1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #if V8_TARGET_ARCH_X64 6 7 #include "src/bootstrapper.h" 8 #include "src/code-stubs.h" 9 #include "src/codegen.h" 10 #include "src/ic/handler-compiler.h" 11 #include "src/ic/ic.h" 12 #include "src/ic/stub-cache.h" 13 #include "src/isolate.h" 14 #include "src/regexp/jsregexp.h" 15 #include "src/regexp/regexp-macro-assembler.h" 16 #include "src/runtime/runtime.h" 17 #include "src/x64/code-stubs-x64.h" 18 19 namespace v8 { 20 namespace internal { 21 22 23 static void InitializeArrayConstructorDescriptor( 24 Isolate* isolate, CodeStubDescriptor* descriptor, 25 int constant_stack_parameter_count) { 26 Address deopt_handler = Runtime::FunctionForId( 27 Runtime::kArrayConstructor)->entry; 28 29 if (constant_stack_parameter_count == 0) { 30 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, 31 JS_FUNCTION_STUB_MODE); 32 } else { 33 descriptor->Initialize(rax, deopt_handler, constant_stack_parameter_count, 34 JS_FUNCTION_STUB_MODE); 35 } 36 } 37 38 39 static void InitializeInternalArrayConstructorDescriptor( 40 Isolate* isolate, CodeStubDescriptor* descriptor, 41 int constant_stack_parameter_count) { 42 Address deopt_handler = Runtime::FunctionForId( 43 Runtime::kInternalArrayConstructor)->entry; 44 45 if (constant_stack_parameter_count == 0) { 46 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, 47 JS_FUNCTION_STUB_MODE); 48 } else { 49 descriptor->Initialize(rax, deopt_handler, constant_stack_parameter_count, 50 JS_FUNCTION_STUB_MODE); 51 } 52 } 53 54 55 void ArrayNoArgumentConstructorStub::InitializeDescriptor( 56 CodeStubDescriptor* descriptor) { 57 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0); 58 } 59 60 61 void ArraySingleArgumentConstructorStub::InitializeDescriptor( 62 CodeStubDescriptor* descriptor) { 63 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1); 64 } 65 66 67 void ArrayNArgumentsConstructorStub::InitializeDescriptor( 68 CodeStubDescriptor* descriptor) { 69 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1); 70 } 71 72 73 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor( 74 CodeStubDescriptor* descriptor) { 75 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0); 76 } 77 78 79 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor( 80 CodeStubDescriptor* descriptor) { 81 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1); 82 } 83 84 85 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor( 86 CodeStubDescriptor* descriptor) { 87 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1); 88 } 89 90 91 #define __ ACCESS_MASM(masm) 92 93 94 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, 95 ExternalReference miss) { 96 // Update the static counter each time a new code stub is generated. 97 isolate()->counters()->code_stubs()->Increment(); 98 99 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); 100 int param_count = descriptor.GetRegisterParameterCount(); 101 { 102 // Call the runtime system in a fresh internal frame. 103 FrameScope scope(masm, StackFrame::INTERNAL); 104 DCHECK(param_count == 0 || 105 rax.is(descriptor.GetRegisterParameter(param_count - 1))); 106 // Push arguments 107 for (int i = 0; i < param_count; ++i) { 108 __ Push(descriptor.GetRegisterParameter(i)); 109 } 110 __ CallExternalReference(miss, param_count); 111 } 112 113 __ Ret(); 114 } 115 116 117 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { 118 __ PushCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs); 119 const int argument_count = 1; 120 __ PrepareCallCFunction(argument_count); 121 __ LoadAddress(arg_reg_1, 122 ExternalReference::isolate_address(isolate())); 123 124 AllowExternalCallThatCantCauseGC scope(masm); 125 __ CallCFunction( 126 ExternalReference::store_buffer_overflow_function(isolate()), 127 argument_count); 128 __ PopCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs); 129 __ ret(0); 130 } 131 132 133 class FloatingPointHelper : public AllStatic { 134 public: 135 enum ConvertUndefined { 136 CONVERT_UNDEFINED_TO_ZERO, 137 BAILOUT_ON_UNDEFINED 138 }; 139 // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. 