ResType, ArgTypes, EPI); 8255 } 8256 8257 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, 8258 const FunctionDecl *FD) { 8259 if (!FD->isExternallyVisible()) 8260 return GVA_Internal; 8261 8262 GVALinkage External = GVA_StrongExternal; 8263 switch (FD->getTemplateSpecializationKind()) { 8264 case TSK_Undeclared: 8265 case TSK_ExplicitSpecialization: 8266 External = GVA_StrongExternal; 8267 break; 8268 8269 case TSK_ExplicitInstantiationDefinition: 8270 return GVA_StrongODR; 8271 8272 // C++11 [temp.explicit]p10: 8273 // [ Note: The intent is that an inline function that is the subject of 8274 // an explicit instantiation declaration will still be implicitly 8275 // instantiated when used so that the body can be considered for 8276 // inlining, but that no out-of-line copy of the inline function would be 8277 // generated in the translation unit. -- end note ] 8278 case TSK_ExplicitInstantiationDeclaration: 8279 return GVA_AvailableExternally; 8280 8281 case TSK_ImplicitInstantiation: 8282 External = GVA_DiscardableODR; 8283 break; 8284 } 8285 8286 if (!FD->isInlined()) 8287 return External; 8288 8289 if ((!Context.getLangOpts().CPlusPlus && 8290 !Context.getTargetInfo().getCXXABI().isMicrosoft() && 8291 !FD->hasAttr<DLLExportAttr>()) || 8292 FD->hasAttr<GNUInlineAttr>()) { 8293 // FIXME: This doesn't match gcc's behavior for dllexport inline functions. 8294 8295 // GNU or C99 inline semantics. Determine whether this symbol should be 8296 // externally visible. 8297 if (FD->isInlineDefinitionExternallyVisible()) 8298 return External; 8299 8300 // C99 inline semantics, where the symbol is not externally visible. 8301 return GVA_AvailableExternally; 8302 } 8303 8304 // Functions specified with extern and inline in -fms-compatibility mode 8305 // forcibly get emitted. While the body of the function cannot be later 8306 // replaced, the function definition cannot be discarded. 8307 if (FD->isMSExternInline()) 8308 return GVA_StrongODR; 8309 8310 return GVA_DiscardableODR; 8311 } 8312 8313 static GVALinkage adjustGVALinkageForAttributes(GVALinkage L, const Decl *D) { 8314 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx 8315 // dllexport/dllimport on inline functions. 8316 if (D->hasAttr<DLLImportAttr>()) { 8317 if (L == GVA_DiscardableODR || L == GVA_StrongODR) 8318 return GVA_AvailableExternally; 8319 } else if (D->hasAttr<DLLExportAttr>() || D->hasAttr<CUDAGlobalAttr>()) { 8320 if (L == GVA_DiscardableODR) 8321 return GVA_StrongODR; 8322 } 8323 return L; 8324 } 8325 8326 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { 8327 return adjustGVALinkageForAttributes(basicGVALinkageForFunction(*this, FD), 8328 FD); 8329 } 8330 8331 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, 8332 const VarDecl *VD) { 8333 if (!VD->isExternallyVisible()) 8334 return GVA_Internal; 8335 8336 if (VD->isStaticLocal()) { 8337 GVALinkage StaticLocalLinkage = GVA_DiscardableODR; 8338 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); 8339 while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) 8340 LexicalContext = LexicalContext->getLexicalParent(); 8341 8342 // Let the static local variable inherit its linkage from the nearest 8343 // enclosing function. 8344 if (LexicalContext) 8345 StaticLocalLinkage = 8346 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); 8347 8348 // GVA_StrongODR function linkage is stronger than what we need, 8349 // downgrade to GVA_DiscardableODR. 8350 // This allows us to discard the variable if we never end up needing it. 8351 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR 8352 : StaticLocalLinkage; 8353 } 8354 8355 // MSVC treats in-class initialized static data members as definitions. 8356 // By giving them non-strong linkage, out-of-line definitions won't 8357 // cause link errors. 