Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the ASTContext interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "CXXABI.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/AST/Comment.h"
     20 #include "clang/AST/CommentCommandTraits.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExternalASTSource.h"
     27 #include "clang/AST/Mangle.h"
     28 #include "clang/AST/MangleNumberingContext.h"
     29 #include "clang/AST/RecordLayout.h"
     30 #include "clang/AST/RecursiveASTVisitor.h"
     31 #include "clang/AST/TypeLoc.h"
     32 #include "clang/AST/VTableBuilder.h"
     33 #include "clang/Basic/Builtins.h"
     34 #include "clang/Basic/SourceManager.h"
     35 #include "clang/Basic/TargetInfo.h"
     36 #include "llvm/ADT/SmallString.h"
     37 #include "llvm/ADT/StringExtras.h"
     38 #include "llvm/ADT/Triple.h"
     39 #include "llvm/Support/Capacity.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include <map>
     43 
     44 using namespace clang;
     45 
     46 unsigned ASTContext::NumImplicitDefaultConstructors;
     47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
     48 unsigned ASTContext::NumImplicitCopyConstructors;
     49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
     50 unsigned ASTContext::NumImplicitMoveConstructors;
     51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
     52 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
     53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
     54 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
     55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
     56 unsigned ASTContext::NumImplicitDestructors;
     57 unsigned ASTContext::NumImplicitDestructorsDeclared;
     58 
     59 enum FloatingRank {
     60   HalfRank, FloatRank, DoubleRank, LongDoubleRank
     61 };
     62 
     63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
     64   if (!CommentsLoaded && ExternalSource) {
     65     ExternalSource->ReadComments();
     66 
     67 #ifndef NDEBUG
     68     ArrayRef<RawComment *> RawComments = Comments.getComments();
     69     assert(std::is_sorted(RawComments.begin(), RawComments.end(),
     70                           BeforeThanCompare<RawComment>(SourceMgr)));
     71 #endif
     72 
     73     CommentsLoaded = true;
     74   }
     75 
     76   assert(D);
     77 
     78   // User can not attach documentation to implicit declarations.
     79   if (D->isImplicit())
     80     return nullptr;
     81 
     82   // User can not attach documentation to implicit instantiations.
     83   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     84     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     85       return nullptr;
     86   }
     87 
     88   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
     89     if (VD->isStaticDataMember() &&
     90         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     91       return nullptr;
     92   }
     93 
     94   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
     95     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     96       return nullptr;
     97   }
     98 
     99   if (const ClassTemplateSpecializationDecl *CTSD =
    100           dyn_cast<ClassTemplateSpecializationDecl>(D)) {
    101     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
    102     if (TSK == TSK_ImplicitInstantiation ||
    103         TSK == TSK_Undeclared)
    104       return nullptr;
    105   }
    106 
    107   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    108     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
    109       return nullptr;
    110   }
    111   if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
    112     // When tag declaration (but not definition!) is part of the
    113     // decl-specifier-seq of some other declaration, it doesn't get comment
    114     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
    115       return nullptr;
    116   }
    117   // TODO: handle comments for function parameters properly.
    118   if (isa<ParmVarDecl>(D))
    119     return nullptr;
    120 
    121   // TODO: we could look up template parameter documentation in the template
    122   // documentation.
    123   if (isa<TemplateTypeParmDecl>(D) ||
    124       isa<NonTypeTemplateParmDecl>(D) ||
    125       isa<TemplateTemplateParmDecl>(D))
    126     return nullptr;
    127 
    128   ArrayRef<RawComment *> RawComments = Comments.getComments();
    129 
    130   // If there are no comments anywhere, we won't find anything.
    131   if (RawComments.empty())
    132     return nullptr;
    133 
    134   // Find declaration location.
    135   // For Objective-C declarations we generally don't expect to have multiple
    136   // declarators, thus use declaration starting location as the "declaration
    137   // location".
    138   // For all other declarations multiple declarators are used quite frequently,
    139   // so we use the location of the identifier as the "declaration location".
    140   SourceLocation DeclLoc;
    141   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
    142       isa<ObjCPropertyDecl>(D) ||
    143       isa<RedeclarableTemplateDecl>(D) ||
    144       isa<ClassTemplateSpecializationDecl>(D))
    145     DeclLoc = D->getLocStart();
    146   else {
    147     DeclLoc = D->getLocation();
    148     if (DeclLoc.isMacroID()) {
    149       if (isa<TypedefDecl>(D)) {
    150         // If location of the typedef name is in a macro, it is because being
    151         // declared via a macro. Try using declaration's starting location as
    152         // the "declaration location".
    153         DeclLoc = D->getLocStart();
    154       } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
    155         // If location of the tag decl is inside a macro, but the spelling of
    156         // the tag name comes from a macro argument, it looks like a special
    157         // macro like NS_ENUM is being used to define the tag decl.  In that
    158         // case, adjust the source location to the expansion loc so that we can
    159         // attach the comment to the tag decl.
    160         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
    161             TD->isCompleteDefinition())
    162           DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
    163       }
    164     }
    165   }
    166 
    167   // If the declaration doesn't map directly to a location in a file, we
    168   // can't find the comment.
    169   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
    170     return nullptr;
    171 
    172   // Find the comment that occurs just after this declaration.
    173   ArrayRef<RawComment *>::iterator Comment;
    174   {
    175     // When searching for comments during parsing, the comment we are looking
    176     // for is usually among the last two comments we parsed -- check them
    177     // first.
    178     RawComment CommentAtDeclLoc(
    179         SourceMgr, SourceRange(DeclLoc), false,
    180         LangOpts.CommentOpts.ParseAllComments);
    181     BeforeThanCompare<RawComment> Compare(SourceMgr);
    182     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
    183     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    184     if (!Found && RawComments.size() >= 2) {
    185       MaybeBeforeDecl--;
    186       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    187     }
    188 
    189     if (Found) {
    190       Comment = MaybeBeforeDecl + 1;
    191       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
    192                                          &CommentAtDeclLoc, Compare));
    193     } else {
    194       // Slow path.
    195       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
    196                                  &CommentAtDeclLoc, Compare);
    197     }
    198   }
    199 
    200   // Decompose the location for the declaration and find the beginning of the
    201   // file buffer.
    202   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
    203 
    204   // First check whether we have a trailing comment.
    205   if (Comment != RawComments.end() &&
    206       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
    207       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
    208        isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
    209     std::pair<FileID, unsigned> CommentBeginDecomp
    210       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
    211     // Check that Doxygen trailing comment comes after the declaration, starts
    212     // on the same line and in the same file as the declaration.
    213     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
    214         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
    215           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
    216                                      CommentBeginDecomp.second)) {
    217       return *Comment;
    218     }
    219   }
    220 
    221   // The comment just after the declaration was not a trailing comment.
    222   // Let's look at the previous comment.
    223   if (Comment == RawComments.begin())
    224     return nullptr;
    225   --Comment;
    226 
    227   // Check that we actually have a non-member Doxygen comment.
    228   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
    229     return nullptr;
    230 
    231   // Decompose the end of the comment.
    232   std::pair<FileID, unsigned> CommentEndDecomp
    233     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
    234 
    235   // If the comment and the declaration aren't in the same file, then they
    236   // aren't related.
    237   if (DeclLocDecomp.first != CommentEndDecomp.first)
    238     return nullptr;
    239 
    240   // Get the corresponding buffer.
    241   bool Invalid = false;
    242   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
    243                                                &Invalid).data();
    244   if (Invalid)
    245     return nullptr;
    246 
    247   // Extract text between the comment and declaration.
    248   StringRef Text(Buffer + CommentEndDecomp.second,
    249                  DeclLocDecomp.second - CommentEndDecomp.second);
    250 
    251   // There should be no other declarations or preprocessor directives between
    252   // comment and declaration.
    253   if (Text.find_first_of(";{}#@") != StringRef::npos)
    254     return nullptr;
    255 
    256   return *Comment;
    257 }
    258 
    259 namespace {
    260 /// If we have a 'templated' declaration for a template, adjust 'D' to
    261 /// refer to the actual template.
    262 /// If we have an implicit instantiation, adjust 'D' to refer to template.
    263 const Decl *adjustDeclToTemplate(const Decl *D) {
    264   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    265     // Is this function declaration part of a function template?
    266     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
    267       return FTD;
    268 
    269     // Nothing to do if function is not an implicit instantiation.
    270     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
    271       return D;
    272 
    273     // Function is an implicit instantiation of a function template?
    274     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
    275       return FTD;
    276 
    277     // Function is instantiated from a member definition of a class template?
    278     if (const FunctionDecl *MemberDecl =
    279             FD->getInstantiatedFromMemberFunction())
    280       return MemberDecl;
    281 
    282     return D;
    283   }
    284   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    285     // Static data member is instantiated from a member definition of a class
    286     // template?
    287     if (VD->isStaticDataMember())
    288       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
    289         return MemberDecl;
    290 
    291     return D;
    292   }
    293   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
    294     // Is this class declaration part of a class template?
    295     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
    296       return CTD;
    297 
    298     // Class is an implicit instantiation of a class template or partial
    299     // specialization?
    300     if (const ClassTemplateSpecializationDecl *CTSD =
    301             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
    302       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
    303         return D;
    304       llvm::PointerUnion<ClassTemplateDecl *,
    305                          ClassTemplatePartialSpecializationDecl *>
    306           PU = CTSD->getSpecializedTemplateOrPartial();
    307       return PU.is<ClassTemplateDecl*>() ?
    308           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
    309           static_cast<const Decl*>(
    310               PU.get<ClassTemplatePartialSpecializationDecl *>());
    311     }
    312 
    313     // Class is instantiated from a member definition of a class template?
    314     if (const MemberSpecializationInfo *Info =
    315                    CRD->getMemberSpecializationInfo())
    316       return Info->getInstantiatedFrom();
    317 
    318     return D;
    319   }
    320   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    321     // Enum is instantiated from a member definition of a class template?
    322     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
    323       return MemberDecl;
    324 
    325     return D;
    326   }
    327   // FIXME: Adjust alias templates?
    328   return D;
    329 }
    330 } // anonymous namespace
    331 
    332 const RawComment *ASTContext::getRawCommentForAnyRedecl(
    333                                                 const Decl *D,
    334                                                 const Decl **OriginalDecl) const {
    335   D = adjustDeclToTemplate(D);
    336 
    337   // Check whether we have cached a comment for this declaration already.
    338   {
    339     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    340         RedeclComments.find(D);
    341     if (Pos != RedeclComments.end()) {
    342       const RawCommentAndCacheFlags &Raw = Pos->second;
    343       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    344         if (OriginalDecl)
    345           *OriginalDecl = Raw.getOriginalDecl();
    346         return Raw.getRaw();
    347       }
    348     }
    349   }
    350 
    351   // Search for comments attached to declarations in the redeclaration chain.
    352   const RawComment *RC = nullptr;
    353   const Decl *OriginalDeclForRC = nullptr;
    354   for (auto I : D->redecls()) {
    355     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    356         RedeclComments.find(I);
    357     if (Pos != RedeclComments.end()) {
    358       const RawCommentAndCacheFlags &Raw = Pos->second;
    359       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    360         RC = Raw.getRaw();
    361         OriginalDeclForRC = Raw.getOriginalDecl();
    362         break;
    363       }
    364     } else {
    365       RC = getRawCommentForDeclNoCache(I);
    366       OriginalDeclForRC = I;
    367       RawCommentAndCacheFlags Raw;
    368       if (RC) {
    369         // Call order swapped to work around ICE in VS2015 RTM (Release Win32)
    370         // https://connect.microsoft.com/VisualStudio/feedback/details/1741530
    371         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
    372         Raw.setRaw(RC);
    373       } else
    374         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
    375       Raw.setOriginalDecl(I);
    376       RedeclComments[I] = Raw;
    377       if (RC)
    378         break;
    379     }
    380   }
    381 
    382   // If we found a comment, it should be a documentation comment.
    383   assert(!RC || RC->isDocumentation());
    384 
    385   if (OriginalDecl)
    386     *OriginalDecl = OriginalDeclForRC;
    387 
    388   // Update cache for every declaration in the redeclaration chain.
    389   RawCommentAndCacheFlags Raw;
    390   Raw.setRaw(RC);
    391   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
    392   Raw.setOriginalDecl(OriginalDeclForRC);
    393 
    394   for (auto I : D->redecls()) {
    395     RawCommentAndCacheFlags &R = RedeclComments[I];
    396     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
    397       R = Raw;
    398   }
    399 
    400   return RC;
    401 }
    402 
    403 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
    404                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
    405   const DeclContext *DC = ObjCMethod->getDeclContext();
    406   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
    407     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
    408     if (!ID)
    409       return;
    410     // Add redeclared method here.
    411     for (const auto *Ext : ID->known_extensions()) {
    412       if (ObjCMethodDecl *RedeclaredMethod =
    413             Ext->getMethod(ObjCMethod->getSelector(),
    414                                   ObjCMethod->isInstanceMethod()))
    415         Redeclared.push_back(RedeclaredMethod);
    416     }
    417   }
    418 }
    419 
    420 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
    421                                                     const Decl *D) const {
    422   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
    423   ThisDeclInfo->CommentDecl = D;
    424   ThisDeclInfo->IsFilled = false;
    425   ThisDeclInfo->fill();
    426   ThisDeclInfo->CommentDecl = FC->getDecl();
    427   if (!ThisDeclInfo->TemplateParameters)
    428     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
    429   comments::FullComment *CFC =
    430     new (*this) comments::FullComment(FC->getBlocks(),
    431                                       ThisDeclInfo);
    432   return CFC;
    433 }
    434 
    435 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
    436   const RawComment *RC = getRawCommentForDeclNoCache(D);
    437   return RC ? RC->parse(*this, nullptr, D) : nullptr;
    438 }
    439 
    440 comments::FullComment *ASTContext::getCommentForDecl(
    441                                               const Decl *D,
    442                                               const Preprocessor *PP) const {
    443   if (D->isInvalidDecl())
    444     return nullptr;
    445   D = adjustDeclToTemplate(D);
    446 
    447   const Decl *Canonical = D->getCanonicalDecl();
    448   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
    449       ParsedComments.find(Canonical);
    450 
    451   if (Pos != ParsedComments.end()) {
    452     if (Canonical != D) {
    453       comments::FullComment *FC = Pos->second;
    454       comments::FullComment *CFC = cloneFullComment(FC, D);
    455       return CFC;
    456     }
    457     return Pos->second;
    458   }
    459 
    460   const Decl *OriginalDecl;
    461 
    462   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
    463   if (!RC) {
    464     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
    465       SmallVector<const NamedDecl*, 8> Overridden;
    466       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
    467       if (OMD && OMD->isPropertyAccessor())
    468         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
    469           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
    470             return cloneFullComment(FC, D);
    471       if (OMD)
    472         addRedeclaredMethods(OMD, Overridden);
    473       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
    474       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
    475         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
    476           return cloneFullComment(FC, D);
    477     }
    478     else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    479       // Attach any tag type's documentation to its typedef if latter
    480       // does not have one of its own.
    481       QualType QT = TD->getUnderlyingType();
    482       if (const TagType *TT = QT->getAs<TagType>())
    483         if (const Decl *TD = TT->getDecl())
    484           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
    485             return cloneFullComment(FC, D);
    486     }
    487     else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
    488       while (IC->getSuperClass()) {
    489         IC = IC->getSuperClass();
    490         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
    491           return cloneFullComment(FC, D);
    492       }
    493     }
    494     else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
    495       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
    496         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
    497           return cloneFullComment(FC, D);
    498     }
    499     else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    500       if (!(RD = RD->getDefinition()))
    501         return nullptr;
    502       // Check non-virtual bases.
    503       for (const auto &I : RD->bases()) {
    504         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
    505           continue;
    506         QualType Ty = I.getType();
    507         if (Ty.isNull())
    508           continue;
    509         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
    510           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
    511             continue;
    512 
    513           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
    514             return cloneFullComment(FC, D);
    515         }
    516       }
    517       // Check virtual bases.
    518       for (const auto &I : RD->vbases()) {
    519         if (I.getAccessSpecifier() != AS_public)
    520           continue;
    521         QualType Ty = I.getType();
    522         if (Ty.isNull())
    523           continue;
    524         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
    525           if (!(VirtualBase= VirtualBase->getDefinition()))
    526             continue;
    527           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
    528             return cloneFullComment(FC, D);
    529         }
    530       }
    531     }
    532     return nullptr;
    533   }
    534 
    535   // If the RawComment was attached to other redeclaration of this Decl, we
    536   // should parse the comment in context of that other Decl.  This is important
    537   // because comments can contain references to parameter names which can be
    538   // different across redeclarations.
    539   if (D != OriginalDecl)
    540     return getCommentForDecl(OriginalDecl, PP);
    541 
    542   comments::FullComment *FC = RC->parse(*this, PP, D);
    543   ParsedComments[Canonical] = FC;
    544   return FC;
    545 }
    546 
    547 void
    548 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
    549                                                TemplateTemplateParmDecl *Parm) {
    550   ID.AddInteger(Parm->getDepth());
    551   ID.AddInteger(Parm->getPosition());
    552   ID.AddBoolean(Parm->isParameterPack());
    553 
    554   TemplateParameterList *Params = Parm->getTemplateParameters();
    555   ID.AddInteger(Params->size());
    556   for (TemplateParameterList::const_iterator P = Params->begin(),
    557                                           PEnd = Params->end();
    558        P != PEnd; ++P) {
    559     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
    560       ID.AddInteger(0);
    561       ID.AddBoolean(TTP->isParameterPack());
    562       continue;
    563     }
    564 
    565     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    566       ID.AddInteger(1);
    567       ID.AddBoolean(NTTP->isParameterPack());
    568       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
    569       if (NTTP->isExpandedParameterPack()) {
    570         ID.AddBoolean(true);
    571         ID.AddInteger(NTTP->getNumExpansionTypes());
    572         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    573           QualType T = NTTP->getExpansionType(I);
    574           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
    575         }
    576       } else
    577         ID.AddBoolean(false);
    578       continue;
    579     }
    580 
    581     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
    582     ID.AddInteger(2);
    583     Profile(ID, TTP);
    584   }
    585 }
    586 
    587 TemplateTemplateParmDecl *
    588 ASTContext::getCanonicalTemplateTemplateParmDecl(
    589                                           TemplateTemplateParmDecl *TTP) const {
    590   // Check if we already have a canonical template template parameter.
    591   llvm::FoldingSetNodeID ID;
    592   CanonicalTemplateTemplateParm::Profile(ID, TTP);
    593   void *InsertPos = nullptr;
    594   CanonicalTemplateTemplateParm *Canonical
    595     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    596   if (Canonical)
    597     return Canonical->getParam();
    598 
    599   // Build a canonical template parameter list.
    600   TemplateParameterList *Params = TTP->getTemplateParameters();
    601   SmallVector<NamedDecl *, 4> CanonParams;
    602   CanonParams.reserve(Params->size());
    603   for (TemplateParameterList::const_iterator P = Params->begin(),
    604                                           PEnd = Params->end();
    605        P != PEnd; ++P) {
    606     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
    607       CanonParams.push_back(
    608                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
    609                                                SourceLocation(),
    610                                                SourceLocation(),
    611                                                TTP->getDepth(),
    612                                                TTP->getIndex(), nullptr, false,
    613                                                TTP->isParameterPack()));
    614     else if (NonTypeTemplateParmDecl *NTTP
    615              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    616       QualType T = getCanonicalType(NTTP->getType());
    617       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    618       NonTypeTemplateParmDecl *Param;
    619       if (NTTP->isExpandedParameterPack()) {
    620         SmallVector<QualType, 2> ExpandedTypes;
    621         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
    622         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    623           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
    624           ExpandedTInfos.push_back(
    625                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
    626         }
    627 
    628         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    629                                                 SourceLocation(),
    630                                                 SourceLocation(),
    631                                                 NTTP->getDepth(),
    632                                                 NTTP->getPosition(), nullptr,
    633                                                 T,
    634                                                 TInfo,
    635                                                 ExpandedTypes.data(),
    636                                                 ExpandedTypes.size(),
    637                                                 ExpandedTInfos.data());
    638       } else {
    639         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    640                                                 SourceLocation(),
    641                                                 SourceLocation(),
    642                                                 NTTP->getDepth(),
    643                                                 NTTP->getPosition(), nullptr,
    644                                                 T,
    645                                                 NTTP->isParameterPack(),
    646                                                 TInfo);
    647       }
    648       CanonParams.push_back(Param);
    649 
    650     } else
    651       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
    652                                            cast<TemplateTemplateParmDecl>(*P)));
    653   }
    654 
    655   TemplateTemplateParmDecl *CanonTTP
    656     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    657                                        SourceLocation(), TTP->getDepth(),
    658                                        TTP->getPosition(),
    659                                        TTP->isParameterPack(),
    660                                        nullptr,
    661                          TemplateParameterList::Create(*this, SourceLocation(),
    662                                                        SourceLocation(),
    663                                                        CanonParams.data(),
    664                                                        CanonParams.size(),
    665                                                        SourceLocation()));
    666 
    667   // Get the new insert position for the node we care about.
    668   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    669   assert(!Canonical && "Shouldn't be in the map!");
    670   (void)Canonical;
    671 
    672   // Create the canonical template template parameter entry.
    673   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
    674   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
    675   return CanonTTP;
    676 }
    677 
    678 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
    679   if (!LangOpts.CPlusPlus) return nullptr;
    680 
    681   switch (T.getCXXABI().getKind()) {
    682   case TargetCXXABI::GenericARM: // Same as Itanium at this level
    683   case TargetCXXABI::iOS:
    684   case TargetCXXABI::iOS64:
    685   case TargetCXXABI::WatchOS:
    686   case TargetCXXABI::GenericAArch64:
    687   case TargetCXXABI::GenericMIPS:
    688   case TargetCXXABI::GenericItanium:
    689   case TargetCXXABI::WebAssembly:
    690     return CreateItaniumCXXABI(*this);
    691   case TargetCXXABI::Microsoft:
    692     return CreateMicrosoftCXXABI(*this);
    693   }
    694   llvm_unreachable("Invalid CXXABI type!");
    695 }
    696 
    697 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
    698                                              const LangOptions &LOpts) {
    699   if (LOpts.FakeAddressSpaceMap) {
    700     // The fake address space map must have a distinct entry for each
    701     // language-specific address space.
    702     static const unsigned FakeAddrSpaceMap[] = {
    703       1, // opencl_global
    704       2, // opencl_local
    705       3, // opencl_constant
    706       4, // opencl_generic
    707       5, // cuda_device
    708       6, // cuda_constant
    709       7  // cuda_shared
    710     };
    711     return &FakeAddrSpaceMap;
    712   } else {
    713     return &T.getAddressSpaceMap();
    714   }
    715 }
    716 
    717 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
    718                                           const LangOptions &LangOpts) {
    719   switch (LangOpts.getAddressSpaceMapMangling()) {
    720   case LangOptions::ASMM_Target:
    721     return TI.useAddressSpaceMapMangling();
    722   case LangOptions::ASMM_On:
    723     return true;
    724   case LangOptions::ASMM_Off:
    725     return false;
    726   }
    727   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
    728 }
    729 
    730 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
    731                        IdentifierTable &idents, SelectorTable &sels,
    732                        Builtin::Context &builtins)
    733     : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
    734       DependentTemplateSpecializationTypes(this_()),
    735       SubstTemplateTemplateParmPacks(this_()),
    736       GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
    737       UInt128Decl(nullptr), Float128StubDecl(nullptr),
    738       BuiltinVaListDecl(nullptr), BuiltinMSVaListDecl(nullptr),
    739       ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
    740       ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
    741       CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
    742       FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
    743       ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
    744       BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
    745       FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr),
    746       MakeIntegerSeqDecl(nullptr), SourceMgr(SM), LangOpts(LOpts),
    747       SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
    748       AddrSpaceMap(nullptr), Target(nullptr), AuxTarget(nullptr),
    749       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
    750       BuiltinInfo(builtins), DeclarationNames(*this), ExternalSource(nullptr),
    751       Listener(nullptr), Comments(SM), CommentsLoaded(false),
    752       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
    753   TUDecl = TranslationUnitDecl::Create(*this);
    754 }
    755 
    756 ASTContext::~ASTContext() {
    757   ReleaseParentMapEntries();
    758 
    759   // Release the DenseMaps associated with DeclContext objects.
    760   // FIXME: Is this the ideal solution?
    761   ReleaseDeclContextMaps();
    762 
    763   // Call all of the deallocation functions on all of their targets.
    764   for (DeallocationMap::const_iterator I = Deallocations.begin(),
    765            E = Deallocations.end(); I != E; ++I)
    766     for (unsigned J = 0, N = I->second.size(); J != N; ++J)
    767       (I->first)((I->second)[J]);
    768 
    769   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
    770   // because they can contain DenseMaps.
    771   for (llvm::DenseMap<const ObjCContainerDecl*,
    772        const ASTRecordLayout*>::iterator
    773        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
    774     // Increment in loop to prevent using deallocated memory.
    775     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    776       R->Destroy(*this);
    777 
    778   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
    779        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
    780     // Increment in loop to prevent using deallocated memory.
    781     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    782       R->Destroy(*this);
    783   }
    784 
    785   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
    786                                                     AEnd = DeclAttrs.end();
    787        A != AEnd; ++A)
    788     A->second->~AttrVec();
    789 
    790   for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
    791        MaterializedTemporaryValues)
    792     MTVPair.second->~APValue();
    793 
    794   llvm::DeleteContainerSeconds(MangleNumberingContexts);
    795 }
    796 
    797 void ASTContext::ReleaseParentMapEntries() {
    798   if (!PointerParents) return;
    799   for (const auto &Entry : *PointerParents) {
    800     if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
    801       delete Entry.second.get<ast_type_traits::DynTypedNode *>();
    802     } else if (Entry.second.is<ParentVector *>()) {
    803       delete Entry.second.get<ParentVector *>();
    804     }
    805   }
    806   for (const auto &Entry : *OtherParents) {
    807     if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
    808       delete Entry.second.get<ast_type_traits::DynTypedNode *>();
    809     } else if (Entry.second.is<ParentVector *>()) {
    810       delete Entry.second.get<ParentVector *>();
    811     }
    812   }
    813 }
    814 
    815 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
    816   Deallocations[Callback].push_back(Data);
    817 }
    818 
    819 void
    820 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
    821   ExternalSource = Source;
    822 }
    823 
    824 void ASTContext::PrintStats() const {
    825   llvm::errs() << "\n*** AST Context Stats:\n";
    826   llvm::errs() << "  " << Types.size() << " types total.\n";
    827 
    828   unsigned counts[] = {
    829 #define TYPE(Name, Parent) 0,
    830 #define ABSTRACT_TYPE(Name, Parent)
    831 #include "clang/AST/TypeNodes.def"
    832     0 // Extra
    833   };
    834 
    835   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    836     Type *T = Types[i];
    837     counts[(unsigned)T->getTypeClass()]++;
    838   }
    839 
    840   unsigned Idx = 0;
    841   unsigned TotalBytes = 0;
    842 #define TYPE(Name, Parent)                                              \
    843   if (counts[Idx])                                                      \
    844     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
    845                  << " types\n";                                         \
    846   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
    847   ++Idx;
    848 #define ABSTRACT_TYPE(Name, Parent)
    849 #include "clang/AST/TypeNodes.def"
    850 
    851   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
    852 
    853   // Implicit special member functions.
    854   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
    855                << NumImplicitDefaultConstructors
    856                << " implicit default constructors created\n";
    857   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
    858                << NumImplicitCopyConstructors
    859                << " implicit copy constructors created\n";
    860   if (getLangOpts().CPlusPlus)
    861     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
    862                  << NumImplicitMoveConstructors
    863                  << " implicit move constructors created\n";
    864   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
    865                << NumImplicitCopyAssignmentOperators
    866                << " implicit copy assignment operators created\n";
    867   if (getLangOpts().CPlusPlus)
    868     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
    869                  << NumImplicitMoveAssignmentOperators
    870                  << " implicit move assignment operators created\n";
    871   llvm::errs() << NumImplicitDestructorsDeclared << "/"
    872                << NumImplicitDestructors
    873                << " implicit destructors created\n";
    874 
    875   if (ExternalSource) {
    876     llvm::errs() << "\n";
    877     ExternalSource->PrintStats();
    878   }
    879 
    880   BumpAlloc.PrintStats();
    881 }
    882 
    883 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
    884                                            bool NotifyListeners) {
    885   if (NotifyListeners)
    886     if (auto *Listener = getASTMutationListener())
    887       Listener->RedefinedHiddenDefinition(ND, M);
    888 
    889   if (getLangOpts().ModulesLocalVisibility)
    890     MergedDefModules[ND].push_back(M);
    891   else
    892     ND->setHidden(false);
    893 }
    894 
    895 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
    896   auto It = MergedDefModules.find(ND);
    897   if (It == MergedDefModules.end())
    898     return;
    899 
    900   auto &Merged = It->second;
    901   llvm::DenseSet<Module*> Found;
    902   for (Module *&M : Merged)
    903     if (!Found.insert(M).second)
    904       M = nullptr;
    905   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
    906 }
    907 
    908 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
    909   if (!ExternCContext)
    910     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
    911 
    912   return ExternCContext;
    913 }
    914 
    915 BuiltinTemplateDecl *
    916 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
    917                                      const IdentifierInfo *II) const {
    918   auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
    919   BuiltinTemplate->setImplicit();
    920   TUDecl->addDecl(BuiltinTemplate);
    921 
    922   return BuiltinTemplate;
    923 }
    924 
    925 BuiltinTemplateDecl *
    926 ASTContext::getMakeIntegerSeqDecl() const {
    927   if (!MakeIntegerSeqDecl)
    928     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
    929                                                   getMakeIntegerSeqName());
    930   return MakeIntegerSeqDecl;
    931 }
    932 
    933 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
    934                                             RecordDecl::TagKind TK) const {
    935   SourceLocation Loc;
    936   RecordDecl *NewDecl;
    937   if (getLangOpts().CPlusPlus)
    938     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
    939                                     Loc, &Idents.get(Name));
    940   else
    941     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
    942                                  &Idents.get(Name));
    943   NewDecl->setImplicit();
    944   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
    945       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
    946   return NewDecl;
    947 }
    948 
    949 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
    950                                               StringRef Name) const {
    951   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    952   TypedefDecl *NewDecl = TypedefDecl::Create(
    953       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
    954       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
    955   NewDecl->setImplicit();
    956   return NewDecl;
    957 }
    958 
    959 TypedefDecl *ASTContext::getInt128Decl() const {
    960   if (!Int128Decl)
    961     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
    962   return Int128Decl;
    963 }
    964 
    965 TypedefDecl *ASTContext::getUInt128Decl() const {
    966   if (!UInt128Decl)
    967     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
    968   return UInt128Decl;
    969 }
    970 
    971 TypeDecl *ASTContext::getFloat128StubType() const {
    972   assert(LangOpts.CPlusPlus && "should only be called for c++");
    973   if (!Float128StubDecl)
    974     Float128StubDecl = buildImplicitRecord("__float128");
    975 
    976   return Float128StubDecl;
    977 }
    978 
    979 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
    980   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
    981   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
    982   Types.push_back(Ty);
    983 }
    984 
    985 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
    986                                   const TargetInfo *AuxTarget) {
    987   assert((!this->Target || this->Target == &Target) &&
    988          "Incorrect target reinitialization");
    989   assert(VoidTy.isNull() && "Context reinitialized?");
    990 
    991   this->Target = &Target;
    992   this->AuxTarget = AuxTarget;
    993 
    994   ABI.reset(createCXXABI(Target));
    995   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
    996   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
    997 
    998   // C99 6.2.5p19.
    999   InitBuiltinType(VoidTy,              BuiltinType::Void);
   1000 
   1001   // C99 6.2.5p2.
   1002   InitBuiltinType(BoolTy,              BuiltinType::Bool);
   1003   // C99 6.2.5p3.
   1004   if (LangOpts.CharIsSigned)
   1005     InitBuiltinType(CharTy,            BuiltinType::Char_S);
   1006   else
   1007     InitBuiltinType(CharTy,            BuiltinType::Char_U);
   1008   // C99 6.2.5p4.
   1009   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
   1010   InitBuiltinType(ShortTy,             BuiltinType::Short);
   1011   InitBuiltinType(IntTy,               BuiltinType::Int);
   1012   InitBuiltinType(LongTy,              BuiltinType::Long);
   1013   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
   1014 
   1015   // C99 6.2.5p6.
   1016   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
   1017   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
   1018   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
   1019   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
   1020   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
   1021 
   1022   // C99 6.2.5p10.
   1023   InitBuiltinType(FloatTy,             BuiltinType::Float);
   1024   InitBuiltinType(DoubleTy,            BuiltinType::Double);
   1025   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
   1026 
   1027   // GNU extension, 128-bit integers.
   1028   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
   1029   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
   1030 
   1031   // C++ 3.9.1p5
   1032   if (TargetInfo::isTypeSigned(Target.getWCharType()))
   1033     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
   1034   else  // -fshort-wchar makes wchar_t be unsigned.
   1035     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
   1036   if (LangOpts.CPlusPlus && LangOpts.WChar)
   1037     WideCharTy = WCharTy;
   1038   else {
   1039     // C99 (or C++ using -fno-wchar).
   1040     WideCharTy = getFromTargetType(Target.getWCharType());
   1041   }
   1042 
   1043   WIntTy = getFromTargetType(Target.getWIntType());
   1044 
   1045   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
   1046     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
   1047   else // C99
   1048     Char16Ty = getFromTargetType(Target.getChar16Type());
   1049 
   1050   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
   1051     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
   1052   else // C99
   1053     Char32Ty = getFromTargetType(Target.getChar32Type());
   1054 
   1055   // Placeholder type for type-dependent expressions whose type is
   1056   // completely unknown. No code should ever check a type against
   1057   // DependentTy and users should never see it; however, it is here to
   1058   // help diagnose failures to properly check for type-dependent
   1059   // expressions.
   1060   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
   1061 
   1062   // Placeholder type for functions.
   1063   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
   1064 
   1065   // Placeholder type for bound members.
   1066   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
   1067 
   1068   // Placeholder type for pseudo-objects.
   1069   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
   1070 
   1071   // "any" type; useful for debugger-like clients.
   1072   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
   1073 
   1074   // Placeholder type for unbridged ARC casts.
   1075   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
   1076 
   1077   // Placeholder type for builtin functions.
   1078   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
   1079 
   1080   // Placeholder type for OMP array sections.
   1081   if (LangOpts.OpenMP)
   1082     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
   1083 
   1084   // C99 6.2.5p11.
   1085   FloatComplexTy      = getComplexType(FloatTy);
   1086   DoubleComplexTy     = getComplexType(DoubleTy);
   1087   LongDoubleComplexTy = getComplexType(LongDoubleTy);
   1088 
   1089   // Builtin types for 'id', 'Class', and 'SEL'.
   1090   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
   1091   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
   1092   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
   1093 
   1094   if (LangOpts.OpenCL) {
   1095     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
   1096     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
   1097     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
   1098     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
   1099     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
   1100     InitBuiltinType(OCLImage2dDepthTy, BuiltinType::OCLImage2dDepth);
   1101     InitBuiltinType(OCLImage2dArrayDepthTy, BuiltinType::OCLImage2dArrayDepth);
   1102     InitBuiltinType(OCLImage2dMSAATy, BuiltinType::OCLImage2dMSAA);
   1103     InitBuiltinType(OCLImage2dArrayMSAATy, BuiltinType::OCLImage2dArrayMSAA);
   1104     InitBuiltinType(OCLImage2dMSAADepthTy, BuiltinType::OCLImage2dMSAADepth);
   1105     InitBuiltinType(OCLImage2dArrayMSAADepthTy,
   1106                     BuiltinType::OCLImage2dArrayMSAADepth);
   1107     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
   1108 
   1109     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
   1110     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
   1111     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
   1112     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
   1113     InitBuiltinType(OCLNDRangeTy, BuiltinType::OCLNDRange);
   1114     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
   1115   }
   1116 
   1117   // Builtin type for __objc_yes and __objc_no
   1118   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
   1119                        SignedCharTy : BoolTy);
   1120 
   1121   ObjCConstantStringType = QualType();
   1122 
   1123   ObjCSuperType = QualType();
   1124 
   1125   // void * type
   1126   VoidPtrTy = getPointerType(VoidTy);
   1127 
   1128   // nullptr type (C++0x 2.14.7)
   1129   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
   1130 
   1131   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
   1132   InitBuiltinType(HalfTy, BuiltinType::Half);
   1133 
   1134   // Builtin type used to help define __builtin_va_list.
   1135   VaListTagDecl = nullptr;
   1136 }
   1137 
   1138 DiagnosticsEngine &ASTContext::getDiagnostics() const {
   1139   return SourceMgr.getDiagnostics();
   1140 }
   1141 
   1142 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
   1143   AttrVec *&Result = DeclAttrs[D];
   1144   if (!Result) {
   1145     void *Mem = Allocate(sizeof(AttrVec));
   1146     Result = new (Mem) AttrVec;
   1147   }
   1148 
   1149   return *Result;
   1150 }
   1151 
   1152 /// \brief Erase the attributes corresponding to the given declaration.
   1153 void ASTContext::eraseDeclAttrs(const Decl *D) {
   1154   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
   1155   if (Pos != DeclAttrs.end()) {
   1156     Pos->second->~AttrVec();
   1157     DeclAttrs.erase(Pos);
   1158   }
   1159 }
   1160 
   1161 // FIXME: Remove ?