140 // If the operands are not both numbers, jump to not_numbers. 141 // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. 142 // NumberOperands assumes both are smis or heap numbers. 143 static void LoadSSE2UnknownOperands(MacroAssembler* masm, 144 Label* not_numbers); 145 }; 146 147 148 void DoubleToIStub::Generate(MacroAssembler* masm) { 149 Register input_reg = this->source(); 150 Register final_result_reg = this->destination(); 151 DCHECK(is_truncating()); 152 153 Label check_negative, process_64_bits, done; 154 155 int double_offset = offset(); 156 157 // Account for return address and saved regs if input is rsp. 158 if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize; 159 160 MemOperand mantissa_operand(MemOperand(input_reg, double_offset)); 161 MemOperand exponent_operand(MemOperand(input_reg, 162 double_offset + kDoubleSize / 2)); 163 164 Register scratch1; 165 Register scratch_candidates[3] = { rbx, rdx, rdi }; 166 for (int i = 0; i < 3; i++) { 167 scratch1 = scratch_candidates[i]; 168 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break; 169 } 170 171 // Since we must use rcx for shifts below, use some other register (rax) 172 // to calculate the result if ecx is the requested return register. 173 Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg; 174 // Save ecx if it isn't the return register and therefore volatile, or if it 175 // is the return register, then save the temp register we use in its stead 176 // for the result. 177 Register save_reg = final_result_reg.is(rcx) ? rax : rcx; 178 __ pushq(scratch1); 179 __ pushq(save_reg); 180 181 bool stash_exponent_copy = !input_reg.is(rsp); 182 __ movl(scratch1, mantissa_operand); 183 __ Movsd(xmm0, mantissa_operand); 184 __ movl(rcx, exponent_operand); 185 if (stash_exponent_copy) __ pushq(rcx); 186 187 __ andl(rcx, Immediate(HeapNumber::kExponentMask)); 188 __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); 189 __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); 190 __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); 191 __ j(below, &process_64_bits); 192 193 // Result is entirely in lower 32-bits of mantissa 194 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; 195 __ subl(rcx, Immediate(delta)); 196 __ xorl(result_reg, result_reg); 197 __ cmpl(rcx, Immediate(31)); 198 __ j(above, &done); 199 __ shll_cl(scratch1); 200 __ jmp(&check_negative); 201 202 __ bind(&process_64_bits); 203 __ Cvttsd2siq(result_reg, xmm0); 204 __ jmp(&done, Label::kNear); 205 206 // If the double was negative, negate the integer result. 207 __ bind(&check_negative); 208 __ movl(result_reg, scratch1); 209 __ negl(result_reg); 210 if (stash_exponent_copy) { 211 __ cmpl(MemOperand(rsp, 0), Immediate(0)); 212 } else { 213 __ cmpl(exponent_operand, Immediate(0)); 214 } 215 __ cmovl(greater, result_reg, scratch1); 216 217 // Restore registers 218 __ bind(&done); 219 if (stash_exponent_copy) { 220 __ addp(rsp, Immediate(kDoubleSize)); 221 } 222 if (!final_result_reg.is(result_reg)) { 223 DCHECK(final_result_reg.is(rcx)); 224 __ movl(final_result_reg, result_reg); 225 } 226 __ popq(save_reg); 227 __ popq(scratch1); 228 __ ret(0); 229 } 230 231 232 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, 233 Label* not_numbers) { 234 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; 235 // Load operand in rdx into xmm0, or branch to not_numbers. 236 __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); 237 __ JumpIfSmi(rdx, &load_smi_rdx); 238 __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx); 239 __ j(not_equal, not_numbers); // Argument in rdx is not a number. 240 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 241 // Load operand in rax into xmm1, or branch to not_numbers. 