8358 if (Context.isMSStaticDataMemberInlineDefinition(VD)) 8359 return GVA_DiscardableODR; 8360 8361 switch (VD->getTemplateSpecializationKind()) { 8362 case TSK_Undeclared: 8363 return GVA_StrongExternal; 8364 8365 case TSK_ExplicitSpecialization: 8366 return Context.getTargetInfo().getCXXABI().isMicrosoft() && 8367 VD->isStaticDataMember() 8368 ? GVA_StrongODR 8369 : GVA_StrongExternal; 8370 8371 case TSK_ExplicitInstantiationDefinition: 8372 return GVA_StrongODR; 8373 8374 case TSK_ExplicitInstantiationDeclaration: 8375 return GVA_AvailableExternally; 8376 8377 case TSK_ImplicitInstantiation: 8378 return GVA_DiscardableODR; 8379 } 8380 8381 llvm_unreachable("Invalid Linkage!"); 8382 } 8383 8384 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { 8385 return adjustGVALinkageForAttributes(basicGVALinkageForVariable(*this, VD), 8386 VD); 8387 } 8388 8389 bool ASTContext::DeclMustBeEmitted(const Decl *D) { 8390 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8391 if (!VD->isFileVarDecl()) 8392 return false; 8393 // Global named register variables (GNU extension) are never emitted. 8394 if (VD->getStorageClass() == SC_Register) 8395 return false; 8396 if (VD->getDescribedVarTemplate() || 8397 isa<VarTemplatePartialSpecializationDecl>(VD)) 8398 return false; 8399 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8400 // We never need to emit an uninstantiated function template. 8401 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 8402 return false; 8403 } else if (isa<OMPThreadPrivateDecl>(D)) 8404 return true; 8405 else 8406 return false; 8407 8408 // If this is a member of a class template, we do not need to emit it. 8409 if (D->getDeclContext()->isDependentContext()) 8410 return false; 8411 8412 // Weak references don't produce any output by themselves. 8413 if (D->hasAttr<WeakRefAttr>()) 8414 return false; 8415 8416 // Aliases and used decls are required. 8417 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) 8418 return true; 8419 8420 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8421 // Forward declarations aren't required. 8422 if (!FD->doesThisDeclarationHaveABody()) 8423 return FD->doesDeclarationForceExternallyVisibleDefinition(); 8424 8425 // Constructors and destructors are required. 8426 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 8427 return true; 8428 8429 // The key function for a class is required. This rule only comes 8430 // into play when inline functions can be key functions, though. 8431 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 8432 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 8433 const CXXRecordDecl *RD = MD->getParent(); 8434 if (MD->isOutOfLine() && RD->isDynamicClass()) { 8435 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); 8436 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) 8437 return true; 8438 } 8439 } 8440 } 8441 8442 GVALinkage Linkage = GetGVALinkageForFunction(FD); 8443 8444 // static, static inline, always_inline, and extern inline functions can 8445 // always be deferred. Normal inline functions can be deferred in C99/C++. 8446 // Implicit template instantiations can also be deferred in C++. 8447 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally || 8448 Linkage == GVA_DiscardableODR) 8449 return false; 8450 return true; 8451 } 8452 8453 const VarDecl *VD = cast<VarDecl>(D); 8454 assert(VD->isFileVarDecl() && "Expected file scoped var"); 8455 8456 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && 8457 !isMSStaticDataMemberInlineDefinition(VD)) 8458 return false; 8459 8460 // Variables that can be needed in other TUs are required. 8461 GVALinkage L = GetGVALinkageForVariable(VD); 8462 if (L != GVA_Internal && L != GVA_AvailableExternally && 8463 L != GVA_DiscardableODR) 8464 return true; 8465 8466 // Variables that have destruction with side-effects are required. 8467 if (VD->getType().isDestructedType()) 8468 return true; 8469 8470 // Variables that have initialization with side-effects are required. 