   1162 MemberSpecializationInfo *
   1163 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
   1164   assert(Var->isStaticDataMember() && "Not a static data member");
   1165   return getTemplateOrSpecializationInfo(Var)
   1166       .dyn_cast<MemberSpecializationInfo *>();
   1167 }
   1168 
   1169 ASTContext::TemplateOrSpecializationInfo
   1170 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
   1171   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
   1172       TemplateOrInstantiation.find(Var);
   1173   if (Pos == TemplateOrInstantiation.end())
   1174     return TemplateOrSpecializationInfo();
   1175 
   1176   return Pos->second;
   1177 }
   1178 
   1179 void
   1180 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
   1181                                                 TemplateSpecializationKind TSK,
   1182                                           SourceLocation PointOfInstantiation) {
   1183   assert(Inst->isStaticDataMember() && "Not a static data member");
   1184   assert(Tmpl->isStaticDataMember() && "Not a static data member");
   1185   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
   1186                                             Tmpl, TSK, PointOfInstantiation));
   1187 }
   1188 
   1189 void
   1190 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
   1191                                             TemplateOrSpecializationInfo TSI) {
   1192   assert(!TemplateOrInstantiation[Inst] &&
   1193          "Already noted what the variable was instantiated from");
   1194   TemplateOrInstantiation[Inst] = TSI;
   1195 }
   1196 
   1197 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
   1198                                                      const FunctionDecl *FD){
   1199   assert(FD && "Specialization is 0");
   1200   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
   1201     = ClassScopeSpecializationPattern.find(FD);
   1202   if (Pos == ClassScopeSpecializationPattern.end())
   1203     return nullptr;
   1204 
   1205   return Pos->second;
   1206 }
   1207 
   1208 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
   1209                                         FunctionDecl *Pattern) {
   1210   assert(FD && "Specialization is 0");
   1211   assert(Pattern && "Class scope specialization pattern is 0");
   1212   ClassScopeSpecializationPattern[FD] = Pattern;
   1213 }
   1214 
   1215 NamedDecl *
   1216 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
   1217   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
   1218     = InstantiatedFromUsingDecl.find(UUD);
   1219   if (Pos == InstantiatedFromUsingDecl.end())
   1220     return nullptr;
   1221 
   1222   return Pos->second;
   1223 }
   1224 
   1225 void
   1226 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
   1227   assert((isa<UsingDecl>(Pattern) ||
   1228           isa<UnresolvedUsingValueDecl>(Pattern) ||
   1229           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
   1230          "pattern decl is not a using decl");
   1231   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
   1232   InstantiatedFromUsingDecl[Inst] = Pattern;
   1233 }
   1234 
   1235 UsingShadowDecl *
   1236 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
   1237   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
   1238     = InstantiatedFromUsingShadowDecl.find(Inst);
   1239   if (Pos == InstantiatedFromUsingShadowDecl.end())
   1240     return nullptr;
   1241 
   1242   return Pos->second;
   1243 }
   1244 
   1245 void
   1246 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
   1247                                                UsingShadowDecl *Pattern) {
   1248   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
   1249   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
   1250 }
   1251 
   1252 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
   1253   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
   1254     = InstantiatedFromUnnamedFieldDecl.find(Field);
   1255   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
   1256     return nullptr;
   1257 
   1258   return Pos->second;
   1259 }
   1260 
   1261 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
   1262                                                      FieldDecl *Tmpl) {
   1263   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
   1264   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
   1265   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
   1266          "Already noted what unnamed field was instantiated from");
   1267 
   1268   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
   1269 }
   1270 
   1271 ASTContext::overridden_cxx_method_iterator
   1272 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
   1273   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1274     = OverriddenMethods.find(Method->getCanonicalDecl());
   1275   if (Pos == OverriddenMethods.end())
   1276     return nullptr;
   1277 
   1278   return Pos->second.begin();
   1279 }
   1280 
   1281 ASTContext::overridden_cxx_method_iterator
   1282 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
   1283   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1284     = OverriddenMethods.find(Method->getCanonicalDecl());
   1285   if (Pos == OverriddenMethods.end())
   1286     return nullptr;
   1287 
   1288   return Pos->second.end();
   1289 }
   1290 
   1291 unsigned
   1292 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
   1293   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1294     = OverriddenMethods.find(Method->getCanonicalDecl());
   1295   if (Pos == OverriddenMethods.end())
   1296     return 0;
   1297 
   1298   return Pos->second.size();
   1299 }
   1300 
   1301 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
   1302                                      const CXXMethodDecl *Overridden) {
   1303   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
   1304   OverriddenMethods[Method].push_back(Overridden);
   1305 }
   1306 
   1307 void ASTContext::getOverriddenMethods(
   1308                       const NamedDecl *D,
   1309                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
   1310   assert(D);
   1311 
   1312   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
   1313     Overridden.append(overridden_methods_begin(CXXMethod),
   1314                       overridden_methods_end(CXXMethod));
   1315     return;
   1316   }
   1317 
   1318   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
   1319   if (!Method)
   1320     return;
   1321 
   1322   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
   1323   Method->getOverriddenMethods(OverDecls);
   1324   Overridden.append(OverDecls.begin(), OverDecls.end());
   1325 }
   1326 
   1327 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
   1328   assert(!Import->NextLocalImport && "Import declaration already in the chain");
   1329   assert(!Import->isFromASTFile() && "Non-local import declaration");
   1330   if (!FirstLocalImport) {
   1331     FirstLocalImport = Import;
   1332     LastLocalImport = Import;
   1333     return;
   1334   }
   1335 
   1336   LastLocalImport->NextLocalImport = Import;
   1337   LastLocalImport = Import;
   1338 }
   1339 
   1340 //===----------------------------------------------------------------------===//
   1341 //                         Type Sizing and Analysis
   1342 //===----------------------------------------------------------------------===//
   1343 
   1344 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
   1345 /// scalar floating point type.
   1346 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
   1347   const BuiltinType *BT = T->getAs<BuiltinType>();
   1348   assert(BT && "Not a floating point type!");
   1349   switch (BT->getKind()) {
   1350   default: llvm_unreachable("Not a floating point type!");
   1351   case BuiltinType::Half:       return Target->getHalfFormat();
   1352   case BuiltinType::Float:      return Target->getFloatFormat();
   1353   case BuiltinType::Double:     return Target->getDoubleFormat();
   1354   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
   1355   }
   1356 }
   1357 
   1358 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
   1359   unsigned Align = Target->getCharWidth();
   1360 
   1361   bool UseAlignAttrOnly = false;
   1362   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
   1363     Align = AlignFromAttr;
   1364 
   1365     // __attribute__((aligned)) can increase or decrease alignment
   1366     // *except* on a struct or struct member, where it only increases
   1367     // alignment unless 'packed' is also specified.
   1368     //
   1369     // It is an error for alignas to decrease alignment, so we can
   1370     // ignore that possibility;  Sema should diagnose it.
   1371     if (isa<FieldDecl>(D)) {
   1372       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
   1373         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1374     } else {
   1375       UseAlignAttrOnly = true;
   1376     }
   1377   }
   1378   else if (isa<FieldDecl>(D))
   1379       UseAlignAttrOnly =
   1380         D->hasAttr<PackedAttr>() ||
   1381         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1382 
   1383   // If we're using the align attribute only, just ignore everything
   1384   // else about the declaration and its type.
   1385   if (UseAlignAttrOnly) {
   1386     // do nothing
   1387 
   1388   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   1389     QualType T = VD->getType();
   1390     if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
   1391       if (ForAlignof)
   1392         T = RT->getPointeeType();
   1393       else
   1394         T = getPointerType(RT->getPointeeType());
   1395     }
   1396     QualType BaseT = getBaseElementType(T);
   1397     if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
   1398       // Adjust alignments of declarations with array type by the
   1399       // large-array alignment on the target.
   1400       if (const ArrayType *arrayType = getAsArrayType(T)) {
   1401         unsigned MinWidth = Target->getLargeArrayMinWidth();
   1402         if (!ForAlignof && MinWidth) {
   1403           if (isa<VariableArrayType>(arrayType))
   1404             Align = std::max(Align, Target->getLargeArrayAlign());
   1405           else if (isa<ConstantArrayType>(arrayType) &&
   1406                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
   1407             Align = std::max(Align, Target->getLargeArrayAlign());
   1408         }
   1409       }
   1410       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
   1411       if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1412         if (VD->hasGlobalStorage() && !ForAlignof)
   1413           Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
   1414       }
   1415     }
   1416 
   1417     // Fields can be subject to extra alignment constraints, like if
   1418     // the field is packed, the struct is packed, or the struct has a
   1419     // a max-field-alignment constraint (#pragma pack).  So calculate
   1420     // the actual alignment of the field within the struct, and then
   1421     // (as we're expected to) constrain that by the alignment of the type.
   1422     if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
   1423       const RecordDecl *Parent = Field->getParent();
   1424       // We can only produce a sensible answer if the record is valid.
   1425       if (!Parent->isInvalidDecl()) {
   1426         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
   1427 
   1428         // Start with the record's overall alignment.
   1429         unsigned FieldAlign = toBits(Layout.getAlignment());
   1430 
   1431         // Use the GCD of that and the offset within the record.
   1432         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
   1433         if (Offset > 0) {
   1434           // Alignment is always a power of 2, so the GCD will be a power of 2,
   1435           // which means we get to do this crazy thing instead of Euclid's.
   1436           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
   1437           if (LowBitOfOffset < FieldAlign)
   1438             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
   1439         }
   1440 
   1441         Align = std::min(Align, FieldAlign);
   1442       }
   1443     }
   1444   }
   1445 
   1446   return toCharUnitsFromBits(Align);
   1447 }
   1448 
   1449 // getTypeInfoDataSizeInChars - Return the size of a type, in
   1450 // chars. If the type is a record, its data size is returned.  This is
   1451 // the size of the memcpy that's performed when assigning this type
   1452 // using a trivial copy/move assignment operator.
   1453 std::pair<CharUnits, CharUnits>
   1454 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
   1455   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
   1456 
   1457   // In C++, objects can sometimes be allocated into the tail padding
   1458   // of a base-class subobject.  We decide whether that's possible
   1459   // during class layout, so here we can just trust the layout results.
   1460   if (getLangOpts().CPlusPlus) {
   1461     if (const RecordType *RT = T->getAs<RecordType>()) {
   1462       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
   1463       sizeAndAlign.first = layout.getDataSize();
   1464     }
   1465   }
   1466 
   1467   return sizeAndAlign;
   1468 }
   1469 
   1470 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
   1471 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
   1472 std::pair<CharUnits, CharUnits>
   1473 static getConstantArrayInfoInChars(const ASTContext &Context,
   1474                                    const ConstantArrayType *CAT) {
   1475   std::pair<CharUnits, CharUnits> EltInfo =
   1476       Context.getTypeInfoInChars(CAT->getElementType());
   1477   uint64_t Size = CAT->getSize().getZExtValue();
   1478   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
   1479               (uint64_t)(-1)/Size) &&
   1480          "Overflow in array type char size evaluation");
   1481   uint64_t Width = EltInfo.first.getQuantity() * Size;
   1482   unsigned Align = EltInfo.second.getQuantity();
   1483   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
   1484       Context.getTargetInfo().getPointerWidth(0) == 64)
   1485     Width = llvm::RoundUpToAlignment(Width, Align);
   1486   return std::make_pair(CharUnits::fromQuantity(Width),
   1487                         CharUnits::fromQuantity(Align));
   1488 }
   1489 
   1490 std::pair<CharUnits, CharUnits>
   1491 ASTContext::getTypeInfoInChars(const Type *T) const {
   1492   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
   1493     return getConstantArrayInfoInChars(*this, CAT);
   1494   TypeInfo Info = getTypeInfo(T);
   1495   return std::make_pair(toCharUnitsFromBits(Info.Width),
   1496                         toCharUnitsFromBits(Info.Align));
   1497 }
   1498 
   1499 std::pair<CharUnits, CharUnits>
   1500 ASTContext::getTypeInfoInChars(QualType T) const {
   1501   return getTypeInfoInChars(T.getTypePtr());
   1502 }
   1503 
   1504 bool ASTContext::isAlignmentRequired(const Type *T) const {
   1505   return getTypeInfo(T).AlignIsRequired;
   1506 }
   1507 
   1508 bool ASTContext::isAlignmentRequired(QualType T) const {
   1509   return isAlignmentRequired(T.getTypePtr());
   1510 }
   1511 
   1512 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
   1513   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
   1514   if (I != MemoizedTypeInfo.end())
   1515     return I->second;
   1516 
   1517   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
   1518   TypeInfo TI = getTypeInfoImpl(T);
   1519   MemoizedTypeInfo[T] = TI;
   1520   return TI;
   1521 }
   1522 
   1523 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
   1524 /// method does not work on incomplete types.
   1525 ///
   1526 /// FIXME: Pointers into different addr spaces could have different sizes and
   1527 /// alignment requirements: getPointerInfo should take an AddrSpace, this
   1528 /// should take a QualType, &c.
   1529 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
   1530   uint64_t Width = 0;
   1531   unsigned Align = 8;
   1532   bool AlignIsRequired = false;
   1533   switch (T->getTypeClass()) {
   1534 #define TYPE(Class, Base)
   1535 #define ABSTRACT_TYPE(Class, Base)
   1536 #define NON_CANONICAL_TYPE(Class, Base)
   1537 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1538 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
   1539   case Type::Class:                                                            \
   1540   assert(!T->isDependentType() && "should not see dependent types here");      \
   1541   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
   1542 #include "clang/AST/TypeNodes.def"
   1543     llvm_unreachable("Should not see dependent types");
   1544 
   1545   case Type::FunctionNoProto:
   1546   case Type::FunctionProto:
   1547     // GCC extension: alignof(function) = 32 bits
   1548     Width = 0;
   1549     Align = 32;
   1550     break;
   1551 
   1552   case Type::IncompleteArray:
   1553   case Type::VariableArray:
   1554     Width = 0;
   1555     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
   1556     break;
   1557 
   1558   case Type::ConstantArray: {
   1559     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
   1560 
   1561     TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
   1562     uint64_t Size = CAT->getSize().getZExtValue();
   1563     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
   1564            "Overflow in array type bit size evaluation");
   1565     Width = EltInfo.Width * Size;
   1566     Align = EltInfo.Align;
   1567     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
   1568         getTargetInfo().getPointerWidth(0) == 64)
   1569       Width = llvm::RoundUpToAlignment(Width, Align);
   1570     break;
   1571   }
   1572   case Type::ExtVector:
   1573   case Type::Vector: {
   1574     const VectorType *VT = cast<VectorType>(T);
   1575     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
   1576     Width = EltInfo.Width * VT->getNumElements();
   1577     Align = Width;
   1578     // If the alignment is not a power of 2, round up to the next power of 2.
   1579     // This happens for non-power-of-2 length vectors.
   1580     if (Align & (Align-1)) {
   1581       Align = llvm::NextPowerOf2(Align);
   1582       Width = llvm::RoundUpToAlignment(Width, Align);
   1583     }
   1584     // Adjust the alignment based on the target max.
   1585     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
   1586     if (TargetVectorAlign && TargetVectorAlign < Align)
   1587       Align = TargetVectorAlign;
   1588     break;
   1589   }
   1590 
   1591   case Type::Builtin:
   1592     switch (cast<BuiltinType>(T)->getKind()) {
   1593     default: llvm_unreachable("Unknown builtin type!");
   1594     case BuiltinType::Void:
   1595       // GCC extension: alignof(void) = 8 bits.
   1596       Width = 0;
   1597       Align = 8;
   1598       break;
   1599 
   1600     case BuiltinType::Bool:
   1601       Width = Target->getBoolWidth();
   1602       Align = Target->getBoolAlign();
   1603       break;
   1604     case BuiltinType::Char_S:
   1605     case BuiltinType::Char_U:
   1606     case BuiltinType::UChar:
   1607     case BuiltinType::SChar:
   1608       Width = Target->getCharWidth();
   1609       Align = Target->getCharAlign();
   1610       break;
   1611     case BuiltinType::WChar_S:
   1612     case BuiltinType::WChar_U:
   1613       Width = Target->getWCharWidth();
   1614       Align = Target->getWCharAlign();
   1615       break;
   1616     case BuiltinType::Char16:
   1617       Width = Target->getChar16Width();
   1618       Align = Target->getChar16Align();
   1619       break;
   1620     case BuiltinType::Char32:
   1621       Width = Target->getChar32Width();
   1622       Align = Target->getChar32Align();
   1623       break;
   1624     case BuiltinType::UShort:
   1625     case BuiltinType::Short:
   1626       Width = Target->getShortWidth();
   1627       Align = Target->getShortAlign();
   1628       break;
   1629     case BuiltinType::UInt:
   1630     case BuiltinType::Int:
   1631       Width = Target->getIntWidth();
   1632       Align = Target->getIntAlign();
   1633       break;
   1634     case BuiltinType::ULong:
   1635     case BuiltinType::Long:
   1636       Width = Target->getLongWidth();
   1637       Align = Target->getLongAlign();
   1638       break;
   1639     case BuiltinType::ULongLong:
   1640     case BuiltinType::LongLong:
   1641       Width = Target->getLongLongWidth();
   1642       Align = Target->getLongLongAlign();
   1643       break;
   1644     case BuiltinType::Int128:
   1645     case BuiltinType::UInt128:
   1646       Width = 128;
   1647       Align = 128; // int128_t is 128-bit aligned on all targets.
   1648       break;
   1649     case BuiltinType::Half:
   1650       Width = Target->getHalfWidth();
   1651       Align = Target->getHalfAlign();
   1652       break;
   1653     case BuiltinType::Float:
   1654       Width = Target->getFloatWidth();
   1655       Align = Target->getFloatAlign();
   1656       break;
   1657     case BuiltinType::Double:
   1658       Width = Target->getDoubleWidth();
   1659       Align = Target->getDoubleAlign();
   1660       break;
   1661     case BuiltinType::LongDouble:
   1662       Width = Target->getLongDoubleWidth();
   1663       Align = Target->getLongDoubleAlign();
   1664       break;
   1665     case BuiltinType::NullPtr:
   1666       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
   1667       Align = Target->getPointerAlign(0); //   == sizeof(void*)
   1668       break;
   1669     case BuiltinType::ObjCId:
   1670     case BuiltinType::ObjCClass:
   1671     case BuiltinType::ObjCSel:
   1672       Width = Target->getPointerWidth(0);
   1673       Align = Target->getPointerAlign(0);
   1674       break;
   1675     case BuiltinType::OCLSampler:
   1676       // Samplers are modeled as integers.
   1677       Width = Target->getIntWidth();
   1678       Align = Target->getIntAlign();
   1679       break;
   1680     case BuiltinType::OCLEvent:
   1681     case BuiltinType::OCLClkEvent:
   1682     case BuiltinType::OCLQueue:
   1683     case BuiltinType::OCLNDRange:
   1684     case BuiltinType::OCLReserveID:
   1685     case BuiltinType::OCLImage1d:
   1686     case BuiltinType::OCLImage1dArray:
   1687     case BuiltinType::OCLImage1dBuffer:
   1688     case BuiltinType::OCLImage2d:
   1689     case BuiltinType::OCLImage2dArray:
   1690     case BuiltinType::OCLImage2dDepth:
   1691     case BuiltinType::OCLImage2dArrayDepth:
   1692     case BuiltinType::OCLImage2dMSAA:
   1693     case BuiltinType::OCLImage2dArrayMSAA:
   1694     case BuiltinType::OCLImage2dMSAADepth:
   1695     case BuiltinType::OCLImage2dArrayMSAADepth:
   1696     case BuiltinType::OCLImage3d:
   1697       // Currently these types are pointers to opaque types.
   1698       Width = Target->getPointerWidth(0);
   1699       Align = Target->getPointerAlign(0);
   1700       break;
   1701     }
   1702     break;
   1703   case Type::ObjCObjectPointer:
   1704     Width = Target->getPointerWidth(0);
   1705     Align = Target->getPointerAlign(0);
   1706     break;
   1707   case Type::BlockPointer: {
   1708     unsigned AS = getTargetAddressSpace(
   1709         cast<BlockPointerType>(T)->getPointeeType());
   1710     Width = Target->getPointerWidth(AS);
   1711     Align = Target->getPointerAlign(AS);
   1712     break;
   1713   }
   1714   case Type::LValueReference:
   1715   case Type::RValueReference: {
   1716     // alignof and sizeof should never enter this code path here, so we go
   1717     // the pointer route.
   1718     unsigned AS = getTargetAddressSpace(
   1719         cast<ReferenceType>(T)->getPointeeType());
   1720     Width = Target->getPointerWidth(AS);
   1721     Align = Target->getPointerAlign(AS);
   1722     break;
   1723   }
   1724   case Type::Pointer: {
   1725     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
   1726     Width = Target->getPointerWidth(AS);
   1727     Align = Target->getPointerAlign(AS);
   1728     break;
   1729   }
   1730   case Type::MemberPointer: {
   1731     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   1732     std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
   1733     break;
   1734   }
   1735   case Type::Complex: {
   1736     // Complex types have the same alignment as their elements, but twice the
   1737     // size.
   1738     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
   1739     Width = EltInfo.Width * 2;
   1740     Align = EltInfo.Align;
   1741     break;
   1742   }
   1743   case Type::ObjCObject:
   1744     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
   1745   case Type::Adjusted:
   1746   case Type::Decayed:
   1747     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
   1748   case Type::ObjCInterface: {
   1749     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
   1750     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
   1751     Width = toBits(Layout.getSize());
   1752     Align = toBits(Layout.getAlignment());
   1753     break;
   1754   }
   1755   case Type::Record:
   1756   case Type::Enum: {
   1757     const TagType *TT = cast<TagType>(T);
   1758 
   1759     if (TT->getDecl()->isInvalidDecl()) {
   1760       Width = 8;
   1761       Align = 8;
   1762       break;
   1763     }
   1764 
   1765     if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
   1766       const EnumDecl *ED = ET->getDecl();
   1767       TypeInfo Info =
   1768           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
   1769       if (unsigned AttrAlign = ED->getMaxAlignment()) {
   1770         Info.Align = AttrAlign;
   1771         Info.AlignIsRequired = true;
   1772       }
   1773       return Info;
   1774     }
   1775 
   1776     const RecordType *RT = cast<RecordType>(TT);
   1777     const RecordDecl *RD = RT->getDecl();
   1778     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
   1779     Width = toBits(Layout.getSize());
   1780     Align = toBits(Layout.getAlignment());
   1781     AlignIsRequired = RD->hasAttr<AlignedAttr>();
   1782     break;
   1783   }
   1784 
   1785   case Type::SubstTemplateTypeParm:
   1786     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
   1787                        getReplacementType().getTypePtr());
   1788 
   1789   case Type::Auto: {
   1790     const AutoType *A = cast<AutoType>(T);
   1791     assert(!A->getDeducedType().isNull() &&
   1792            "cannot request the size of an undeduced or dependent auto type");
   1793     return getTypeInfo(A->getDeducedType().getTypePtr());
   1794   }
   1795 
   1796   case Type::Paren:
   1797     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
   1798 
   1799   case Type::Typedef: {
   1800     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
   1801     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
   1802     // If the typedef has an aligned attribute on it, it overrides any computed
   1803     // alignment we have.  This violates the GCC documentation (which says that
   1804     // attribute(aligned) can only round up) but matches its implementation.
   1805     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
   1806       Align = AttrAlign;
   1807       AlignIsRequired = true;
   1808     } else {
   1809       Align = Info.Align;
   1810       AlignIsRequired = Info.AlignIsRequired;
   1811     }
   1812     Width = Info.Width;
   1813     break;
   1814   }
   1815 
   1816   case Type::Elaborated:
   1817     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
   1818 
   1819   case Type::Attributed:
   1820     return getTypeInfo(
   1821                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
   1822 
   1823   case Type::Atomic: {
   1824     // Start with the base type information.
   1825     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
   1826     Width = Info.Width;
   1827     Align = Info.Align;
   1828 
   1829     // If the size of the type doesn't exceed the platform's max
   1830     // atomic promotion width, make the size and alignment more
   1831     // favorable to atomic operations:
   1832     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
   1833       // Round the size up to a power of 2.
   1834       if (!llvm::isPowerOf2_64(Width))
   1835         Width = llvm::NextPowerOf2(Width);
   1836 
   1837       // Set the alignment equal to the size.
   1838       Align = static_cast<unsigned>(Width);
   1839     }
   1840   }
   1841 
   1842   }
   1843 
   1844   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
   1845   return TypeInfo(Width, Align, AlignIsRequired);
   1846 }
   1847 
   1848 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
   1849   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
   1850   // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
   1851   if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
   1852        getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
   1853       getTargetInfo().getABI() == "elfv1-qpx" &&
   1854       T->isSpecificBuiltinType(BuiltinType::Double))
   1855     SimdAlign = 256;
   1856   return SimdAlign;
   1857 }
   1858 
   1859 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
   1860 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
   1861   return CharUnits::fromQuantity(BitSize / getCharWidth());
   1862 }
   1863 
   1864 /// toBits - Convert a size in characters to a size in characters.
   1865 int64_t ASTContext::toBits(CharUnits CharSize) const {
   1866   return CharSize.getQuantity() * getCharWidth();
   1867 }
   1868 
   1869 /// getTypeSizeInChars - Return the size of the specified type, in characters.
   1870 /// This method does not work on incomplete types.
   1871 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
   1872   return getTypeInfoInChars(T).first;
   1873 }
   1874 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
   1875   return getTypeInfoInChars(T).first;
   1876 }
   1877 
   1878 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
   1879 /// characters. This method does not work on incomplete types.
   1880 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
   1881   return toCharUnitsFromBits(getTypeAlign(T));
   1882 }
   1883 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
   1884   return toCharUnitsFromBits(getTypeAlign(T));
   1885 }
   1886 
   1887 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
   1888 /// type for the current target in bits.  This can be different than the ABI
   1889 /// alignment in cases where it is beneficial for performance to overalign
   1890 /// a data type.
   1891 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
   1892   TypeInfo TI = getTypeInfo(T);
   1893   unsigned ABIAlign = TI.Align;
   1894 
   1895   T = T->getBaseElementTypeUnsafe();
   1896 
   1897   // The preferred alignment of member pointers is that of a pointer.
   1898   if (T->isMemberPointerType())
   1899     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
   1900 
   1901   if (Target->getTriple().getArch() == llvm::Triple::xcore)
   1902     return ABIAlign;  // Never overalign on XCore.
   1903 
   1904   // Double and long long should be naturally aligned if possible.
   1905   if (const ComplexType *CT = T->getAs<ComplexType>())
   1906     T = CT->getElementType().getTypePtr();
   1907   if (const EnumType *ET = T->getAs<EnumType>())
   1908     T = ET->getDecl()->getIntegerType().getTypePtr();
   1909   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
   1910       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
   1911       T->isSpecificBuiltinType(BuiltinType::ULongLong))
   1912     // Don't increase the alignment if an alignment attribute was specified on a
   1913     // typedef declaration.
   1914     if (!TI.AlignIsRequired)
   1915       return std::max(ABIAlign, (unsigned)getTypeSize(T));
   1916 
   1917   return ABIAlign;
   1918 }
   1919 
   1920 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
   1921 /// for __attribute__((aligned)) on this target, to be used if no alignment
   1922 /// value is specified.
   1923 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
   1924   return getTargetInfo().getDefaultAlignForAttributeAligned();
   1925 }
   1926 
   1927 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
   1928 /// to a global variable of the specified type.
   1929 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
   1930   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
   1931 }
   1932 
   1933 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
   1934 /// should be given to a global variable of the specified type.
   1935 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
   1936   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
   1937 }
   1938 
   1939 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
   1940   CharUnits Offset = CharUnits::Zero();
   1941   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
   1942   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
   1943     Offset += Layout->getBaseClassOffset(Base);
   1944     Layout = &getASTRecordLayout(Base);
   1945   }
   1946   return Offset;
   1947 }
   1948 
   1949 /// DeepCollectObjCIvars -
   1950 /// This routine first collects all declared, but not synthesized, ivars in
   1951 /// super class and then collects all ivars, including those synthesized for
   1952 /// current class. This routine is used for implementation of current class
   1953 /// when all ivars, declared and synthesized are known.
   1954 ///
   1955 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
   1956                                       bool leafClass,
   1957                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
   1958   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
   1959     DeepCollectObjCIvars(SuperClass, false, Ivars);
   1960   if (!leafClass) {
   1961     for (const auto *I : OI->ivars())
   1962       Ivars.push_back(I);
   1963   } else {
   1964     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
   1965     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
   1966          Iv= Iv->getNextIvar())
   1967       Ivars.push_back(Iv);
   1968   }
   1969 }
   1970 
   1971 /// CollectInheritedProtocols - Collect all protocols in current class and
   1972 /// those inherited by it.
   1973 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
   1974                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
   1975   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   1976     // We can use protocol_iterator here instead of
   1977     // all_referenced_protocol_iterator since we are walking all categories.
   1978     for (auto *Proto : OI->all_referenced_protocols()) {
   1979       CollectInheritedProtocols(Proto, Protocols);
   1980     }
   1981 
   1982     // Categories of this Interface.
   1983     for (const auto *Cat : OI->visible_categories())
   1984       CollectInheritedProtocols(Cat, Protocols);
   1985 
   1986     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
   1987       while (SD) {
   1988         CollectInheritedProtocols(SD, Protocols);
   1989         SD = SD->getSuperClass();
   1990       }
   1991   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1992     for (auto *Proto : OC->protocols()) {
   1993       CollectInheritedProtocols(Proto, Protocols);
   1994     }
   1995   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
   1996     // Insert the protocol.
   1997     if (!Protocols.insert(
   1998           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
   1999       return;
   2000 
   2001     for (auto *Proto : OP->protocols())
   2002       CollectInheritedProtocols(Proto, Protocols);
   2003   }
   2004 }
   2005 
   2006 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
   2007   unsigned count = 0;
   2008   // Count ivars declared in class extension.
   2009   for (const auto *Ext : OI->known_extensions())
   2010     count += Ext->ivar_size();
   2011 
   2012   // Count ivar defined in this class's implementation.  This
   2013   // includes synthesized ivars.
   2014   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
   2015     count += ImplDecl->ivar_size();
   2016 
   2017   return count;
   2018 }
   2019 
   2020 bool ASTContext::isSentinelNullExpr(const Expr *E) {
   2021   if (!E)
   2022     return false;
   2023 
   2024   // nullptr_t is always treated as null.
   2025   if (E->getType()->isNullPtrType()) return true;
   2026 
   2027   if (E->getType()->isAnyPointerType() &&
   2028       E->IgnoreParenCasts()->isNullPointerConstant(*this,
   2029                                                 Expr::NPC_ValueDependentIsNull))
   2030     return true;
   2031 
   2032   // Unfortunately, __null has type 'int'.
   2033   if (isa<GNUNullExpr>(E)) return true;
   2034 
   2035   return false;
   2036 }
   2037 
   2038 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
   2039 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
   2040   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   2041     I = ObjCImpls.find(D);
   2042   if (I != ObjCImpls.end())
   2043     return cast<ObjCImplementationDecl>(I->second);
   2044   return nullptr;
   2045 }
   2046 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
   2047 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
   2048   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   2049     I = ObjCImpls.find(D);
   2050   if (I != ObjCImpls.end())
   2051     return cast<ObjCCategoryImplDecl>(I->second);
   2052   return nullptr;
   2053 }
   2054 
   2055 /// \brief Set the implementation of ObjCInterfaceDecl.
   2056 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   2057                            ObjCImplementationDecl *ImplD) {
   2058   assert(IFaceD && ImplD && "Passed null params");
   2059   ObjCImpls[IFaceD] = ImplD;
   2060 }
   2061 /// \brief Set the implementation of ObjCCategoryDecl.
   2062 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
   2063                            ObjCCategoryImplDecl *ImplD) {
   2064   assert(CatD && ImplD && "Passed null params");
   2065   ObjCImpls[CatD] = ImplD;
   2066 }
   2067 
   2068 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
   2069                                               const NamedDecl *ND) const {
   2070   if (const ObjCInterfaceDecl *ID =
   2071           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
   2072     return ID;
   2073   if (const ObjCCategoryDecl *CD =
   2074           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
   2075     return CD->getClassInterface();
   2076   if (const ObjCImplDecl *IMD =
   2077           dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
   2078     return IMD->getClassInterface();
   2079 
   2080   return nullptr;
   2081 }
   2082 
   2083 /// \brief Get the copy initialization expression of VarDecl,or NULL if
   2084 /// none exists.
   2085 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
   2086   assert(VD && "Passed null params");
   2087   assert(VD->hasAttr<BlocksAttr>() &&
   2088          "getBlockVarCopyInits - not __block var");
   2089   llvm::DenseMap<const VarDecl*, Expr*>::iterator
   2090     I = BlockVarCopyInits.find(VD);
   2091   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
   2092 }
   2093 
   2094 /// \brief Set the copy inialization expression of a block var decl.
   2095 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
   2096   assert(VD && Init && "Passed null params");
   2097   assert(VD->hasAttr<BlocksAttr>() &&
   2098          "setBlockVarCopyInits - not __block var");
   2099   BlockVarCopyInits[VD] = Init;
   2100 }
   2101 
   2102 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
   2103                                                  unsigned DataSize) const {
   2104   if (!DataSize)
   2105     DataSize = TypeLoc::getFullDataSizeForType(T);
   2106   else
   2107     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
   2108            "incorrect data size provided to CreateTypeSourceInfo!");
   2109 
   2110   TypeSourceInfo *TInfo =
   2111     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
   2112   new (TInfo) TypeSourceInfo(T);
   2113   return TInfo;
   2114 }
   2115 
   2116 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
   2117                                                      SourceLocation L) const {
   2118   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
   2119   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
   2120   return DI;
   2121 }
   2122 
   2123 const ASTRecordLayout &
   2124 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
   2125   return getObjCLayout(D, nullptr);
   2126 }
   2127 
   2128 const ASTRecordLayout &
   2129 ASTContext::getASTObjCImplementationLayout(
   2130                                         const ObjCImplementationDecl *D) const {
   2131   return getObjCLayout(D->getClassInterface(), D);
   2132 }
   2133 
   2134 //===----------------------------------------------------------------------===//
   2135 //                   Type creation/memoization methods
   2136 //===----------------------------------------------------------------------===//
   2137 
   2138 QualType
   2139 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
   2140   unsigned fastQuals = quals.getFastQualifiers();
   2141   quals.removeFastQualifiers();
   2142 
   2143   // Check if we've already instantiated this type.
   2144   llvm::FoldingSetNodeID ID;
   2145   ExtQuals::Profile(ID, baseType, quals);
   2146   void *insertPos = nullptr;
   2147   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
   2148     assert(eq->getQualifiers() == quals);
   2149     return QualType(eq, fastQuals);
   2150   }
   2151 
   2152   // If the base type is not canonical, make the appropriate canonical type.
   2153   QualType canon;
   2154   if (!baseType->isCanonicalUnqualified()) {
   2155     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
   2156     canonSplit.Quals.addConsistentQualifiers(quals);
   2157     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
   2158 
   2159     // Re-find the insert position.
   2160     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
   2161   }
   2162 
   2163   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
   2164   ExtQualNodes.InsertNode(eq, insertPos);
   2165   return QualType(eq, fastQuals);
   2166 }
   2167 
   2168 QualType
   2169 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
   2170   QualType CanT = getCanonicalType(T);
   2171   if (CanT.getAddressSpace() == AddressSpace)
   2172     return T;
   2173 
   2174   // If we are composing extended qualifiers together, merge together
   2175   // into one ExtQuals node.
   2176   QualifierCollector Quals;
   2177   const Type *TypeNode = Quals.strip(T);
   2178 
   2179   // If this type already has an address space specified, it cannot get
   2180   // another one.
   2181   assert(!Quals.hasAddressSpace() &&
   2182          "Type cannot be in multiple addr spaces!");
   2183   Quals.addAddressSpace(AddressSpace);
   2184 
   2185   return getExtQualType(TypeNode, Quals);
   2186 }
   2187 
   2188 QualType ASTContext::getObjCGCQualType(QualType T,
   2189                                        Qualifiers::GC GCAttr) const {
   2190   QualType CanT = getCanonicalType(T);
   2191   if (CanT.getObjCGCAttr() == GCAttr)
   2192     return T;
   2193 
   2194   if (const PointerType *ptr = T->getAs<PointerType>()) {
   2195     QualType Pointee = ptr->getPointeeType();
   2196     if (Pointee->isAnyPointerType()) {
   2197       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
   2198       return getPointerType(ResultType);
   2199     }
   2200   }
   2201 
   2202   // If we are composing extended qualifiers together, merge together
   2203   // into one ExtQuals node.
   2204   QualifierCollector Quals;
   2205   const Type *TypeNode = Quals.strip(T);
   2206 
   2207   // If this type already has an ObjCGC specified, it cannot get
   2208   // another one.
   2209   assert(!Quals.hasObjCGCAttr() &&
   2210          "Type cannot have multiple ObjCGCs!");
   2211   Quals.addObjCGCAttr(GCAttr);
   2212 
   2213   return getExtQualType(TypeNode, Quals);
   2214 }
   2215 
   2216 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
   2217                                                    FunctionType::ExtInfo Info) {
   2218   if (T->getExtInfo() == Info)
   2219     return T;
   2220 
   2221   QualType Result;
   2222   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
   2223     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
   2224   } else {
   2225     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   2226     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   2227     EPI.ExtInfo = Info;
   2228     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
   2229   }
   2230 
   2231   return cast<FunctionType>(Result.getTypePtr());
   2232 }
   2233 
   2234 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
   2235                                                  QualType ResultType) {
   2236   FD = FD->getMostRecentDecl();
   2237   while (true) {
   2238     const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
   2239     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   2240     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
   2241     if (FunctionDecl *Next = FD->getPreviousDecl())
   2242       FD = Next;
   2243     else
   2244       break;
   2245   }
   2246   if (ASTMutationListener *L = getASTMutationListener())
   2247     L->DeducedReturnType(FD, ResultType);
   2248 }
   2249 
   2250 /// Get a function type and produce the equivalent function type with the
   2251 /// specified exception specification. Type sugar that can be present on a
   2252 /// declaration of a function with an exception specification is permitted
   2253 /// and preserved. Other type sugar (for instance, typedefs) is not.
   2254 static QualType getFunctionTypeWithExceptionSpec(
   2255     ASTContext &Context, QualType Orig,
   2256     const FunctionProtoType::ExceptionSpecInfo &ESI) {
   2257   // Might have some parens.
   2258   if (auto *PT = dyn_cast<ParenType>(Orig))
   2259     return Context.getParenType(
   2260         getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
   2261 
   2262   // Might have a calling-convention attribute.
   2263   if (auto *AT = dyn_cast<AttributedType>(Orig))
   2264     return Context.getAttributedType(
   2265         AT->getAttrKind(),
   2266         getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
   2267         getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
   2268                                          ESI));
   2269 
   2270   // Anything else must be a function type. Rebuild it with the new exception
   2271   // specification.
   2272   const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
   2273   return Context.getFunctionType(
   2274       Proto->getReturnType(), Proto->getParamTypes(),
   2275       Proto->getExtProtoInfo().withExceptionSpec(ESI));
   2276 }
   2277 
   2278 void ASTContext::adjustExceptionSpec(
   2279     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
   2280     bool AsWritten) {
   2281   // Update the type.
   2282   QualType Updated =
   2283       getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
   2284   FD->setType(Updated);
   2285 
   2286   if (!AsWritten)
   2287     return;
   2288 
   2289   // Update the type in the type source information too.
   2290   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
   2291     // If the type and the type-as-written differ, we may need to update
   2292     // the type-as-written too.
   2293     if (TSInfo->getType() != FD->getType())
   2294       Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
   2295 
   2296     // FIXME: When we get proper type location information for exceptions,
   2297     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
   2298     // up the TypeSourceInfo;
   2299     assert(TypeLoc::getFullDataSizeForType(Updated) ==
   2300                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
   2301            "TypeLoc size mismatch from updating exception specification");
   2302     TSInfo->overrideType(Updated);
   2303   }
   2304 }
   2305 
   2306 /// getComplexType - Return the uniqued reference to the type for a complex
   2307 /// number with the specified element type.