242 __ JumpIfSmi(rax, &load_smi_rax); 243 244 __ bind(&load_nonsmi_rax); 245 __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx); 246 __ j(not_equal, not_numbers); 247 __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 248 __ jmp(&done); 249 250 __ bind(&load_smi_rdx); 251 __ SmiToInteger32(kScratchRegister, rdx); 252 __ Cvtlsi2sd(xmm0, kScratchRegister); 253 __ JumpIfNotSmi(rax, &load_nonsmi_rax); 254 255 __ bind(&load_smi_rax); 256 __ SmiToInteger32(kScratchRegister, rax); 257 __ Cvtlsi2sd(xmm1, kScratchRegister); 258 __ bind(&done); 259 } 260 261 262 void MathPowStub::Generate(MacroAssembler* masm) { 263 const Register exponent = MathPowTaggedDescriptor::exponent(); 264 DCHECK(exponent.is(rdx)); 265 const Register base = rax; 266 const Register scratch = rcx; 267 const XMMRegister double_result = xmm3; 268 const XMMRegister double_base = xmm2; 269 const XMMRegister double_exponent = xmm1; 270 const XMMRegister double_scratch = xmm4; 271 272 Label call_runtime, done, exponent_not_smi, int_exponent; 273 274 // Save 1 in double_result - we need this several times later on. 275 __ movp(scratch, Immediate(1)); 276 __ Cvtlsi2sd(double_result, scratch); 277 278 if (exponent_type() == ON_STACK) { 279 Label base_is_smi, unpack_exponent; 280 // The exponent and base are supplied as arguments on the stack. 281 // This can only happen if the stub is called from non-optimized code. 282 // Load input parameters from stack. 283 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER); 284 __ movp(base, args.GetArgumentOperand(0)); 285 __ movp(exponent, args.GetArgumentOperand(1)); 286 __ JumpIfSmi(base, &base_is_smi, Label::kNear); 287 __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset), 288 Heap::kHeapNumberMapRootIndex); 289 __ j(not_equal, &call_runtime); 290 291 __ Movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset)); 292 __ jmp(&unpack_exponent, Label::kNear); 293 294 __ bind(&base_is_smi); 295 __ SmiToInteger32(base, base); 296 __ Cvtlsi2sd(double_base, base); 297 __ bind(&unpack_exponent); 298 299 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); 300 __ SmiToInteger32(exponent, exponent); 301 __ jmp(&int_exponent); 302 303 __ bind(&exponent_not_smi); 304 __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset), 305 Heap::kHeapNumberMapRootIndex); 306 __ j(not_equal, &call_runtime); 307 __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); 308 } else if (exponent_type() == TAGGED) { 309 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); 310 __ SmiToInteger32(exponent, exponent); 311 __ jmp(&int_exponent); 312 313 __ bind(&exponent_not_smi); 314 __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); 315 } 316 317 if (exponent_type() != INTEGER) { 318 Label fast_power, try_arithmetic_simplification; 319 // Detect integer exponents stored as double. 320 __ DoubleToI(exponent, double_exponent, double_scratch, 321 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification, 322 &try_arithmetic_simplification, 323 &try_arithmetic_simplification); 324 __ jmp(&int_exponent); 325 326 __ bind(&try_arithmetic_simplification); 327 __ Cvttsd2si(exponent, double_exponent); 328 // Skip to runtime if possibly NaN (indicated by the indefinite integer). 329 __ cmpl(exponent, Immediate(0x1)); 330 __ j(overflow, &call_runtime); 331 332 if (exponent_type() == ON_STACK) { 333 // Detect square root case. Crankshaft detects constant +/-0.5 at 334 // compile time and uses DoMathPowHalf instead. We then skip this check 335 // for non-constant cases of +/-0.5 as these hardly occur. 336 Label continue_sqrt, continue_rsqrt, not_plus_half; 337 // Test for 0.5. 338 // Load double_scratch with 0.5. 339 __ movq(scratch, V8_UINT64_C(0x3FE0000000000000)); 340 __ Movq(double_scratch, scratch); 341 // Already ruled out NaNs for exponent. 342 __ Ucomisd(double_scratch, double_exponent); 343 __ j(not_equal, ¬_plus_half, Label::kNear); 344 345 // Calculates square root of base. Check for the special case of 346 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). 347 // According to IEEE-754, double-precision -Infinity has the highest 348 // 12 bits set and the lowest 52 bits cleared. 