8471 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && 8472 !VD->evaluateValue()) 8473 return true; 8474 8475 return false; 8476 } 8477 8478 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, 8479 bool IsCXXMethod) const { 8480 // Pass through to the C++ ABI object 8481 if (IsCXXMethod) 8482 return ABI->getDefaultMethodCallConv(IsVariadic); 8483 8484 if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall; 8485 8486 return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown); 8487 } 8488 8489 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { 8490 // Pass through to the C++ ABI object 8491 return ABI->isNearlyEmpty(RD); 8492 } 8493 8494 VTableContextBase *ASTContext::getVTableContext() { 8495 if (!VTContext.get()) { 8496 if (Target->getCXXABI().isMicrosoft()) 8497 VTContext.reset(new MicrosoftVTableContext(*this)); 8498 else 8499 VTContext.reset(new ItaniumVTableContext(*this)); 8500 } 8501 return VTContext.get(); 8502 } 8503 8504 MangleContext *ASTContext::createMangleContext() { 8505 switch (Target->getCXXABI().getKind()) { 8506 case TargetCXXABI::GenericAArch64: 8507 case TargetCXXABI::GenericItanium: 8508 case TargetCXXABI::GenericARM: 8509 case TargetCXXABI::GenericMIPS: 8510 case TargetCXXABI::iOS: 8511 case TargetCXXABI::iOS64: 8512 case TargetCXXABI::WebAssembly: 8513 case TargetCXXABI::WatchOS: 8514 return ItaniumMangleContext::create(*this, getDiagnostics()); 8515 case TargetCXXABI::Microsoft: 8516 return MicrosoftMangleContext::create(*this, getDiagnostics()); 8517 } 8518 llvm_unreachable("Unsupported ABI"); 8519 } 8520 8521 CXXABI::~CXXABI() {} 8522 8523 size_t ASTContext::getSideTableAllocatedMemory() const { 8524 return ASTRecordLayouts.getMemorySize() + 8525 llvm::capacity_in_bytes(ObjCLayouts) + 8526 llvm::capacity_in_bytes(KeyFunctions) + 8527 llvm::capacity_in_bytes(ObjCImpls) + 8528 llvm::capacity_in_bytes(BlockVarCopyInits) + 8529 llvm::capacity_in_bytes(DeclAttrs) + 8530 llvm::capacity_in_bytes(TemplateOrInstantiation) + 8531 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + 8532 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + 8533 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + 8534 llvm::capacity_in_bytes(OverriddenMethods) + 8535 llvm::capacity_in_bytes(Types) + 8536 llvm::capacity_in_bytes(VariableArrayTypes) + 8537 llvm::capacity_in_bytes(ClassScopeSpecializationPattern); 8538 } 8539 8540 /// getIntTypeForBitwidth - 8541 /// sets integer QualTy according to specified details: 8542 /// bitwidth, signed/unsigned. 8543 /// Returns empty type if there is no appropriate target types. 8544 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, 8545 unsigned Signed) const { 8546 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); 8547 CanQualType QualTy = getFromTargetType(Ty); 8548 if (!QualTy && DestWidth == 128) 8549 return Signed ? Int128Ty : UnsignedInt128Ty; 8550 return QualTy; 8551 } 8552 8553 /// getRealTypeForBitwidth - 8554 /// sets floating point QualTy according to specified bitwidth. 8555 /// Returns empty type if there is no appropriate target types. 8556 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const { 8557 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth); 8558 switch (Ty) { 8559 case TargetInfo::Float: 8560 return FloatTy; 8561 case TargetInfo::Double: 8562 return DoubleTy; 8563 case TargetInfo::LongDouble: 8564 return LongDoubleTy; 8565 case TargetInfo::NoFloat: 8566 return QualType(); 8567 } 8568 8569 llvm_unreachable("Unhandled TargetInfo::RealType value"); 8570 } 8571 8572 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { 8573 if (Number > 1) 8574 MangleNumbers[ND] = Number; 8575 } 8576 8577 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { 8578 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I = 8579 MangleNumbers.find(ND); 8580 return I != MangleNumbers.end() ? I->second : 1; 8581 } 8582 8583 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { 8584 if (Number > 1) 8585 StaticLocalNumbers[VD] = Number; 8586 } 8587 8588 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { 8589 