   2308 QualType ASTContext::getComplexType(QualType T) const {
   2309   // Unique pointers, to guarantee there is only one pointer of a particular
   2310   // structure.
   2311   llvm::FoldingSetNodeID ID;
   2312   ComplexType::Profile(ID, T);
   2313 
   2314   void *InsertPos = nullptr;
   2315   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
   2316     return QualType(CT, 0);
   2317 
   2318   // If the pointee type isn't canonical, this won't be a canonical type either,
   2319   // so fill in the canonical type field.
   2320   QualType Canonical;
   2321   if (!T.isCanonical()) {
   2322     Canonical = getComplexType(getCanonicalType(T));
   2323 
   2324     // Get the new insert position for the node we care about.
   2325     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
   2326     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2327   }
   2328   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
   2329   Types.push_back(New);
   2330   ComplexTypes.InsertNode(New, InsertPos);
   2331   return QualType(New, 0);
   2332 }
   2333 
   2334 /// getPointerType - Return the uniqued reference to the type for a pointer to
   2335 /// the specified type.
   2336 QualType ASTContext::getPointerType(QualType T) const {
   2337   // Unique pointers, to guarantee there is only one pointer of a particular
   2338   // structure.
   2339   llvm::FoldingSetNodeID ID;
   2340   PointerType::Profile(ID, T);
   2341 
   2342   void *InsertPos = nullptr;
   2343   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2344     return QualType(PT, 0);
   2345 
   2346   // If the pointee type isn't canonical, this won't be a canonical type either,
   2347   // so fill in the canonical type field.
   2348   QualType Canonical;
   2349   if (!T.isCanonical()) {
   2350     Canonical = getPointerType(getCanonicalType(T));
   2351 
   2352     // Get the new insert position for the node we care about.
   2353     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2354     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2355   }
   2356   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
   2357   Types.push_back(New);
   2358   PointerTypes.InsertNode(New, InsertPos);
   2359   return QualType(New, 0);
   2360 }
   2361 
   2362 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
   2363   llvm::FoldingSetNodeID ID;
   2364   AdjustedType::Profile(ID, Orig, New);
   2365   void *InsertPos = nullptr;
   2366   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2367   if (AT)
   2368     return QualType(AT, 0);
   2369 
   2370   QualType Canonical = getCanonicalType(New);
   2371 
   2372   // Get the new insert position for the node we care about.
   2373   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2374   assert(!AT && "Shouldn't be in the map!");
   2375 
   2376   AT = new (*this, TypeAlignment)
   2377       AdjustedType(Type::Adjusted, Orig, New, Canonical);
   2378   Types.push_back(AT);
   2379   AdjustedTypes.InsertNode(AT, InsertPos);
   2380   return QualType(AT, 0);
   2381 }
   2382 
   2383 QualType ASTContext::getDecayedType(QualType T) const {
   2384   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
   2385 
   2386   QualType Decayed;
   2387 
   2388   // C99 6.7.5.3p7:
   2389   //   A declaration of a parameter as "array of type" shall be
   2390   //   adjusted to "qualified pointer to type", where the type
   2391   //   qualifiers (if any) are those specified within the [ and ] of
   2392   //   the array type derivation.
   2393   if (T->isArrayType())
   2394     Decayed = getArrayDecayedType(T);
   2395 
   2396   // C99 6.7.5.3p8:
   2397   //   A declaration of a parameter as "function returning type"
   2398   //   shall be adjusted to "pointer to function returning type", as
   2399   //   in 6.3.2.1.
   2400   if (T->isFunctionType())
   2401     Decayed = getPointerType(T);
   2402 
   2403   llvm::FoldingSetNodeID ID;
   2404   AdjustedType::Profile(ID, T, Decayed);
   2405   void *InsertPos = nullptr;
   2406   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2407   if (AT)
   2408     return QualType(AT, 0);
   2409 
   2410   QualType Canonical = getCanonicalType(Decayed);
   2411 
   2412   // Get the new insert position for the node we care about.
   2413   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2414   assert(!AT && "Shouldn't be in the map!");
   2415 
   2416   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
   2417   Types.push_back(AT);
   2418   AdjustedTypes.InsertNode(AT, InsertPos);
   2419   return QualType(AT, 0);
   2420 }
   2421 
   2422 /// getBlockPointerType - Return the uniqued reference to the type for
   2423 /// a pointer to the specified block.
   2424 QualType ASTContext::getBlockPointerType(QualType T) const {
   2425   assert(T->isFunctionType() && "block of function types only");
   2426   // Unique pointers, to guarantee there is only one block of a particular
   2427   // structure.
   2428   llvm::FoldingSetNodeID ID;
   2429   BlockPointerType::Profile(ID, T);
   2430 
   2431   void *InsertPos = nullptr;
   2432   if (BlockPointerType *PT =
   2433         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2434     return QualType(PT, 0);
   2435 
   2436   // If the block pointee type isn't canonical, this won't be a canonical
   2437   // type either so fill in the canonical type field.
   2438   QualType Canonical;
   2439   if (!T.isCanonical()) {
   2440     Canonical = getBlockPointerType(getCanonicalType(T));
   2441 
   2442     // Get the new insert position for the node we care about.
   2443     BlockPointerType *NewIP =
   2444       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2445     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2446   }
   2447   BlockPointerType *New
   2448     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
   2449   Types.push_back(New);
   2450   BlockPointerTypes.InsertNode(New, InsertPos);
   2451   return QualType(New, 0);
   2452 }
   2453 
   2454 /// getLValueReferenceType - Return the uniqued reference to the type for an
   2455 /// lvalue reference to the specified type.
   2456 QualType
   2457 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
   2458   assert(getCanonicalType(T) != OverloadTy &&
   2459          "Unresolved overloaded function type");
   2460 
   2461   // Unique pointers, to guarantee there is only one pointer of a particular
   2462   // structure.
   2463   llvm::FoldingSetNodeID ID;
   2464   ReferenceType::Profile(ID, T, SpelledAsLValue);
   2465 
   2466   void *InsertPos = nullptr;
   2467   if (LValueReferenceType *RT =
   2468         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2469     return QualType(RT, 0);
   2470 
   2471   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2472 
   2473   // If the referencee type isn't canonical, this won't be a canonical type
   2474   // either, so fill in the canonical type field.
   2475   QualType Canonical;
   2476   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
   2477     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2478     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
   2479 
   2480     // Get the new insert position for the node we care about.
   2481     LValueReferenceType *NewIP =
   2482       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2483     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2484   }
   2485 
   2486   LValueReferenceType *New
   2487     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
   2488                                                      SpelledAsLValue);
   2489   Types.push_back(New);
   2490   LValueReferenceTypes.InsertNode(New, InsertPos);
   2491 
   2492   return QualType(New, 0);
   2493 }
   2494 
   2495 /// getRValueReferenceType - Return the uniqued reference to the type for an
   2496 /// rvalue reference to the specified type.
   2497 QualType ASTContext::getRValueReferenceType(QualType T) const {
   2498   // Unique pointers, to guarantee there is only one pointer of a particular
   2499   // structure.
   2500   llvm::FoldingSetNodeID ID;
   2501   ReferenceType::Profile(ID, T, false);
   2502 
   2503   void *InsertPos = nullptr;
   2504   if (RValueReferenceType *RT =
   2505         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2506     return QualType(RT, 0);
   2507 
   2508   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2509 
   2510   // If the referencee type isn't canonical, this won't be a canonical type
   2511   // either, so fill in the canonical type field.
   2512   QualType Canonical;
   2513   if (InnerRef || !T.isCanonical()) {
   2514     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2515     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
   2516 
   2517     // Get the new insert position for the node we care about.
   2518     RValueReferenceType *NewIP =
   2519       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2520     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2521   }
   2522 
   2523   RValueReferenceType *New
   2524     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
   2525   Types.push_back(New);
   2526   RValueReferenceTypes.InsertNode(New, InsertPos);
   2527   return QualType(New, 0);
   2528 }
   2529 
   2530 /// getMemberPointerType - Return the uniqued reference to the type for a
   2531 /// member pointer to the specified type, in the specified class.
   2532 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
   2533   // Unique pointers, to guarantee there is only one pointer of a particular
   2534   // structure.
   2535   llvm::FoldingSetNodeID ID;
   2536   MemberPointerType::Profile(ID, T, Cls);
   2537 
   2538   void *InsertPos = nullptr;
   2539   if (MemberPointerType *PT =
   2540       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2541     return QualType(PT, 0);
   2542 
   2543   // If the pointee or class type isn't canonical, this won't be a canonical
   2544   // type either, so fill in the canonical type field.
   2545   QualType Canonical;
   2546   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
   2547     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
   2548 
   2549     // Get the new insert position for the node we care about.
   2550     MemberPointerType *NewIP =
   2551       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2552     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2553   }
   2554   MemberPointerType *New
   2555     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
   2556   Types.push_back(New);
   2557   MemberPointerTypes.InsertNode(New, InsertPos);
   2558   return QualType(New, 0);
   2559 }
   2560 
   2561 /// getConstantArrayType - Return the unique reference to the type for an
   2562 /// array of the specified element type.
   2563 QualType ASTContext::getConstantArrayType(QualType EltTy,
   2564                                           const llvm::APInt &ArySizeIn,
   2565                                           ArrayType::ArraySizeModifier ASM,
   2566                                           unsigned IndexTypeQuals) const {
   2567   assert((EltTy->isDependentType() ||
   2568           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
   2569          "Constant array of VLAs is illegal!");
   2570 
   2571   // Convert the array size into a canonical width matching the pointer size for
   2572   // the target.
   2573   llvm::APInt ArySize(ArySizeIn);
   2574   ArySize =
   2575     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
   2576 
   2577   llvm::FoldingSetNodeID ID;
   2578   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
   2579 
   2580   void *InsertPos = nullptr;
   2581   if (ConstantArrayType *ATP =
   2582       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
   2583     return QualType(ATP, 0);
   2584 
   2585   // If the element type isn't canonical or has qualifiers, this won't
   2586   // be a canonical type either, so fill in the canonical type field.
   2587   QualType Canon;
   2588   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2589     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2590     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
   2591                                  ASM, IndexTypeQuals);
   2592     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2593 
   2594     // Get the new insert position for the node we care about.
   2595     ConstantArrayType *NewIP =
   2596       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
   2597     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2598   }
   2599 
   2600   ConstantArrayType *New = new(*this,TypeAlignment)
   2601     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
   2602   ConstantArrayTypes.InsertNode(New, InsertPos);
   2603   Types.push_back(New);
   2604   return QualType(New, 0);
   2605 }
   2606 
   2607 /// getVariableArrayDecayedType - Turns the given type, which may be
   2608 /// variably-modified, into the corresponding type with all the known
   2609 /// sizes replaced with [*].
   2610 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
   2611   // Vastly most common case.
   2612   if (!type->isVariablyModifiedType()) return type;
   2613 
   2614   QualType result;
   2615 
   2616   SplitQualType split = type.getSplitDesugaredType();
   2617   const Type *ty = split.Ty;
   2618   switch (ty->getTypeClass()) {
   2619 #define TYPE(Class, Base)
   2620 #define ABSTRACT_TYPE(Class, Base)
   2621 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2622 #include "clang/AST/TypeNodes.def"
   2623     llvm_unreachable("didn't desugar past all non-canonical types?");
   2624 
   2625   // These types should never be variably-modified.
   2626   case Type::Builtin:
   2627   case Type::Complex:
   2628   case Type::Vector:
   2629   case Type::ExtVector:
   2630   case Type::DependentSizedExtVector:
   2631   case Type::ObjCObject:
   2632   case Type::ObjCInterface:
   2633   case Type::ObjCObjectPointer:
   2634   case Type::Record:
   2635   case Type::Enum:
   2636   case Type::UnresolvedUsing:
   2637   case Type::TypeOfExpr:
   2638   case Type::TypeOf:
   2639   case Type::Decltype:
   2640   case Type::UnaryTransform:
   2641   case Type::DependentName:
   2642   case Type::InjectedClassName:
   2643   case Type::TemplateSpecialization:
   2644   case Type::DependentTemplateSpecialization:
   2645   case Type::TemplateTypeParm:
   2646   case Type::SubstTemplateTypeParmPack:
   2647   case Type::Auto:
   2648   case Type::PackExpansion:
   2649     llvm_unreachable("type should never be variably-modified");
   2650 
   2651   // These types can be variably-modified but should never need to
   2652   // further decay.
   2653   case Type::FunctionNoProto:
   2654   case Type::FunctionProto:
   2655   case Type::BlockPointer:
   2656   case Type::MemberPointer:
   2657     return type;
   2658 
   2659   // These types can be variably-modified.  All these modifications
   2660   // preserve structure except as noted by comments.
   2661   // TODO: if we ever care about optimizing VLAs, there are no-op
   2662   // optimizations available here.
   2663   case Type::Pointer:
   2664     result = getPointerType(getVariableArrayDecayedType(
   2665                               cast<PointerType>(ty)->getPointeeType()));
   2666     break;
   2667 
   2668   case Type::LValueReference: {
   2669     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
   2670     result = getLValueReferenceType(
   2671                  getVariableArrayDecayedType(lv->getPointeeType()),
   2672                                     lv->isSpelledAsLValue());
   2673     break;
   2674   }
   2675 
   2676   case Type::RValueReference: {
   2677     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
   2678     result = getRValueReferenceType(
   2679                  getVariableArrayDecayedType(lv->getPointeeType()));
   2680     break;
   2681   }
   2682 
   2683   case Type::Atomic: {
   2684     const AtomicType *at = cast<AtomicType>(ty);
   2685     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
   2686     break;
   2687   }
   2688 
   2689   case Type::ConstantArray: {
   2690     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
   2691     result = getConstantArrayType(
   2692                  getVariableArrayDecayedType(cat->getElementType()),
   2693                                   cat->getSize(),
   2694                                   cat->getSizeModifier(),
   2695                                   cat->getIndexTypeCVRQualifiers());
   2696     break;
   2697   }
   2698 
   2699   case Type::DependentSizedArray: {
   2700     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
   2701     result = getDependentSizedArrayType(
   2702                  getVariableArrayDecayedType(dat->getElementType()),
   2703                                         dat->getSizeExpr(),
   2704                                         dat->getSizeModifier(),
   2705                                         dat->getIndexTypeCVRQualifiers(),
   2706                                         dat->getBracketsRange());
   2707     break;
   2708   }
   2709 
   2710   // Turn incomplete types into [*] types.
   2711   case Type::IncompleteArray: {
   2712     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
   2713     result = getVariableArrayType(
   2714                  getVariableArrayDecayedType(iat->getElementType()),
   2715                                   /*size*/ nullptr,
   2716                                   ArrayType::Normal,
   2717                                   iat->getIndexTypeCVRQualifiers(),
   2718                                   SourceRange());
   2719     break;
   2720   }
   2721 
   2722   // Turn VLA types into [*] types.
   2723   case Type::VariableArray: {
   2724     const VariableArrayType *vat = cast<VariableArrayType>(ty);
   2725     result = getVariableArrayType(
   2726                  getVariableArrayDecayedType(vat->getElementType()),
   2727                                   /*size*/ nullptr,
   2728                                   ArrayType::Star,
   2729                                   vat->getIndexTypeCVRQualifiers(),
   2730                                   vat->getBracketsRange());
   2731     break;
   2732   }
   2733   }
   2734 
   2735   // Apply the top-level qualifiers from the original.
   2736   return getQualifiedType(result, split.Quals);
   2737 }
   2738 
   2739 /// getVariableArrayType - Returns a non-unique reference to the type for a
   2740 /// variable array of the specified element type.
   2741 QualType ASTContext::getVariableArrayType(QualType EltTy,
   2742                                           Expr *NumElts,
   2743                                           ArrayType::ArraySizeModifier ASM,
   2744                                           unsigned IndexTypeQuals,
   2745                                           SourceRange Brackets) const {
   2746   // Since we don't unique expressions, it isn't possible to unique VLA's
   2747   // that have an expression provided for their size.
   2748   QualType Canon;
   2749 
   2750   // Be sure to pull qualifiers off the element type.
   2751   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2752     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2753     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
   2754                                  IndexTypeQuals, Brackets);
   2755     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2756   }
   2757 
   2758   VariableArrayType *New = new(*this, TypeAlignment)
   2759     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
   2760 
   2761   VariableArrayTypes.push_back(New);
   2762   Types.push_back(New);
   2763   return QualType(New, 0);
   2764 }
   2765 
   2766 /// getDependentSizedArrayType - Returns a non-unique reference to
   2767 /// the type for a dependently-sized array of the specified element
   2768 /// type.
   2769 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
   2770                                                 Expr *numElements,
   2771                                                 ArrayType::ArraySizeModifier ASM,
   2772                                                 unsigned elementTypeQuals,
   2773                                                 SourceRange brackets) const {
   2774   assert((!numElements || numElements->isTypeDependent() ||
   2775           numElements->isValueDependent()) &&
   2776          "Size must be type- or value-dependent!");
   2777 
   2778   // Dependently-sized array types that do not have a specified number
   2779   // of elements will have their sizes deduced from a dependent
   2780   // initializer.  We do no canonicalization here at all, which is okay
   2781   // because they can't be used in most locations.
   2782   if (!numElements) {
   2783     DependentSizedArrayType *newType
   2784       = new (*this, TypeAlignment)
   2785           DependentSizedArrayType(*this, elementType, QualType(),
   2786                                   numElements, ASM, elementTypeQuals,
   2787                                   brackets);
   2788     Types.push_back(newType);
   2789     return QualType(newType, 0);
   2790   }
   2791 
   2792   // Otherwise, we actually build a new type every time, but we
   2793   // also build a canonical type.
   2794 
   2795   SplitQualType canonElementType = getCanonicalType(elementType).split();
   2796 
   2797   void *insertPos = nullptr;
   2798   llvm::FoldingSetNodeID ID;
   2799   DependentSizedArrayType::Profile(ID, *this,
   2800                                    QualType(canonElementType.Ty, 0),
   2801                                    ASM, elementTypeQuals, numElements);
   2802 
   2803   // Look for an existing type with these properties.
   2804   DependentSizedArrayType *canonTy =
   2805     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2806 
   2807   // If we don't have one, build one.
   2808   if (!canonTy) {
   2809     canonTy = new (*this, TypeAlignment)
   2810       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
   2811                               QualType(), numElements, ASM, elementTypeQuals,
   2812                               brackets);
   2813     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
   2814     Types.push_back(canonTy);
   2815   }
   2816 
   2817   // Apply qualifiers from the element type to the array.
   2818   QualType canon = getQualifiedType(QualType(canonTy,0),
   2819                                     canonElementType.Quals);
   2820 
   2821   // If we didn't need extra canonicalization for the element type or the size
   2822   // expression, then just use that as our result.
   2823   if (QualType(canonElementType.Ty, 0) == elementType &&
   2824       canonTy->getSizeExpr() == numElements)
   2825     return canon;
   2826 
   2827   // Otherwise, we need to build a type which follows the spelling
   2828   // of the element type.
   2829   DependentSizedArrayType *sugaredType
   2830     = new (*this, TypeAlignment)
   2831         DependentSizedArrayType(*this, elementType, canon, numElements,
   2832                                 ASM, elementTypeQuals, brackets);
   2833   Types.push_back(sugaredType);
   2834   return QualType(sugaredType, 0);
   2835 }
   2836 
   2837 QualType ASTContext::getIncompleteArrayType(QualType elementType,
   2838                                             ArrayType::ArraySizeModifier ASM,
   2839                                             unsigned elementTypeQuals) const {
   2840   llvm::FoldingSetNodeID ID;
   2841   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
   2842 
   2843   void *insertPos = nullptr;
   2844   if (IncompleteArrayType *iat =
   2845        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
   2846     return QualType(iat, 0);
   2847 
   2848   // If the element type isn't canonical, this won't be a canonical type
   2849   // either, so fill in the canonical type field.  We also have to pull
   2850   // qualifiers off the element type.
   2851   QualType canon;
   2852 
   2853   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
   2854     SplitQualType canonSplit = getCanonicalType(elementType).split();
   2855     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
   2856                                    ASM, elementTypeQuals);
   2857     canon = getQualifiedType(canon, canonSplit.Quals);
   2858 
   2859     // Get the new insert position for the node we care about.
   2860     IncompleteArrayType *existing =
   2861       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2862     assert(!existing && "Shouldn't be in the map!"); (void) existing;
   2863   }
   2864 
   2865   IncompleteArrayType *newType = new (*this, TypeAlignment)
   2866     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
   2867 
   2868   IncompleteArrayTypes.InsertNode(newType, insertPos);
   2869   Types.push_back(newType);
   2870   return QualType(newType, 0);
   2871 }
   2872 
   2873 /// getVectorType - Return the unique reference to a vector type of
   2874 /// the specified element type and size. VectorType must be a built-in type.
   2875 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
   2876                                    VectorType::VectorKind VecKind) const {
   2877   assert(vecType->isBuiltinType());
   2878 
   2879   // Check if we've already instantiated a vector of this type.
   2880   llvm::FoldingSetNodeID ID;
   2881   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
   2882 
   2883   void *InsertPos = nullptr;
   2884   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2885     return QualType(VTP, 0);
   2886 
   2887   // If the element type isn't canonical, this won't be a canonical type either,
   2888   // so fill in the canonical type field.
   2889   QualType Canonical;
   2890   if (!vecType.isCanonical()) {
   2891     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
   2892 
   2893     // Get the new insert position for the node we care about.
   2894     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2895     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2896   }
   2897   VectorType *New = new (*this, TypeAlignment)
   2898     VectorType(vecType, NumElts, Canonical, VecKind);
   2899   VectorTypes.InsertNode(New, InsertPos);
   2900   Types.push_back(New);
   2901   return QualType(New, 0);
   2902 }
   2903 
   2904 /// getExtVectorType - Return the unique reference to an extended vector type of
   2905 /// the specified element type and size. VectorType must be a built-in type.
   2906 QualType
   2907 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
   2908   assert(vecType->isBuiltinType() || vecType->isDependentType());
   2909 
   2910   // Check if we've already instantiated a vector of this type.
   2911   llvm::FoldingSetNodeID ID;
   2912   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
   2913                       VectorType::GenericVector);
   2914   void *InsertPos = nullptr;
   2915   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2916     return QualType(VTP, 0);
   2917 
   2918   // If the element type isn't canonical, this won't be a canonical type either,
   2919   // so fill in the canonical type field.
   2920   QualType Canonical;
   2921   if (!vecType.isCanonical()) {
   2922     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
   2923 
   2924     // Get the new insert position for the node we care about.
   2925     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2926     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2927   }
   2928   ExtVectorType *New = new (*this, TypeAlignment)
   2929     ExtVectorType(vecType, NumElts, Canonical);
   2930   VectorTypes.InsertNode(New, InsertPos);
   2931   Types.push_back(New);
   2932   return QualType(New, 0);
   2933 }
   2934 
   2935 QualType
   2936 ASTContext::getDependentSizedExtVectorType(QualType vecType,
   2937                                            Expr *SizeExpr,
   2938                                            SourceLocation AttrLoc) const {
   2939   llvm::FoldingSetNodeID ID;
   2940   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
   2941                                        SizeExpr);
   2942 
   2943   void *InsertPos = nullptr;
   2944   DependentSizedExtVectorType *Canon
   2945     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2946   DependentSizedExtVectorType *New;
   2947   if (Canon) {
   2948     // We already have a canonical version of this array type; use it as
   2949     // the canonical type for a newly-built type.
   2950     New = new (*this, TypeAlignment)
   2951       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
   2952                                   SizeExpr, AttrLoc);
   2953   } else {
   2954     QualType CanonVecTy = getCanonicalType(vecType);
   2955     if (CanonVecTy == vecType) {
   2956       New = new (*this, TypeAlignment)
   2957         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
   2958                                     AttrLoc);
   2959 
   2960       DependentSizedExtVectorType *CanonCheck
   2961         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2962       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
   2963       (void)CanonCheck;
   2964       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
   2965     } else {
   2966       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
   2967                                                       SourceLocation());
   2968       New = new (*this, TypeAlignment)
   2969         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
   2970     }
   2971   }
   2972 
   2973   Types.push_back(New);
   2974   return QualType(New, 0);
   2975 }
   2976 
   2977 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
   2978 ///
   2979 QualType
   2980 ASTContext::getFunctionNoProtoType(QualType ResultTy,
   2981                                    const FunctionType::ExtInfo &Info) const {
   2982   const CallingConv CallConv = Info.getCC();
   2983 
   2984   // Unique functions, to guarantee there is only one function of a particular
   2985   // structure.
   2986   llvm::FoldingSetNodeID ID;
   2987   FunctionNoProtoType::Profile(ID, ResultTy, Info);
   2988 
   2989   void *InsertPos = nullptr;
   2990   if (FunctionNoProtoType *FT =
   2991         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2992     return QualType(FT, 0);
   2993 
   2994   QualType Canonical;
   2995   if (!ResultTy.isCanonical()) {
   2996     Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
   2997 
   2998     // Get the new insert position for the node we care about.
   2999     FunctionNoProtoType *NewIP =
   3000       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   3001     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   3002   }
   3003 
   3004   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
   3005   FunctionNoProtoType *New = new (*this, TypeAlignment)
   3006     FunctionNoProtoType(ResultTy, Canonical, newInfo);
   3007   Types.push_back(New);
   3008   FunctionNoProtoTypes.InsertNode(New, InsertPos);
   3009   return QualType(New, 0);
   3010 }
   3011 
   3012 /// \brief Determine whether \p T is canonical as the result type of a function.
   3013 static bool isCanonicalResultType(QualType T) {
   3014   return T.isCanonical() &&
   3015          (T.getObjCLifetime() == Qualifiers::OCL_None ||
   3016           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
   3017 }
   3018 
   3019 CanQualType
   3020 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
   3021   CanQualType CanResultType = getCanonicalType(ResultType);
   3022 
   3023   // Canonical result types do not have ARC lifetime qualifiers.
   3024   if (CanResultType.getQualifiers().hasObjCLifetime()) {
   3025     Qualifiers Qs = CanResultType.getQualifiers();
   3026     Qs.removeObjCLifetime();
   3027     return CanQualType::CreateUnsafe(
   3028              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
   3029   }
   3030 
   3031   return CanResultType;
   3032 }
   3033 
   3034 QualType
   3035 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
   3036                             const FunctionProtoType::ExtProtoInfo &EPI) const {
   3037   size_t NumArgs = ArgArray.size();
   3038 
   3039   // Unique functions, to guarantee there is only one function of a particular
   3040   // structure.
   3041   llvm::FoldingSetNodeID ID;
   3042   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
   3043                              *this);
   3044 
   3045   void *InsertPos = nullptr;
   3046   if (FunctionProtoType *FTP =
   3047         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   3048     return QualType(FTP, 0);
   3049 
   3050   // Determine whether the type being created is already canonical or not.
   3051   bool isCanonical =
   3052     EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
   3053     !EPI.HasTrailingReturn;
   3054   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
   3055     if (!ArgArray[i].isCanonicalAsParam())
   3056       isCanonical = false;
   3057 
   3058   // If this type isn't canonical, get the canonical version of it.
   3059   // The exception spec is not part of the canonical type.
   3060   QualType Canonical;
   3061   if (!isCanonical) {
   3062     SmallVector<QualType, 16> CanonicalArgs;
   3063     CanonicalArgs.reserve(NumArgs);
   3064     for (unsigned i = 0; i != NumArgs; ++i)
   3065       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
   3066 
   3067     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
   3068     CanonicalEPI.HasTrailingReturn = false;
   3069     CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
   3070 
   3071     // Adjust the canonical function result type.
   3072     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
   3073     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
   3074 
   3075     // Get the new insert position for the node we care about.
   3076     FunctionProtoType *NewIP =
   3077       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   3078     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   3079   }
   3080 
   3081   // FunctionProtoType objects are allocated with extra bytes after
   3082   // them for three variable size arrays at the end:
   3083   //  - parameter types
   3084   //  - exception types
   3085   //  - consumed-arguments flags
   3086   // Instead of the exception types, there could be a noexcept
   3087   // expression, or information used to resolve the exception
   3088   // specification.
   3089   size_t Size = sizeof(FunctionProtoType) +
   3090                 NumArgs * sizeof(QualType);
   3091   if (EPI.ExceptionSpec.Type == EST_Dynamic) {
   3092     Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
   3093   } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
   3094     Size += sizeof(Expr*);
   3095   } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
   3096     Size += 2 * sizeof(FunctionDecl*);
   3097   } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
   3098     Size += sizeof(FunctionDecl*);
   3099   }
   3100   if (EPI.ConsumedParameters)
   3101     Size += NumArgs * sizeof(bool);
   3102 
   3103   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
   3104   FunctionProtoType::ExtProtoInfo newEPI = EPI;
   3105   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
   3106   Types.push_back(FTP);
   3107   FunctionProtoTypes.InsertNode(FTP, InsertPos);
   3108   return QualType(FTP, 0);
   3109 }
   3110 
   3111 #ifndef NDEBUG
   3112 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
   3113   if (!isa<CXXRecordDecl>(D)) return false;
   3114   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
   3115   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
   3116     return true;
   3117   if (RD->getDescribedClassTemplate() &&
   3118       !isa<ClassTemplateSpecializationDecl>(RD))
   3119     return true;
   3120   return false;
   3121 }
   3122 #endif
   3123 
   3124 /// getInjectedClassNameType - Return the unique reference to the
   3125 /// injected class name type for the specified templated declaration.
   3126 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
   3127                                               QualType TST) const {
   3128   assert(NeedsInjectedClassNameType(Decl));
   3129   if (Decl->TypeForDecl) {
   3130     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   3131   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
   3132     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
   3133     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   3134     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   3135   } else {
   3136     Type *newType =
   3137       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
   3138     Decl->TypeForDecl = newType;
   3139     Types.push_back(newType);
   3140   }
   3141   return QualType(Decl->TypeForDecl, 0);
   3142 }
   3143 
   3144 /// getTypeDeclType - Return the unique reference to the type for the
   3145 /// specified type declaration.
   3146 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
   3147   assert(Decl && "Passed null for Decl param");
   3148   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
   3149 
   3150   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
   3151     return getTypedefType(Typedef);
   3152 
   3153   assert(!isa<TemplateTypeParmDecl>(Decl) &&
   3154          "Template type parameter types are always available.");
   3155 
   3156   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
   3157     assert(Record->isFirstDecl() && "struct/union has previous declaration");
   3158     assert(!NeedsInjectedClassNameType(Record));
   3159     return getRecordType(Record);
   3160   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
   3161     assert(Enum->isFirstDecl() && "enum has previous declaration");
   3162     return getEnumType(Enum);
   3163   } else if (const UnresolvedUsingTypenameDecl *Using =
   3164                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
   3165     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
   3166     Decl->TypeForDecl = newType;
   3167     Types.push_back(newType);
   3168   } else
   3169     llvm_unreachable("TypeDecl without a type?");
   3170 
   3171   return QualType(Decl->TypeForDecl, 0);
   3172 }
   3173 
   3174 /// getTypedefType - Return the unique reference to the type for the
   3175 /// specified typedef name decl.
   3176 QualType
   3177 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
   3178                            QualType Canonical) const {
   3179   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   3180 
   3181   if (Canonical.isNull())
   3182     Canonical = getCanonicalType(Decl->getUnderlyingType());
   3183   TypedefType *newType = new(*this, TypeAlignment)
   3184     TypedefType(Type::Typedef, Decl, Canonical);
   3185   Decl->TypeForDecl = newType;
   3186   Types.push_back(newType);
   3187   return QualType(newType, 0);
   3188 }
   3189 
   3190 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
   3191   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   3192 
   3193   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
   3194     if (PrevDecl->TypeForDecl)
   3195       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   3196 
   3197   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
   3198   Decl->TypeForDecl = newType;
   3199   Types.push_back(newType);
   3200   return QualType(newType, 0);
   3201 }
   3202 
   3203 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
   3204   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   3205 
   3206   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
   3207     if (PrevDecl->TypeForDecl)
   3208       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   3209 
   3210   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
   3211   Decl->TypeForDecl = newType;
   3212   Types.push_back(newType);
   3213   return QualType(newType, 0);
   3214 }
   3215 
   3216 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
   3217                                        QualType modifiedType,
   3218                                        QualType equivalentType) {
   3219   llvm::FoldingSetNodeID id;
   3220   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
   3221 
   3222   void *insertPos = nullptr;
   3223   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
   3224   if (type) return QualType(type, 0);
   3225 
   3226   QualType canon = getCanonicalType(equivalentType);
   3227   type = new (*this, TypeAlignment)
   3228            AttributedType(canon, attrKind, modifiedType, equivalentType);
   3229 
   3230   Types.push_back(type);
   3231   AttributedTypes.InsertNode(type, insertPos);
   3232 
   3233   return QualType(type, 0);
   3234 }
   3235 
   3236 /// \brief Retrieve a substitution-result type.
   3237 QualType
   3238 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
   3239                                          QualType Replacement) const {
   3240   assert(Replacement.isCanonical()
   3241          && "replacement types must always be canonical");
   3242 
   3243   llvm::FoldingSetNodeID ID;
   3244   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
   3245   void *InsertPos = nullptr;
   3246   SubstTemplateTypeParmType *SubstParm
   3247     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3248 
   3249   if (!SubstParm) {
   3250     SubstParm = new (*this, TypeAlignment)
   3251       SubstTemplateTypeParmType(Parm, Replacement);
   3252     Types.push_back(SubstParm);
   3253     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   3254   }
   3255 
   3256   return QualType(SubstParm, 0);
   3257 }
   3258 
   3259 /// \brief Retrieve a
   3260 QualType ASTContext::getSubstTemplateTypeParmPackType(
   3261                                           const TemplateTypeParmType *Parm,
   3262                                               const TemplateArgument &ArgPack) {
   3263 #ifndef NDEBUG
   3264   for (const auto &P : ArgPack.pack_elements()) {
   3265     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
   3266     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
   3267   }
   3268 #endif
   3269 
   3270   llvm::FoldingSetNodeID ID;
   3271   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
   3272   void *InsertPos = nullptr;
   3273   if (SubstTemplateTypeParmPackType *SubstParm
   3274         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
   3275     return QualType(SubstParm, 0);
   3276 
   3277   QualType Canon;
   3278   if (!Parm->isCanonicalUnqualified()) {
   3279     Canon = getCanonicalType(QualType(Parm, 0));
   3280     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
   3281                                              ArgPack);
   3282     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
   3283   }
   3284 
   3285   SubstTemplateTypeParmPackType *SubstParm
   3286     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
   3287                                                                ArgPack);
   3288   Types.push_back(SubstParm);
   3289   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   3290   return QualType(SubstParm, 0);
   3291 }
   3292 
   3293 /// \brief Retrieve the template type parameter type for a template
   3294 /// parameter or parameter pack with the given depth, index, and (optionally)
   3295 /// name.
   3296 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
   3297                                              bool ParameterPack,
   3298                                              TemplateTypeParmDecl *TTPDecl) const {
   3299   llvm::FoldingSetNodeID ID;
   3300   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
   3301   void *InsertPos = nullptr;
   3302   TemplateTypeParmType *TypeParm
   3303     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3304 
   3305   if (TypeParm)
   3306     return QualType(TypeParm, 0);
   3307 
   3308   if (TTPDecl) {
   3309     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
   3310     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
   3311 
   3312     TemplateTypeParmType *TypeCheck
   3313       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3314     assert(!TypeCheck && "Template type parameter canonical type broken");
   3315     (void)TypeCheck;
   3316   } else
   3317     TypeParm = new (*this, TypeAlignment)
   3318       TemplateTypeParmType(Depth, Index, ParameterPack);
   3319 
   3320   Types.push_back(TypeParm);
   3321   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
   3322 
   3323   return QualType(TypeParm, 0);
   3324 }
   3325 
   3326 TypeSourceInfo *
   3327 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
   3328                                               SourceLocation NameLoc,
   3329                                         const TemplateArgumentListInfo &Args,
   3330                                               QualType Underlying) const {
   3331   assert(!Name.getAsDependentTemplateName() &&
   3332          "No dependent template names here!");
   3333   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
   3334 
   3335   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
   3336   TemplateSpecializationTypeLoc TL =
   3337       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
   3338   TL.setTemplateKeywordLoc(SourceLocation());
   3339   TL.setTemplateNameLoc(NameLoc);
   3340   TL.setLAngleLoc(Args.getLAngleLoc());
   3341   TL.setRAngleLoc(Args.getRAngleLoc());
   3342   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
   3343     TL.setArgLocInfo(i, Args[i].getLocInfo());
   3344   return DI;
   3345 }
   3346 
   3347 QualType
   3348 ASTContext::getTemplateSpecializationType(TemplateName Template,
   3349                                           const TemplateArgumentListInfo &Args,
   3350                                           QualType Underlying) const {
   3351   assert(!Template.getAsDependentTemplateName() &&
   3352          "No dependent template names here!");
   3353 
   3354   unsigned NumArgs = Args.size();
   3355 
   3356   SmallVector<TemplateArgument, 4> ArgVec;
   3357   ArgVec.reserve(NumArgs);
   3358   for (unsigned i = 0; i != NumArgs; ++i)
   3359     ArgVec.push_back(Args[i].getArgument());
   3360 
   3361   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
   3362                                        Underlying);
   3363 }
   3364 
   3365 #ifndef NDEBUG
   3366 static bool hasAnyPackExpansions(const TemplateArgument *Args,
   3367                                  unsigned NumArgs) {
   3368   for (unsigned I = 0; I != NumArgs; ++I)
   3369     if (Args[I].isPackExpansion())
   3370       return true;
   3371 
   3372   return true;
   3373 }
   3374 #endif
   3375 
   3376 QualType
   3377 ASTContext::getTemplateSpecializationType(TemplateName Template,
   3378                                           const TemplateArgument *Args,
   3379                                           unsigned NumArgs,
   3380                                           QualType Underlying) const {
   3381   assert(!Template.getAsDependentTemplateName() &&
   3382          "No dependent template names here!");
   3383   // Look through qualified template names.
   3384   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3385     Template = TemplateName(QTN->getTemplateDecl());
   3386 
   3387   bool IsTypeAlias =
   3388     Template.getAsTemplateDecl() &&
   3389     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
   3390   QualType CanonType;
   3391   if (!Underlying.isNull())
   3392     CanonType = getCanonicalType(Underlying);
   3393   else {
   3394     // We can get here with an alias template when the specialization contains
   3395     // a pack expansion that does not match up with a parameter pack.
   3396     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
   3397            "Caller must compute aliased type");
   3398     IsTypeAlias = false;
   3399     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
   3400                                                        NumArgs);
   3401   }
   3402 
   3403   // Allocate the (non-canonical) template specialization type, but don't
   3404   // try to unique it: these types typically have location information that
   3405   // we don't unique and don't want to lose.