349 __ movq(scratch, V8_UINT64_C(0xFFF0000000000000)); 350 __ Movq(double_scratch, scratch); 351 __ Ucomisd(double_scratch, double_base); 352 // Comparing -Infinity with NaN results in "unordered", which sets the 353 // zero flag as if both were equal. However, it also sets the carry flag. 354 __ j(not_equal, &continue_sqrt, Label::kNear); 355 __ j(carry, &continue_sqrt, Label::kNear); 356 357 // Set result to Infinity in the special case. 358 __ Xorpd(double_result, double_result); 359 __ Subsd(double_result, double_scratch); 360 __ jmp(&done); 361 362 __ bind(&continue_sqrt); 363 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. 364 __ Xorpd(double_scratch, double_scratch); 365 __ Addsd(double_scratch, double_base); // Convert -0 to 0. 366 __ Sqrtsd(double_result, double_scratch); 367 __ jmp(&done); 368 369 // Test for -0.5. 370 __ bind(¬_plus_half); 371 // Load double_scratch with -0.5 by substracting 1. 372 __ Subsd(double_scratch, double_result); 373 // Already ruled out NaNs for exponent. 374 __ Ucomisd(double_scratch, double_exponent); 375 __ j(not_equal, &fast_power, Label::kNear); 376 377 // Calculates reciprocal of square root of base. Check for the special 378 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). 379 // According to IEEE-754, double-precision -Infinity has the highest 380 // 12 bits set and the lowest 52 bits cleared. 381 __ movq(scratch, V8_UINT64_C(0xFFF0000000000000)); 382 __ Movq(double_scratch, scratch); 383 __ Ucomisd(double_scratch, double_base); 384 // Comparing -Infinity with NaN results in "unordered", which sets the 385 // zero flag as if both were equal. However, it also sets the carry flag. 386 __ j(not_equal, &continue_rsqrt, Label::kNear); 387 __ j(carry, &continue_rsqrt, Label::kNear); 388 389 // Set result to 0 in the special case. 390 __ Xorpd(double_result, double_result); 391 __ jmp(&done); 392 393 __ bind(&continue_rsqrt); 394 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. 395 __ Xorpd(double_exponent, double_exponent); 396 __ Addsd(double_exponent, double_base); // Convert -0 to +0. 397 __ Sqrtsd(double_exponent, double_exponent); 398 __ Divsd(double_result, double_exponent); 399 __ jmp(&done); 400 } 401 402 // Using FPU instructions to calculate power. 403 Label fast_power_failed; 404 __ bind(&fast_power); 405 __ fnclex(); // Clear flags to catch exceptions later. 406 // Transfer (B)ase and (E)xponent onto the FPU register stack. 407 __ subp(rsp, Immediate(kDoubleSize)); 408 __ Movsd(Operand(rsp, 0), double_exponent); 409 __ fld_d(Operand(rsp, 0)); // E 410 __ Movsd(Operand(rsp, 0), double_base); 411 __ fld_d(Operand(rsp, 0)); // B, E 412 413 // Exponent is in st(1) and base is in st(0) 414 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) 415 // FYL2X calculates st(1) * log2(st(0)) 416 __ fyl2x(); // X 417 __ fld(0); // X, X 418 __ frndint(); // rnd(X), X 419 __ fsub(1); // rnd(X), X-rnd(X) 420 __ fxch(1); // X - rnd(X), rnd(X) 421 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 422 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) 423 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) 424 __ faddp(1); // 2^(X-rnd(X)), rnd(X) 425 // FSCALE calculates st(0) * 2^st(1) 426 __ fscale(); // 2^X, rnd(X) 427 __ fstp(1); 428 // Bail out to runtime in case of exceptions in the status word. 429 __ fnstsw_ax(); 430 __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. 431 __ j(not_zero, &fast_power_failed, Label::kNear); 432 __ fstp_d(Operand(rsp, 0)); 433 __ Movsd(double_result, Operand(rsp, 0)); 434 __ addp(rsp, Immediate(kDoubleSize)); 435 __ jmp(&done); 436 437 __ bind(&fast_power_failed); 438 __ fninit(); 439 __ addp(rsp, Immediate(kDoubleSize)); 440 __ jmp(&call_runtime); 441 } 442 443 // Calculate power with integer exponent. 444 __ bind(&int_exponent); 445 const XMMRegister double_scratch2 = double_exponent; 446 // Back up exponent as we need to check if exponent is negative later. 447 __ movp(scratch, exponent); // Back up exponent. 448 __ Movsd(double_scratch, double_base); // Back up base. 449 __ Movsd(double_scratch2, double_result); // Load double_exponent with 1. 