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = 8590 StaticLocalNumbers.find(VD); 8591 return I != StaticLocalNumbers.end() ? I->second : 1; 8592 } 8593 8594 MangleNumberingContext & 8595 ASTContext::getManglingNumberContext(const DeclContext *DC) { 8596 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 8597 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC]; 8598 if (!MCtx) 8599 MCtx = createMangleNumberingContext(); 8600 return *MCtx; 8601 } 8602 8603 MangleNumberingContext *ASTContext::createMangleNumberingContext() const { 8604 return ABI->createMangleNumberingContext(); 8605 } 8606 8607 const CXXConstructorDecl * 8608 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { 8609 return ABI->getCopyConstructorForExceptionObject( 8610 cast<CXXRecordDecl>(RD->getFirstDecl())); 8611 } 8612 8613 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, 8614 CXXConstructorDecl *CD) { 8615 return ABI->addCopyConstructorForExceptionObject( 8616 cast<CXXRecordDecl>(RD->getFirstDecl()), 8617 cast<CXXConstructorDecl>(CD->getFirstDecl())); 8618 } 8619 8620 void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD, 8621 unsigned ParmIdx, Expr *DAE) { 8622 ABI->addDefaultArgExprForConstructor( 8623 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE); 8624 } 8625 8626 Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD, 8627 unsigned ParmIdx) { 8628 return ABI->getDefaultArgExprForConstructor( 8629 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx); 8630 } 8631 8632 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, 8633 TypedefNameDecl *DD) { 8634 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); 8635 } 8636 8637 TypedefNameDecl * 8638 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { 8639 return ABI->getTypedefNameForUnnamedTagDecl(TD); 8640 } 8641 8642 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, 8643 DeclaratorDecl *DD) { 8644 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); 8645 } 8646 8647 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { 8648 return ABI->getDeclaratorForUnnamedTagDecl(TD); 8649 } 8650 8651 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { 8652 ParamIndices[D] = index; 8653 } 8654 8655 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { 8656 ParameterIndexTable::const_iterator I = ParamIndices.find(D); 8657 assert(I != ParamIndices.end() && 8658 "ParmIndices lacks entry set by ParmVarDecl"); 8659 return I->second; 8660 } 8661 8662 APValue * 8663 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E, 8664 bool MayCreate) { 8665 assert(E && E->getStorageDuration() == SD_Static && 8666 "don't need to cache the computed value for this temporary"); 8667 if (MayCreate) { 8668 APValue *&MTVI = MaterializedTemporaryValues[E]; 8669 if (!MTVI) 8670 MTVI = new (*this) APValue; 8671 return MTVI; 8672 } 8673 8674 return MaterializedTemporaryValues.lookup(E); 8675 } 8676 8677 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { 8678 const llvm::Triple &T = getTargetInfo().getTriple(); 8679 if (!T.isOSDarwin()) 8680 return false; 8681 8682 if (!(T.isiOS() && T.isOSVersionLT(7)) && 8683 !(T.isMacOSX() && T.isOSVersionLT(10, 9))) 8684 return false; 8685 8686 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 8687 CharUnits sizeChars = getTypeSizeInChars(AtomicTy); 8688 uint64_t Size = sizeChars.getQuantity(); 8689 CharUnits alignChars = getTypeAlignInChars(AtomicTy); 8690 unsigned Align = alignChars.getQuantity(); 8691 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); 8692 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); 8693 } 8694 8695 namespace { 8696 8697 ast_type_traits::DynTypedNode getSingleDynTypedNodeFromParentMap( 8698 ASTContext::ParentMapPointers::mapped_type U) { 8699 if (const auto *D = U.dyn_cast<const Decl *>()) 8700 return ast_type_traits::DynTypedNode::create(*D); 8701 if (const auto *S = U.dyn_cast<const Stmt *>()) 8702 return ast_type_traits::DynTypedNode::create(*S); 8703 return *U.get<ast_type_traits::DynTypedNode *>(); 8704 } 8705 8706 /// Template specializations to abstract away from pointers and TypeLocs. 