   3406   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
   3407                        sizeof(TemplateArgument) * NumArgs +
   3408                        (IsTypeAlias? sizeof(QualType) : 0),
   3409                        TypeAlignment);
   3410   TemplateSpecializationType *Spec
   3411     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
   3412                                          IsTypeAlias ? Underlying : QualType());
   3413 
   3414   Types.push_back(Spec);
   3415   return QualType(Spec, 0);
   3416 }
   3417 
   3418 QualType
   3419 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
   3420                                                    const TemplateArgument *Args,
   3421                                                    unsigned NumArgs) const {
   3422   assert(!Template.getAsDependentTemplateName() &&
   3423          "No dependent template names here!");
   3424 
   3425   // Look through qualified template names.
   3426   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3427     Template = TemplateName(QTN->getTemplateDecl());
   3428 
   3429   // Build the canonical template specialization type.
   3430   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
   3431   SmallVector<TemplateArgument, 4> CanonArgs;
   3432   CanonArgs.reserve(NumArgs);
   3433   for (unsigned I = 0; I != NumArgs; ++I)
   3434     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
   3435 
   3436   // Determine whether this canonical template specialization type already
   3437   // exists.
   3438   llvm::FoldingSetNodeID ID;
   3439   TemplateSpecializationType::Profile(ID, CanonTemplate,
   3440                                       CanonArgs.data(), NumArgs, *this);
   3441 
   3442   void *InsertPos = nullptr;
   3443   TemplateSpecializationType *Spec
   3444     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3445 
   3446   if (!Spec) {
   3447     // Allocate a new canonical template specialization type.
   3448     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
   3449                           sizeof(TemplateArgument) * NumArgs),
   3450                          TypeAlignment);
   3451     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
   3452                                                 CanonArgs.data(), NumArgs,
   3453                                                 QualType(), QualType());
   3454     Types.push_back(Spec);
   3455     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
   3456   }
   3457 
   3458   assert(Spec->isDependentType() &&
   3459          "Non-dependent template-id type must have a canonical type");
   3460   return QualType(Spec, 0);
   3461 }
   3462 
   3463 QualType
   3464 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
   3465                               NestedNameSpecifier *NNS,
   3466                               QualType NamedType) const {
   3467   llvm::FoldingSetNodeID ID;
   3468   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
   3469 
   3470   void *InsertPos = nullptr;
   3471   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3472   if (T)
   3473     return QualType(T, 0);
   3474 
   3475   QualType Canon = NamedType;
   3476   if (!Canon.isCanonical()) {
   3477     Canon = getCanonicalType(NamedType);
   3478     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3479     assert(!CheckT && "Elaborated canonical type broken");
   3480     (void)CheckT;
   3481   }
   3482 
   3483   T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
   3484   Types.push_back(T);
   3485   ElaboratedTypes.InsertNode(T, InsertPos);
   3486   return QualType(T, 0);
   3487 }
   3488 
   3489 QualType
   3490 ASTContext::getParenType(QualType InnerType) const {
   3491   llvm::FoldingSetNodeID ID;
   3492   ParenType::Profile(ID, InnerType);
   3493 
   3494   void *InsertPos = nullptr;
   3495   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3496   if (T)
   3497     return QualType(T, 0);
   3498 
   3499   QualType Canon = InnerType;
   3500   if (!Canon.isCanonical()) {
   3501     Canon = getCanonicalType(InnerType);
   3502     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3503     assert(!CheckT && "Paren canonical type broken");
   3504     (void)CheckT;
   3505   }
   3506 
   3507   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
   3508   Types.push_back(T);
   3509   ParenTypes.InsertNode(T, InsertPos);
   3510   return QualType(T, 0);
   3511 }
   3512 
   3513 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
   3514                                           NestedNameSpecifier *NNS,
   3515                                           const IdentifierInfo *Name,
   3516                                           QualType Canon) const {
   3517   if (Canon.isNull()) {
   3518     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3519     ElaboratedTypeKeyword CanonKeyword = Keyword;
   3520     if (Keyword == ETK_None)
   3521       CanonKeyword = ETK_Typename;
   3522 
   3523     if (CanonNNS != NNS || CanonKeyword != Keyword)
   3524       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
   3525   }
   3526 
   3527   llvm::FoldingSetNodeID ID;
   3528   DependentNameType::Profile(ID, Keyword, NNS, Name);
   3529 
   3530   void *InsertPos = nullptr;
   3531   DependentNameType *T
   3532     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
   3533   if (T)
   3534     return QualType(T, 0);
   3535 
   3536   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
   3537   Types.push_back(T);
   3538   DependentNameTypes.InsertNode(T, InsertPos);
   3539   return QualType(T, 0);
   3540 }
   3541 
   3542 QualType
   3543 ASTContext::getDependentTemplateSpecializationType(
   3544                                  ElaboratedTypeKeyword Keyword,
   3545                                  NestedNameSpecifier *NNS,
   3546                                  const IdentifierInfo *Name,
   3547                                  const TemplateArgumentListInfo &Args) const {
   3548   // TODO: avoid this copy
   3549   SmallVector<TemplateArgument, 16> ArgCopy;
   3550   for (unsigned I = 0, E = Args.size(); I != E; ++I)
   3551     ArgCopy.push_back(Args[I].getArgument());
   3552   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
   3553                                                 ArgCopy.size(),
   3554                                                 ArgCopy.data());
   3555 }
   3556 
   3557 QualType
   3558 ASTContext::getDependentTemplateSpecializationType(
   3559                                  ElaboratedTypeKeyword Keyword,
   3560                                  NestedNameSpecifier *NNS,
   3561                                  const IdentifierInfo *Name,
   3562                                  unsigned NumArgs,
   3563                                  const TemplateArgument *Args) const {
   3564   assert((!NNS || NNS->isDependent()) &&
   3565          "nested-name-specifier must be dependent");
   3566 
   3567   llvm::FoldingSetNodeID ID;
   3568   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
   3569                                                Name, NumArgs, Args);
   3570 
   3571   void *InsertPos = nullptr;
   3572   DependentTemplateSpecializationType *T
   3573     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3574   if (T)
   3575     return QualType(T, 0);
   3576 
   3577   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3578 
   3579   ElaboratedTypeKeyword CanonKeyword = Keyword;
   3580   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
   3581 
   3582   bool AnyNonCanonArgs = false;
   3583   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
   3584   for (unsigned I = 0; I != NumArgs; ++I) {
   3585     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
   3586     if (!CanonArgs[I].structurallyEquals(Args[I]))
   3587       AnyNonCanonArgs = true;
   3588   }
   3589 
   3590   QualType Canon;
   3591   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
   3592     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
   3593                                                    Name, NumArgs,
   3594                                                    CanonArgs.data());
   3595 
   3596     // Find the insert position again.
   3597     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3598   }
   3599 
   3600   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
   3601                         sizeof(TemplateArgument) * NumArgs),
   3602                        TypeAlignment);
   3603   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
   3604                                                     Name, NumArgs, Args, Canon);
   3605   Types.push_back(T);
   3606   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
   3607   return QualType(T, 0);
   3608 }
   3609 
   3610 QualType ASTContext::getPackExpansionType(QualType Pattern,
   3611                                           Optional<unsigned> NumExpansions) {
   3612   llvm::FoldingSetNodeID ID;
   3613   PackExpansionType::Profile(ID, Pattern, NumExpansions);
   3614 
   3615   assert(Pattern->containsUnexpandedParameterPack() &&
   3616          "Pack expansions must expand one or more parameter packs");
   3617   void *InsertPos = nullptr;
   3618   PackExpansionType *T
   3619     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3620   if (T)
   3621     return QualType(T, 0);
   3622 
   3623   QualType Canon;
   3624   if (!Pattern.isCanonical()) {
   3625     Canon = getCanonicalType(Pattern);
   3626     // The canonical type might not contain an unexpanded parameter pack, if it
   3627     // contains an alias template specialization which ignores one of its
   3628     // parameters.
   3629     if (Canon->containsUnexpandedParameterPack()) {
   3630       Canon = getPackExpansionType(Canon, NumExpansions);
   3631 
   3632       // Find the insert position again, in case we inserted an element into
   3633       // PackExpansionTypes and invalidated our insert position.
   3634       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3635     }
   3636   }
   3637 
   3638   T = new (*this, TypeAlignment)
   3639       PackExpansionType(Pattern, Canon, NumExpansions);
   3640   Types.push_back(T);
   3641   PackExpansionTypes.InsertNode(T, InsertPos);
   3642   return QualType(T, 0);
   3643 }
   3644 
   3645 /// CmpProtocolNames - Comparison predicate for sorting protocols
   3646 /// alphabetically.
   3647 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
   3648                             ObjCProtocolDecl *const *RHS) {
   3649   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
   3650 }
   3651 
   3652 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
   3653                                 unsigned NumProtocols) {
   3654   if (NumProtocols == 0) return true;
   3655 
   3656   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
   3657     return false;
   3658 
   3659   for (unsigned i = 1; i != NumProtocols; ++i)
   3660     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
   3661         Protocols[i]->getCanonicalDecl() != Protocols[i])
   3662       return false;
   3663   return true;
   3664 }
   3665 
   3666 static void
   3667 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
   3668   // Sort protocols, keyed by name.
   3669   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
   3670 
   3671   // Canonicalize.
   3672   for (ObjCProtocolDecl *&P : Protocols)
   3673     P = P->getCanonicalDecl();
   3674 
   3675   // Remove duplicates.
   3676   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
   3677   Protocols.erase(ProtocolsEnd, Protocols.end());
   3678 }
   3679 
   3680 QualType ASTContext::getObjCObjectType(QualType BaseType,
   3681                                        ObjCProtocolDecl * const *Protocols,
   3682                                        unsigned NumProtocols) const {
   3683   return getObjCObjectType(BaseType, { },
   3684                            llvm::makeArrayRef(Protocols, NumProtocols),
   3685                            /*isKindOf=*/false);
   3686 }
   3687 
   3688 QualType ASTContext::getObjCObjectType(
   3689            QualType baseType,
   3690            ArrayRef<QualType> typeArgs,
   3691            ArrayRef<ObjCProtocolDecl *> protocols,
   3692            bool isKindOf) const {
   3693   // If the base type is an interface and there aren't any protocols or
   3694   // type arguments to add, then the interface type will do just fine.
   3695   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
   3696       isa<ObjCInterfaceType>(baseType))
   3697     return baseType;
   3698 
   3699   // Look in the folding set for an existing type.
   3700   llvm::FoldingSetNodeID ID;
   3701   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
   3702   void *InsertPos = nullptr;
   3703   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
   3704     return QualType(QT, 0);
   3705 
   3706   // Determine the type arguments to be used for canonicalization,
   3707   // which may be explicitly specified here or written on the base
   3708   // type.
   3709   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
   3710   if (effectiveTypeArgs.empty()) {
   3711     if (auto baseObject = baseType->getAs<ObjCObjectType>())
   3712       effectiveTypeArgs = baseObject->getTypeArgs();
   3713   }
   3714 
   3715   // Build the canonical type, which has the canonical base type and a
   3716   // sorted-and-uniqued list of protocols and the type arguments
   3717   // canonicalized.
   3718   QualType canonical;
   3719   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
   3720                                           effectiveTypeArgs.end(),
   3721                                           [&](QualType type) {
   3722                                             return type.isCanonical();
   3723                                           });
   3724   bool protocolsSorted = areSortedAndUniqued(protocols.data(),
   3725                                              protocols.size());
   3726   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
   3727     // Determine the canonical type arguments.
   3728     ArrayRef<QualType> canonTypeArgs;
   3729     SmallVector<QualType, 4> canonTypeArgsVec;
   3730     if (!typeArgsAreCanonical) {
   3731       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
   3732       for (auto typeArg : effectiveTypeArgs)
   3733         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
   3734       canonTypeArgs = canonTypeArgsVec;
   3735     } else {
   3736       canonTypeArgs = effectiveTypeArgs;
   3737     }
   3738 
   3739     ArrayRef<ObjCProtocolDecl *> canonProtocols;
   3740     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
   3741     if (!protocolsSorted) {
   3742       canonProtocolsVec.append(protocols.begin(), protocols.end());
   3743       SortAndUniqueProtocols(canonProtocolsVec);
   3744       canonProtocols = canonProtocolsVec;
   3745     } else {
   3746       canonProtocols = protocols;
   3747     }
   3748 
   3749     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
   3750                                   canonProtocols, isKindOf);
   3751 
   3752     // Regenerate InsertPos.
   3753     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
   3754   }
   3755 
   3756   unsigned size = sizeof(ObjCObjectTypeImpl);
   3757   size += typeArgs.size() * sizeof(QualType);
   3758   size += protocols.size() * sizeof(ObjCProtocolDecl *);
   3759   void *mem = Allocate(size, TypeAlignment);
   3760   ObjCObjectTypeImpl *T =
   3761     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
   3762                                  isKindOf);
   3763 
   3764   Types.push_back(T);
   3765   ObjCObjectTypes.InsertNode(T, InsertPos);
   3766   return QualType(T, 0);
   3767 }
   3768 
   3769 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
   3770 /// protocol list adopt all protocols in QT's qualified-id protocol
   3771 /// list.
   3772 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
   3773                                                 ObjCInterfaceDecl *IC) {
   3774   if (!QT->isObjCQualifiedIdType())
   3775     return false;
   3776 
   3777   if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
   3778     // If both the right and left sides have qualifiers.
   3779     for (auto *Proto : OPT->quals()) {
   3780       if (!IC->ClassImplementsProtocol(Proto, false))
   3781         return false;
   3782     }
   3783     return true;
   3784   }
   3785   return false;
   3786 }
   3787 
   3788 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
   3789 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
   3790 /// of protocols.
   3791 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
   3792                                                 ObjCInterfaceDecl *IDecl) {
   3793   if (!QT->isObjCQualifiedIdType())
   3794     return false;
   3795   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
   3796   if (!OPT)
   3797     return false;
   3798   if (!IDecl->hasDefinition())
   3799     return false;
   3800   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
   3801   CollectInheritedProtocols(IDecl, InheritedProtocols);
   3802   if (InheritedProtocols.empty())
   3803     return false;
   3804   // Check that if every protocol in list of id<plist> conforms to a protcol
   3805   // of IDecl's, then bridge casting is ok.
   3806   bool Conforms = false;
   3807   for (auto *Proto : OPT->quals()) {
   3808     Conforms = false;
   3809     for (auto *PI : InheritedProtocols) {
   3810       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
   3811         Conforms = true;
   3812         break;
   3813       }
   3814     }
   3815     if (!Conforms)
   3816       break;
   3817   }
   3818   if (Conforms)
   3819     return true;
   3820 
   3821   for (auto *PI : InheritedProtocols) {
   3822     // If both the right and left sides have qualifiers.
   3823     bool Adopts = false;
   3824     for (auto *Proto : OPT->quals()) {
   3825       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
   3826       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
   3827         break;
   3828     }
   3829     if (!Adopts)
   3830       return false;
   3831   }
   3832   return true;
   3833 }
   3834 
   3835 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
   3836 /// the given object type.
   3837 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
   3838   llvm::FoldingSetNodeID ID;
   3839   ObjCObjectPointerType::Profile(ID, ObjectT);
   3840 
   3841   void *InsertPos = nullptr;
   3842   if (ObjCObjectPointerType *QT =
   3843               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   3844     return QualType(QT, 0);
   3845 
   3846   // Find the canonical object type.
   3847   QualType Canonical;
   3848   if (!ObjectT.isCanonical()) {
   3849     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
   3850 
   3851     // Regenerate InsertPos.
   3852     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   3853   }
   3854 
   3855   // No match.
   3856   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
   3857   ObjCObjectPointerType *QType =
   3858     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
   3859 
   3860   Types.push_back(QType);
   3861   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
   3862   return QualType(QType, 0);
   3863 }
   3864 
   3865 /// getObjCInterfaceType - Return the unique reference to the type for the
   3866 /// specified ObjC interface decl. The list of protocols is optional.
   3867 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   3868                                           ObjCInterfaceDecl *PrevDecl) const {
   3869   if (Decl->TypeForDecl)
   3870     return QualType(Decl->TypeForDecl, 0);
   3871 
   3872   if (PrevDecl) {
   3873     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   3874     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   3875     return QualType(PrevDecl->TypeForDecl, 0);
   3876   }
   3877 
   3878   // Prefer the definition, if there is one.
   3879   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
   3880     Decl = Def;
   3881 
   3882   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
   3883   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
   3884   Decl->TypeForDecl = T;
   3885   Types.push_back(T);
   3886   return QualType(T, 0);
   3887 }
   3888 
   3889 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
   3890 /// TypeOfExprType AST's (since expression's are never shared). For example,
   3891 /// multiple declarations that refer to "typeof(x)" all contain different
   3892 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
   3893 /// on canonical type's (which are always unique).
   3894 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
   3895   TypeOfExprType *toe;
   3896   if (tofExpr->isTypeDependent()) {
   3897     llvm::FoldingSetNodeID ID;
   3898     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
   3899 
   3900     void *InsertPos = nullptr;
   3901     DependentTypeOfExprType *Canon
   3902       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
   3903     if (Canon) {
   3904       // We already have a "canonical" version of an identical, dependent
   3905       // typeof(expr) type. Use that as our canonical type.
   3906       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
   3907                                           QualType((TypeOfExprType*)Canon, 0));
   3908     } else {
   3909       // Build a new, canonical typeof(expr) type.
   3910       Canon
   3911         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
   3912       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
   3913       toe = Canon;
   3914     }
   3915   } else {
   3916     QualType Canonical = getCanonicalType(tofExpr->getType());
   3917     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
   3918   }
   3919   Types.push_back(toe);
   3920   return QualType(toe, 0);
   3921 }
   3922 
   3923 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
   3924 /// TypeOfType nodes. The only motivation to unique these nodes would be
   3925 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
   3926 /// an issue. This doesn't affect the type checker, since it operates
   3927 /// on canonical types (which are always unique).
   3928 QualType ASTContext::getTypeOfType(QualType tofType) const {
   3929   QualType Canonical = getCanonicalType(tofType);
   3930   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
   3931   Types.push_back(tot);
   3932   return QualType(tot, 0);
   3933 }
   3934 
   3935 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
   3936 /// nodes. This would never be helpful, since each such type has its own
   3937 /// expression, and would not give a significant memory saving, since there
   3938 /// is an Expr tree under each such type.
   3939 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
   3940   DecltypeType *dt;
   3941 
   3942   // C++11 [temp.type]p2:
   3943   //   If an expression e involves a template parameter, decltype(e) denotes a
   3944   //   unique dependent type. Two such decltype-specifiers refer to the same
   3945   //   type only if their expressions are equivalent (14.5.6.1).
   3946   if (e->isInstantiationDependent()) {
   3947     llvm::FoldingSetNodeID ID;
   3948     DependentDecltypeType::Profile(ID, *this, e);
   3949 
   3950     void *InsertPos = nullptr;
   3951     DependentDecltypeType *Canon
   3952       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
   3953     if (!Canon) {
   3954       // Build a new, canonical typeof(expr) type.
   3955       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
   3956       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
   3957     }
   3958     dt = new (*this, TypeAlignment)
   3959         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
   3960   } else {
   3961     dt = new (*this, TypeAlignment)
   3962         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
   3963   }
   3964   Types.push_back(dt);
   3965   return QualType(dt, 0);
   3966 }
   3967 
   3968 /// getUnaryTransformationType - We don't unique these, since the memory
   3969 /// savings are minimal and these are rare.
   3970 QualType ASTContext::getUnaryTransformType(QualType BaseType,
   3971                                            QualType UnderlyingType,
   3972                                            UnaryTransformType::UTTKind Kind)
   3973     const {
   3974   UnaryTransformType *Ty =
   3975     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
   3976                                                    Kind,
   3977                                  UnderlyingType->isDependentType() ?
   3978                                  QualType() : getCanonicalType(UnderlyingType));
   3979   Types.push_back(Ty);
   3980   return QualType(Ty, 0);
   3981 }
   3982 
   3983 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
   3984 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
   3985 /// canonical deduced-but-dependent 'auto' type.
   3986 QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
   3987                                  bool IsDependent) const {
   3988   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
   3989     return getAutoDeductType();
   3990 
   3991   // Look in the folding set for an existing type.
   3992   void *InsertPos = nullptr;
   3993   llvm::FoldingSetNodeID ID;
   3994   AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
   3995   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
   3996     return QualType(AT, 0);
   3997 
   3998   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
   3999                                                      Keyword,
   4000                                                      IsDependent);
   4001   Types.push_back(AT);
   4002   if (InsertPos)
   4003     AutoTypes.InsertNode(AT, InsertPos);
   4004   return QualType(AT, 0);
   4005 }
   4006 
   4007 /// getAtomicType - Return the uniqued reference to the atomic type for
   4008 /// the given value type.
   4009 QualType ASTContext::getAtomicType(QualType T) const {
   4010   // Unique pointers, to guarantee there is only one pointer of a particular
   4011   // structure.
   4012   llvm::FoldingSetNodeID ID;
   4013   AtomicType::Profile(ID, T);
   4014 
   4015   void *InsertPos = nullptr;
   4016   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
   4017     return QualType(AT, 0);
   4018 
   4019   // If the atomic value type isn't canonical, this won't be a canonical type
   4020   // either, so fill in the canonical type field.
   4021   QualType Canonical;
   4022   if (!T.isCanonical()) {
   4023     Canonical = getAtomicType(getCanonicalType(T));
   4024 
   4025     // Get the new insert position for the node we care about.
   4026     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
   4027     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   4028   }
   4029   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
   4030   Types.push_back(New);
   4031   AtomicTypes.InsertNode(New, InsertPos);
   4032   return QualType(New, 0);
   4033 }
   4034 
   4035 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
   4036 QualType ASTContext::getAutoDeductType() const {
   4037   if (AutoDeductTy.isNull())
   4038     AutoDeductTy = QualType(
   4039       new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
   4040                                           /*dependent*/false),
   4041       0);
   4042   return AutoDeductTy;
   4043 }
   4044 
   4045 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
   4046 QualType ASTContext::getAutoRRefDeductType() const {
   4047   if (AutoRRefDeductTy.isNull())
   4048     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
   4049   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
   4050   return AutoRRefDeductTy;
   4051 }
   4052 
   4053 /// getTagDeclType - Return the unique reference to the type for the
   4054 /// specified TagDecl (struct/union/class/enum) decl.
   4055 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
   4056   assert (Decl);
   4057   // FIXME: What is the design on getTagDeclType when it requires casting
   4058   // away const?  mutable?
   4059   return getTypeDeclType(const_cast<TagDecl*>(Decl));
   4060 }
   4061 
   4062 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
   4063 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
   4064 /// needs to agree with the definition in <stddef.h>.
   4065 CanQualType ASTContext::getSizeType() const {
   4066   return getFromTargetType(Target->getSizeType());
   4067 }
   4068 
   4069 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
   4070 CanQualType ASTContext::getIntMaxType() const {
   4071   return getFromTargetType(Target->getIntMaxType());
   4072 }
   4073 
   4074 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
   4075 CanQualType ASTContext::getUIntMaxType() const {
   4076   return getFromTargetType(Target->getUIntMaxType());
   4077 }
   4078 
   4079 /// getSignedWCharType - Return the type of "signed wchar_t".
   4080 /// Used when in C++, as a GCC extension.
   4081 QualType ASTContext::getSignedWCharType() const {
   4082   // FIXME: derive from "Target" ?
   4083   return WCharTy;
   4084 }
   4085 
   4086 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
   4087 /// Used when in C++, as a GCC extension.
   4088 QualType ASTContext::getUnsignedWCharType() const {
   4089   // FIXME: derive from "Target" ?
   4090   return UnsignedIntTy;
   4091 }
   4092 
   4093 QualType ASTContext::getIntPtrType() const {
   4094   return getFromTargetType(Target->getIntPtrType());
   4095 }
   4096 
   4097 QualType ASTContext::getUIntPtrType() const {
   4098   return getCorrespondingUnsignedType(getIntPtrType());
   4099 }
   4100 
   4101 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
   4102 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   4103 QualType ASTContext::getPointerDiffType() const {
   4104   return getFromTargetType(Target->getPtrDiffType(0));
   4105 }
   4106 
   4107 /// \brief Return the unique type for "pid_t" defined in
   4108 /// <sys/types.h>. We need this to compute the correct type for vfork().
   4109 QualType ASTContext::getProcessIDType() const {
   4110   return getFromTargetType(Target->getProcessIDType());
   4111 }
   4112 
   4113 //===----------------------------------------------------------------------===//
   4114 //                              Type Operators
   4115 //===----------------------------------------------------------------------===//
   4116 
   4117 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
   4118   // Push qualifiers into arrays, and then discard any remaining
   4119   // qualifiers.
   4120   T = getCanonicalType(T);
   4121   T = getVariableArrayDecayedType(T);
   4122   const Type *Ty = T.getTypePtr();
   4123   QualType Result;
   4124   if (isa<ArrayType>(Ty)) {
   4125     Result = getArrayDecayedType(QualType(Ty,0));
   4126   } else if (isa<FunctionType>(Ty)) {
   4127     Result = getPointerType(QualType(Ty, 0));
   4128   } else {
   4129     Result = QualType(Ty, 0);
   4130   }
   4131 
   4132   return CanQualType::CreateUnsafe(Result);
   4133 }
   4134 
   4135 QualType ASTContext::getUnqualifiedArrayType(QualType type,
   4136                                              Qualifiers &quals) {
   4137   SplitQualType splitType = type.getSplitUnqualifiedType();
   4138 
   4139   // FIXME: getSplitUnqualifiedType() actually walks all the way to
   4140   // the unqualified desugared type and then drops it on the floor.
   4141   // We then have to strip that sugar back off with
   4142   // getUnqualifiedDesugaredType(), which is silly.
   4143   const ArrayType *AT =
   4144     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
   4145 
   4146   // If we don't have an array, just use the results in splitType.
   4147   if (!AT) {
   4148     quals = splitType.Quals;
   4149     return QualType(splitType.Ty, 0);
   4150   }
   4151 
   4152   // Otherwise, recurse on the array's element type.
   4153   QualType elementType = AT->getElementType();
   4154   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
   4155 
   4156   // If that didn't change the element type, AT has no qualifiers, so we
   4157   // can just use the results in splitType.
   4158   if (elementType == unqualElementType) {
   4159     assert(quals.empty()); // from the recursive call
   4160     quals = splitType.Quals;
   4161     return QualType(splitType.Ty, 0);
   4162   }
   4163 
   4164   // Otherwise, add in the qualifiers from the outermost type, then
   4165   // build the type back up.
   4166   quals.addConsistentQualifiers(splitType.Quals);
   4167 
   4168   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
   4169     return getConstantArrayType(unqualElementType, CAT->getSize(),
   4170                                 CAT->getSizeModifier(), 0);
   4171   }
   4172 
   4173   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
   4174     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
   4175   }
   4176 
   4177   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
   4178     return getVariableArrayType(unqualElementType,
   4179                                 VAT->getSizeExpr(),
   4180                                 VAT->getSizeModifier(),
   4181                                 VAT->getIndexTypeCVRQualifiers(),
   4182                                 VAT->getBracketsRange());
   4183   }
   4184 
   4185   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
   4186   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
   4187                                     DSAT->getSizeModifier(), 0,
   4188                                     SourceRange());
   4189 }
   4190 
   4191 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
   4192 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
   4193 /// they point to and return true. If T1 and T2 aren't pointer types
   4194 /// or pointer-to-member types, or if they are not similar at this
   4195 /// level, returns false and leaves T1 and T2 unchanged. Top-level
   4196 /// qualifiers on T1 and T2 are ignored. This function will typically
   4197 /// be called in a loop that successively "unwraps" pointer and
   4198 /// pointer-to-member types to compare them at each level.
   4199 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
   4200   const PointerType *T1PtrType = T1->getAs<PointerType>(),
   4201                     *T2PtrType = T2->getAs<PointerType>();
   4202   if (T1PtrType && T2PtrType) {
   4203     T1 = T1PtrType->getPointeeType();
   4204     T2 = T2PtrType->getPointeeType();
   4205     return true;
   4206   }
   4207 
   4208   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
   4209                           *T2MPType = T2->getAs<MemberPointerType>();
   4210   if (T1MPType && T2MPType &&
   4211       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
   4212                              QualType(T2MPType->getClass(), 0))) {
   4213     T1 = T1MPType->getPointeeType();
   4214     T2 = T2MPType->getPointeeType();
   4215     return true;
   4216   }
   4217 
   4218   if (getLangOpts().ObjC1) {
   4219     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
   4220                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
   4221     if (T1OPType && T2OPType) {
   4222       T1 = T1OPType->getPointeeType();
   4223       T2 = T2OPType->getPointeeType();
   4224       return true;
   4225     }
   4226   }
   4227 
   4228   // FIXME: Block pointers, too?
   4229 
   4230   return false;
   4231 }
   4232 
   4233 DeclarationNameInfo
   4234 ASTContext::getNameForTemplate(TemplateName Name,
   4235                                SourceLocation NameLoc) const {
   4236   switch (Name.getKind()) {
   4237   case TemplateName::QualifiedTemplate:
   4238   case TemplateName::Template:
   4239     // DNInfo work in progress: CHECKME: what about DNLoc?
   4240     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
   4241                                NameLoc);
   4242 
   4243   case TemplateName::OverloadedTemplate: {
   4244     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
   4245     // DNInfo work in progress: CHECKME: what about DNLoc?
   4246     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
   4247   }
   4248 
   4249   case TemplateName::DependentTemplate: {
   4250     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   4251     DeclarationName DName;
   4252     if (DTN->isIdentifier()) {
   4253       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
   4254       return DeclarationNameInfo(DName, NameLoc);
   4255     } else {
   4256       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
   4257       // DNInfo work in progress: FIXME: source locations?
   4258       DeclarationNameLoc DNLoc;
   4259       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
   4260       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
   4261       return DeclarationNameInfo(DName, NameLoc, DNLoc);
   4262     }
   4263   }
   4264 
   4265   case TemplateName::SubstTemplateTemplateParm: {
   4266     SubstTemplateTemplateParmStorage *subst
   4267       = Name.getAsSubstTemplateTemplateParm();
   4268     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
   4269                                NameLoc);
   4270   }
   4271 
   4272   case TemplateName::SubstTemplateTemplateParmPack: {
   4273     SubstTemplateTemplateParmPackStorage *subst
   4274       = Name.getAsSubstTemplateTemplateParmPack();
   4275     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
   4276                                NameLoc);
   4277   }
   4278   }
   4279 
   4280   llvm_unreachable("bad template name kind!");
   4281 }
   4282 
   4283 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
   4284   switch (Name.getKind()) {
   4285   case TemplateName::QualifiedTemplate:
   4286   case TemplateName::Template: {
   4287     TemplateDecl *Template = Name.getAsTemplateDecl();
   4288     if (TemplateTemplateParmDecl *TTP
   4289           = dyn_cast<TemplateTemplateParmDecl>(Template))
   4290       Template = getCanonicalTemplateTemplateParmDecl(TTP);
   4291 
   4292     // The canonical template name is the canonical template declaration.
   4293     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
   4294   }
   4295 
   4296   case TemplateName::OverloadedTemplate:
   4297     llvm_unreachable("cannot canonicalize overloaded template");
   4298 
   4299   case TemplateName::DependentTemplate: {
   4300     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   4301     assert(DTN && "Non-dependent template names must refer to template decls.");
   4302     return DTN->CanonicalTemplateName;
   4303   }
   4304 
   4305   case TemplateName::SubstTemplateTemplateParm: {
   4306     SubstTemplateTemplateParmStorage *subst
   4307       = Name.getAsSubstTemplateTemplateParm();
   4308     return getCanonicalTemplateName(subst->getReplacement());
   4309   }
   4310 
   4311   case TemplateName::SubstTemplateTemplateParmPack: {
   4312     SubstTemplateTemplateParmPackStorage *subst
   4313                                   = Name.getAsSubstTemplateTemplateParmPack();
   4314     TemplateTemplateParmDecl *canonParameter
   4315       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
   4316     TemplateArgument canonArgPack
   4317       = getCanonicalTemplateArgument(subst->getArgumentPack());
   4318     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
   4319   }
   4320   }
   4321 
   4322   llvm_unreachable("bad template name!");
   4323 }
   4324 
   4325 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
   4326   X = getCanonicalTemplateName(X);
   4327   Y = getCanonicalTemplateName(Y);
   4328   return X.getAsVoidPointer() == Y.getAsVoidPointer();
   4329 }
   4330 
   4331 TemplateArgument
   4332 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
   4333   switch (Arg.getKind()) {
   4334     case TemplateArgument::Null:
   4335       return Arg;
   4336 
   4337     case TemplateArgument::Expression:
   4338       return Arg;
   4339 
   4340     case TemplateArgument::Declaration: {
   4341       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
   4342       return TemplateArgument(D, Arg.getParamTypeForDecl());
   4343     }
   4344 
   4345     case TemplateArgument::NullPtr:
   4346       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
   4347                               /*isNullPtr*/true);
   4348 
   4349     case TemplateArgument::Template:
   4350       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
   4351 
   4352     case TemplateArgument::TemplateExpansion:
   4353       return TemplateArgument(getCanonicalTemplateName(
   4354                                          Arg.getAsTemplateOrTemplatePattern()),
   4355                               Arg.getNumTemplateExpansions());
   4356 
   4357     case TemplateArgument::Integral:
   4358       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
   4359 
   4360     case TemplateArgument::Type:
   4361       return TemplateArgument(getCanonicalType(Arg.getAsType()));
   4362 
   4363     case TemplateArgument::Pack: {
   4364       if (Arg.pack_size() == 0)
   4365         return Arg;
   4366 
   4367       TemplateArgument *CanonArgs
   4368         = new (*this) TemplateArgument[Arg.pack_size()];
   4369       unsigned Idx = 0;
   4370       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
   4371                                         AEnd = Arg.pack_end();
   4372            A != AEnd; (void)++A, ++Idx)
   4373         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
   4374 
   4375       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
   4376     }
   4377   }
   4378 
   4379   // Silence GCC warning
   4380   llvm_unreachable("Unhandled template argument kind");
   4381 }
   4382 
   4383 NestedNameSpecifier *
   4384 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
   4385   if (!NNS)
   4386     return nullptr;
   4387 
   4388   switch (NNS->getKind()) {
   4389   case NestedNameSpecifier::Identifier:
   4390     // Canonicalize the prefix but keep the identifier the same.
   4391     return NestedNameSpecifier::Create(*this,
   4392                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
   4393                                        NNS->getAsIdentifier());
   4394 
   4395   case NestedNameSpecifier::Namespace:
   4396     // A namespace is canonical; build a nested-name-specifier with
   4397     // this namespace and no prefix.
   4398     return NestedNameSpecifier::Create(*this, nullptr,
   4399                                  NNS->getAsNamespace()->getOriginalNamespace());
   4400 
   4401   case NestedNameSpecifier::NamespaceAlias:
   4402     // A namespace is canonical; build a nested-name-specifier with
   4403     // this namespace and no prefix.
   4404     return NestedNameSpecifier::Create(*this, nullptr,
   4405                                     NNS->getAsNamespaceAlias()->getNamespace()
   4406                                                       ->getOriginalNamespace());
   4407 
   4408   case NestedNameSpecifier::TypeSpec:
   4409   case NestedNameSpecifier::TypeSpecWithTemplate: {
   4410     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
   4411 
   4412     // If we have some kind of dependent-named type (e.g., "typename T::type"),
   4413     // break it apart into its prefix and identifier, then reconsititute those
   4414     // as the canonical nested-name-specifier. This is required to canonicalize
   4415     // a dependent nested-name-specifier involving typedefs of dependent-name
   4416     // types, e.g.,
   4417     //   typedef typename T::type T1;
   4418     //   typedef typename T1::type T2;
   4419     if (const DependentNameType *DNT = T->getAs<DependentNameType>())
   4420       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
   4421                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
   4422 
   4423     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
   4424     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
   4425     // first place?
   4426     return NestedNameSpecifier::Create(*this, nullptr, false,
   4427                                        const_cast<Type *>(T.getTypePtr()));
   4428   }
   4429 
   4430   case NestedNameSpecifier::Global:
   4431   case NestedNameSpecifier::Super:
   4432     // The global specifier and __super specifer are canonical and unique.
   4433     return NNS;
   4434   }
   4435 
   4436   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   4437 }
   4438 
   4439 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
   4440   // Handle the non-qualified case efficiently.
   4441   if (!T.hasLocalQualifiers()) {
   4442     // Handle the common positive case fast.
   4443     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
   4444       return AT;
   4445   }
   4446 
   4447   // Handle the common negative case fast.
   4448   if (!isa<ArrayType>(T.getCanonicalType()))
   4449     return nullptr;
   4450 
   4451   // Apply any qualifiers from the array type to the element type.  This
   4452   // implements C99 6.7.3p8: "If the specification of an array type includes
   4453   // any type qualifiers, the element type is so qualified, not the array type."
   4454 
   4455   // If we get here, we either have type qualifiers on the type, or we have
   4456   // sugar such as a typedef in the way.  If we have type qualifiers on the type
   4457   // we must propagate them down into the element type.
   4458 
   4459   SplitQualType split = T.getSplitDesugaredType();
   4460   Qualifiers qs = split.Quals;
   4461 
   4462   // If we have a simple case, just return now.
   4463   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
   4464   if (!ATy || qs.empty())
   4465     return ATy;
   4466 
   4467   // Otherwise, we have an array and we have qualifiers on it.  Push the
   4468   // qualifiers into the array element type and return a new array type.
   4469   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
   4470 
   4471   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
   4472     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
   4473                                                 CAT->getSizeModifier(),
   4474                                            CAT->getIndexTypeCVRQualifiers()));
   4475   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
   4476     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
   4477                                                   IAT->getSizeModifier(),
   4478                                            IAT->getIndexTypeCVRQualifiers()));
   4479 
   4480   if (const DependentSizedArrayType *DSAT
   4481         = dyn_cast<DependentSizedArrayType>(ATy))
   4482     return cast<ArrayType>(
   4483                      getDependentSizedArrayType(NewEltTy,
   4484                                                 DSAT->getSizeExpr(),
   4485                                                 DSAT->getSizeModifier(),
   4486                                               DSAT->getIndexTypeCVRQualifiers(),
   4487                                                 DSAT->getBracketsRange()));
   4488 
   4489   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
   4490   return cast<ArrayType>(getVariableArrayType(NewEltTy,
   4491                                               VAT->getSizeExpr(),
   4492                                               VAT->getSizeModifier(),
   4493                                               VAT->getIndexTypeCVRQualifiers(),
   4494                                               VAT->getBracketsRange()));
   4495 }
   4496 
   4497 QualType ASTContext::getAdjustedParameterType(QualType T) const {
   4498   if (T->isArrayType() || T->isFunctionType())
   4499     return getDecayedType(T);
   4500   return T;
   4501 }
   4502 
   4503 QualType ASTContext::getSignatureParameterType(QualType T) const {
   4504   T = getVariableArrayDecayedType(T);
   4505   T = getAdjustedParameterType(T);
   4506   return T.getUnqualifiedType();
   4507 }
   4508 
   4509 QualType ASTContext::getExceptionObjectType(QualType T) const {
   4510   // C++ [except.throw]p3:
   4511   //   A throw-expression initializes a temporary object, called the exception
   4512   //   object, the type of which is determined by removing any top-level
   4513   //   cv-qualifiers from the static type of the operand of throw and adjusting
   4514   //   the type from "array of T" or "function returning T" to "pointer to T"
   4515   //   or "pointer to function returning T", [...]