450 451 // Get absolute value of exponent. 452 Label no_neg, while_true, while_false; 453 __ testl(scratch, scratch); 454 __ j(positive, &no_neg, Label::kNear); 455 __ negl(scratch); 456 __ bind(&no_neg); 457 458 __ j(zero, &while_false, Label::kNear); 459 __ shrl(scratch, Immediate(1)); 460 // Above condition means CF==0 && ZF==0. This means that the 461 // bit that has been shifted out is 0 and the result is not 0. 462 __ j(above, &while_true, Label::kNear); 463 __ Movsd(double_result, double_scratch); 464 __ j(zero, &while_false, Label::kNear); 465 466 __ bind(&while_true); 467 __ shrl(scratch, Immediate(1)); 468 __ Mulsd(double_scratch, double_scratch); 469 __ j(above, &while_true, Label::kNear); 470 __ Mulsd(double_result, double_scratch); 471 __ j(not_zero, &while_true); 472 473 __ bind(&while_false); 474 // If the exponent is negative, return 1/result. 475 __ testl(exponent, exponent); 476 __ j(greater, &done); 477 __ Divsd(double_scratch2, double_result); 478 __ Movsd(double_result, double_scratch2); 479 // Test whether result is zero. Bail out to check for subnormal result. 480 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. 481 __ Xorpd(double_scratch2, double_scratch2); 482 __ Ucomisd(double_scratch2, double_result); 483 // double_exponent aliased as double_scratch2 has already been overwritten 484 // and may not have contained the exponent value in the first place when the 485 // input was a smi. We reset it with exponent value before bailing out. 486 __ j(not_equal, &done); 487 __ Cvtlsi2sd(double_exponent, exponent); 488 489 // Returning or bailing out. 490 Counters* counters = isolate()->counters(); 491 if (exponent_type() == ON_STACK) { 492 // The arguments are still on the stack. 493 __ bind(&call_runtime); 494 __ TailCallRuntime(Runtime::kMathPowRT); 495 496 // The stub is called from non-optimized code, which expects the result 497 // as heap number in rax. 498 __ bind(&done); 499 __ AllocateHeapNumber(rax, rcx, &call_runtime); 500 __ Movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result); 501 __ IncrementCounter(counters->math_pow(), 1); 502 __ ret(2 * kPointerSize); 503 } else { 504 __ bind(&call_runtime); 505 // Move base to the correct argument register. Exponent is already in xmm1. 506 __ Movsd(xmm0, double_base); 507 DCHECK(double_exponent.is(xmm1)); 508 { 509 AllowExternalCallThatCantCauseGC scope(masm); 510 __ PrepareCallCFunction(2); 511 __ CallCFunction( 512 ExternalReference::power_double_double_function(isolate()), 2); 513 } 514 // Return value is in xmm0. 515 __ Movsd(double_result, xmm0); 516 517 __ bind(&done); 518 __ IncrementCounter(counters->math_pow(), 1); 519 __ ret(0); 520 } 521 } 522 523 524 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { 525 Label miss; 526 Register receiver = LoadDescriptor::ReceiverRegister(); 527 // Ensure that the vector and slot registers won't be clobbered before 528 // calling the miss handler. 529 DCHECK(!AreAliased(r8, r9, LoadWithVectorDescriptor::VectorRegister(), 530 LoadDescriptor::SlotRegister())); 531 532 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8, 533 r9, &miss); 534 __ bind(&miss); 535 PropertyAccessCompiler::TailCallBuiltin( 536 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); 537 } 538 539 540 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { 541 // The key is in rdx and the parameter count is in rax. 542 DCHECK(rdx.is(ArgumentsAccessReadDescriptor::index())); 543 DCHECK(rax.is(ArgumentsAccessReadDescriptor::parameter_count())); 544 545 // Check that the key is a smi. 546 Label slow; 547 __ JumpIfNotSmi(rdx, &slow); 548 549 // Check if the calling frame is an arguments adaptor frame. We look at the 550 // context offset, and if the frame is not a regular one, then we find a 551 // Smi instead of the context. We can't use SmiCompare here, because that 552 // only works for comparing two smis. 553 Label adaptor; 554 __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); 555 __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset), 