8707 /// @{ 8708 template <typename T> 8709 ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) { 8710 return ast_type_traits::DynTypedNode::create(*Node); 8711 } 8712 template <> 8713 ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) { 8714 return ast_type_traits::DynTypedNode::create(Node); 8715 } 8716 template <> 8717 ast_type_traits::DynTypedNode 8718 createDynTypedNode(const NestedNameSpecifierLoc &Node) { 8719 return ast_type_traits::DynTypedNode::create(Node); 8720 } 8721 /// @} 8722 8723 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their 8724 /// parents as defined by the \c RecursiveASTVisitor. 8725 /// 8726 /// Note that the relationship described here is purely in terms of AST 8727 /// traversal - there are other relationships (for example declaration context) 8728 /// in the AST that are better modeled by special matchers. 8729 /// 8730 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes. 8731 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> { 8732 public: 8733 /// \brief Builds and returns the translation unit's parent map. 8734 /// 8735 /// The caller takes ownership of the returned \c ParentMap. 8736 static std::pair<ASTContext::ParentMapPointers *, 8737 ASTContext::ParentMapOtherNodes *> 8738 buildMap(TranslationUnitDecl &TU) { 8739 ParentMapASTVisitor Visitor(new ASTContext::ParentMapPointers, 8740 new ASTContext::ParentMapOtherNodes); 8741 Visitor.TraverseDecl(&TU); 8742 return std::make_pair(Visitor.Parents, Visitor.OtherParents); 8743 } 8744 8745 private: 8746 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase; 8747 8748 ParentMapASTVisitor(ASTContext::ParentMapPointers *Parents, 8749 ASTContext::ParentMapOtherNodes *OtherParents) 8750 : Parents(Parents), OtherParents(OtherParents) {} 8751 8752 bool shouldVisitTemplateInstantiations() const { 8753 return true; 8754 } 8755 bool shouldVisitImplicitCode() const { 8756 return true; 8757 } 8758 8759 template <typename T, typename MapNodeTy, typename BaseTraverseFn, 8760 typename MapTy> 8761 bool TraverseNode(T Node, MapNodeTy MapNode, 8762 BaseTraverseFn BaseTraverse, MapTy *Parents) { 8763 if (!Node) 8764 return true; 8765 if (ParentStack.size() > 0) { 8766 // FIXME: Currently we add the same parent multiple times, but only 8767 // when no memoization data is available for the type. 8768 // For example when we visit all subexpressions of template 8769 // instantiations; this is suboptimal, but benign: the only way to 8770 // visit those is with hasAncestor / hasParent, and those do not create 8771 // new matches. 8772 // The plan is to enable DynTypedNode to be storable in a map or hash 8773 // map. The main problem there is to implement hash functions / 8774 // comparison operators for all types that DynTypedNode supports that 8775 // do not have pointer identity. 8776 auto &NodeOrVector = (*Parents)[MapNode]; 8777 if (NodeOrVector.isNull()) { 8778 if (const auto *D = ParentStack.back().get<Decl>()) 8779 NodeOrVector = D; 8780 else if (const auto *S = ParentStack.back().get<Stmt>()) 8781 NodeOrVector = S; 8782 else 8783 NodeOrVector = 8784 new ast_type_traits::DynTypedNode(ParentStack.back()); 8785 } else { 8786 if (!NodeOrVector.template is<ASTContext::ParentVector *>()) { 8787 auto *Vector = new ASTContext::ParentVector( 8788 1, getSingleDynTypedNodeFromParentMap(NodeOrVector)); 8789 if (auto *Node = 8790 NodeOrVector 8791 .template dyn_cast<ast_type_traits::DynTypedNode *>()) 8792 delete Node; 8793 NodeOrVector = Vector; 8794 } 8795 8796 auto *Vector = 8797 NodeOrVector.template get<ASTContext::ParentVector *>(); 8798 // Skip duplicates for types that have memoization data. 8799 // We must check that the type has memoization data before calling 8800 // std::find() because DynTypedNode::operator== can't compare all 8801 // types. 