   4516   T = getVariableArrayDecayedType(T);
   4517   if (T->isArrayType() || T->isFunctionType())
   4518     T = getDecayedType(T);
   4519   return T.getUnqualifiedType();
   4520 }
   4521 
   4522 /// getArrayDecayedType - Return the properly qualified result of decaying the
   4523 /// specified array type to a pointer.  This operation is non-trivial when
   4524 /// handling typedefs etc.  The canonical type of "T" must be an array type,
   4525 /// this returns a pointer to a properly qualified element of the array.
   4526 ///
   4527 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
   4528 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
   4529   // Get the element type with 'getAsArrayType' so that we don't lose any
   4530   // typedefs in the element type of the array.  This also handles propagation
   4531   // of type qualifiers from the array type into the element type if present
   4532   // (C99 6.7.3p8).
   4533   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
   4534   assert(PrettyArrayType && "Not an array type!");
   4535 
   4536   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
   4537 
   4538   // int x[restrict 4] ->  int *restrict
   4539   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
   4540 }
   4541 
   4542 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
   4543   return getBaseElementType(array->getElementType());
   4544 }
   4545 
   4546 QualType ASTContext::getBaseElementType(QualType type) const {
   4547   Qualifiers qs;
   4548   while (true) {
   4549     SplitQualType split = type.getSplitDesugaredType();
   4550     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
   4551     if (!array) break;
   4552 
   4553     type = array->getElementType();
   4554     qs.addConsistentQualifiers(split.Quals);
   4555   }
   4556 
   4557   return getQualifiedType(type, qs);
   4558 }
   4559 
   4560 /// getConstantArrayElementCount - Returns number of constant array elements.
   4561 uint64_t
   4562 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
   4563   uint64_t ElementCount = 1;
   4564   do {
   4565     ElementCount *= CA->getSize().getZExtValue();
   4566     CA = dyn_cast_or_null<ConstantArrayType>(
   4567       CA->getElementType()->getAsArrayTypeUnsafe());
   4568   } while (CA);
   4569   return ElementCount;
   4570 }
   4571 
   4572 /// getFloatingRank - Return a relative rank for floating point types.
   4573 /// This routine will assert if passed a built-in type that isn't a float.
   4574 static FloatingRank getFloatingRank(QualType T) {
   4575   if (const ComplexType *CT = T->getAs<ComplexType>())
   4576     return getFloatingRank(CT->getElementType());
   4577 
   4578   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
   4579   switch (T->getAs<BuiltinType>()->getKind()) {
   4580   default: llvm_unreachable("getFloatingRank(): not a floating type");
   4581   case BuiltinType::Half:       return HalfRank;
   4582   case BuiltinType::Float:      return FloatRank;
   4583   case BuiltinType::Double:     return DoubleRank;
   4584   case BuiltinType::LongDouble: return LongDoubleRank;
   4585   }
   4586 }
   4587 
   4588 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
   4589 /// point or a complex type (based on typeDomain/typeSize).
   4590 /// 'typeDomain' is a real floating point or complex type.
   4591 /// 'typeSize' is a real floating point or complex type.
   4592 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
   4593                                                        QualType Domain) const {
   4594   FloatingRank EltRank = getFloatingRank(Size);
   4595   if (Domain->isComplexType()) {
   4596     switch (EltRank) {
   4597     case HalfRank: llvm_unreachable("Complex half is not supported");
   4598     case FloatRank:      return FloatComplexTy;
   4599     case DoubleRank:     return DoubleComplexTy;
   4600     case LongDoubleRank: return LongDoubleComplexTy;
   4601     }
   4602   }
   4603 
   4604   assert(Domain->isRealFloatingType() && "Unknown domain!");
   4605   switch (EltRank) {
   4606   case HalfRank:       return HalfTy;
   4607   case FloatRank:      return FloatTy;
   4608   case DoubleRank:     return DoubleTy;
   4609   case LongDoubleRank: return LongDoubleTy;
   4610   }
   4611   llvm_unreachable("getFloatingRank(): illegal value for rank");
   4612 }
   4613 
   4614 /// getFloatingTypeOrder - Compare the rank of the two specified floating
   4615 /// point types, ignoring the domain of the type (i.e. 'double' ==
   4616 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   4617 /// LHS < RHS, return -1.
   4618 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
   4619   FloatingRank LHSR = getFloatingRank(LHS);
   4620   FloatingRank RHSR = getFloatingRank(RHS);
   4621 
   4622   if (LHSR == RHSR)
   4623     return 0;
   4624   if (LHSR > RHSR)
   4625     return 1;
   4626   return -1;
   4627 }
   4628 
   4629 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
   4630 /// routine will assert if passed a built-in type that isn't an integer or enum,
   4631 /// or if it is not canonicalized.
   4632 unsigned ASTContext::getIntegerRank(const Type *T) const {
   4633   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
   4634 
   4635   switch (cast<BuiltinType>(T)->getKind()) {
   4636   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
   4637   case BuiltinType::Bool:
   4638     return 1 + (getIntWidth(BoolTy) << 3);
   4639   case BuiltinType::Char_S:
   4640   case BuiltinType::Char_U:
   4641   case BuiltinType::SChar:
   4642   case BuiltinType::UChar:
   4643     return 2 + (getIntWidth(CharTy) << 3);
   4644   case BuiltinType::Short:
   4645   case BuiltinType::UShort:
   4646     return 3 + (getIntWidth(ShortTy) << 3);
   4647   case BuiltinType::Int:
   4648   case BuiltinType::UInt:
   4649     return 4 + (getIntWidth(IntTy) << 3);
   4650   case BuiltinType::Long:
   4651   case BuiltinType::ULong:
   4652     return 5 + (getIntWidth(LongTy) << 3);
   4653   case BuiltinType::LongLong:
   4654   case BuiltinType::ULongLong:
   4655     return 6 + (getIntWidth(LongLongTy) << 3);
   4656   case BuiltinType::Int128:
   4657   case BuiltinType::UInt128:
   4658     return 7 + (getIntWidth(Int128Ty) << 3);
   4659   }
   4660 }
   4661 
   4662 /// \brief Whether this is a promotable bitfield reference according
   4663 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
   4664 ///
   4665 /// \returns the type this bit-field will promote to, or NULL if no
   4666 /// promotion occurs.
   4667 QualType ASTContext::isPromotableBitField(Expr *E) const {
   4668   if (E->isTypeDependent() || E->isValueDependent())
   4669     return QualType();
   4670 
   4671   // FIXME: We should not do this unless E->refersToBitField() is true. This
   4672   // matters in C where getSourceBitField() will find bit-fields for various
   4673   // cases where the source expression is not a bit-field designator.
   4674 
   4675   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
   4676   if (!Field)
   4677     return QualType();
   4678 
   4679   QualType FT = Field->getType();
   4680 
   4681   uint64_t BitWidth = Field->getBitWidthValue(*this);
   4682   uint64_t IntSize = getTypeSize(IntTy);
   4683   // C++ [conv.prom]p5:
   4684   //   A prvalue for an integral bit-field can be converted to a prvalue of type
   4685   //   int if int can represent all the values of the bit-field; otherwise, it
   4686   //   can be converted to unsigned int if unsigned int can represent all the
   4687   //   values of the bit-field. If the bit-field is larger yet, no integral
   4688   //   promotion applies to it.
   4689   // C11 6.3.1.1/2:
   4690   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
   4691   //   If an int can represent all values of the original type (as restricted by
   4692   //   the width, for a bit-field), the value is converted to an int; otherwise,
   4693   //   it is converted to an unsigned int.
   4694   //
   4695   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
   4696   //        We perform that promotion here to match GCC and C++.
   4697   if (BitWidth < IntSize)
   4698     return IntTy;
   4699 
   4700   if (BitWidth == IntSize)
   4701     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
   4702 
   4703   // Types bigger than int are not subject to promotions, and therefore act
   4704   // like the base type. GCC has some weird bugs in this area that we
   4705   // deliberately do not follow (GCC follows a pre-standard resolution to
   4706   // C's DR315 which treats bit-width as being part of the type, and this leaks
   4707   // into their semantics in some cases).
   4708   return QualType();
   4709 }
   4710 
   4711 /// getPromotedIntegerType - Returns the type that Promotable will
   4712 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
   4713 /// integer type.
   4714 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
   4715   assert(!Promotable.isNull());
   4716   assert(Promotable->isPromotableIntegerType());
   4717   if (const EnumType *ET = Promotable->getAs<EnumType>())
   4718     return ET->getDecl()->getPromotionType();
   4719 
   4720   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
   4721     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
   4722     // (3.9.1) can be converted to a prvalue of the first of the following
   4723     // types that can represent all the values of its underlying type:
   4724     // int, unsigned int, long int, unsigned long int, long long int, or
   4725     // unsigned long long int [...]
   4726     // FIXME: Is there some better way to compute this?
   4727     if (BT->getKind() == BuiltinType::WChar_S ||
   4728         BT->getKind() == BuiltinType::WChar_U ||
   4729         BT->getKind() == BuiltinType::Char16 ||
   4730         BT->getKind() == BuiltinType::Char32) {
   4731       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
   4732       uint64_t FromSize = getTypeSize(BT);
   4733       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
   4734                                   LongLongTy, UnsignedLongLongTy };
   4735       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
   4736         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
   4737         if (FromSize < ToSize ||
   4738             (FromSize == ToSize &&
   4739              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
   4740           return PromoteTypes[Idx];
   4741       }
   4742       llvm_unreachable("char type should fit into long long");
   4743     }
   4744   }
   4745 
   4746   // At this point, we should have a signed or unsigned integer type.
   4747   if (Promotable->isSignedIntegerType())
   4748     return IntTy;
   4749   uint64_t PromotableSize = getIntWidth(Promotable);
   4750   uint64_t IntSize = getIntWidth(IntTy);
   4751   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
   4752   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
   4753 }
   4754 
   4755 /// \brief Recurses in pointer/array types until it finds an objc retainable
   4756 /// type and returns its ownership.
   4757 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
   4758   while (!T.isNull()) {
   4759     if (T.getObjCLifetime() != Qualifiers::OCL_None)
   4760       return T.getObjCLifetime();
   4761     if (T->isArrayType())
   4762       T = getBaseElementType(T);
   4763     else if (const PointerType *PT = T->getAs<PointerType>())
   4764       T = PT->getPointeeType();
   4765     else if (const ReferenceType *RT = T->getAs<ReferenceType>())
   4766       T = RT->getPointeeType();
   4767     else
   4768       break;
   4769   }
   4770 
   4771   return Qualifiers::OCL_None;
   4772 }
   4773 
   4774 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
   4775   // Incomplete enum types are not treated as integer types.
   4776   // FIXME: In C++, enum types are never integer types.
   4777   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
   4778     return ET->getDecl()->getIntegerType().getTypePtr();
   4779   return nullptr;
   4780 }
   4781 
   4782 /// getIntegerTypeOrder - Returns the highest ranked integer type:
   4783 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   4784 /// LHS < RHS, return -1.
   4785 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
   4786   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
   4787   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
   4788 
   4789   // Unwrap enums to their underlying type.
   4790   if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
   4791     LHSC = getIntegerTypeForEnum(ET);
   4792   if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
   4793     RHSC = getIntegerTypeForEnum(ET);
   4794 
   4795   if (LHSC == RHSC) return 0;
   4796 
   4797   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
   4798   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
   4799 
   4800   unsigned LHSRank = getIntegerRank(LHSC);
   4801   unsigned RHSRank = getIntegerRank(RHSC);
   4802 
   4803   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
   4804     if (LHSRank == RHSRank) return 0;
   4805     return LHSRank > RHSRank ? 1 : -1;
   4806   }
   4807 
   4808   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
   4809   if (LHSUnsigned) {
   4810     // If the unsigned [LHS] type is larger, return it.
   4811     if (LHSRank >= RHSRank)
   4812       return 1;
   4813 
   4814     // If the signed type can represent all values of the unsigned type, it
   4815     // wins.  Because we are dealing with 2's complement and types that are
   4816     // powers of two larger than each other, this is always safe.
   4817     return -1;
   4818   }
   4819 
   4820   // If the unsigned [RHS] type is larger, return it.
   4821   if (RHSRank >= LHSRank)
   4822     return -1;
   4823 
   4824   // If the signed type can represent all values of the unsigned type, it
   4825   // wins.  Because we are dealing with 2's complement and types that are
   4826   // powers of two larger than each other, this is always safe.
   4827   return 1;
   4828 }
   4829 
   4830 // getCFConstantStringType - Return the type used for constant CFStrings.
   4831 QualType ASTContext::getCFConstantStringType() const {
   4832   if (!CFConstantStringTypeDecl) {
   4833     CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
   4834     CFConstantStringTypeDecl->startDefinition();
   4835 
   4836     QualType FieldTypes[4];
   4837 
   4838     // const int *isa;
   4839     FieldTypes[0] = getPointerType(IntTy.withConst());
   4840     // int flags;
   4841     FieldTypes[1] = IntTy;
   4842     // const char *str;
   4843     FieldTypes[2] = getPointerType(CharTy.withConst());
   4844     // long length;
   4845     FieldTypes[3] = LongTy;
   4846 
   4847     // Create fields
   4848     for (unsigned i = 0; i < 4; ++i) {
   4849       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
   4850                                            SourceLocation(),
   4851                                            SourceLocation(), nullptr,
   4852                                            FieldTypes[i], /*TInfo=*/nullptr,
   4853                                            /*BitWidth=*/nullptr,
   4854                                            /*Mutable=*/false,
   4855                                            ICIS_NoInit);
   4856       Field->setAccess(AS_public);
   4857       CFConstantStringTypeDecl->addDecl(Field);
   4858     }
   4859 
   4860     CFConstantStringTypeDecl->completeDefinition();
   4861   }
   4862 
   4863   return getTagDeclType(CFConstantStringTypeDecl);
   4864 }
   4865 
   4866 QualType ASTContext::getObjCSuperType() const {
   4867   if (ObjCSuperType.isNull()) {
   4868     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
   4869     TUDecl->addDecl(ObjCSuperTypeDecl);
   4870     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
   4871   }
   4872   return ObjCSuperType;
   4873 }
   4874 
   4875 void ASTContext::setCFConstantStringType(QualType T) {
   4876   const RecordType *Rec = T->getAs<RecordType>();
   4877   assert(Rec && "Invalid CFConstantStringType");
   4878   CFConstantStringTypeDecl = Rec->getDecl();
   4879 }
   4880 
   4881 QualType ASTContext::getBlockDescriptorType() const {
   4882   if (BlockDescriptorType)
   4883     return getTagDeclType(BlockDescriptorType);
   4884 
   4885   RecordDecl *RD;
   4886   // FIXME: Needs the FlagAppleBlock bit.
   4887   RD = buildImplicitRecord("__block_descriptor");
   4888   RD->startDefinition();
   4889 
   4890   QualType FieldTypes[] = {
   4891     UnsignedLongTy,
   4892     UnsignedLongTy,
   4893   };
   4894 
   4895   static const char *const FieldNames[] = {
   4896     "reserved",
   4897     "Size"
   4898   };
   4899 
   4900   for (size_t i = 0; i < 2; ++i) {
   4901     FieldDecl *Field = FieldDecl::Create(
   4902         *this, RD, SourceLocation(), SourceLocation(),
   4903         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
   4904         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
   4905     Field->setAccess(AS_public);
   4906     RD->addDecl(Field);
   4907   }
   4908 
   4909   RD->completeDefinition();
   4910 
   4911   BlockDescriptorType = RD;
   4912 
   4913   return getTagDeclType(BlockDescriptorType);
   4914 }
   4915 
   4916 QualType ASTContext::getBlockDescriptorExtendedType() const {
   4917   if (BlockDescriptorExtendedType)
   4918     return getTagDeclType(BlockDescriptorExtendedType);
   4919 
   4920   RecordDecl *RD;
   4921   // FIXME: Needs the FlagAppleBlock bit.
   4922   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
   4923   RD->startDefinition();
   4924 
   4925   QualType FieldTypes[] = {
   4926     UnsignedLongTy,
   4927     UnsignedLongTy,
   4928     getPointerType(VoidPtrTy),
   4929     getPointerType(VoidPtrTy)
   4930   };
   4931 
   4932   static const char *const FieldNames[] = {
   4933     "reserved",
   4934     "Size",
   4935     "CopyFuncPtr",
   4936     "DestroyFuncPtr"
   4937   };
   4938 
   4939   for (size_t i = 0; i < 4; ++i) {
   4940     FieldDecl *Field = FieldDecl::Create(
   4941         *this, RD, SourceLocation(), SourceLocation(),
   4942         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
   4943         /*BitWidth=*/nullptr,
   4944         /*Mutable=*/false, ICIS_NoInit);
   4945     Field->setAccess(AS_public);
   4946     RD->addDecl(Field);
   4947   }
   4948 
   4949   RD->completeDefinition();
   4950 
   4951   BlockDescriptorExtendedType = RD;
   4952   return getTagDeclType(BlockDescriptorExtendedType);
   4953 }
   4954 
   4955 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
   4956 /// requires copy/dispose. Note that this must match the logic
   4957 /// in buildByrefHelpers.
   4958 bool ASTContext::BlockRequiresCopying(QualType Ty,
   4959                                       const VarDecl *D) {
   4960   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
   4961     const Expr *copyExpr = getBlockVarCopyInits(D);
   4962     if (!copyExpr && record->hasTrivialDestructor()) return false;
   4963 
   4964     return true;
   4965   }
   4966 
   4967   if (!Ty->isObjCRetainableType()) return false;
   4968 
   4969   Qualifiers qs = Ty.getQualifiers();
   4970 
   4971   // If we have lifetime, that dominates.
   4972   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
   4973     switch (lifetime) {
   4974       case Qualifiers::OCL_None: llvm_unreachable("impossible");
   4975 
   4976       // These are just bits as far as the runtime is concerned.
   4977       case Qualifiers::OCL_ExplicitNone:
   4978       case Qualifiers::OCL_Autoreleasing:
   4979         return false;
   4980 
   4981       // Tell the runtime that this is ARC __weak, called by the
   4982       // byref routines.
   4983       case Qualifiers::OCL_Weak:
   4984       // ARC __strong __block variables need to be retained.
   4985       case Qualifiers::OCL_Strong:
   4986         return true;
   4987     }
   4988     llvm_unreachable("fell out of lifetime switch!");
   4989   }
   4990   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
   4991           Ty->isObjCObjectPointerType());
   4992 }
   4993 
   4994 bool ASTContext::getByrefLifetime(QualType Ty,
   4995                               Qualifiers::ObjCLifetime &LifeTime,
   4996                               bool &HasByrefExtendedLayout) const {
   4997 
   4998   if (!getLangOpts().ObjC1 ||
   4999       getLangOpts().getGC() != LangOptions::NonGC)
   5000     return false;
   5001 
   5002   HasByrefExtendedLayout = false;
   5003   if (Ty->isRecordType()) {
   5004     HasByrefExtendedLayout = true;
   5005     LifeTime = Qualifiers::OCL_None;
   5006   } else if ((LifeTime = Ty.getObjCLifetime())) {
   5007     // Honor the ARC qualifiers.
   5008   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
   5009     // The MRR rule.
   5010     LifeTime = Qualifiers::OCL_ExplicitNone;
   5011   } else {
   5012     LifeTime = Qualifiers::OCL_None;
   5013   }
   5014   return true;
   5015 }
   5016 
   5017 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
   5018   if (!ObjCInstanceTypeDecl)
   5019     ObjCInstanceTypeDecl =
   5020         buildImplicitTypedef(getObjCIdType(), "instancetype");
   5021   return ObjCInstanceTypeDecl;
   5022 }
   5023 
   5024 // This returns true if a type has been typedefed to BOOL:
   5025 // typedef <type> BOOL;
   5026 static bool isTypeTypedefedAsBOOL(QualType T) {
   5027   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
   5028     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
   5029       return II->isStr("BOOL");
   5030 
   5031   return false;
   5032 }
   5033 
   5034 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
   5035 /// purpose.
   5036 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
   5037   if (!type->isIncompleteArrayType() && type->isIncompleteType())
   5038     return CharUnits::Zero();
   5039 
   5040   CharUnits sz = getTypeSizeInChars(type);
   5041 
   5042   // Make all integer and enum types at least as large as an int
   5043   if (sz.isPositive() && type->isIntegralOrEnumerationType())
   5044     sz = std::max(sz, getTypeSizeInChars(IntTy));
   5045   // Treat arrays as pointers, since that's how they're passed in.
   5046   else if (type->isArrayType())
   5047     sz = getTypeSizeInChars(VoidPtrTy);
   5048   return sz;
   5049 }
   5050 
   5051 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
   5052   return getTargetInfo().getCXXABI().isMicrosoft() &&
   5053          VD->isStaticDataMember() &&
   5054          VD->getType()->isIntegralOrEnumerationType() &&
   5055          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
   5056 }
   5057 
   5058 static inline
   5059 std::string charUnitsToString(const CharUnits &CU) {
   5060   return llvm::itostr(CU.getQuantity());
   5061 }
   5062 
   5063 /// getObjCEncodingForBlock - Return the encoded type for this block
   5064 /// declaration.
   5065 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
   5066   std::string S;
   5067 
   5068   const BlockDecl *Decl = Expr->getBlockDecl();
   5069   QualType BlockTy =
   5070       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
   5071   // Encode result type.
   5072   if (getLangOpts().EncodeExtendedBlockSig)
   5073     getObjCEncodingForMethodParameter(
   5074         Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
   5075         true /*Extended*/);
   5076   else
   5077     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
   5078   // Compute size of all parameters.
   5079   // Start with computing size of a pointer in number of bytes.
   5080   // FIXME: There might(should) be a better way of doing this computation!
   5081   SourceLocation Loc;
   5082   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   5083   CharUnits ParmOffset = PtrSize;
   5084   for (auto PI : Decl->params()) {
   5085     QualType PType = PI->getType();
   5086     CharUnits sz = getObjCEncodingTypeSize(PType);
   5087     if (sz.isZero())
   5088       continue;
   5089     assert (sz.isPositive() && "BlockExpr - Incomplete param type");
   5090     ParmOffset += sz;
   5091   }
   5092   // Size of the argument frame
   5093   S += charUnitsToString(ParmOffset);
   5094   // Block pointer and offset.
   5095   S += "@?0";
   5096 
   5097   // Argument types.
   5098   ParmOffset = PtrSize;
   5099   for (auto PVDecl : Decl->params()) {
   5100     QualType PType = PVDecl->getOriginalType();
   5101     if (const ArrayType *AT =
   5102           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   5103       // Use array's original type only if it has known number of
   5104       // elements.
   5105       if (!isa<ConstantArrayType>(AT))
   5106         PType = PVDecl->getType();
   5107     } else if (PType->isFunctionType())
   5108       PType = PVDecl->getType();
   5109     if (getLangOpts().EncodeExtendedBlockSig)
   5110       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
   5111                                       S, true /*Extended*/);
   5112     else
   5113       getObjCEncodingForType(PType, S);
   5114     S += charUnitsToString(ParmOffset);
   5115     ParmOffset += getObjCEncodingTypeSize(PType);
   5116   }
   5117 
   5118   return S;
   5119 }
   5120 
   5121 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
   5122                                                 std::string& S) {
   5123   // Encode result type.
   5124   getObjCEncodingForType(Decl->getReturnType(), S);
   5125   CharUnits ParmOffset;
   5126   // Compute size of all parameters.
   5127   for (auto PI : Decl->params()) {
   5128     QualType PType = PI->getType();
   5129     CharUnits sz = getObjCEncodingTypeSize(PType);
   5130     if (sz.isZero())
   5131       continue;
   5132 
   5133     assert (sz.isPositive() &&
   5134         "getObjCEncodingForFunctionDecl - Incomplete param type");
   5135     ParmOffset += sz;
   5136   }
   5137   S += charUnitsToString(ParmOffset);
   5138   ParmOffset = CharUnits::Zero();
   5139 
   5140   // Argument types.
   5141   for (auto PVDecl : Decl->params()) {
   5142     QualType PType = PVDecl->getOriginalType();
   5143     if (const ArrayType *AT =
   5144           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   5145       // Use array's original type only if it has known number of
   5146       // elements.
   5147       if (!isa<ConstantArrayType>(AT))
   5148         PType = PVDecl->getType();
   5149     } else if (PType->isFunctionType())
   5150       PType = PVDecl->getType();
   5151     getObjCEncodingForType(PType, S);
   5152     S += charUnitsToString(ParmOffset);
   5153     ParmOffset += getObjCEncodingTypeSize(PType);
   5154   }
   5155 
   5156   return false;
   5157 }
   5158 
   5159 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
   5160 /// method parameter or return type. If Extended, include class names and
   5161 /// block object types.
   5162 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
   5163                                                    QualType T, std::string& S,
   5164                                                    bool Extended) const {
   5165   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
   5166   getObjCEncodingForTypeQualifier(QT, S);
   5167   // Encode parameter type.
   5168   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
   5169                              true     /*OutermostType*/,
   5170                              false    /*EncodingProperty*/,
   5171                              false    /*StructField*/,
   5172                              Extended /*EncodeBlockParameters*/,
   5173                              Extended /*EncodeClassNames*/);
   5174 }
   5175 
   5176 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
   5177 /// declaration.
   5178 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
   5179                                               std::string& S,
   5180                                               bool Extended) const {
   5181   // FIXME: This is not very efficient.
   5182   // Encode return type.
   5183   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
   5184                                     Decl->getReturnType(), S, Extended);
   5185   // Compute size of all parameters.
   5186   // Start with computing size of a pointer in number of bytes.
   5187   // FIXME: There might(should) be a better way of doing this computation!
   5188   SourceLocation Loc;
   5189   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   5190   // The first two arguments (self and _cmd) are pointers; account for
   5191   // their size.
   5192   CharUnits ParmOffset = 2 * PtrSize;
   5193   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   5194        E = Decl->sel_param_end(); PI != E; ++PI) {
   5195     QualType PType = (*PI)->getType();
   5196     CharUnits sz = getObjCEncodingTypeSize(PType);
   5197     if (sz.isZero())
   5198       continue;
   5199 
   5200     assert (sz.isPositive() &&
   5201         "getObjCEncodingForMethodDecl - Incomplete param type");
   5202     ParmOffset += sz;
   5203   }
   5204   S += charUnitsToString(ParmOffset);
   5205   S += "@0:";
   5206   S += charUnitsToString(PtrSize);
   5207 
   5208   // Argument types.
   5209   ParmOffset = 2 * PtrSize;
   5210   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   5211        E = Decl->sel_param_end(); PI != E; ++PI) {
   5212     const ParmVarDecl *PVDecl = *PI;
   5213     QualType PType = PVDecl->getOriginalType();
   5214     if (const ArrayType *AT =
   5215           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   5216       // Use array's original type only if it has known number of
   5217       // elements.
   5218       if (!isa<ConstantArrayType>(AT))
   5219         PType = PVDecl->getType();
   5220     } else if (PType->isFunctionType())
   5221       PType = PVDecl->getType();
   5222     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
   5223                                       PType, S, Extended);
   5224     S += charUnitsToString(ParmOffset);
   5225     ParmOffset += getObjCEncodingTypeSize(PType);
   5226   }
   5227 
   5228   return false;
   5229 }
   5230 
   5231 ObjCPropertyImplDecl *
   5232 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
   5233                                       const ObjCPropertyDecl *PD,
   5234                                       const Decl *Container) const {
   5235   if (!Container)
   5236     return nullptr;
   5237   if (const ObjCCategoryImplDecl *CID =
   5238       dyn_cast<ObjCCategoryImplDecl>(Container)) {
   5239     for (auto *PID : CID->property_impls())
   5240       if (PID->getPropertyDecl() == PD)
   5241         return PID;
   5242   } else {
   5243     const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
   5244     for (auto *PID : OID->property_impls())
   5245       if (PID->getPropertyDecl() == PD)
   5246         return PID;
   5247   }
   5248   return nullptr;
   5249 }
   5250 
   5251 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
   5252 /// property declaration. If non-NULL, Container must be either an
   5253 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
   5254 /// NULL when getting encodings for protocol properties.
   5255 /// Property attributes are stored as a comma-delimited C string. The simple
   5256 /// attributes readonly and bycopy are encoded as single characters. The
   5257 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
   5258 /// encoded as single characters, followed by an identifier. Property types
   5259 /// are also encoded as a parametrized attribute. The characters used to encode
   5260 /// these attributes are defined by the following enumeration:
   5261 /// @code
   5262 /// enum PropertyAttributes {
   5263 /// kPropertyReadOnly = 'R',   // property is read-only.
   5264 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
   5265 /// kPropertyByref = '&',  // property is a reference to the value last assigned
   5266 /// kPropertyDynamic = 'D',    // property is dynamic
   5267 /// kPropertyGetter = 'G',     // followed by getter selector name
   5268 /// kPropertySetter = 'S',     // followed by setter selector name
   5269 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
   5270 /// kPropertyType = 'T'              // followed by old-style type encoding.
   5271 /// kPropertyWeak = 'W'              // 'weak' property
   5272 /// kPropertyStrong = 'P'            // property GC'able
   5273 /// kPropertyNonAtomic = 'N'         // property non-atomic
   5274 /// };
   5275 /// @endcode
   5276 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
   5277                                                 const Decl *Container,
   5278                                                 std::string& S) const {
   5279   // Collect information from the property implementation decl(s).
   5280   bool Dynamic = false;
   5281   ObjCPropertyImplDecl *SynthesizePID = nullptr;
   5282 
   5283   if (ObjCPropertyImplDecl *PropertyImpDecl =
   5284       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
   5285     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
   5286       Dynamic = true;
   5287     else
   5288       SynthesizePID = PropertyImpDecl;
   5289   }
   5290 
   5291   // FIXME: This is not very efficient.
   5292   S = "T";
   5293 
   5294   // Encode result type.
   5295   // GCC has some special rules regarding encoding of properties which
   5296   // closely resembles encoding of ivars.
   5297   getObjCEncodingForPropertyType(PD->getType(), S);
   5298 
   5299   if (PD->isReadOnly()) {
   5300     S += ",R";
   5301     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
   5302       S += ",C";
   5303     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
   5304       S += ",&";
   5305     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
   5306       S += ",W";
   5307   } else {
   5308     switch (PD->getSetterKind()) {
   5309     case ObjCPropertyDecl::Assign: break;
   5310     case ObjCPropertyDecl::Copy:   S += ",C"; break;
   5311     case ObjCPropertyDecl::Retain: S += ",&"; break;
   5312     case ObjCPropertyDecl::Weak:   S += ",W"; break;
   5313     }
   5314   }
   5315 
   5316   // It really isn't clear at all what this means, since properties
   5317   // are "dynamic by default".
   5318   if (Dynamic)
   5319     S += ",D";
   5320 
   5321   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
   5322     S += ",N";
   5323 
   5324   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
   5325     S += ",G";
   5326     S += PD->getGetterName().getAsString();
   5327   }
   5328 
   5329   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
   5330     S += ",S";
   5331     S += PD->getSetterName().getAsString();
   5332   }
   5333 
   5334   if (SynthesizePID) {
   5335     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
   5336     S += ",V";
   5337     S += OID->getNameAsString();
   5338   }
   5339 
   5340   // FIXME: OBJCGC: weak & strong
   5341 }
   5342 
   5343 /// getLegacyIntegralTypeEncoding -
   5344 /// Another legacy compatibility encoding: 32-bit longs are encoded as
   5345 /// 'l' or 'L' , but not always.  For typedefs, we need to use
   5346 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
   5347 ///
   5348 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
   5349   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
   5350     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
   5351       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
   5352         PointeeTy = UnsignedIntTy;
   5353       else
   5354         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
   5355           PointeeTy = IntTy;
   5356     }
   5357   }
   5358 }
   5359 
   5360 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
   5361                                         const FieldDecl *Field,
   5362                                         QualType *NotEncodedT) const {
   5363   // We follow the behavior of gcc, expanding structures which are
   5364   // directly pointed to, and expanding embedded structures. Note that
   5365   // these rules are sufficient to prevent recursive encoding of the
   5366   // same type.
   5367   getObjCEncodingForTypeImpl(T, S, true, true, Field,
   5368                              true /* outermost type */, false, false,
   5369                              false, false, false, NotEncodedT);
   5370 }
   5371 
   5372 void ASTContext::getObjCEncodingForPropertyType(QualType T,
   5373                                                 std::string& S) const {
   5374   // Encode result type.
   5375   // GCC has some special rules regarding encoding of properties which
   5376   // closely resembles encoding of ivars.
   5377   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
   5378                              true /* outermost type */,
   5379                              true /* encoding property */);
   5380 }
   5381 
   5382 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
   5383                                             BuiltinType::Kind kind) {
   5384     switch (kind) {
   5385     case BuiltinType::Void:       return 'v';
   5386     case BuiltinType::Bool:       return 'B';
   5387     case BuiltinType::Char_U:
   5388     case BuiltinType::UChar:      return 'C';
   5389     case BuiltinType::Char16:
   5390     case BuiltinType::UShort:     return 'S';
   5391     case BuiltinType::Char32:
   5392     case BuiltinType::UInt:       return 'I';
   5393     case BuiltinType::ULong:
   5394         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
   5395     case BuiltinType::UInt128:    return 'T';
   5396     case BuiltinType::ULongLong:  return 'Q';
   5397     case BuiltinType::Char_S:
   5398     case BuiltinType::SChar:      return 'c';
   5399     case BuiltinType::Short:      return 's';
   5400     case BuiltinType::WChar_S:
   5401     case BuiltinType::WChar_U:
   5402     case BuiltinType::Int:        return 'i';
   5403     case BuiltinType::Long:
   5404       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
   5405     case BuiltinType::LongLong:   return 'q';
   5406     case BuiltinType::Int128:     return 't';
   5407     case BuiltinType::Float:      return 'f';
   5408     case BuiltinType::Double:     return 'd';
   5409     case BuiltinType::LongDouble: return 'D';
   5410     case BuiltinType::NullPtr:    return '*'; // like char*
   5411 
   5412     case BuiltinType::Half:
   5413       // FIXME: potentially need @encodes for these!
   5414       return ' ';
   5415 
   5416     case BuiltinType::ObjCId:
   5417     case BuiltinType::ObjCClass:
   5418     case BuiltinType::ObjCSel:
   5419       llvm_unreachable("@encoding ObjC primitive type");
   5420 
   5421     // OpenCL and placeholder types don't need @encodings.
   5422     case BuiltinType::OCLImage1d:
   5423     case BuiltinType::OCLImage1dArray:
   5424     case BuiltinType::OCLImage1dBuffer:
   5425     case BuiltinType::OCLImage2d:
   5426     case BuiltinType::OCLImage2dArray:
   5427     case BuiltinType::OCLImage2dDepth:
   5428     case BuiltinType::OCLImage2dArrayDepth:
   5429     case BuiltinType::OCLImage2dMSAA:
   5430     case BuiltinType::OCLImage2dArrayMSAA:
   5431     case BuiltinType::OCLImage2dMSAADepth:
   5432     case BuiltinType::OCLImage2dArrayMSAADepth:
   5433     case BuiltinType::OCLImage3d:
   5434     case BuiltinType::OCLEvent:
   5435     case BuiltinType::OCLClkEvent:
   5436     case BuiltinType::OCLQueue:
   5437     case BuiltinType::OCLNDRange:
   5438     case BuiltinType::OCLReserveID:
   5439     case BuiltinType::OCLSampler:
   5440     case BuiltinType::Dependent:
   5441 #define BUILTIN_TYPE(KIND, ID)
   5442 #define PLACEHOLDER_TYPE(KIND, ID) \
   5443     case BuiltinType::KIND:
   5444 #include "clang/AST/BuiltinTypes.def"
   5445       llvm_unreachable("invalid builtin type for @encode");
   5446     }
   5447     llvm_unreachable("invalid BuiltinType::Kind value");
   5448 }
   5449 
   5450 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
   5451   EnumDecl *Enum = ET->getDecl();
   5452 
   5453   // The encoding of an non-fixed enum type is always 'i', regardless of size.
   5454   if (!Enum->isFixed())
   5455     return 'i';
   5456 
   5457   // The encoding of a fixed enum type matches its fixed underlying type.
   5458   const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
   5459   return getObjCEncodingForPrimitiveKind(C, BT->getKind());
   5460 }
   5461 
   5462 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
   5463                            QualType T, const FieldDecl *FD) {
   5464   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
   5465   S += 'b';
   5466   // The NeXT runtime encodes bit fields as b followed by the number of bits.
   5467   // The GNU runtime requires more information; bitfields are encoded as b,
   5468   // then the offset (in bits) of the first element, then the type of the
   5469   // bitfield, then the size in bits.  For example, in this structure:
   5470   //
   5471   // struct
   5472   // {
   5473   //    int integer;
   5474   //    int flags:2;
   5475   // };
   5476   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
   5477   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
   5478   // information is not especially sensible, but we're stuck with it for
   5479   // compatibility with GCC, although providing it breaks anything that
   5480   // actually uses runtime introspection and wants to work on both runtimes...
   5481   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
   5482     const RecordDecl *RD = FD->getParent();
   5483     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
   5484     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
   5485     if (const EnumType *ET = T->getAs<EnumType>())
   5486       S += ObjCEncodingForEnumType(Ctx, ET);
   5487     else {
   5488       const BuiltinType *BT = T->castAs<BuiltinType>();
   5489       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
   5490     }
   5491   }
   5492   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
   5493 }
   5494 
   5495 // FIXME: Use SmallString for accumulating string.
   5496 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
   5497                                             bool ExpandPointedToStructures,
   5498                                             bool ExpandStructures,
   5499                                             const FieldDecl *FD,
   5500                                             bool OutermostType,
   5501                                             bool EncodingProperty,
   5502                                             bool StructField,
   5503                                             bool EncodeBlockParameters,
   5504                                             bool EncodeClassNames,
   5505                                             bool EncodePointerToObjCTypedef,
   5506                                             QualType *NotEncodedT) const {
   5507   CanQualType CT = getCanonicalType(T);
   5508   switch (CT->getTypeClass()) {
   5509   case Type::Builtin:
   5510   case Type::Enum:
   5511     if (FD && FD->isBitField())
   5512       return EncodeBitField(this, S, T, FD);
   5513     if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
   5514       S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
   5515     else
   5516       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
   5517     return;
   5518 
   5519   case Type::Complex: {
   5520     const ComplexType *CT = T->castAs<ComplexType>();
   5521     S += 'j';
   5522     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
   5523     return;
   5524   }
   5525 
   5526   case Type::Atomic: {
   5527     const AtomicType *AT = T->castAs<AtomicType>();
   5528     S += 'A';
   5529     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
   5530     return;
   5531   }
   5532 
   5533   // encoding for pointer or reference types.