556 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 557 __ j(equal, &adaptor); 558 559 // Check index against formal parameters count limit passed in 560 // through register rax. Use unsigned comparison to get negative 561 // check for free. 562 __ cmpp(rdx, rax); 563 __ j(above_equal, &slow); 564 565 // Read the argument from the stack and return it. 566 __ SmiSub(rax, rax, rdx); 567 __ SmiToInteger32(rax, rax); 568 StackArgumentsAccessor args(rbp, rax, ARGUMENTS_DONT_CONTAIN_RECEIVER); 569 __ movp(rax, args.GetArgumentOperand(0)); 570 __ Ret(); 571 572 // Arguments adaptor case: Check index against actual arguments 573 // limit found in the arguments adaptor frame. Use unsigned 574 // comparison to get negative check for free. 575 __ bind(&adaptor); 576 __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); 577 __ cmpp(rdx, rcx); 578 __ j(above_equal, &slow); 579 580 // Read the argument from the stack and return it. 581 __ SmiSub(rcx, rcx, rdx); 582 __ SmiToInteger32(rcx, rcx); 583 StackArgumentsAccessor adaptor_args(rbx, rcx, 584 ARGUMENTS_DONT_CONTAIN_RECEIVER); 585 __ movp(rax, adaptor_args.GetArgumentOperand(0)); 586 __ Ret(); 587 588 // Slow-case: Handle non-smi or out-of-bounds access to arguments 589 // by calling the runtime system. 590 __ bind(&slow); 591 __ PopReturnAddressTo(rbx); 592 __ Push(rdx); 593 __ PushReturnAddressFrom(rbx); 594 __ TailCallRuntime(Runtime::kArguments); 595 } 596 597 598 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { 599 // rcx : number of parameters (tagged) 600 // rdx : parameters pointer 601 // rdi : function 602 // rsp[0] : return address 603 // Registers used over the whole function: 604 // rbx: the mapped parameter count (untagged) 605 // rax: the allocated object (tagged). 606 Factory* factory = isolate()->factory(); 607 608 DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function())); 609 DCHECK(rcx.is(ArgumentsAccessNewDescriptor::parameter_count())); 610 DCHECK(rdx.is(ArgumentsAccessNewDescriptor::parameter_pointer())); 611 612 __ SmiToInteger64(rbx, rcx); 613 // rbx = parameter count (untagged) 614 615 // Check if the calling frame is an arguments adaptor frame. 616 Label adaptor_frame, try_allocate, runtime; 617 __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); 618 __ movp(r8, Operand(rax, StandardFrameConstants::kContextOffset)); 619 __ Cmp(r8, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 620 __ j(equal, &adaptor_frame); 621 622 // No adaptor, parameter count = argument count. 623 __ movp(r11, rbx); 624 __ jmp(&try_allocate, Label::kNear); 625 626 // We have an adaptor frame. Patch the parameters pointer. 627 __ bind(&adaptor_frame); 628 __ SmiToInteger64( 629 r11, Operand(rax, ArgumentsAdaptorFrameConstants::kLengthOffset)); 630 __ leap(rdx, Operand(rax, r11, times_pointer_size, 631 StandardFrameConstants::kCallerSPOffset)); 632 633 // rbx = parameter count (untagged) 634 // r11 = argument count (untagged) 635 // Compute the mapped parameter count = min(rbx, r11) in rbx. 636 __ cmpp(rbx, r11); 637 __ j(less_equal, &try_allocate, Label::kNear); 638 __ movp(rbx, r11); 639 640 __ bind(&try_allocate); 641 642 // Compute the sizes of backing store, parameter map, and arguments object. 643 // 1. Parameter map, has 2 extra words containing context and backing store. 644 const int kParameterMapHeaderSize = 645 FixedArray::kHeaderSize + 2 * kPointerSize; 646 Label no_parameter_map; 647 __ xorp(r8, r8); 648 __ testp(rbx, rbx); 649 __ j(zero, &no_parameter_map, Label::kNear); 650 __ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize)); 651 __ bind(&no_parameter_map); 652 653 // 2. Backing store. 654 __ leap(r8, Operand(r8, r11, times_pointer_size, FixedArray::kHeaderSize)); 655 656 // 3. Arguments object. 657 __ addp(r8, Immediate(Heap::kSloppyArgumentsObjectSize)); 658 659 // Do the allocation of all three objects in one go. 660 __ Allocate(r8, rax, r9, no_reg, &runtime, TAG_OBJECT); 661 662 // rax = address of new object(s) (tagged) 663 // r11 = argument count (untagged) 664 // Get the arguments map from the current native context into r9. 