8802 bool Found = ParentStack.back().getMemoizationData() && 8803 std::find(Vector->begin(), Vector->end(), 8804 ParentStack.back()) != Vector->end(); 8805 if (!Found) 8806 Vector->push_back(ParentStack.back()); 8807 } 8808 } 8809 ParentStack.push_back(createDynTypedNode(Node)); 8810 bool Result = BaseTraverse(); 8811 ParentStack.pop_back(); 8812 return Result; 8813 } 8814 8815 bool TraverseDecl(Decl *DeclNode) { 8816 return TraverseNode(DeclNode, DeclNode, 8817 [&] { return VisitorBase::TraverseDecl(DeclNode); }, 8818 Parents); 8819 } 8820 8821 bool TraverseStmt(Stmt *StmtNode) { 8822 return TraverseNode(StmtNode, StmtNode, 8823 [&] { return VisitorBase::TraverseStmt(StmtNode); }, 8824 Parents); 8825 } 8826 8827 bool TraverseTypeLoc(TypeLoc TypeLocNode) { 8828 return TraverseNode( 8829 TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode), 8830 [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); }, 8831 OtherParents); 8832 } 8833 8834 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) { 8835 return TraverseNode( 8836 NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode), 8837 [&] { 8838 return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); 8839 }, 8840 OtherParents); 8841 } 8842 8843 ASTContext::ParentMapPointers *Parents; 8844 ASTContext::ParentMapOtherNodes *OtherParents; 8845 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack; 8846 8847 friend class RecursiveASTVisitor<ParentMapASTVisitor>; 8848 }; 8849 8850 } // anonymous namespace 8851 8852 template <typename NodeTy, typename MapTy> 8853 static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node, 8854 const MapTy &Map) { 8855 auto I = Map.find(Node); 8856 if (I == Map.end()) { 8857 return llvm::ArrayRef<ast_type_traits::DynTypedNode>(); 8858 } 8859 if (auto *V = I->second.template dyn_cast<ASTContext::ParentVector *>()) { 8860 return llvm::makeArrayRef(*V); 8861 } 8862 return getSingleDynTypedNodeFromParentMap(I->second); 8863 } 8864 8865 ASTContext::DynTypedNodeList 8866 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) { 8867 if (!PointerParents) { 8868 // We always need to run over the whole translation unit, as 8869 // hasAncestor can escape any subtree. 8870 auto Maps = ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()); 8871 PointerParents.reset(Maps.first); 8872 OtherParents.reset(Maps.second); 8873 } 8874 if (Node.getNodeKind().hasPointerIdentity()) 8875 return getDynNodeFromMap(Node.getMemoizationData(), *PointerParents); 8876 return getDynNodeFromMap(Node, *OtherParents); 8877 } 8878 8879 bool 8880 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, 8881 const ObjCMethodDecl *MethodImpl) { 8882 // No point trying to match an unavailable/deprecated mothod. 8883 if (MethodDecl->hasAttr<UnavailableAttr>() 8884 || MethodDecl->hasAttr<DeprecatedAttr>()) 8885 return false; 8886 if (MethodDecl->getObjCDeclQualifier() != 8887 MethodImpl->getObjCDeclQualifier()) 8888 return false; 8889 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) 8890 return false; 8891 8892 if (MethodDecl->param_size() != MethodImpl->param_size()) 8893 return false; 8894 8895 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), 8896 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), 8897 EF = MethodDecl->param_end(); 8898 IM != EM && IF != EF; ++IM, ++IF) { 8899 const ParmVarDecl *DeclVar = (*IF); 8900 const ParmVarDecl *ImplVar = (*IM); 8901 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) 8902 return false; 8903 if (!hasSameType(DeclVar->getType(), ImplVar->getType())) 8904 return false; 8905 } 8906 return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); 8907 8908 } 8909 8910 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that 8911 // doesn't include ASTContext.h 8912 template 8913 clang::LazyGenerationalUpdatePtr< 8914 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType 8915 clang::LazyGenerationalUpdatePtr< 8916 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( 8917 const clang::ASTContext &Ctx, Decl *Value); 8918