   5534   case Type::Pointer:
   5535   case Type::LValueReference:
   5536   case Type::RValueReference: {
   5537     QualType PointeeTy;
   5538     if (isa<PointerType>(CT)) {
   5539       const PointerType *PT = T->castAs<PointerType>();
   5540       if (PT->isObjCSelType()) {
   5541         S += ':';
   5542         return;
   5543       }
   5544       PointeeTy = PT->getPointeeType();
   5545     } else {
   5546       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
   5547     }
   5548 
   5549     bool isReadOnly = false;
   5550     // For historical/compatibility reasons, the read-only qualifier of the
   5551     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
   5552     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
   5553     // Also, do not emit the 'r' for anything but the outermost type!
   5554     if (isa<TypedefType>(T.getTypePtr())) {
   5555       if (OutermostType && T.isConstQualified()) {
   5556         isReadOnly = true;
   5557         S += 'r';
   5558       }
   5559     } else if (OutermostType) {
   5560       QualType P = PointeeTy;
   5561       while (P->getAs<PointerType>())
   5562         P = P->getAs<PointerType>()->getPointeeType();
   5563       if (P.isConstQualified()) {
   5564         isReadOnly = true;
   5565         S += 'r';
   5566       }
   5567     }
   5568     if (isReadOnly) {
   5569       // Another legacy compatibility encoding. Some ObjC qualifier and type
   5570       // combinations need to be rearranged.
   5571       // Rewrite "in const" from "nr" to "rn"
   5572       if (StringRef(S).endswith("nr"))
   5573         S.replace(S.end()-2, S.end(), "rn");
   5574     }
   5575 
   5576     if (PointeeTy->isCharType()) {
   5577       // char pointer types should be encoded as '*' unless it is a
   5578       // type that has been typedef'd to 'BOOL'.
   5579       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
   5580         S += '*';
   5581         return;
   5582       }
   5583     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
   5584       // GCC binary compat: Need to convert "struct objc_class *" to "#".
   5585       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
   5586         S += '#';
   5587         return;
   5588       }
   5589       // GCC binary compat: Need to convert "struct objc_object *" to "@".
   5590       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
   5591         S += '@';
   5592         return;
   5593       }
   5594       // fall through...
   5595     }
   5596     S += '^';
   5597     getLegacyIntegralTypeEncoding(PointeeTy);
   5598 
   5599     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
   5600                                nullptr, false, false, false, false, false, false,
   5601                                NotEncodedT);
   5602     return;
   5603   }
   5604 
   5605   case Type::ConstantArray:
   5606   case Type::IncompleteArray:
   5607   case Type::VariableArray: {
   5608     const ArrayType *AT = cast<ArrayType>(CT);
   5609 
   5610     if (isa<IncompleteArrayType>(AT) && !StructField) {
   5611       // Incomplete arrays are encoded as a pointer to the array element.
   5612       S += '^';
   5613 
   5614       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   5615                                  false, ExpandStructures, FD);
   5616     } else {
   5617       S += '[';
   5618 
   5619       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
   5620         S += llvm::utostr(CAT->getSize().getZExtValue());
   5621       else {
   5622         //Variable length arrays are encoded as a regular array with 0 elements.
   5623         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
   5624                "Unknown array type!");
   5625         S += '0';
   5626       }
   5627 
   5628       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   5629                                  false, ExpandStructures, FD,
   5630                                  false, false, false, false, false, false,
   5631                                  NotEncodedT);
   5632       S += ']';
   5633     }
   5634     return;
   5635   }
   5636 
   5637   case Type::FunctionNoProto:
   5638   case Type::FunctionProto:
   5639     S += '?';
   5640     return;
   5641 
   5642   case Type::Record: {
   5643     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
   5644     S += RDecl->isUnion() ? '(' : '{';
   5645     // Anonymous structures print as '?'
   5646     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
   5647       S += II->getName();
   5648       if (ClassTemplateSpecializationDecl *Spec
   5649           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
   5650         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   5651         llvm::raw_string_ostream OS(S);
   5652         TemplateSpecializationType::PrintTemplateArgumentList(OS,
   5653                                             TemplateArgs.data(),
   5654                                             TemplateArgs.size(),
   5655                                             (*this).getPrintingPolicy());
   5656       }
   5657     } else {
   5658       S += '?';
   5659     }
   5660     if (ExpandStructures) {
   5661       S += '=';
   5662       if (!RDecl->isUnion()) {
   5663         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
   5664       } else {
   5665         for (const auto *Field : RDecl->fields()) {
   5666           if (FD) {
   5667             S += '"';
   5668             S += Field->getNameAsString();
   5669             S += '"';
   5670           }
   5671 
   5672           // Special case bit-fields.
   5673           if (Field->isBitField()) {
   5674             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
   5675                                        Field);
   5676           } else {
   5677             QualType qt = Field->getType();
   5678             getLegacyIntegralTypeEncoding(qt);
   5679             getObjCEncodingForTypeImpl(qt, S, false, true,
   5680                                        FD, /*OutermostType*/false,
   5681                                        /*EncodingProperty*/false,
   5682                                        /*StructField*/true,
   5683                                        false, false, false, NotEncodedT);
   5684           }
   5685         }
   5686       }
   5687     }
   5688     S += RDecl->isUnion() ? ')' : '}';
   5689     return;
   5690   }
   5691 
   5692   case Type::BlockPointer: {
   5693     const BlockPointerType *BT = T->castAs<BlockPointerType>();
   5694     S += "@?"; // Unlike a pointer-to-function, which is "^?".
   5695     if (EncodeBlockParameters) {
   5696       const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
   5697 
   5698       S += '<';
   5699       // Block return type
   5700       getObjCEncodingForTypeImpl(
   5701           FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
   5702           FD, false /* OutermostType */, EncodingProperty,
   5703           false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
   5704                                  NotEncodedT);
   5705       // Block self
   5706       S += "@?";
   5707       // Block parameters
   5708       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
   5709         for (const auto &I : FPT->param_types())
   5710           getObjCEncodingForTypeImpl(
   5711               I, S, ExpandPointedToStructures, ExpandStructures, FD,
   5712               false /* OutermostType */, EncodingProperty,
   5713               false /* StructField */, EncodeBlockParameters, EncodeClassNames,
   5714                                      false, NotEncodedT);
   5715       }
   5716       S += '>';
   5717     }
   5718     return;
   5719   }
   5720 
   5721   case Type::ObjCObject: {
   5722     // hack to match legacy encoding of *id and *Class
   5723     QualType Ty = getObjCObjectPointerType(CT);
   5724     if (Ty->isObjCIdType()) {
   5725       S += "{objc_object=}";
   5726       return;
   5727     }
   5728     else if (Ty->isObjCClassType()) {
   5729       S += "{objc_class=}";
   5730       return;
   5731     }
   5732   }
   5733 
   5734   case Type::ObjCInterface: {
   5735     // Ignore protocol qualifiers when mangling at this level.
   5736     // @encode(class_name)
   5737     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
   5738     S += '{';
   5739     S += OI->getObjCRuntimeNameAsString();
   5740     S += '=';
   5741     SmallVector<const ObjCIvarDecl*, 32> Ivars;
   5742     DeepCollectObjCIvars(OI, true, Ivars);
   5743     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
   5744       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
   5745       if (Field->isBitField())
   5746         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
   5747       else
   5748         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
   5749                                    false, false, false, false, false,
   5750                                    EncodePointerToObjCTypedef,
   5751                                    NotEncodedT);
   5752     }
   5753     S += '}';
   5754     return;
   5755   }
   5756 
   5757   case Type::ObjCObjectPointer: {
   5758     const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
   5759     if (OPT->isObjCIdType()) {
   5760       S += '@';
   5761       return;
   5762     }
   5763 
   5764     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
   5765       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
   5766       // Since this is a binary compatibility issue, need to consult with runtime
   5767       // folks. Fortunately, this is a *very* obsure construct.
   5768       S += '#';
   5769       return;
   5770     }
   5771 
   5772     if (OPT->isObjCQualifiedIdType()) {
   5773       getObjCEncodingForTypeImpl(getObjCIdType(), S,
   5774                                  ExpandPointedToStructures,
   5775                                  ExpandStructures, FD);
   5776       if (FD || EncodingProperty || EncodeClassNames) {
   5777         // Note that we do extended encoding of protocol qualifer list
   5778         // Only when doing ivar or property encoding.
   5779         S += '"';
   5780         for (const auto *I : OPT->quals()) {
   5781           S += '<';
   5782           S += I->getObjCRuntimeNameAsString();
   5783           S += '>';
   5784         }
   5785         S += '"';
   5786       }
   5787       return;
   5788     }
   5789 
   5790     QualType PointeeTy = OPT->getPointeeType();
   5791     if (!EncodingProperty &&
   5792         isa<TypedefType>(PointeeTy.getTypePtr()) &&
   5793         !EncodePointerToObjCTypedef) {
   5794       // Another historical/compatibility reason.
   5795       // We encode the underlying type which comes out as
   5796       // {...};
   5797       S += '^';
   5798       if (FD && OPT->getInterfaceDecl()) {
   5799         // Prevent recursive encoding of fields in some rare cases.
   5800         ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
   5801         SmallVector<const ObjCIvarDecl*, 32> Ivars;
   5802         DeepCollectObjCIvars(OI, true, Ivars);
   5803         for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
   5804           if (cast<FieldDecl>(Ivars[i]) == FD) {
   5805             S += '{';
   5806             S += OI->getObjCRuntimeNameAsString();
   5807             S += '}';
   5808             return;
   5809           }
   5810         }
   5811       }
   5812       getObjCEncodingForTypeImpl(PointeeTy, S,
   5813                                  false, ExpandPointedToStructures,
   5814                                  nullptr,
   5815                                  false, false, false, false, false,
   5816                                  /*EncodePointerToObjCTypedef*/true);
   5817       return;
   5818     }
   5819 
   5820     S += '@';
   5821     if (OPT->getInterfaceDecl() &&
   5822         (FD || EncodingProperty || EncodeClassNames)) {
   5823       S += '"';
   5824       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
   5825       for (const auto *I : OPT->quals()) {
   5826         S += '<';
   5827         S += I->getObjCRuntimeNameAsString();
   5828         S += '>';
   5829       }
   5830       S += '"';
   5831     }
   5832     return;
   5833   }
   5834 
   5835   // gcc just blithely ignores member pointers.
   5836   // FIXME: we shoul do better than that.  'M' is available.
   5837   case Type::MemberPointer:
   5838   // This matches gcc's encoding, even though technically it is insufficient.
   5839   //FIXME. We should do a better job than gcc.
   5840   case Type::Vector:
   5841   case Type::ExtVector:
   5842   // Until we have a coherent encoding of these three types, issue warning.
   5843     { if (NotEncodedT)
   5844         *NotEncodedT = T;
   5845       return;
   5846     }
   5847 
   5848   // We could see an undeduced auto type here during error recovery.
   5849   // Just ignore it.
   5850   case Type::Auto:
   5851     return;
   5852 
   5853 #define ABSTRACT_TYPE(KIND, BASE)
   5854 #define TYPE(KIND, BASE)
   5855 #define DEPENDENT_TYPE(KIND, BASE) \
   5856   case Type::KIND:
   5857 #define NON_CANONICAL_TYPE(KIND, BASE) \
   5858   case Type::KIND:
   5859 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
   5860   case Type::KIND:
   5861 #include "clang/AST/TypeNodes.def"
   5862     llvm_unreachable("@encode for dependent type!");
   5863   }
   5864   llvm_unreachable("bad type kind!");
   5865 }
   5866 
   5867 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
   5868                                                  std::string &S,
   5869                                                  const FieldDecl *FD,
   5870                                                  bool includeVBases,
   5871                                                  QualType *NotEncodedT) const {
   5872   assert(RDecl && "Expected non-null RecordDecl");
   5873   assert(!RDecl->isUnion() && "Should not be called for unions");
   5874   if (!RDecl->getDefinition())
   5875     return;
   5876 
   5877   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
   5878   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
   5879   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
   5880 
   5881   if (CXXRec) {
   5882     for (const auto &BI : CXXRec->bases()) {
   5883       if (!BI.isVirtual()) {
   5884         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
   5885         if (base->isEmpty())
   5886           continue;
   5887         uint64_t offs = toBits(layout.getBaseClassOffset(base));
   5888         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5889                                   std::make_pair(offs, base));
   5890       }
   5891     }
   5892   }
   5893 
   5894   unsigned i = 0;
   5895   for (auto *Field : RDecl->fields()) {
   5896     uint64_t offs = layout.getFieldOffset(i);
   5897     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5898                               std::make_pair(offs, Field));
   5899     ++i;
   5900   }
   5901 
   5902   if (CXXRec && includeVBases) {
   5903     for (const auto &BI : CXXRec->vbases()) {
   5904       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
   5905       if (base->isEmpty())
   5906         continue;
   5907       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
   5908       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
   5909           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
   5910         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
   5911                                   std::make_pair(offs, base));
   5912     }
   5913   }
   5914 
   5915   CharUnits size;
   5916   if (CXXRec) {
   5917     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
   5918   } else {
   5919     size = layout.getSize();
   5920   }
   5921 
   5922 #ifndef NDEBUG
   5923   uint64_t CurOffs = 0;
   5924 #endif
   5925   std::multimap<uint64_t, NamedDecl *>::iterator
   5926     CurLayObj = FieldOrBaseOffsets.begin();
   5927 
   5928   if (CXXRec && CXXRec->isDynamicClass() &&
   5929       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
   5930     if (FD) {
   5931       S += "\"_vptr$";
   5932       std::string recname = CXXRec->getNameAsString();
   5933       if (recname.empty()) recname = "?";
   5934       S += recname;
   5935       S += '"';
   5936     }
   5937     S += "^^?";
   5938 #ifndef NDEBUG
   5939     CurOffs += getTypeSize(VoidPtrTy);
   5940 #endif
   5941   }
   5942 
   5943   if (!RDecl->hasFlexibleArrayMember()) {
   5944     // Mark the end of the structure.
   5945     uint64_t offs = toBits(size);
   5946     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5947                               std::make_pair(offs, nullptr));
   5948   }
   5949 
   5950   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
   5951 #ifndef NDEBUG
   5952     assert(CurOffs <= CurLayObj->first);
   5953     if (CurOffs < CurLayObj->first) {
   5954       uint64_t padding = CurLayObj->first - CurOffs;
   5955       // FIXME: There doesn't seem to be a way to indicate in the encoding that
   5956       // packing/alignment of members is different that normal, in which case
   5957       // the encoding will be out-of-sync with the real layout.
   5958       // If the runtime switches to just consider the size of types without
   5959       // taking into account alignment, we could make padding explicit in the
   5960       // encoding (e.g. using arrays of chars). The encoding strings would be
   5961       // longer then though.
   5962       CurOffs += padding;
   5963     }
   5964 #endif
   5965 
   5966     NamedDecl *dcl = CurLayObj->second;
   5967     if (!dcl)
   5968       break; // reached end of structure.
   5969 
   5970     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
   5971       // We expand the bases without their virtual bases since those are going
   5972       // in the initial structure. Note that this differs from gcc which
   5973       // expands virtual bases each time one is encountered in the hierarchy,
   5974       // making the encoding type bigger than it really is.
   5975       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
   5976                                       NotEncodedT);
   5977       assert(!base->isEmpty());
   5978 #ifndef NDEBUG
   5979       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
   5980 #endif
   5981     } else {
   5982       FieldDecl *field = cast<FieldDecl>(dcl);
   5983       if (FD) {
   5984         S += '"';
   5985         S += field->getNameAsString();
   5986         S += '"';
   5987       }
   5988 
   5989       if (field->isBitField()) {
   5990         EncodeBitField(this, S, field->getType(), field);
   5991 #ifndef NDEBUG
   5992         CurOffs += field->getBitWidthValue(*this);
   5993 #endif
   5994       } else {
   5995         QualType qt = field->getType();
   5996         getLegacyIntegralTypeEncoding(qt);
   5997         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
   5998                                    /*OutermostType*/false,
   5999                                    /*EncodingProperty*/false,
   6000                                    /*StructField*/true,
   6001                                    false, false, false, NotEncodedT);
   6002 #ifndef NDEBUG
   6003         CurOffs += getTypeSize(field->getType());
   6004 #endif
   6005       }
   6006     }
   6007   }
   6008 }
   6009 
   6010 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
   6011                                                  std::string& S) const {
   6012   if (QT & Decl::OBJC_TQ_In)
   6013     S += 'n';
   6014   if (QT & Decl::OBJC_TQ_Inout)
   6015     S += 'N';
   6016   if (QT & Decl::OBJC_TQ_Out)
   6017     S += 'o';
   6018   if (QT & Decl::OBJC_TQ_Bycopy)
   6019     S += 'O';
   6020   if (QT & Decl::OBJC_TQ_Byref)
   6021     S += 'R';
   6022   if (QT & Decl::OBJC_TQ_Oneway)
   6023     S += 'V';
   6024 }
   6025 
   6026 TypedefDecl *ASTContext::getObjCIdDecl() const {
   6027   if (!ObjCIdDecl) {
   6028     QualType T = getObjCObjectType(ObjCBuiltinIdTy, { }, { });
   6029     T = getObjCObjectPointerType(T);
   6030     ObjCIdDecl = buildImplicitTypedef(T, "id");
   6031   }
   6032   return ObjCIdDecl;
   6033 }
   6034 
   6035 TypedefDecl *ASTContext::getObjCSelDecl() const {
   6036   if (!ObjCSelDecl) {
   6037     QualType T = getPointerType(ObjCBuiltinSelTy);
   6038     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
   6039   }
   6040   return ObjCSelDecl;
   6041 }
   6042 
   6043 TypedefDecl *ASTContext::getObjCClassDecl() const {
   6044   if (!ObjCClassDecl) {
   6045     QualType T = getObjCObjectType(ObjCBuiltinClassTy, { }, { });
   6046     T = getObjCObjectPointerType(T);
   6047     ObjCClassDecl = buildImplicitTypedef(T, "Class");
   6048   }
   6049   return ObjCClassDecl;
   6050 }
   6051 
   6052 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
   6053   if (!ObjCProtocolClassDecl) {
   6054     ObjCProtocolClassDecl
   6055       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
   6056                                   SourceLocation(),
   6057                                   &Idents.get("Protocol"),
   6058                                   /*typeParamList=*/nullptr,
   6059                                   /*PrevDecl=*/nullptr,
   6060                                   SourceLocation(), true);
   6061   }
   6062 
   6063   return ObjCProtocolClassDecl;
   6064 }
   6065 
   6066 //===----------------------------------------------------------------------===//
   6067 // __builtin_va_list Construction Functions
   6068 //===----------------------------------------------------------------------===//
   6069 
   6070 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
   6071                                                  StringRef Name) {
   6072   // typedef char* __builtin[_ms]_va_list;
   6073   QualType T = Context->getPointerType(Context->CharTy);
   6074   return Context->buildImplicitTypedef(T, Name);
   6075 }
   6076 
   6077 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
   6078   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
   6079 }
   6080 
   6081 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
   6082   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
   6083 }
   6084 
   6085 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
   6086   // typedef void* __builtin_va_list;
   6087   QualType T = Context->getPointerType(Context->VoidTy);
   6088   return Context->buildImplicitTypedef(T, "__builtin_va_list");
   6089 }
   6090 
   6091 static TypedefDecl *
   6092 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
   6093   // struct __va_list
   6094   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
   6095   if (Context->getLangOpts().CPlusPlus) {
   6096     // namespace std { struct __va_list {
   6097     NamespaceDecl *NS;
   6098     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
   6099                                Context->getTranslationUnitDecl(),
   6100                                /*Inline*/ false, SourceLocation(),
   6101                                SourceLocation(), &Context->Idents.get("std"),
   6102                                /*PrevDecl*/ nullptr);
   6103     NS->setImplicit();
   6104     VaListTagDecl->setDeclContext(NS);
   6105   }
   6106 
   6107   VaListTagDecl->startDefinition();
   6108 
   6109   const size_t NumFields = 5;
   6110   QualType FieldTypes[NumFields];
   6111   const char *FieldNames[NumFields];
   6112 
   6113   // void *__stack;
   6114   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
   6115   FieldNames[0] = "__stack";
   6116 
   6117   // void *__gr_top;
   6118   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
   6119   FieldNames[1] = "__gr_top";
   6120 
   6121   // void *__vr_top;
   6122   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   6123   FieldNames[2] = "__vr_top";
   6124 
   6125   // int __gr_offs;
   6126   FieldTypes[3] = Context->IntTy;
   6127   FieldNames[3] = "__gr_offs";
   6128 
   6129   // int __vr_offs;
   6130   FieldTypes[4] = Context->IntTy;
   6131   FieldNames[4] = "__vr_offs";
   6132 
   6133   // Create fields
   6134   for (unsigned i = 0; i < NumFields; ++i) {
   6135     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   6136                                          VaListTagDecl,
   6137                                          SourceLocation(),
   6138                                          SourceLocation(),
   6139                                          &Context->Idents.get(FieldNames[i]),
   6140                                          FieldTypes[i], /*TInfo=*/nullptr,
   6141                                          /*BitWidth=*/nullptr,
   6142                                          /*Mutable=*/false,
   6143                                          ICIS_NoInit);
   6144     Field->setAccess(AS_public);
   6145     VaListTagDecl->addDecl(Field);
   6146   }
   6147   VaListTagDecl->completeDefinition();
   6148   Context->VaListTagDecl = VaListTagDecl;
   6149   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   6150 
   6151   // } __builtin_va_list;
   6152   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
   6153 }
   6154 
   6155 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
   6156   // typedef struct __va_list_tag {
   6157   RecordDecl *VaListTagDecl;
   6158 
   6159   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
   6160   VaListTagDecl->startDefinition();
   6161 
   6162   const size_t NumFields = 5;
   6163   QualType FieldTypes[NumFields];
   6164   const char *FieldNames[NumFields];
   6165 
   6166   //   unsigned char gpr;
   6167   FieldTypes[0] = Context->UnsignedCharTy;
   6168   FieldNames[0] = "gpr";
   6169 
   6170   //   unsigned char fpr;
   6171   FieldTypes[1] = Context->UnsignedCharTy;
   6172   FieldNames[1] = "fpr";
   6173 
   6174   //   unsigned short reserved;
   6175   FieldTypes[2] = Context->UnsignedShortTy;
   6176   FieldNames[2] = "reserved";
   6177 
   6178   //   void* overflow_arg_area;
   6179   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   6180   FieldNames[3] = "overflow_arg_area";
   6181 
   6182   //   void* reg_save_area;
   6183   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
   6184   FieldNames[4] = "reg_save_area";
   6185 
   6186   // Create fields
   6187   for (unsigned i = 0; i < NumFields; ++i) {
   6188     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
   6189                                          SourceLocation(),
   6190                                          SourceLocation(),
   6191                                          &Context->Idents.get(FieldNames[i]),
   6192                                          FieldTypes[i], /*TInfo=*/nullptr,
   6193                                          /*BitWidth=*/nullptr,
   6194                                          /*Mutable=*/false,
   6195                                          ICIS_NoInit);
   6196     Field->setAccess(AS_public);
   6197     VaListTagDecl->addDecl(Field);
   6198   }
   6199   VaListTagDecl->completeDefinition();
   6200   Context->VaListTagDecl = VaListTagDecl;
   6201   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   6202 
   6203   // } __va_list_tag;
   6204   TypedefDecl *VaListTagTypedefDecl =
   6205       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
   6206 
   6207   QualType VaListTagTypedefType =
   6208     Context->getTypedefType(VaListTagTypedefDecl);
   6209 
   6210   // typedef __va_list_tag __builtin_va_list[1];
   6211   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   6212   QualType VaListTagArrayType
   6213     = Context->getConstantArrayType(VaListTagTypedefType,
   6214                                     Size, ArrayType::Normal, 0);
   6215   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
   6216 }
   6217 
   6218 static TypedefDecl *
   6219 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
   6220   // struct __va_list_tag {
   6221   RecordDecl *VaListTagDecl;
   6222   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
   6223   VaListTagDecl->startDefinition();
   6224 
   6225   const size_t NumFields = 4;
   6226   QualType FieldTypes[NumFields];
   6227   const char *FieldNames[NumFields];
   6228 
   6229   //   unsigned gp_offset;
   6230   FieldTypes[0] = Context->UnsignedIntTy;
   6231   FieldNames[0] = "gp_offset";
   6232 
   6233   //   unsigned fp_offset;
   6234   FieldTypes[1] = Context->UnsignedIntTy;
   6235   FieldNames[1] = "fp_offset";
   6236 
   6237   //   void* overflow_arg_area;
   6238   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   6239   FieldNames[2] = "overflow_arg_area";
   6240 
   6241   //   void* reg_save_area;
   6242   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   6243   FieldNames[3] = "reg_save_area";
   6244 
   6245   // Create fields
   6246   for (unsigned i = 0; i < NumFields; ++i) {
   6247     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   6248                                          VaListTagDecl,
   6249                                          SourceLocation(),
   6250                                          SourceLocation(),
   6251                                          &Context->Idents.get(FieldNames[i]),
   6252                                          FieldTypes[i], /*TInfo=*/nullptr,
   6253                                          /*BitWidth=*/nullptr,
   6254                                          /*Mutable=*/false,
   6255                                          ICIS_NoInit);
   6256     Field->setAccess(AS_public);
   6257     VaListTagDecl->addDecl(Field);
   6258   }
   6259   VaListTagDecl->completeDefinition();
   6260   Context->VaListTagDecl = VaListTagDecl;
   6261   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   6262 
   6263   // };
   6264 
   6265   // typedef struct __va_list_tag __builtin_va_list[1];
   6266   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   6267   QualType VaListTagArrayType =
   6268       Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
   6269   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
   6270 }
   6271 
   6272 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
   6273   // typedef int __builtin_va_list[4];
   6274   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
   6275   QualType IntArrayType
   6276     = Context->getConstantArrayType(Context->IntTy,
   6277 				    Size, ArrayType::Normal, 0);
   6278   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
   6279 }
   6280 
   6281 static TypedefDecl *
   6282 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
   6283   // struct __va_list
   6284   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
   6285   if (Context->getLangOpts().CPlusPlus) {
   6286     // namespace std { struct __va_list {
   6287     NamespaceDecl *NS;
   6288     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
   6289                                Context->getTranslationUnitDecl(),
   6290                                /*Inline*/false, SourceLocation(),
   6291                                SourceLocation(), &Context->Idents.get("std"),
   6292                                /*PrevDecl*/ nullptr);
   6293     NS->setImplicit();
   6294     VaListDecl->setDeclContext(NS);
   6295   }
   6296 
   6297   VaListDecl->startDefinition();
   6298 
   6299   // void * __ap;
   6300   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   6301                                        VaListDecl,
   6302                                        SourceLocation(),
   6303                                        SourceLocation(),
   6304                                        &Context->Idents.get("__ap"),
   6305                                        Context->getPointerType(Context->VoidTy),
   6306                                        /*TInfo=*/nullptr,
   6307                                        /*BitWidth=*/nullptr,
   6308                                        /*Mutable=*/false,
   6309                                        ICIS_NoInit);
   6310   Field->setAccess(AS_public);
   6311   VaListDecl->addDecl(Field);
   6312 
   6313   // };
   6314   VaListDecl->completeDefinition();
   6315 
   6316   // typedef struct __va_list __builtin_va_list;
   6317   QualType T = Context->getRecordType(VaListDecl);
   6318   return Context->buildImplicitTypedef(T, "__builtin_va_list");
   6319 }
   6320 
   6321 static TypedefDecl *
   6322 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
   6323   // struct __va_list_tag {
   6324   RecordDecl *VaListTagDecl;
   6325   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
   6326   VaListTagDecl->startDefinition();
   6327 
   6328   const size_t NumFields = 4;
   6329   QualType FieldTypes[NumFields];
   6330   const char *FieldNames[NumFields];
   6331 
   6332   //   long __gpr;
   6333   FieldTypes[0] = Context->LongTy;
   6334   FieldNames[0] = "__gpr";
   6335 
   6336   //   long __fpr;
   6337   FieldTypes[1] = Context->LongTy;
   6338   FieldNames[1] = "__fpr";
   6339 
   6340   //   void *__overflow_arg_area;
   6341   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   6342   FieldNames[2] = "__overflow_arg_area";
   6343 
   6344   //   void *__reg_save_area;
   6345   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   6346   FieldNames[3] = "__reg_save_area";
   6347 
   6348   // Create fields
   6349   for (unsigned i = 0; i < NumFields; ++i) {
   6350     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   6351                                          VaListTagDecl,
   6352                                          SourceLocation(),
   6353                                          SourceLocation(),
   6354                                          &Context->Idents.get(FieldNames[i]),
   6355                                          FieldTypes[i], /*TInfo=*/nullptr,
   6356                                          /*BitWidth=*/nullptr,
   6357                                          /*Mutable=*/false,
   6358                                          ICIS_NoInit);
   6359     Field->setAccess(AS_public);
   6360     VaListTagDecl->addDecl(Field);
   6361   }
   6362   VaListTagDecl->completeDefinition();
   6363   Context->VaListTagDecl = VaListTagDecl;
   6364   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   6365 
   6366   // };
   6367 
   6368   // typedef __va_list_tag __builtin_va_list[1];
   6369   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   6370   QualType VaListTagArrayType =
   6371       Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
   6372 
   6373   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
   6374 }
   6375 
   6376 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
   6377                                      TargetInfo::BuiltinVaListKind Kind) {
   6378   switch (Kind) {
   6379   case TargetInfo::CharPtrBuiltinVaList:
   6380     return CreateCharPtrBuiltinVaListDecl(Context);
   6381   case TargetInfo::VoidPtrBuiltinVaList:
   6382     return CreateVoidPtrBuiltinVaListDecl(Context);
   6383   case TargetInfo::AArch64ABIBuiltinVaList:
   6384     return CreateAArch64ABIBuiltinVaListDecl(Context);
   6385   case TargetInfo::PowerABIBuiltinVaList:
   6386     return CreatePowerABIBuiltinVaListDecl(Context);
   6387   case TargetInfo::X86_64ABIBuiltinVaList:
   6388     return CreateX86_64ABIBuiltinVaListDecl(Context);
   6389   case TargetInfo::PNaClABIBuiltinVaList:
   6390     return CreatePNaClABIBuiltinVaListDecl(Context);
   6391   case TargetInfo::AAPCSABIBuiltinVaList:
   6392     return CreateAAPCSABIBuiltinVaListDecl(Context);
   6393   case TargetInfo::SystemZBuiltinVaList:
   6394     return CreateSystemZBuiltinVaListDecl(Context);
   6395   }
   6396 
   6397   llvm_unreachable("Unhandled __builtin_va_list type kind");
   6398 }
   6399 
   6400 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
   6401   if (!BuiltinVaListDecl) {
   6402     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
   6403     assert(BuiltinVaListDecl->isImplicit());
   6404   }
   6405 
   6406   return BuiltinVaListDecl;
   6407 }
   6408 
   6409 Decl *ASTContext::getVaListTagDecl() const {
   6410   // Force the creation of VaListTagDecl by building the __builtin_va_list
   6411   // declaration.
   6412   if (!VaListTagDecl)
   6413     (void)getBuiltinVaListDecl();
   6414 
   6415   return VaListTagDecl;
   6416 }
   6417 
   6418 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
   6419   if (!BuiltinMSVaListDecl)
   6420     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
   6421 
   6422   return BuiltinMSVaListDecl;
   6423 }
   6424 
   6425 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
   6426   assert(ObjCConstantStringType.isNull() &&
   6427          "'NSConstantString' type already set!");
   6428 
   6429   ObjCConstantStringType = getObjCInterfaceType(Decl);
   6430 }
   6431 
   6432 /// \brief Retrieve the template name that corresponds to a non-empty
   6433 /// lookup.
   6434 TemplateName
   6435 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
   6436                                       UnresolvedSetIterator End) const {
   6437   unsigned size = End - Begin;
   6438   assert(size > 1 && "set is not overloaded!");
   6439 
   6440   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
   6441                           size * sizeof(FunctionTemplateDecl*));
   6442   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
   6443 
   6444   NamedDecl **Storage = OT->getStorage();
   6445   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
   6446     NamedDecl *D = *I;
   6447     assert(isa<FunctionTemplateDecl>(D) ||
   6448            (isa<UsingShadowDecl>(D) &&
   6449             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
   6450     *Storage++ = D;
   6451   }
   6452 
   6453   return TemplateName(OT);
   6454 }
   6455 
   6456 /// \brief Retrieve the template name that represents a qualified
   6457 /// template name such as \c std::vector.
   6458 TemplateName
   6459 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
   6460                                      bool TemplateKeyword,
   6461                                      TemplateDecl *Template) const {
   6462   assert(NNS && "Missing nested-name-specifier in qualified template name");
   6463 
   6464   // FIXME: Canonicalization?
   6465   llvm::FoldingSetNodeID ID;
   6466   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
   6467 
   6468   void *InsertPos = nullptr;
   6469   QualifiedTemplateName *QTN =
   6470     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6471   if (!QTN) {
   6472     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
   6473         QualifiedTemplateName(NNS, TemplateKeyword, Template);
   6474     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
   6475   }
   6476 
   6477   return TemplateName(QTN);
   6478 }
   6479 
   6480 /// \brief Retrieve the template name that represents a dependent
   6481 /// template name such as \c MetaFun::template apply.
   6482 TemplateName
   6483 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   6484                                      const IdentifierInfo *Name) const {
   6485   assert((!NNS || NNS->isDependent()) &&
   6486          "Nested name specifier must be dependent");
   6487 
   6488   llvm::FoldingSetNodeID ID;
   6489   DependentTemplateName::Profile(ID, NNS, Name);
   6490 
   6491   void *InsertPos = nullptr;
   6492   DependentTemplateName *QTN =
   6493     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6494 
   6495   if (QTN)
   6496     return TemplateName(QTN);
   6497 
   6498   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   6499   if (CanonNNS == NNS) {
   6500     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6501         DependentTemplateName(NNS, Name);
   6502   } else {
   6503     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
   6504     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6505         DependentTemplateName(NNS, Name, Canon);
   6506     DependentTemplateName *CheckQTN =
   6507       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6508     assert(!CheckQTN && "Dependent type name canonicalization broken");
   6509     (void)CheckQTN;
   6510   }
   6511 
   6512   DependentTemplateNames.InsertNode(QTN, InsertPos);
   6513   return TemplateName(QTN);
   6514 }
   6515 
   6516 /// \brief Retrieve the template name that represents a dependent
   6517 /// template name such as \c MetaFun::template operator+.
   6518 TemplateName
   6519 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   6520                                      OverloadedOperatorKind Operator) const {
   6521   assert((!NNS || NNS->isDependent()) &&
   6522          "Nested name specifier must be dependent");
   6523 
   6524   llvm::FoldingSetNodeID ID;
   6525   DependentTemplateName::Profile(ID, NNS, Operator);
   6526 
   6527   void *InsertPos = nullptr;
   6528   DependentTemplateName *QTN
   6529     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6530 
   6531   if (QTN)
   6532     return TemplateName(QTN);
   6533 
   6534   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   6535   if (CanonNNS == NNS) {
   6536     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6537         DependentTemplateName(NNS, Operator);
   6538   } else {
   6539     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
   6540     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6541         DependentTemplateName(NNS, Operator, Canon);
   6542 
   6543     DependentTemplateName *CheckQTN
   6544       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6545     assert(!CheckQTN && "Dependent template name canonicalization broken");
   6546     (void)CheckQTN;
   6547   }
   6548 
   6549   DependentTemplateNames.InsertNode(QTN, InsertPos);
   6550   return TemplateName(QTN);
   6551 }
   6552 
   6553 TemplateName
   6554 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
   6555                                          TemplateName replacement) const {
   6556   llvm::FoldingSetNodeID ID;
   6557   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
   6558 
   6559   void *insertPos = nullptr;
   6560   SubstTemplateTemplateParmStorage *subst
   6561     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
   6562 
   6563   if (!subst) {
   6564     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
   6565     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
   6566   }
   6567 
   6568   return TemplateName(subst);
   6569 }
   6570 
   6571 TemplateName
   6572 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
   6573                                        const TemplateArgument &ArgPack) const {
   6574   ASTContext &Self = const_cast<ASTContext &>(*this);
   6575   llvm::FoldingSetNodeID ID;
   6576   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
   6577 
   6578   void *InsertPos = nullptr;
   6579   SubstTemplateTemplateParmPackStorage *Subst
   6580     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
   6581 
   6582   if (!Subst) {
   6583     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
   6584                                                            ArgPack.pack_size(),
   6585                                                          ArgPack.pack_begin());
   6586     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
   6587   }
   6588 
   6589   return TemplateName(Subst);
   6590 }
   6591 
   6592 /// getFromTargetType - Given one of the integer types provided by
   6593 /// TargetInfo, produce the corresponding type. The unsigned @p Type
   6594 /// is actually a value of type @c TargetInfo::IntType.
   6595 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
   6596   switch (Type) {
   6597   case TargetInfo::NoInt: return CanQualType();
   6598   case TargetInfo::SignedChar: return SignedCharTy;
   6599   case TargetInfo::UnsignedChar: return UnsignedCharTy;
   6600   case TargetInfo::SignedShort: return ShortTy;
   6601   case TargetInfo::UnsignedShort: return UnsignedShortTy;
   6602   case TargetInfo::SignedInt: return IntTy;
   6603   case TargetInfo::UnsignedInt: return UnsignedIntTy;
   6604   case TargetInfo::SignedLong: return LongTy;
   6605   case TargetInfo::UnsignedLong: return UnsignedLongTy;
   6606   case TargetInfo::SignedLongLong: return LongLongTy;
   6607   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
   6608   }
   6609 
   6610   llvm_unreachable("Unhandled TargetInfo::IntType value");
   6611 }
   6612 
   6613 //===----------------------------------------------------------------------===//
   6614 //                        Type Predicates.
   6615 //===----------------------------------------------------------------------===//
   6616 
   6617 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
   6618 /// garbage collection attribute.
   6619 ///
   6620 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
   6621   if (getLangOpts().getGC() == LangOptions::NonGC)
   6622     return Qualifiers::GCNone;
   6623 
   6624   assert(getLangOpts().ObjC1);
   6625   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
   6626 
   6627   // Default behaviour under objective-C's gc is for ObjC pointers
   6628   // (or pointers to them) be treated as though they were declared
   6629   // as __strong.
   6630   if (GCAttrs == Qualifiers::GCNone) {
   6631     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
   6632       return Qualifiers::Strong;
   6633     else if (Ty->isPointerType())
   6634       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
   6635   } else {
   6636     // It's not valid to set GC attributes on anything that isn't a
   6637     // pointer.