665 Label has_mapped_parameters, instantiate; 666 __ movp(r9, NativeContextOperand()); 667 __ testp(rbx, rbx); 668 __ j(not_zero, &has_mapped_parameters, Label::kNear); 669 670 const int kIndex = Context::SLOPPY_ARGUMENTS_MAP_INDEX; 671 __ movp(r9, Operand(r9, Context::SlotOffset(kIndex))); 672 __ jmp(&instantiate, Label::kNear); 673 674 const int kAliasedIndex = Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX; 675 __ bind(&has_mapped_parameters); 676 __ movp(r9, Operand(r9, Context::SlotOffset(kAliasedIndex))); 677 __ bind(&instantiate); 678 679 // rax = address of new object (tagged) 680 // rbx = mapped parameter count (untagged) 681 // r11 = argument count (untagged) 682 // r9 = address of arguments map (tagged) 683 __ movp(FieldOperand(rax, JSObject::kMapOffset), r9); 684 __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex); 685 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister); 686 __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister); 687 688 // Set up the callee in-object property. 689 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); 690 __ AssertNotSmi(rdi); 691 __ movp(FieldOperand(rax, JSObject::kHeaderSize + 692 Heap::kArgumentsCalleeIndex * kPointerSize), 693 rdi); 694 695 // Use the length (smi tagged) and set that as an in-object property too. 696 // Note: r11 is tagged from here on. 697 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); 698 __ Integer32ToSmi(r11, r11); 699 __ movp(FieldOperand(rax, JSObject::kHeaderSize + 700 Heap::kArgumentsLengthIndex * kPointerSize), 701 r11); 702 703 // Set up the elements pointer in the allocated arguments object. 704 // If we allocated a parameter map, rdi will point there, otherwise to the 705 // backing store. 706 __ leap(rdi, Operand(rax, Heap::kSloppyArgumentsObjectSize)); 707 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi); 708 709 // rax = address of new object (tagged) 710 // rbx = mapped parameter count (untagged) 711 // r11 = argument count (tagged) 712 // rdi = address of parameter map or backing store (tagged) 713 714 // Initialize parameter map. If there are no mapped arguments, we're done. 715 Label skip_parameter_map; 716 __ testp(rbx, rbx); 717 __ j(zero, &skip_parameter_map); 718 719 __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex); 720 // rbx contains the untagged argument count. Add 2 and tag to write. 721 __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); 722 __ Integer64PlusConstantToSmi(r9, rbx, 2); 723 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9); 724 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi); 725 __ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); 726 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9); 727 728 // Copy the parameter slots and the holes in the arguments. 729 // We need to fill in mapped_parameter_count slots. They index the context, 730 // where parameters are stored in reverse order, at 731 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 732 // The mapped parameter thus need to get indices 733 // MIN_CONTEXT_SLOTS+parameter_count-1 .. 734 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count 735 // We loop from right to left. 736 Label parameters_loop, parameters_test; 737 738 // Load tagged parameter count into r9. 739 __ Integer32ToSmi(r9, rbx); 740 __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS)); 741 __ addp(r8, rcx); 742 __ subp(r8, r9); 743 __ movp(rcx, rdi); 744 __ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); 745 __ SmiToInteger64(r9, r9); 746 // r9 = loop variable (untagged) 747 // r8 = mapping index (tagged) 748 // rcx = address of parameter map (tagged) 749 // rdi = address of backing store (tagged) 750 __ jmp(¶meters_test, Label::kNear); 751 752 __ bind(¶meters_loop); 753 __ subp(r9, Immediate(1)); 754 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); 755 __ movp(FieldOperand(rcx, r9, times_pointer_size, kParameterMapHeaderSize), 756 r8); 757 __ movp(FieldOperand(rdi, r9, times_pointer_size, FixedArray::kHeaderSize), 758 kScratchRegister); 759 __ SmiAddConstant(r8, r8, Smi::FromInt(1)); 760 __ bind(¶meters_test); 761 __ testp(r9, r9); 762 __ j(not_zero, ¶meters_loop, Label::kNear); 763 764 __ bind(&skip_parameter_map); 765 766 // r11 = argument count (tagged) 767 // rdi = address of backing store (tagged) 768 // Copy arguments header and remaining slots (if there are any). 