   6638 #ifndef NDEBUG
   6639     QualType CT = Ty->getCanonicalTypeInternal();
   6640     while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
   6641       CT = AT->getElementType();
   6642     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
   6643 #endif
   6644   }
   6645   return GCAttrs;
   6646 }
   6647 
   6648 //===----------------------------------------------------------------------===//
   6649 //                        Type Compatibility Testing
   6650 //===----------------------------------------------------------------------===//
   6651 
   6652 /// areCompatVectorTypes - Return true if the two specified vector types are
   6653 /// compatible.
   6654 static bool areCompatVectorTypes(const VectorType *LHS,
   6655                                  const VectorType *RHS) {
   6656   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
   6657   return LHS->getElementType() == RHS->getElementType() &&
   6658          LHS->getNumElements() == RHS->getNumElements();
   6659 }
   6660 
   6661 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
   6662                                           QualType SecondVec) {
   6663   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
   6664   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
   6665 
   6666   if (hasSameUnqualifiedType(FirstVec, SecondVec))
   6667     return true;
   6668 
   6669   // Treat Neon vector types and most AltiVec vector types as if they are the
   6670   // equivalent GCC vector types.
   6671   const VectorType *First = FirstVec->getAs<VectorType>();
   6672   const VectorType *Second = SecondVec->getAs<VectorType>();
   6673   if (First->getNumElements() == Second->getNumElements() &&
   6674       hasSameType(First->getElementType(), Second->getElementType()) &&
   6675       First->getVectorKind() != VectorType::AltiVecPixel &&
   6676       First->getVectorKind() != VectorType::AltiVecBool &&
   6677       Second->getVectorKind() != VectorType::AltiVecPixel &&
   6678       Second->getVectorKind() != VectorType::AltiVecBool)
   6679     return true;
   6680 
   6681   return false;
   6682 }
   6683 
   6684 //===----------------------------------------------------------------------===//
   6685 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
   6686 //===----------------------------------------------------------------------===//
   6687 
   6688 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
   6689 /// inheritance hierarchy of 'rProto'.
   6690 bool
   6691 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
   6692                                            ObjCProtocolDecl *rProto) const {
   6693   if (declaresSameEntity(lProto, rProto))
   6694     return true;
   6695   for (auto *PI : rProto->protocols())
   6696     if (ProtocolCompatibleWithProtocol(lProto, PI))
   6697       return true;
   6698   return false;
   6699 }
   6700 
   6701 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
   6702 /// Class<pr1, ...>.
   6703 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
   6704                                                       QualType rhs) {
   6705   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
   6706   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   6707   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
   6708 
   6709   for (auto *lhsProto : lhsQID->quals()) {
   6710     bool match = false;
   6711     for (auto *rhsProto : rhsOPT->quals()) {
   6712       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
   6713         match = true;
   6714         break;
   6715       }
   6716     }
   6717     if (!match)
   6718       return false;
   6719   }
   6720   return true;
   6721 }
   6722 
   6723 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
   6724 /// ObjCQualifiedIDType.
   6725 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
   6726                                                    bool compare) {
   6727   // Allow id<P..> and an 'id' or void* type in all cases.
   6728   if (lhs->isVoidPointerType() ||
   6729       lhs->isObjCIdType() || lhs->isObjCClassType())
   6730     return true;
   6731   else if (rhs->isVoidPointerType() ||
   6732            rhs->isObjCIdType() || rhs->isObjCClassType())
   6733     return true;
   6734 
   6735   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
   6736     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   6737 
   6738     if (!rhsOPT) return false;
   6739 
   6740     if (rhsOPT->qual_empty()) {
   6741       // If the RHS is a unqualified interface pointer "NSString*",
   6742       // make sure we check the class hierarchy.
   6743       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   6744         for (auto *I : lhsQID->quals()) {
   6745           // when comparing an id<P> on lhs with a static type on rhs,
   6746           // see if static class implements all of id's protocols, directly or
   6747           // through its super class and categories.
   6748           if (!rhsID->ClassImplementsProtocol(I, true))
   6749             return false;
   6750         }
   6751       }
   6752       // If there are no qualifiers and no interface, we have an 'id'.
   6753       return true;
   6754     }
   6755     // Both the right and left sides have qualifiers.
   6756     for (auto *lhsProto : lhsQID->quals()) {
   6757       bool match = false;
   6758 
   6759       // when comparing an id<P> on lhs with a static type on rhs,
   6760       // see if static class implements all of id's protocols, directly or
   6761       // through its super class and categories.
   6762       for (auto *rhsProto : rhsOPT->quals()) {
   6763         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6764             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6765           match = true;
   6766           break;
   6767         }
   6768       }
   6769       // If the RHS is a qualified interface pointer "NSString<P>*",
   6770       // make sure we check the class hierarchy.
   6771       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   6772         for (auto *I : lhsQID->quals()) {
   6773           // when comparing an id<P> on lhs with a static type on rhs,
   6774           // see if static class implements all of id's protocols, directly or
   6775           // through its super class and categories.
   6776           if (rhsID->ClassImplementsProtocol(I, true)) {
   6777             match = true;
   6778             break;
   6779           }
   6780         }
   6781       }
   6782       if (!match)
   6783         return false;
   6784     }
   6785 
   6786     return true;
   6787   }
   6788 
   6789   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
   6790   assert(rhsQID && "One of the LHS/RHS should be id<x>");
   6791 
   6792   if (const ObjCObjectPointerType *lhsOPT =
   6793         lhs->getAsObjCInterfacePointerType()) {
   6794     // If both the right and left sides have qualifiers.
   6795     for (auto *lhsProto : lhsOPT->quals()) {
   6796       bool match = false;
   6797 
   6798       // when comparing an id<P> on rhs with a static type on lhs,
   6799       // see if static class implements all of id's protocols, directly or
   6800       // through its super class and categories.
   6801       // First, lhs protocols in the qualifier list must be found, direct
   6802       // or indirect in rhs's qualifier list or it is a mismatch.
   6803       for (auto *rhsProto : rhsQID->quals()) {
   6804         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6805             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6806           match = true;
   6807           break;
   6808         }
   6809       }
   6810       if (!match)
   6811         return false;
   6812     }
   6813 
   6814     // Static class's protocols, or its super class or category protocols
   6815     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
   6816     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
   6817       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
   6818       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
   6819       // This is rather dubious but matches gcc's behavior. If lhs has
   6820       // no type qualifier and its class has no static protocol(s)
   6821       // assume that it is mismatch.
   6822       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
   6823         return false;
   6824       for (auto *lhsProto : LHSInheritedProtocols) {
   6825         bool match = false;
   6826         for (auto *rhsProto : rhsQID->quals()) {
   6827           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6828               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6829             match = true;
   6830             break;
   6831           }
   6832         }
   6833         if (!match)
   6834           return false;
   6835       }
   6836     }
   6837     return true;
   6838   }
   6839   return false;
   6840 }
   6841 
   6842 /// canAssignObjCInterfaces - Return true if the two interface types are
   6843 /// compatible for assignment from RHS to LHS.  This handles validation of any
   6844 /// protocol qualifiers on the LHS or RHS.
   6845 ///
   6846 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
   6847                                          const ObjCObjectPointerType *RHSOPT) {
   6848   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   6849   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   6850 
   6851   // If either type represents the built-in 'id' or 'Class' types, return true.
   6852   if (LHS->isObjCUnqualifiedIdOrClass() ||
   6853       RHS->isObjCUnqualifiedIdOrClass())
   6854     return true;
   6855 
   6856   // Function object that propagates a successful result or handles
   6857   // __kindof types.
   6858   auto finish = [&](bool succeeded) -> bool {
   6859     if (succeeded)
   6860       return true;
   6861 
   6862     if (!RHS->isKindOfType())
   6863       return false;
   6864 
   6865     // Strip off __kindof and protocol qualifiers, then check whether
   6866     // we can assign the other way.
   6867     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
   6868                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
   6869   };
   6870 
   6871   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
   6872     return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   6873                                                     QualType(RHSOPT,0),
   6874                                                     false));
   6875   }
   6876 
   6877   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
   6878     return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
   6879                                                        QualType(RHSOPT,0)));
   6880   }
   6881 
   6882   // If we have 2 user-defined types, fall into that path.
   6883   if (LHS->getInterface() && RHS->getInterface()) {
   6884     return finish(canAssignObjCInterfaces(LHS, RHS));
   6885   }
   6886 
   6887   return false;
   6888 }
   6889 
   6890 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
   6891 /// for providing type-safety for objective-c pointers used to pass/return
   6892 /// arguments in block literals. When passed as arguments, passing 'A*' where
   6893 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
   6894 /// not OK. For the return type, the opposite is not OK.
   6895 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
   6896                                          const ObjCObjectPointerType *LHSOPT,
   6897                                          const ObjCObjectPointerType *RHSOPT,
   6898                                          bool BlockReturnType) {
   6899 
   6900   // Function object that propagates a successful result or handles
   6901   // __kindof types.
   6902   auto finish = [&](bool succeeded) -> bool {
   6903     if (succeeded)
   6904       return true;
   6905 
   6906     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
   6907     if (!Expected->isKindOfType())
   6908       return false;
   6909 
   6910     // Strip off __kindof and protocol qualifiers, then check whether
   6911     // we can assign the other way.
   6912     return canAssignObjCInterfacesInBlockPointer(
   6913              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
   6914              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
   6915              BlockReturnType);
   6916   };
   6917 
   6918   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
   6919     return true;
   6920 
   6921   if (LHSOPT->isObjCBuiltinType()) {
   6922     return finish(RHSOPT->isObjCBuiltinType() ||
   6923                   RHSOPT->isObjCQualifiedIdType());
   6924   }
   6925 
   6926   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
   6927     return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   6928                                                     QualType(RHSOPT,0),
   6929                                                     false));
   6930 
   6931   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
   6932   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
   6933   if (LHS && RHS)  { // We have 2 user-defined types.
   6934     if (LHS != RHS) {
   6935       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
   6936         return finish(BlockReturnType);
   6937       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
   6938         return finish(!BlockReturnType);
   6939     }
   6940     else
   6941       return true;
   6942   }
   6943   return false;
   6944 }
   6945 
   6946 /// Comparison routine for Objective-C protocols to be used with
   6947 /// llvm::array_pod_sort.
   6948 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
   6949                                       ObjCProtocolDecl * const *rhs) {
   6950   return (*lhs)->getName().compare((*rhs)->getName());
   6951 
   6952 }
   6953 
   6954 /// getIntersectionOfProtocols - This routine finds the intersection of set
   6955 /// of protocols inherited from two distinct objective-c pointer objects with
   6956 /// the given common base.
   6957 /// It is used to build composite qualifier list of the composite type of
   6958 /// the conditional expression involving two objective-c pointer objects.
   6959 static
   6960 void getIntersectionOfProtocols(ASTContext &Context,
   6961                                 const ObjCInterfaceDecl *CommonBase,
   6962                                 const ObjCObjectPointerType *LHSOPT,
   6963                                 const ObjCObjectPointerType *RHSOPT,
   6964       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
   6965 
   6966   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   6967   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   6968   assert(LHS->getInterface() && "LHS must have an interface base");
   6969   assert(RHS->getInterface() && "RHS must have an interface base");
   6970 
   6971   // Add all of the protocols for the LHS.
   6972   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
   6973 
   6974   // Start with the protocol qualifiers.
   6975   for (auto proto : LHS->quals()) {
   6976     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
   6977   }
   6978 
   6979   // Also add the protocols associated with the LHS interface.
   6980   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
   6981 
   6982   // Add all of the protocls for the RHS.
   6983   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
   6984 
   6985   // Start with the protocol qualifiers.
   6986   for (auto proto : RHS->quals()) {
   6987     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
   6988   }
   6989 
   6990   // Also add the protocols associated with the RHS interface.
   6991   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
   6992 
   6993   // Compute the intersection of the collected protocol sets.
   6994   for (auto proto : LHSProtocolSet) {
   6995     if (RHSProtocolSet.count(proto))
   6996       IntersectionSet.push_back(proto);
   6997   }
   6998 
   6999   // Compute the set of protocols that is implied by either the common type or
   7000   // the protocols within the intersection.
   7001   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
   7002   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
   7003 
   7004   // Remove any implied protocols from the list of inherited protocols.
   7005   if (!ImpliedProtocols.empty()) {
   7006     IntersectionSet.erase(
   7007       std::remove_if(IntersectionSet.begin(),
   7008                      IntersectionSet.end(),
   7009                      [&](ObjCProtocolDecl *proto) -> bool {
   7010                        return ImpliedProtocols.count(proto) > 0;
   7011                      }),
   7012       IntersectionSet.end());
   7013   }
   7014 
   7015   // Sort the remaining protocols by name.
   7016   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
   7017                        compareObjCProtocolsByName);
   7018 }
   7019 
   7020 /// Determine whether the first type is a subtype of the second.
   7021 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
   7022                                      QualType rhs) {
   7023   // Common case: two object pointers.
   7024   const ObjCObjectPointerType *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
   7025   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   7026   if (lhsOPT && rhsOPT)
   7027     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
   7028 
   7029   // Two block pointers.
   7030   const BlockPointerType *lhsBlock = lhs->getAs<BlockPointerType>();
   7031   const BlockPointerType *rhsBlock = rhs->getAs<BlockPointerType>();
   7032   if (lhsBlock && rhsBlock)
   7033     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
   7034 
   7035   // If either is an unqualified 'id' and the other is a block, it's
   7036   // acceptable.
   7037   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
   7038       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
   7039     return true;
   7040 
   7041   return false;
   7042 }
   7043 
   7044 // Check that the given Objective-C type argument lists are equivalent.
   7045 static bool sameObjCTypeArgs(ASTContext &ctx,
   7046                              const ObjCInterfaceDecl *iface,
   7047                              ArrayRef<QualType> lhsArgs,
   7048                              ArrayRef<QualType> rhsArgs,
   7049                              bool stripKindOf) {
   7050   if (lhsArgs.size() != rhsArgs.size())
   7051     return false;
   7052 
   7053   ObjCTypeParamList *typeParams = iface->getTypeParamList();
   7054   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
   7055     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
   7056       continue;
   7057 
   7058     switch (typeParams->begin()[i]->getVariance()) {
   7059     case ObjCTypeParamVariance::Invariant:
   7060       if (!stripKindOf ||
   7061           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
   7062                            rhsArgs[i].stripObjCKindOfType(ctx))) {
   7063         return false;
   7064       }
   7065       break;
   7066 
   7067     case ObjCTypeParamVariance::Covariant:
   7068       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
   7069         return false;
   7070       break;
   7071 
   7072     case ObjCTypeParamVariance::Contravariant:
   7073       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
   7074         return false;
   7075       break;
   7076     }
   7077   }
   7078 
   7079   return true;
   7080 }
   7081 
   7082 QualType ASTContext::areCommonBaseCompatible(
   7083            const ObjCObjectPointerType *Lptr,
   7084            const ObjCObjectPointerType *Rptr) {
   7085   const ObjCObjectType *LHS = Lptr->getObjectType();
   7086   const ObjCObjectType *RHS = Rptr->getObjectType();
   7087   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
   7088   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
   7089 
   7090   if (!LDecl || !RDecl)
   7091     return QualType();
   7092 
   7093   // Follow the left-hand side up the class hierarchy until we either hit a
   7094   // root or find the RHS. Record the ancestors in case we don't find it.
   7095   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
   7096     LHSAncestors;
   7097   while (true) {
   7098     // Record this ancestor. We'll need this if the common type isn't in the
   7099     // path from the LHS to the root.
   7100     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
   7101 
   7102     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
   7103       // Get the type arguments.
   7104       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
   7105       bool anyChanges = false;
   7106       if (LHS->isSpecialized() && RHS->isSpecialized()) {
   7107         // Both have type arguments, compare them.
   7108         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
   7109                               LHS->getTypeArgs(), RHS->getTypeArgs(),
   7110                               /*stripKindOf=*/true))
   7111           return QualType();
   7112       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
   7113         // If only one has type arguments, the result will not have type
   7114         // arguments.
   7115         LHSTypeArgs = { };
   7116         anyChanges = true;
   7117       }
   7118 
   7119       // Compute the intersection of protocols.
   7120       SmallVector<ObjCProtocolDecl *, 8> Protocols;
   7121       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
   7122                                  Protocols);
   7123       if (!Protocols.empty())
   7124         anyChanges = true;
   7125 
   7126       // If anything in the LHS will have changed, build a new result type.
   7127       if (anyChanges) {
   7128         QualType Result = getObjCInterfaceType(LHS->getInterface());
   7129         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
   7130                                    LHS->isKindOfType());
   7131         return getObjCObjectPointerType(Result);
   7132       }
   7133 
   7134       return getObjCObjectPointerType(QualType(LHS, 0));
   7135     }
   7136 
   7137     // Find the superclass.
   7138     QualType LHSSuperType = LHS->getSuperClassType();
   7139     if (LHSSuperType.isNull())
   7140       break;
   7141 
   7142     LHS = LHSSuperType->castAs<ObjCObjectType>();
   7143   }
   7144 
   7145   // We didn't find anything by following the LHS to its root; now check
   7146   // the RHS against the cached set of ancestors.
   7147   while (true) {
   7148     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
   7149     if (KnownLHS != LHSAncestors.end()) {
   7150       LHS = KnownLHS->second;
   7151 
   7152       // Get the type arguments.
   7153       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
   7154       bool anyChanges = false;
   7155       if (LHS->isSpecialized() && RHS->isSpecialized()) {
   7156         // Both have type arguments, compare them.
   7157         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
   7158                               LHS->getTypeArgs(), RHS->getTypeArgs(),
   7159                               /*stripKindOf=*/true))
   7160           return QualType();
   7161       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
   7162         // If only one has type arguments, the result will not have type
   7163         // arguments.
   7164         RHSTypeArgs = { };
   7165         anyChanges = true;
   7166       }
   7167 
   7168       // Compute the intersection of protocols.
   7169       SmallVector<ObjCProtocolDecl *, 8> Protocols;
   7170       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
   7171                                  Protocols);
   7172       if (!Protocols.empty())
   7173         anyChanges = true;
   7174 
   7175       if (anyChanges) {
   7176         QualType Result = getObjCInterfaceType(RHS->getInterface());
   7177         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
   7178                                    RHS->isKindOfType());
   7179         return getObjCObjectPointerType(Result);
   7180       }
   7181 
   7182       return getObjCObjectPointerType(QualType(RHS, 0));
   7183     }
   7184 
   7185     // Find the superclass of the RHS.
   7186     QualType RHSSuperType = RHS->getSuperClassType();
   7187     if (RHSSuperType.isNull())
   7188       break;
   7189 
   7190     RHS = RHSSuperType->castAs<ObjCObjectType>();
   7191   }
   7192 
   7193   return QualType();
   7194 }
   7195 
   7196 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
   7197                                          const ObjCObjectType *RHS) {
   7198   assert(LHS->getInterface() && "LHS is not an interface type");
   7199   assert(RHS->getInterface() && "RHS is not an interface type");
   7200 
   7201   // Verify that the base decls are compatible: the RHS must be a subclass of
   7202   // the LHS.
   7203   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
   7204   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
   7205   if (!IsSuperClass)
   7206     return false;
   7207 
   7208   // If the LHS has protocol qualifiers, determine whether all of them are
   7209   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
   7210   // LHS).
   7211   if (LHS->getNumProtocols() > 0) {
   7212     // OK if conversion of LHS to SuperClass results in narrowing of types
   7213     // ; i.e., SuperClass may implement at least one of the protocols
   7214     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
   7215     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
   7216     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
   7217     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
   7218     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
   7219     // qualifiers.
   7220     for (auto *RHSPI : RHS->quals())
   7221       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
   7222     // If there is no protocols associated with RHS, it is not a match.
   7223     if (SuperClassInheritedProtocols.empty())
   7224       return false;
   7225 
   7226     for (const auto *LHSProto : LHS->quals()) {
   7227       bool SuperImplementsProtocol = false;
   7228       for (auto *SuperClassProto : SuperClassInheritedProtocols)
   7229         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
   7230           SuperImplementsProtocol = true;
   7231           break;
   7232         }
   7233       if (!SuperImplementsProtocol)
   7234         return false;
   7235     }
   7236   }
   7237 
   7238   // If the LHS is specialized, we may need to check type arguments.
   7239   if (LHS->isSpecialized()) {
   7240     // Follow the superclass chain until we've matched the LHS class in the
   7241     // hierarchy. This substitutes type arguments through.
   7242     const ObjCObjectType *RHSSuper = RHS;
   7243     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
   7244       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
   7245 
   7246     // If the RHS is specializd, compare type arguments.
   7247     if (RHSSuper->isSpecialized() &&
   7248         !sameObjCTypeArgs(*this, LHS->getInterface(),
   7249                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
   7250                           /*stripKindOf=*/true)) {
   7251       return false;
   7252     }
   7253   }
   7254 
   7255   return true;
   7256 }
   7257 
   7258 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
   7259   // get the "pointed to" types
   7260   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
   7261   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
   7262 
   7263   if (!LHSOPT || !RHSOPT)
   7264     return false;
   7265 
   7266   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
   7267          canAssignObjCInterfaces(RHSOPT, LHSOPT);
   7268 }
   7269 
   7270 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
   7271   return canAssignObjCInterfaces(
   7272                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
   7273                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
   7274 }
   7275 
   7276 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
   7277 /// both shall have the identically qualified version of a compatible type.
   7278 /// C99 6.2.7p1: Two types have compatible types if their types are the
   7279 /// same. See 6.7.[2,3,5] for additional rules.
   7280 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
   7281                                     bool CompareUnqualified) {
   7282   if (getLangOpts().CPlusPlus)
   7283     return hasSameType(LHS, RHS);
   7284 
   7285   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
   7286 }
   7287 
   7288 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
   7289   return typesAreCompatible(LHS, RHS);
   7290 }
   7291 
   7292 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
   7293   return !mergeTypes(LHS, RHS, true).isNull();
   7294 }
   7295 
   7296 /// mergeTransparentUnionType - if T is a transparent union type and a member
   7297 /// of T is compatible with SubType, return the merged type, else return
   7298 /// QualType()
   7299 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
   7300                                                bool OfBlockPointer,
   7301                                                bool Unqualified) {
   7302   if (const RecordType *UT = T->getAsUnionType()) {
   7303     RecordDecl *UD = UT->getDecl();
   7304     if (UD->hasAttr<TransparentUnionAttr>()) {
   7305       for (const auto *I : UD->fields()) {
   7306         QualType ET = I->getType().getUnqualifiedType();
   7307         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
   7308         if (!MT.isNull())
   7309           return MT;
   7310       }
   7311     }
   7312   }
   7313 
   7314   return QualType();
   7315 }
   7316 
   7317 /// mergeFunctionParameterTypes - merge two types which appear as function
   7318 /// parameter types
   7319 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
   7320                                                  bool OfBlockPointer,
   7321                                                  bool Unqualified) {
   7322   // GNU extension: two types are compatible if they appear as a function
   7323   // argument, one of the types is a transparent union type and the other
   7324   // type is compatible with a union member
   7325   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
   7326                                               Unqualified);
   7327   if (!lmerge.isNull())
   7328     return lmerge;
   7329 
   7330   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
   7331                                               Unqualified);
   7332   if (!rmerge.isNull())
   7333     return rmerge;
   7334 
   7335   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
   7336 }
   7337 
   7338 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
   7339                                         bool OfBlockPointer,
   7340                                         bool Unqualified) {
   7341   const FunctionType *lbase = lhs->getAs<FunctionType>();
   7342   const FunctionType *rbase = rhs->getAs<FunctionType>();
   7343   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
   7344   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
   7345   bool allLTypes = true;
   7346   bool allRTypes = true;
   7347 
   7348   // Check return type
   7349   QualType retType;
   7350   if (OfBlockPointer) {
   7351     QualType RHS = rbase->getReturnType();
   7352     QualType LHS = lbase->getReturnType();
   7353     bool UnqualifiedResult = Unqualified;
   7354     if (!UnqualifiedResult)
   7355       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
   7356     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
   7357   }
   7358   else
   7359     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
   7360                          Unqualified);
   7361   if (retType.isNull()) return QualType();
   7362 
   7363   if (Unqualified)
   7364     retType = retType.getUnqualifiedType();
   7365 
   7366   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
   7367   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
   7368   if (Unqualified) {
   7369     LRetType = LRetType.getUnqualifiedType();
   7370     RRetType = RRetType.getUnqualifiedType();
   7371   }
   7372 
   7373   if (getCanonicalType(retType) != LRetType)
   7374     allLTypes = false;
   7375   if (getCanonicalType(retType) != RRetType)
   7376     allRTypes = false;
   7377 
   7378   // FIXME: double check this
   7379   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
   7380   //                           rbase->getRegParmAttr() != 0 &&
   7381   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
   7382   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
   7383   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
   7384 
   7385   // Compatible functions must have compatible calling conventions
   7386   if (lbaseInfo.getCC() != rbaseInfo.getCC())
   7387     return QualType();
   7388 
   7389   // Regparm is part of the calling convention.
   7390   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
   7391     return QualType();
   7392   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
   7393     return QualType();
   7394 
   7395   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
   7396     return QualType();
   7397 
   7398   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
   7399   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
   7400 
   7401   if (lbaseInfo.getNoReturn() != NoReturn)
   7402     allLTypes = false;
   7403   if (rbaseInfo.getNoReturn() != NoReturn)
   7404     allRTypes = false;
   7405 
   7406   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
   7407 
   7408   if (lproto && rproto) { // two C99 style function prototypes
   7409     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
   7410            "C++ shouldn't be here");
   7411     // Compatible functions must have the same number of parameters
   7412     if (lproto->getNumParams() != rproto->getNumParams())
   7413       return QualType();
   7414 
   7415     // Variadic and non-variadic functions aren't compatible
   7416     if (lproto->isVariadic() != rproto->isVariadic())
   7417       return QualType();
   7418 
   7419     if (lproto->getTypeQuals() != rproto->getTypeQuals())
   7420       return QualType();
   7421 
   7422     if (LangOpts.ObjCAutoRefCount &&
   7423         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
   7424       return QualType();
   7425 
   7426     // Check parameter type compatibility
   7427     SmallVector<QualType, 10> types;
   7428     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
   7429       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
   7430       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
   7431       QualType paramType = mergeFunctionParameterTypes(
   7432           lParamType, rParamType, OfBlockPointer, Unqualified);
   7433       if (paramType.isNull())
   7434         return QualType();
   7435 
   7436       if (Unqualified)
   7437         paramType = paramType.getUnqualifiedType();
   7438 
   7439       types.push_back(paramType);
   7440       if (Unqualified) {
   7441         lParamType = lParamType.getUnqualifiedType();
   7442         rParamType = rParamType.getUnqualifiedType();
   7443       }
   7444 
   7445       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
   7446         allLTypes = false;
   7447       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
   7448         allRTypes = false;
   7449     }
   7450 
   7451     if (allLTypes) return lhs;
   7452     if (allRTypes) return rhs;
   7453 
   7454     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
   7455     EPI.ExtInfo = einfo;
   7456     return getFunctionType(retType, types, EPI);
   7457   }
   7458 
   7459   if (lproto) allRTypes = false;
   7460   if (rproto) allLTypes = false;
   7461 
   7462   const FunctionProtoType *proto = lproto ? lproto : rproto;
   7463   if (proto) {
   7464     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
   7465     if (proto->isVariadic()) return QualType();
   7466     // Check that the types are compatible with the types that
   7467     // would result from default argument promotions (C99 6.7.5.3p15).
   7468     // The only types actually affected are promotable integer
   7469     // types and floats, which would be passed as a different
   7470     // type depending on whether the prototype is visible.
   7471     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
   7472       QualType paramTy = proto->getParamType(i);
   7473 
   7474       // Look at the converted type of enum types, since that is the type used
   7475       // to pass enum values.
   7476       if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
   7477         paramTy = Enum->getDecl()->getIntegerType();
   7478         if (paramTy.isNull())
   7479           return QualType();
   7480       }
   7481 
   7482       if (paramTy->isPromotableIntegerType() ||
   7483           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
   7484         return QualType();
   7485     }
   7486 
   7487     if (allLTypes) return lhs;
   7488     if (allRTypes) return rhs;
   7489 
   7490     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
   7491     EPI.ExtInfo = einfo;
   7492     return getFunctionType(retType, proto->getParamTypes(), EPI);
   7493   }
   7494 
   7495   if (allLTypes) return lhs;
   7496   if (allRTypes) return rhs;
   7497   return getFunctionNoProtoType(retType, einfo);
   7498 }
   7499 
   7500 /// Given that we have an enum type and a non-enum type, try to merge them.
   7501 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
   7502                                      QualType other, bool isBlockReturnType) {
   7503   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
   7504   // a signed integer type, or an unsigned integer type.
   7505   // Compatibility is based on the underlying type, not the promotion
   7506   // type.
   7507   QualType underlyingType = ET->getDecl()->getIntegerType();
   7508   if (underlyingType.isNull()) return QualType();
   7509   if (Context.hasSameType(underlyingType, other))
   7510     return other;
   7511 
   7512   // In block return types, we're more permissive and accept any
   7513   // integral type of the same size.
   7514   if (isBlockReturnType && other->isIntegerType() &&
   7515       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
   7516     return other;
   7517 
   7518   return QualType();
   7519 }
   7520 
   7521 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
   7522                                 bool OfBlockPointer,
   7523                                 bool Unqualified, bool BlockReturnType) {
   7524   // C++ [expr]: If an expression initially has the type "reference to T", the
   7525   // type is adjusted to "T" prior to any further analysis, the expression
   7526   // designates the object or function denoted by the reference, and the
   7527   // expression is an lvalue unless the reference is an rvalue reference and
   7528   // the expression is a function call (possibly inside parentheses).
   7529   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
   7530   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
   7531 
   7532   if (Unqualified) {
   7533     LHS = LHS.getUnqualifiedType();
   7534     RHS = RHS.getUnqualifiedType();
   7535   }
   7536 
   7537   QualType LHSCan = getCanonicalType(LHS),
   7538            RHSCan = getCanonicalType(RHS);
   7539 
   7540   // If two types are identical, they are compatible.
   7541   if (LHSCan == RHSCan)
   7542     return LHS;
   7543 
   7544   // If the qualifiers are different, the types aren't compatible... mostly.
   7545   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   7546   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   7547   if (LQuals != RQuals) {
   7548     // If any of these qualifiers are different, we have a type
   7549     // mismatch.
   7550     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   7551         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
   7552         LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
   7553       return QualType();
   7554 
   7555     // Exactly one GC qualifier difference is allowed: __strong is
   7556     // okay if the other type has no GC qualifier but is an Objective
   7557     // C object pointer (i.e. implicitly strong by default).  We fix
   7558     // this by pretending that the unqualified type was actually
   7559     // qualified __strong.
   7560     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   7561     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   7562     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   7563 
   7564     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   7565       return QualType();
   7566 
   7567     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
   7568       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
   7569     }
   7570     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
   7571       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
   7572     }
   7573     return QualType();
   7574   }
   7575 
   7576   // Okay, qualifiers are equal.
   7577 
   7578   Type::TypeClass LHSClass = LHSCan->getTypeClass();
   7579   Type::TypeClass RHSClass = RHSCan->getTypeClass();
   7580 
   7581   // We want to consider the two function types to be the same for these
   7582   // comparisons, just force one to the other.
   7583   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
   7584   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
   7585 
   7586   // Same as above for arrays
   7587   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
   7588     LHSClass = Type::ConstantArray;
   7589   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
   7590     RHSClass = Type::ConstantArray;
   7591 
   7592   // ObjCInterfaces are just specialized ObjCObjects.
   7593   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
   7594   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
   7595 
   7596   // Canonicalize ExtVector -> Vector.
   7597   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
   7598   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
   7599 
   7600   // If the canonical type classes don't match.
   7601   if (LHSClass != RHSClass) {
   7602     // Note that we only have special rules for turning block enum
   7603     // returns into block int returns, not vice-versa.
   7604     if (const EnumType* ETy = LHS->getAs<EnumType>()) {
   7605       return mergeEnumWithInteger(*this, ETy, RHS, false);
   7606     }
   7607     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
   7608       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
   7609     }
   7610     // allow block pointer type to match an 'id' type.
   7611     if (OfBlockPointer && !BlockReturnType) {
   7612        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
   7613          return LHS;
   7614       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
   7615         return RHS;
   7616     }
   7617 
   7618     return QualType();
   7619   }
   7620 
   7621   // The canonical type classes match.
   7622   switch (LHSClass) {
   7623 #define TYPE(Class, Base)
   7624 #define ABSTRACT_TYPE(Class, Base)
   7625 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   7626 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   7627 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   7628 #include "clang/AST/TypeNodes.def"
   7629     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
   7630 
   7631   case Type::Auto:
   7632   case Type::LValueReference:
   7633   case Type::RValueReference:
   7634   case Type::MemberPointer:
   7635     llvm_unreachable("C++ should never be in mergeTypes");
   7636 
   7637   case Type::ObjCInterface:
   7638   case Type::IncompleteArray:
   7639   case Type::VariableArray:
   7640   case Type::FunctionProto:
   7641   case Type::ExtVector:
   7642     llvm_unreachable("Types are eliminated above");
   7643 
   7644   case Type::Pointer:
   7645   {
   7646     // Merge two pointer types, while trying to preserve typedef info
   7647     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
   7648     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
   7649     if (Unqualified) {
   7650       LHSPointee = LHSPointee.getUnqualifiedType();
   7651       RHSPointee = RHSPointee.getUnqualifiedType();
   7652     }
   7653     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
   7654                                      Unqualified);
   7655     if (ResultType.isNull()) return QualType();
   7656     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   7657       return LHS;
   7658     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   7659       return RHS;
   7660     return getPointerType(ResultType);
   7661   }
   7662   case Type::BlockPointer:
   7663   {
   7664     // Merge two block pointer types, while trying to preserve typedef info
   7665     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
   7666     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
   7667     if (Unqualified) {
   7668       LHSPointee = LHSPointee.getUnqualifiedType();
   7669       RHSPointee = RHSPointee.getUnqualifiedType();
   7670     }
   7671     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
   7672                                      Unqualified);
   7673     if (ResultType.isNull()) return QualType();
   7674     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   7675       return LHS;
   7676     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   7677       return RHS;
   7678     return getBlockPointerType(ResultType);
   7679   }
   7680   case Type::Atomic:
   7681   {
   7682     // Merge two pointer types, while trying to preserve typedef info
   7683     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
   7684     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
   7685     if (Unqualified) {
   7686       LHSValue = LHSValue.getUnqualifiedType();
   7687       RHSValue = RHSValue.getUnqualifiedType();
   7688     }
   7689     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
   7690                                      Unqualified);
   7691     if (ResultType.isNull()) return QualType();
   7692     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
   7693       return LHS;
   7694     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
   7695       return RHS;
   7696     return getAtomicType(ResultType);
   7697   }
   7698   case Type::ConstantArray:
   7699   {
   7700     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
   7701     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
   7702     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
   7703       return QualType();
   7704 
   7705     QualType LHSElem = getAsArrayType(LHS)->getElementType();
   7706     QualType RHSElem = getAsArrayType(RHS)->getElementType();
   7707     if (Unqualified) {
   7708       LHSElem = LHSElem.getUnqualifiedType();
   7709       RHSElem = RHSElem.getUnqualifiedType();
   7710     }
   7711 
   7712     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
   7713     if (ResultType.isNull()) return QualType();
   7714     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   7715       return LHS;
   7716     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   7717       return RHS;
   7718     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
   7719                                           ArrayType::ArraySizeModifier(), 0);
   7720     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
   7721                                           ArrayType::ArraySizeModifier(), 0);
   7722     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
   7723     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
   7724     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   7725       return LHS;
   7726     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   7727       return RHS;
   7728     if (LVAT) {
   7729       // FIXME: This isn't correct! But tricky to implement because
   7730       // the array's size has to be the size of LHS, but the type
   7731       // has to be different.
   7732       return LHS;
   7733     }
   7734     if (RVAT) {
   7735       // FIXME: This isn't correct! But tricky to implement because
   7736       // the array's size has to be the size of RHS, but the type
   7737       // has to be different.
   7738       return RHS;
   7739     }
   7740     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
   7741     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
   7742     return getIncompleteArrayType(ResultType,
   7743                                   ArrayType::ArraySizeModifier(), 0);
   7744   }
   7745   case Type::FunctionNoProto:
   7746     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
   7747   case Type::Record:
   7748   case Type::Enum:
   7749     return QualType();
   7750   case Type::Builtin:
   7751     // Only exactly equal builtin types are compatible, which is tested above.
   7752     return QualType();
   7753   case Type::Complex:
   7754     // Distinct complex types are incompatible.
   7755     return QualType();
   7756   case Type::Vector:
   7757     // FIXME: The merged type should be an ExtVector!
   7758     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
   7759                              RHSCan->getAs<VectorType>()))
   7760       return LHS;
   7761     return QualType();
   7762   case Type::ObjCObject: {
   7763     // Check if the types are assignment compatible.
   7764     // FIXME: This should be type compatibility, e.g. whether
   7765     // "LHS x; RHS x;" at global scope is legal.
   7766     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
   7767     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
   7768     if (canAssignObjCInterfaces(LHSIface, RHSIface))
   7769       return LHS;
   7770 
   7771     return QualType();
   7772   }
   7773   case Type::ObjCObjectPointer: {
   7774     if (OfBlockPointer) {
   7775       if (canAssignObjCInterfacesInBlockPointer(
   7776                                           LHS->getAs<ObjCObjectPointerType>(),
   7777                                           RHS->getAs<ObjCObjectPointerType>(),
   7778                                           BlockReturnType))
   7779         return LHS;
   7780       return QualType();
   7781     }
   7782     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
   7783                                 RHS->getAs<ObjCObjectPointerType>()))
   7784       return LHS;
   7785 
   7786     return QualType();
   7787   }
   7788   }
   7789 
   7790   llvm_unreachable("Invalid Type::Class!");
   7791 }
   7792 
   7793 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
   7794                    const FunctionProtoType *FromFunctionType,
   7795                    const FunctionProtoType *ToFunctionType) {
   7796   if (FromFunctionType->hasAnyConsumedParams() !=
   7797       ToFunctionType->hasAnyConsumedParams())
   7798     return false;
   7799   FunctionProtoType::ExtProtoInfo FromEPI =
   7800     FromFunctionType->getExtProtoInfo();
   7801   FunctionProtoType::ExtProtoInfo ToEPI =
   7802     ToFunctionType->getExtProtoInfo();
   7803   if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
   7804     for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
   7805       if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
   7806         return false;
   7807     }
   7808   return true;
   7809 }
   7810 
   7811 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
   7812 /// 'RHS' attributes and returns the merged version; including for function
   7813 /// return types.
   7814 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
   7815   QualType LHSCan = getCanonicalType(LHS),
   7816   RHSCan = getCanonicalType(RHS);
   7817   // If two types are identical, they are compatible.
   7818   if (LHSCan == RHSCan)
   7819     return LHS;
   7820   if (RHSCan->isFunctionType()) {
   7821     if (!LHSCan->isFunctionType())
   7822       return QualType();
   7823     QualType OldReturnType =
   7824         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
   7825     QualType NewReturnType =
   7826         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
   7827     QualType ResReturnType =
   7828       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
   7829     if (ResReturnType.isNull())
   7830       return QualType();
   7831     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
   7832       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
   7833       // In either case, use OldReturnType to build the new function type.
   7834       const FunctionType *F = LHS->getAs<FunctionType>();
   7835       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
   7836         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   7837         EPI.ExtInfo = getFunctionExtInfo(LHS);
   7838         QualType ResultType =
   7839             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
   7840         return ResultType;
   7841       }
   7842     }
   7843     return QualType();
   7844   }
   7845 
   7846   // If the qualifiers are different, the types can still be merged.
   7847   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   7848   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   7849   if (LQuals != RQuals) {
   7850     // If any of these qualifiers are different, we have a type mismatch.
   7851     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   7852         LQuals.getAddressSpace() != RQuals.getAddressSpace())
   7853       return QualType();
   7854 
   7855     // Exactly one GC qualifier difference is allowed: __strong is
   7856     // okay if the other type has no GC qualifier but is an Objective
   7857     // C object pointer (i.e. implicitly strong by default).  We fix
   7858     // this by pretending that the unqualified type was actually
   7859     // qualified __strong.
   7860     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   7861     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   7862     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   7863 
   7864     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   7865       return QualType();
   7866 
   7867     if (GC_L == Qualifiers::Strong)
   7868       return LHS;
   7869     if (GC_R == Qualifiers::Strong)
   7870       return RHS;
   7871     return QualType();
   7872   }
   7873 
   7874   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
   7875     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   7876     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   7877     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
   7878     if (ResQT == LHSBaseQT)
   7879       return LHS;
   7880     if (ResQT == RHSBaseQT)
   7881       return RHS;
   7882   }
   7883   return QualType();
   7884 }
   7885 
   7886 //===----------------------------------------------------------------------===//
   7887 //                         Integer Predicates
   7888 //===----------------------------------------------------------------------===//
   7889 
   7890 unsigned ASTContext::getIntWidth(QualType T) const {
   7891   if (const EnumType *ET = T->getAs<EnumType>())
   7892     T = ET->getDecl()->getIntegerType();
   7893   if (T->isBooleanType())
   7894     return 1;
   7895   // For builtin types, just use the standard type sizing method
   7896   return (unsigned)getTypeSize(T);
   7897 }
   7898 
   7899 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
   7900   assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
   7901 
   7902   // Turn <4 x signed int> -> <4 x unsigned int>
   7903   if (const VectorType *VTy = T->getAs<VectorType>())
   7904     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
   7905                          VTy->getNumElements(), VTy->getVectorKind());
   7906 
   7907   // For enums, we return the unsigned version of the base type.
   7908   if (const EnumType *ETy = T->getAs<EnumType>())
   7909     T = ETy->getDecl()->getIntegerType();
   7910 
   7911   const BuiltinType *BTy = T->getAs<BuiltinType>();
   7912   assert(BTy && "Unexpected signed integer type");
   7913   switch (BTy->getKind()) {
   7914   case BuiltinType::Char_S:
   7915   case BuiltinType::SChar:
   7916     return UnsignedCharTy;
   7917   case BuiltinType::Short:
   7918     return UnsignedShortTy;
   7919   case BuiltinType::Int:
   7920     return UnsignedIntTy;
   7921   case BuiltinType::Long:
   7922     return UnsignedLongTy;
   7923   case BuiltinType::LongLong:
   7924     return UnsignedLongLongTy;
   7925   case BuiltinType::Int128:
   7926     return UnsignedInt128Ty;
   7927   default:
   7928     llvm_unreachable("Unexpected signed integer type");
   7929   }
   7930 }
   7931 
   7932 ASTMutationListener::~ASTMutationListener() { }
   7933 
   7934 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
   7935                                             QualType ReturnType) {}
   7936 
   7937 //===----------------------------------------------------------------------===//
   7938 //                          Builtin Type Computation
   7939 //===----------------------------------------------------------------------===//
   7940 
   7941 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
   7942 /// pointer over the consumed characters.  This returns the resultant type.  If
   7943 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
   7944 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
   7945 /// a vector of "i*".
   7946 ///
   7947 /// RequiresICE is filled in on return to indicate whether the value is required
   7948 /// to be an Integer Constant Expression.
   7949 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
   7950                                   ASTContext::GetBuiltinTypeError &Error,
   7951                                   bool &RequiresICE,
   7952                                   bool AllowTypeModifiers) {
   7953   // Modifiers.
   7954   int HowLong = 0;
   7955   bool Signed = false, Unsigned = false;
   7956   RequiresICE = false;
   7957 
   7958   // Read the prefixed modifiers first.
   7959   bool Done = false;
   7960   while (!Done) {
   7961     switch (*Str++) {
   7962     default: Done = true; --Str; break;
   7963     case 'I':
   7964       RequiresICE = true;
   7965       break;
   7966     case 'S':
   7967       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
   7968       assert(!Signed && "Can't use 'S' modifier multiple times!");
   7969       Signed = true;
   7970       break;
   7971     case 'U':
   7972       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
   7973       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
   7974       Unsigned = true;
   7975       break;
   7976     case 'L':
   7977       assert(HowLong <= 2 && "Can't have LLLL modifier");
   7978       ++HowLong;
   7979       break;
   7980     case 'W':
   7981       // This modifier represents int64 type.
   7982       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
   7983       switch (Context.getTargetInfo().getInt64Type()) {
   7984       default:
   7985         llvm_unreachable("Unexpected integer type");
   7986       case TargetInfo::SignedLong:
   7987         HowLong = 1;
   7988         break;
   7989       case TargetInfo::SignedLongLong:
   7990         HowLong = 2;
   7991         break;
   7992       }
   7993     }
   7994   }
   7995 
   7996   QualType Type;
   7997 
   7998   // Read the base type.
   7999   switch (*Str++) {
   8000   default: llvm_unreachable("Unknown builtin type letter!");
   8001   case 'v':
   8002     assert(HowLong == 0 && !Signed && !Unsigned &&
   8003            "Bad modifiers used with 'v'!");
   8004     Type = Context.VoidTy;
   8005     break;
   8006   case 'h':
   8007     assert(HowLong == 0 && !Signed && !Unsigned &&
   8008            "Bad modifiers used with 'h'!");
   8009     Type = Context.HalfTy;
   8010     break;
   8011   case 'f':
   8012     assert(HowLong == 0 && !Signed && !Unsigned &&
   8013            "Bad modifiers used with 'f'!");
   8014     Type = Context.FloatTy;
   8015     break;
   8016   case 'd':
   8017     assert(HowLong < 2 && !Signed && !Unsigned &&
   8018            "Bad modifiers used with 'd'!");
   8019     if (HowLong)
   8020       Type = Context.LongDoubleTy;
   8021     else
   8022       Type = Context.DoubleTy;
   8023     break;
   8024   case 's':
   8025     assert(HowLong == 0 && "Bad modifiers used with 's'!");
   8026     if (Unsigned)
   8027       Type = Context.UnsignedShortTy;
   8028     else
   8029       Type = Context.ShortTy;
   8030     break;
   8031   case 'i':
   8032     if (HowLong == 3)
   8033       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
   8034     else if (HowLong == 2)
   8035       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
   8036     else if (HowLong == 1)
   8037       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
   8038     else
   8039       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
   8040     break;
   8041   case 'c':
   8042     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
   8043     if (Signed)
   8044       Type = Context.SignedCharTy;
   8045     else if (Unsigned)
   8046       Type = Context.UnsignedCharTy;
   8047     else
   8048       Type = Context.CharTy;
   8049     break;
   8050   case 'b': // boolean
   8051     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
   8052     Type = Context.BoolTy;
   8053     break;
   8054   case 'z':  // size_t.
   8055     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
   8056     Type = Context.getSizeType();
   8057     break;
   8058   case 'F':
   8059     Type = Context.getCFConstantStringType();
   8060     break;
   8061   case 'G':
   8062     Type = Context.getObjCIdType();
   8063     break;
   8064   case 'H':
   8065     Type = Context.getObjCSelType();
   8066     break;
   8067   case 'M':
   8068     Type = Context.getObjCSuperType();
   8069     break;
   8070   case 'a':
   8071     Type = Context.getBuiltinVaListType();
   8072     assert(!Type.isNull() && "builtin va list type not initialized!");
   8073     break;
   8074   case 'A':
   8075     // This is a "reference" to a va_list; however, what exactly
   8076     // this means depends on how va_list is defined. There are two
   8077     // different kinds of va_list: ones passed by value, and ones
   8078     // passed by reference.  An example of a by-value va_list is
   8079     // x86, where va_list is a char*. An example of by-ref va_list
   8080     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
   8081     // we want this argument to be a char*&; for x86-64, we want
   8082     // it to be a __va_list_tag*.
   8083     Type = Context.getBuiltinVaListType();
   8084     assert(!Type.isNull() && "builtin va list type not initialized!");
   8085     if (Type->isArrayType())
   8086       Type = Context.getArrayDecayedType(Type);
   8087     else
   8088       Type = Context.getLValueReferenceType(Type);
   8089     break;
   8090   case 'V': {
   8091     char *End;
   8092     unsigned NumElements = strtoul(Str, &End, 10);
   8093     assert(End != Str && "Missing vector size");
   8094     Str = End;
   8095 
   8096     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
   8097                                              RequiresICE, false);
   8098     assert(!RequiresICE && "Can't require vector ICE");
   8099 
   8100     // TODO: No way to make AltiVec vectors in builtins yet.
   8101     Type = Context.getVectorType(ElementType, NumElements,
   8102                                  VectorType::GenericVector);
   8103     break;
   8104   }
   8105   case 'E': {
   8106     char *End;
   8107 
   8108     unsigned NumElements = strtoul(Str, &End, 10);
   8109     assert(End != Str && "Missing vector size");
   8110 
   8111     Str = End;
   8112 
   8113     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   8114                                              false);
   8115     Type = Context.getExtVectorType(ElementType, NumElements);
   8116     break;
   8117   }
   8118   case 'X': {
   8119     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   8120                                              false);
   8121     assert(!RequiresICE && "Can't require complex ICE");
   8122     Type = Context.getComplexType(ElementType);
   8123     break;
   8124   }
   8125   case 'Y' : {
   8126     Type = Context.getPointerDiffType();
   8127     break;
   8128   }
   8129   case 'P':
   8130     Type = Context.getFILEType();
   8131     if (Type.isNull()) {
   8132       Error = ASTContext::GE_Missing_stdio;
   8133       return QualType();
   8134     }
   8135     break;
   8136   case 'J':
   8137     if (Signed)
   8138       Type = Context.getsigjmp_bufType();
   8139     else
   8140       Type = Context.getjmp_bufType();
   8141 
   8142     if (Type.isNull()) {
   8143       Error = ASTContext::GE_Missing_setjmp;
   8144       return QualType();
   8145     }
   8146     break;
   8147   case 'K':
   8148     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
   8149     Type = Context.getucontext_tType();
   8150 
   8151     if (Type.isNull()) {
   8152       Error = ASTContext::GE_Missing_ucontext;
   8153       return QualType();
   8154     }
   8155     break;
   8156   case 'p':
   8157     Type = Context.getProcessIDType();
   8158     break;
   8159   }
   8160 
   8161   // If there are modifiers and if we're allowed to parse them, go for it.
   8162   Done = !AllowTypeModifiers;
   8163   while (!Done) {
   8164     switch (char c = *Str++) {
   8165     default: Done = true; --Str; break;
   8166     case '*':
   8167     case '&': {
   8168       // Both pointers and references can have their pointee types
   8169       // qualified with an address space.
   8170       char *End;
   8171       unsigned AddrSpace = strtoul(Str, &End, 10);
   8172       if (End != Str && AddrSpace != 0) {
   8173         Type = Context.getAddrSpaceQualType(Type, AddrSpace);
   8174         Str = End;
   8175       }
   8176       if (c == '*')
   8177         Type = Context.getPointerType(Type);
   8178       else
   8179         Type = Context.getLValueReferenceType(Type);
   8180       break;
   8181     }
   8182     // FIXME: There's no way to have a built-in with an rvalue ref arg.
   8183     case 'C':
   8184       Type = Type.withConst();
   8185       break;
   8186     case 'D':
   8187       Type = Context.getVolatileType(Type);
   8188       break;
   8189     case 'R':
   8190       Type = Type.withRestrict();
   8191       break;
   8192     }
   8193   }
   8194 
   8195   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
   8196          "Integer constant 'I' type must be an integer");
   8197 
   8198   return Type;
   8199 }
   8200 
   8201 /// GetBuiltinType - Return the type for the specified builtin.
   8202 QualType ASTContext::GetBuiltinType(unsigned Id,
   8203                                     GetBuiltinTypeError &Error,
   8204                                     unsigned *IntegerConstantArgs) const {
   8205   const char *TypeStr = BuiltinInfo.getTypeString(Id);
   8206 
   8207   SmallVector<QualType, 8> ArgTypes;
   8208 
   8209   bool RequiresICE = false;
   8210   Error = GE_None;
   8211   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
   8212                                        RequiresICE, true);
   8213   if (Error != GE_None)
   8214     return QualType();
   8215 
   8216   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
   8217 
   8218   while (TypeStr[0] && TypeStr[0] != '.') {
   8219     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
   8220     if (Error != GE_None)
   8221       return QualType();
   8222 
   8223     // If this argument is required to be an IntegerConstantExpression and the
   8224     // caller cares, fill in the bitmask we return.
   8225     if (RequiresICE && IntegerConstantArgs)
   8226       *IntegerConstantArgs |= 1 << ArgTypes.size();
   8227 
   8228     // Do array -> pointer decay.  The builtin should use the decayed type.
   8229     if (Ty->isArrayType())
   8230       Ty = getArrayDecayedType(Ty);
   8231 
   8232     ArgTypes.push_back(Ty);
   8233   }
   8234 
   8235   if (Id == Builtin::BI__GetExceptionInfo)
   8236     return QualType();
   8237 
   8238   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
   8239          "'.' should only occur at end of builtin type list!");
   8240 
   8241   FunctionType::ExtInfo EI(CC_C);
   8242   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
   8243 
   8244   bool Variadic = (TypeStr[0] == '.');
   8245 
   8246   // We really shouldn't be making a no-proto type here, especially in C++.
   8247   if (ArgTypes.empty() && Variadic)
   8248     return getFunctionNoProtoType(ResType, EI);
   8249 
   8250   FunctionProtoType::ExtProtoInfo EPI;
   8251   EPI.ExtInfo = EI;
   8252   EPI.Variadic = Variadic;
   8253 
   8254   return getFunctionType(ResType, ArgTypes, EPI);
   8255 }
   8256 
   8257 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
   8258                                              const FunctionDecl *FD) {
   8259   if (!FD->isExternallyVisible())
   8260     return GVA_Internal;
   8261 
   8262   GVALinkage External = GVA_StrongExternal;
   8263   switch (FD->getTemplateSpecializationKind()) {
   8264   case TSK_Undeclared:
   8265   case TSK_ExplicitSpecialization:
   8266     External = GVA_StrongExternal;
   8267     break;
   8268 
   8269   case TSK_ExplicitInstantiationDefinition:
   8270     return GVA_StrongODR;
   8271 
   8272   // C++11 [temp.explicit]p10:
   8273   //   [ Note: The intent is that an inline function that is the subject of
   8274   //   an explicit instantiation declaration will still be implicitly
   8275   //   instantiated when used so that the body can be considered for
   8276   //   inlining, but that no out-of-line copy of the inline function would be
   8277   //   generated in the translation unit. -- end note ]
   8278   case TSK_ExplicitInstantiationDeclaration:
   8279     return GVA_AvailableExternally;
   8280 
   8281   case TSK_ImplicitInstantiation:
   8282     External = GVA_DiscardableODR;
   8283     break;
   8284   }
   8285 
   8286   if (!FD->isInlined())
   8287     return External;
   8288 
   8289   if ((!Context.getLangOpts().CPlusPlus &&
   8290        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
   8291        !FD->hasAttr<DLLExportAttr>()) ||
   8292       FD->hasAttr<GNUInlineAttr>()) {
   8293     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
   8294 
   8295     // GNU or C99 inline semantics. Determine whether this symbol should be
   8296     // externally visible.
   8297     if (FD->isInlineDefinitionExternallyVisible())
   8298       return External;
   8299 
   8300     // C99 inline semantics, where the symbol is not externally visible.
   8301     return GVA_AvailableExternally;
   8302   }
   8303 
   8304   // Functions specified with extern and inline in -fms-compatibility mode
   8305   // forcibly get emitted.  While the body of the function cannot be later
   8306   // replaced, the function definition cannot be discarded.
   8307   if (FD->isMSExternInline())
   8308     return GVA_StrongODR;
   8309 
   8310   return GVA_DiscardableODR;
   8311 }
   8312 
   8313 static GVALinkage adjustGVALinkageForAttributes(GVALinkage L, const Decl *D) {
   8314   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
   8315   // dllexport/dllimport on inline functions.
   8316   if (D->hasAttr<DLLImportAttr>()) {
   8317     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
   8318       return GVA_AvailableExternally;
   8319   } else if (D->hasAttr<DLLExportAttr>() || D->hasAttr<CUDAGlobalAttr>()) {
   8320     if (L == GVA_DiscardableODR)
   8321       return GVA_StrongODR;
   8322   }
   8323   return L;
   8324 }
   8325 
   8326 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
   8327   return adjustGVALinkageForAttributes(basicGVALinkageForFunction(*this, FD),
   8328                                        FD);
   8329 }
   8330 
   8331 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
   8332                                              const VarDecl *VD) {
   8333   if (!VD->isExternallyVisible())
   8334     return GVA_Internal;
   8335 
   8336   if (VD->isStaticLocal()) {
   8337     GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
   8338     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
   8339     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
   8340       LexicalContext = LexicalContext->getLexicalParent();
   8341 
   8342     // Let the static local variable inherit its linkage from the nearest
   8343     // enclosing function.
   8344     if (LexicalContext)
   8345       StaticLocalLinkage =
   8346           Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
   8347 
   8348     // GVA_StrongODR function linkage is stronger than what we need,
   8349     // downgrade to GVA_DiscardableODR.
   8350     // This allows us to discard the variable if we never end up needing it.
   8351     return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
   8352                                                : StaticLocalLinkage;
   8353   }
   8354 
   8355   // MSVC treats in-class initialized static data members as definitions.
   8356   // By giving them non-strong linkage, out-of-line definitions won't
   8357   // cause link errors.
   8358   if (Context.isMSStaticDataMemberInlineDefinition(VD))
   8359     return GVA_DiscardableODR;
   8360 
   8361   switch (VD->getTemplateSpecializationKind()) {
   8362   case TSK_Undeclared:
   8363     return GVA_StrongExternal;
   8364 
   8365   case TSK_ExplicitSpecialization:
   8366     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
   8367                    VD->isStaticDataMember()
   8368                ? GVA_StrongODR
   8369                : GVA_StrongExternal;
   8370 
   8371   case TSK_ExplicitInstantiationDefinition:
   8372     return GVA_StrongODR;
   8373 
   8374   case TSK_ExplicitInstantiationDeclaration:
   8375     return GVA_AvailableExternally;
   8376 
   8377   case TSK_ImplicitInstantiation:
   8378     return GVA_DiscardableODR;
   8379   }
   8380 
   8381   llvm_unreachable("Invalid Linkage!");
   8382 }
   8383 
   8384 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
   8385   return adjustGVALinkageForAttributes(basicGVALinkageForVariable(*this, VD),
   8386                                        VD);
   8387 }
   8388 
   8389 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
   8390   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   8391     if (!VD->isFileVarDecl())
   8392       return false;
   8393     // Global named register variables (GNU extension) are never emitted.
   8394     if (VD->getStorageClass() == SC_Register)
   8395       return false;
   8396     if (VD->getDescribedVarTemplate() ||
   8397         isa<VarTemplatePartialSpecializationDecl>(VD))
   8398       return false;
   8399   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   8400     // We never need to emit an uninstantiated function template.
   8401     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
   8402       return false;
   8403   } else if (isa<OMPThreadPrivateDecl>(D))
   8404     return true;
   8405   else
   8406     return false;
   8407 
   8408   // If this is a member of a class template, we do not need to emit it.
   8409   if (D->getDeclContext()->isDependentContext())
   8410     return false;
   8411 
   8412   // Weak references don't produce any output by themselves.
   8413   if (D->hasAttr<WeakRefAttr>())
   8414     return false;
   8415 
   8416   // Aliases and used decls are required.
   8417   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
   8418     return true;
   8419 
   8420   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   8421     // Forward declarations aren't required.
   8422     if (!FD->doesThisDeclarationHaveABody())
   8423       return FD->doesDeclarationForceExternallyVisibleDefinition();
   8424 
   8425     // Constructors and destructors are required.
   8426     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
   8427       return true;
   8428 
   8429     // The key function for a class is required.  This rule only comes
   8430     // into play when inline functions can be key functions, though.
   8431     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
   8432       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   8433         const CXXRecordDecl *RD = MD->getParent();
   8434         if (MD->isOutOfLine() && RD->isDynamicClass()) {
   8435           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
   8436           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
   8437             return true;
   8438         }
   8439       }
   8440     }
   8441 
   8442     GVALinkage Linkage = GetGVALinkageForFunction(FD);
   8443 
   8444     // static, static inline, always_inline, and extern inline functions can
   8445     // always be deferred.  Normal inline functions can be deferred in C99/C++.
   8446     // Implicit template instantiations can also be deferred in C++.
   8447     if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
   8448         Linkage == GVA_DiscardableODR)
   8449       return false;
   8450     return true;
   8451   }
   8452 
   8453   const VarDecl *VD = cast<VarDecl>(D);
   8454   assert(VD->isFileVarDecl() && "Expected file scoped var");
   8455 
   8456   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
   8457       !isMSStaticDataMemberInlineDefinition(VD))
   8458     return false;
   8459 
   8460   // Variables that can be needed in other TUs are required.
   8461   GVALinkage L = GetGVALinkageForVariable(VD);
   8462   if (L != GVA_Internal && L != GVA_AvailableExternally &&
   8463       L != GVA_DiscardableODR)
   8464     return true;
   8465 
   8466   // Variables that have destruction with side-effects are required.
   8467   if (VD->getType().isDestructedType())
   8468     return true;
   8469 
   8470   // Variables that have initialization with side-effects are required.
   8471   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
   8472       !VD->evaluateValue())
   8473     return true;
   8474 
   8475   return false;
   8476 }
   8477 
   8478 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
   8479                                                     bool IsCXXMethod) const {
   8480   // Pass through to the C++ ABI object
   8481   if (IsCXXMethod)
   8482     return ABI->getDefaultMethodCallConv(IsVariadic);
   8483 
   8484   if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall;
   8485 
   8486   return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
   8487 }
   8488 
   8489 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
   8490   // Pass through to the C++ ABI object
   8491   return ABI->isNearlyEmpty(RD);
   8492 }
   8493 
   8494 VTableContextBase *ASTContext::getVTableContext() {
   8495   if (!VTContext.get()) {
   8496     if (Target->getCXXABI().isMicrosoft())
   8497       VTContext.reset(new MicrosoftVTableContext(*this));
   8498     else
   8499       VTContext.reset(new ItaniumVTableContext(*this));
   8500   }
   8501   return VTContext.get();
   8502 }
   8503 
   8504 MangleContext *ASTContext::createMangleContext() {
   8505   switch (Target->getCXXABI().getKind()) {
   8506   case TargetCXXABI::GenericAArch64:
   8507   case TargetCXXABI::GenericItanium:
   8508   case TargetCXXABI::GenericARM:
   8509   case TargetCXXABI::GenericMIPS:
   8510   case TargetCXXABI::iOS:
   8511   case TargetCXXABI::iOS64:
   8512   case TargetCXXABI::WebAssembly:
   8513   case TargetCXXABI::WatchOS:
   8514     return ItaniumMangleContext::create(*this, getDiagnostics());
   8515   case TargetCXXABI::Microsoft:
   8516     return MicrosoftMangleContext::create(*this, getDiagnostics());
   8517   }
   8518   llvm_unreachable("Unsupported ABI");
   8519 }
   8520 
   8521 CXXABI::~CXXABI() {}
   8522 
   8523 size_t ASTContext::getSideTableAllocatedMemory() const {
   8524   return ASTRecordLayouts.getMemorySize() +
   8525          llvm::capacity_in_bytes(ObjCLayouts) +
   8526          llvm::capacity_in_bytes(KeyFunctions) +
   8527          llvm::capacity_in_bytes(ObjCImpls) +
   8528          llvm::capacity_in_bytes(BlockVarCopyInits) +
   8529          llvm::capacity_in_bytes(DeclAttrs) +
   8530          llvm::capacity_in_bytes(TemplateOrInstantiation) +
   8531          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
   8532          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
   8533          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
   8534          llvm::capacity_in_bytes(OverriddenMethods) +
   8535          llvm::capacity_in_bytes(Types) +
   8536          llvm::capacity_in_bytes(VariableArrayTypes) +
   8537          llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
   8538 }
   8539 
   8540 /// getIntTypeForBitwidth -
   8541 /// sets integer QualTy according to specified details:
   8542 /// bitwidth, signed/unsigned.
   8543 /// Returns empty type if there is no appropriate target types.
   8544 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
   8545                                            unsigned Signed) const {
   8546   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
   8547   CanQualType QualTy = getFromTargetType(Ty);
   8548   if (!QualTy && DestWidth == 128)
   8549     return Signed ? Int128Ty : UnsignedInt128Ty;
   8550   return QualTy;
   8551 }
   8552 
   8553 /// getRealTypeForBitwidth -
   8554 /// sets floating point QualTy according to specified bitwidth.
   8555 /// Returns empty type if there is no appropriate target types.
   8556 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
   8557   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
   8558   switch (Ty) {
   8559   case TargetInfo::Float:
   8560     return FloatTy;
   8561   case TargetInfo::Double:
   8562     return DoubleTy;
   8563   case TargetInfo::LongDouble:
   8564     return LongDoubleTy;
   8565   case TargetInfo::NoFloat:
   8566     return QualType();
   8567   }
   8568 
   8569   llvm_unreachable("Unhandled TargetInfo::RealType value");
   8570 }
   8571 
   8572 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
   8573   if (Number > 1)
   8574     MangleNumbers[ND] = Number;
   8575 }
   8576 
   8577 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
   8578   llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
   8579     MangleNumbers.find(ND);
   8580   return I != MangleNumbers.end() ? I->second : 1;
   8581 }
   8582 
   8583 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
   8584   if (Number > 1)
   8585     StaticLocalNumbers[VD] = Number;
   8586 }
   8587 
   8588 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
   8589   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
   8590       StaticLocalNumbers.find(VD);
   8591   return I != StaticLocalNumbers.end() ? I->second : 1;
   8592 }
   8593 
   8594 MangleNumberingContext &
   8595 ASTContext::getManglingNumberContext(const DeclContext *DC) {
   8596   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
   8597   MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
   8598   if (!MCtx)
   8599     MCtx = createMangleNumberingContext();
   8600   return *MCtx;
   8601 }
   8602 
   8603 MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
   8604   return ABI->createMangleNumberingContext();
   8605 }
   8606 
   8607 const CXXConstructorDecl *
   8608 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
   8609   return ABI->getCopyConstructorForExceptionObject(
   8610       cast<CXXRecordDecl>(RD->getFirstDecl()));
   8611 }
   8612 
   8613 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
   8614                                                       CXXConstructorDecl *CD) {
   8615   return ABI->addCopyConstructorForExceptionObject(
   8616       cast<CXXRecordDecl>(RD->getFirstDecl()),
   8617       cast<CXXConstructorDecl>(CD->getFirstDecl()));
   8618 }
   8619 
   8620 void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
   8621                                                  unsigned ParmIdx, Expr *DAE) {
   8622   ABI->addDefaultArgExprForConstructor(
   8623       cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE);
   8624 }
   8625 
   8626 Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
   8627                                                   unsigned ParmIdx) {
   8628   return ABI->getDefaultArgExprForConstructor(
   8629       cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx);
   8630 }
   8631 
   8632 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
   8633                                                  TypedefNameDecl *DD) {
   8634   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
   8635 }
   8636 
   8637 TypedefNameDecl *
   8638 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
   8639   return ABI->getTypedefNameForUnnamedTagDecl(TD);
   8640 }
   8641 
   8642 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
   8643                                                 DeclaratorDecl *DD) {
   8644   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
   8645 }
   8646 
   8647 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
   8648   return ABI->getDeclaratorForUnnamedTagDecl(TD);
   8649 }
   8650 
   8651 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
   8652   ParamIndices[D] = index;
   8653 }
   8654 
   8655 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
   8656   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
   8657   assert(I != ParamIndices.end() &&
   8658          "ParmIndices lacks entry set by ParmVarDecl");
   8659   return I->second;
   8660 }
   8661 
   8662 APValue *
   8663 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
   8664                                           bool MayCreate) {
   8665   assert(E && E->getStorageDuration() == SD_Static &&
   8666          "don't need to cache the computed value for this temporary");
   8667   if (MayCreate) {
   8668     APValue *&MTVI = MaterializedTemporaryValues[E];
   8669     if (!MTVI)
   8670       MTVI = new (*this) APValue;
   8671     return MTVI;
   8672   }
   8673 
   8674   return MaterializedTemporaryValues.lookup(E);
   8675 }
   8676 
   8677 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
   8678   const llvm::Triple &T = getTargetInfo().getTriple();
   8679   if (!T.isOSDarwin())
   8680     return false;
   8681 
   8682   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
   8683       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
   8684     return false;
   8685 
   8686   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
   8687   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
   8688   uint64_t Size = sizeChars.getQuantity();
   8689   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
   8690   unsigned Align = alignChars.getQuantity();
   8691   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
   8692   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
   8693 }
   8694 
   8695 namespace {
   8696 
   8697 ast_type_traits::DynTypedNode getSingleDynTypedNodeFromParentMap(
   8698     ASTContext::ParentMapPointers::mapped_type U) {
   8699   if (const auto *D = U.dyn_cast<const Decl *>())
   8700     return ast_type_traits::DynTypedNode::create(*D);
   8701   if (const auto *S = U.dyn_cast<const Stmt *>())
   8702     return ast_type_traits::DynTypedNode::create(*S);
   8703   return *U.get<ast_type_traits::DynTypedNode *>();
   8704 }
   8705 
   8706 /// Template specializations to abstract away from pointers and TypeLocs.
   8707 /// @{
   8708 template <typename T>
   8709 ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
   8710   return ast_type_traits::DynTypedNode::create(*Node);
   8711 }
   8712 template <>
   8713 ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
   8714   return ast_type_traits::DynTypedNode::create(Node);
   8715 }
   8716 template <>
   8717 ast_type_traits::DynTypedNode
   8718 createDynTypedNode(const NestedNameSpecifierLoc &Node) {
   8719   return ast_type_traits::DynTypedNode::create(Node);
   8720 }
   8721 /// @}
   8722 
   8723   /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
   8724   /// parents as defined by the \c RecursiveASTVisitor.
   8725   ///
   8726   /// Note that the relationship described here is purely in terms of AST
   8727   /// traversal - there are other relationships (for example declaration context)
   8728   /// in the AST that are better modeled by special matchers.
   8729   ///
   8730   /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
   8731   class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
   8732   public:
   8733     /// \brief Builds and returns the translation unit's parent map.
   8734     ///
   8735     ///  The caller takes ownership of the returned \c ParentMap.
   8736     static std::pair<ASTContext::ParentMapPointers *,
   8737                      ASTContext::ParentMapOtherNodes *>
   8738     buildMap(TranslationUnitDecl &TU) {
   8739       ParentMapASTVisitor Visitor(new ASTContext::ParentMapPointers,
   8740                                   new ASTContext::ParentMapOtherNodes);
   8741       Visitor.TraverseDecl(&TU);
   8742       return std::make_pair(Visitor.Parents, Visitor.OtherParents);
   8743     }
   8744 
   8745   private:
   8746     typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
   8747 
   8748     ParentMapASTVisitor(ASTContext::ParentMapPointers *Parents,
   8749                         ASTContext::ParentMapOtherNodes *OtherParents)
   8750         : Parents(Parents), OtherParents(OtherParents) {}
   8751 
   8752     bool shouldVisitTemplateInstantiations() const {
   8753       return true;
   8754     }
   8755     bool shouldVisitImplicitCode() const {
   8756       return true;
   8757     }
   8758 
   8759     template <typename T, typename MapNodeTy, typename BaseTraverseFn,
   8760               typename MapTy>
   8761     bool TraverseNode(T Node, MapNodeTy MapNode,
   8762                       BaseTraverseFn BaseTraverse, MapTy *Parents) {
   8763       if (!Node)
   8764         return true;
   8765       if (ParentStack.size() > 0) {
   8766         // FIXME: Currently we add the same parent multiple times, but only
   8767         // when no memoization data is available for the type.
   8768         // For example when we visit all subexpressions of template
   8769         // instantiations; this is suboptimal, but benign: the only way to
   8770         // visit those is with hasAncestor / hasParent, and those do not create
   8771         // new matches.
   8772         // The plan is to enable DynTypedNode to be storable in a map or hash
   8773         // map. The main problem there is to implement hash functions /
   8774         // comparison operators for all types that DynTypedNode supports that
   8775         // do not have pointer identity.
   8776         auto &NodeOrVector = (*Parents)[MapNode];
   8777         if (NodeOrVector.isNull()) {
   8778           if (const auto *D = ParentStack.back().get<Decl>())
   8779             NodeOrVector = D;
   8780           else if (const auto *S = ParentStack.back().get<Stmt>())
   8781             NodeOrVector = S;
   8782           else
   8783             NodeOrVector =
   8784                 new ast_type_traits::DynTypedNode(ParentStack.back());
   8785         } else {
   8786           if (!NodeOrVector.template is<ASTContext::ParentVector *>()) {
   8787             auto *Vector = new ASTContext::ParentVector(
   8788                 1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
   8789             if (auto *Node =
   8790                     NodeOrVector
   8791                         .template dyn_cast<ast_type_traits::DynTypedNode *>())
   8792               delete Node;
   8793             NodeOrVector = Vector;
   8794           }
   8795 
   8796           auto *Vector =
   8797               NodeOrVector.template get<ASTContext::ParentVector *>();
   8798           // Skip duplicates for types that have memoization data.
   8799           // We must check that the type has memoization data before calling
   8800           // std::find() because DynTypedNode::operator== can't compare all
   8801           // types.
   8802           bool Found = ParentStack.back().getMemoizationData() &&
   8803                        std::find(Vector->begin(), Vector->end(),
   8804                                  ParentStack.back()) != Vector->end();
   8805           if (!Found)
   8806             Vector->push_back(ParentStack.back());
   8807         }
   8808       }
   8809       ParentStack.push_back(createDynTypedNode(Node));
   8810       bool Result = BaseTraverse();
   8811       ParentStack.pop_back();
   8812       return Result;
   8813     }
   8814 
   8815     bool TraverseDecl(Decl *DeclNode) {
   8816       return TraverseNode(DeclNode, DeclNode,
   8817                           [&] { return VisitorBase::TraverseDecl(DeclNode); },
   8818                           Parents);
   8819     }
   8820 
   8821     bool TraverseStmt(Stmt *StmtNode) {
   8822       return TraverseNode(StmtNode, StmtNode,
   8823                           [&] { return VisitorBase::TraverseStmt(StmtNode); },
   8824                           Parents);
   8825     }
   8826 
   8827     bool TraverseTypeLoc(TypeLoc TypeLocNode) {
   8828       return TraverseNode(
   8829           TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
   8830           [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
   8831           OtherParents);
   8832     }
   8833 
   8834     bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
   8835       return TraverseNode(
   8836           NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
   8837           [&] {
   8838             return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode);
   8839           },
   8840           OtherParents);
   8841     }
   8842 
   8843     ASTContext::ParentMapPointers *Parents;
   8844     ASTContext::ParentMapOtherNodes *OtherParents;
   8845     llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
   8846 
   8847     friend class RecursiveASTVisitor<ParentMapASTVisitor>;
   8848   };
   8849 
   8850 } // anonymous namespace
   8851 
   8852 template <typename NodeTy, typename MapTy>
   8853 static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
   8854                                                       const MapTy &Map) {
   8855   auto I = Map.find(Node);
   8856   if (I == Map.end()) {
   8857     return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
   8858   }
   8859   if (auto *V = I->second.template dyn_cast<ASTContext::ParentVector *>()) {
   8860     return llvm::makeArrayRef(*V);
   8861   }
   8862   return getSingleDynTypedNodeFromParentMap(I->second);
   8863 }
   8864 
   8865 ASTContext::DynTypedNodeList
   8866 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
   8867   if (!PointerParents) {
   8868     // We always need to run over the whole translation unit, as
   8869     // hasAncestor can escape any subtree.
   8870     auto Maps = ParentMapASTVisitor::buildMap(*getTranslationUnitDecl());
   8871     PointerParents.reset(Maps.first);
   8872     OtherParents.reset(Maps.second);
   8873   }
   8874   if (Node.getNodeKind().hasPointerIdentity())
   8875     return getDynNodeFromMap(Node.getMemoizationData(), *PointerParents);
   8876   return getDynNodeFromMap(Node, *OtherParents);
   8877 }
   8878 
   8879 bool
   8880 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
   8881                                 const ObjCMethodDecl *MethodImpl) {
   8882   // No point trying to match an unavailable/deprecated mothod.
   8883   if (MethodDecl->hasAttr<UnavailableAttr>()
   8884       || MethodDecl->hasAttr<DeprecatedAttr>())
   8885     return false;
   8886   if (MethodDecl->getObjCDeclQualifier() !=
   8887       MethodImpl->getObjCDeclQualifier())
   8888     return false;
   8889   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
   8890     return false;
   8891 
   8892   if (MethodDecl->param_size() != MethodImpl->param_size())
   8893     return false;
   8894 
   8895   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
   8896        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
   8897        EF = MethodDecl->param_end();
   8898        IM != EM && IF != EF; ++IM, ++IF) {
   8899     const ParmVarDecl *DeclVar = (*IF);
   8900     const ParmVarDecl *ImplVar = (*IM);
   8901     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
   8902       return false;
   8903     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
   8904       return false;
   8905   }
   8906   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
   8907 
   8908 }
   8909 
   8910 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
   8911 // doesn't include ASTContext.h
   8912 template
   8913 clang::LazyGenerationalUpdatePtr<
   8914     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
   8915 clang::LazyGenerationalUpdatePtr<
   8916     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
   8917         const clang::ASTContext &Ctx, Decl *Value);
   8918