769 __ Move(FieldOperand(rdi, FixedArray::kMapOffset), 770 factory->fixed_array_map()); 771 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r11); 772 773 Label arguments_loop, arguments_test; 774 __ movp(r8, rbx); 775 // Untag r11 for the loop below. 776 __ SmiToInteger64(r11, r11); 777 __ leap(kScratchRegister, Operand(r8, times_pointer_size, 0)); 778 __ subp(rdx, kScratchRegister); 779 __ jmp(&arguments_test, Label::kNear); 780 781 __ bind(&arguments_loop); 782 __ subp(rdx, Immediate(kPointerSize)); 783 __ movp(r9, Operand(rdx, 0)); 784 __ movp(FieldOperand(rdi, r8, 785 times_pointer_size, 786 FixedArray::kHeaderSize), 787 r9); 788 __ addp(r8, Immediate(1)); 789 790 __ bind(&arguments_test); 791 __ cmpp(r8, r11); 792 __ j(less, &arguments_loop, Label::kNear); 793 794 // Return. 795 __ ret(0); 796 797 // Do the runtime call to allocate the arguments object. 798 // r11 = argument count (untagged) 799 __ bind(&runtime); 800 __ Integer32ToSmi(r11, r11); 801 __ PopReturnAddressTo(rax); 802 __ Push(rdi); // Push function. 803 __ Push(rdx); // Push parameters pointer. 804 __ Push(r11); // Push parameter count. 805 __ PushReturnAddressFrom(rax); 806 __ TailCallRuntime(Runtime::kNewSloppyArguments); 807 } 808 809 810 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { 811 // rcx : number of parameters (tagged) 812 // rdx : parameters pointer 813 // rdi : function 814 // rsp[0] : return address 815 816 DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function())); 817 DCHECK(rcx.is(ArgumentsAccessNewDescriptor::parameter_count())); 818 DCHECK(rdx.is(ArgumentsAccessNewDescriptor::parameter_pointer())); 819 820 // Check if the calling frame is an arguments adaptor frame. 821 Label runtime; 822 __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); 823 __ movp(rax, Operand(rbx, StandardFrameConstants::kContextOffset)); 824 __ Cmp(rax, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 825 __ j(not_equal, &runtime); 826 827 // Patch the arguments.length and the parameters pointer. 828 StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER); 829 __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); 830 __ SmiToInteger64(rax, rcx); 831 __ leap(rdx, Operand(rbx, rax, times_pointer_size, 832 StandardFrameConstants::kCallerSPOffset)); 833 834 __ bind(&runtime); 835 __ PopReturnAddressTo(rax); 836 __ Push(rdi); // Push function. 837 __ Push(rdx); // Push parameters pointer. 838 __ Push(rcx); // Push parameter count. 839 __ PushReturnAddressFrom(rax); 840 __ TailCallRuntime(Runtime::kNewSloppyArguments); 841 } 842 843 844 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) { 845 // rcx : number of parameters (tagged) 846 // rdx : parameters pointer 847 // rbx : rest parameter index (tagged) 848 // rsp[0] : return address 849 850 // Check if the calling frame is an arguments adaptor frame. 851 Label runtime; 852 __ movp(r8, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); 853 __ movp(rax, Operand(r8, StandardFrameConstants::kContextOffset)); 854 __ Cmp(rax, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 855 __ j(not_equal, &runtime); 856 857 // Patch the arguments.length and the parameters pointer. 858 StackArgumentsAccessor args(rsp, 4, ARGUMENTS_DONT_CONTAIN_RECEIVER); 859 __ movp(rcx, Operand(r8, ArgumentsAdaptorFrameConstants::kLengthOffset)); 860 __ SmiToInteger64(rax, rcx); 861 __ leap(rdx, Operand(r8, rax, times_pointer_size, 862 StandardFrameConstants::kCallerSPOffset)); 863 864 __ bind(&runtime); 865 __ PopReturnAddressTo(rax); 866 __ Push(rcx); // Push number of parameters. 867 __ Push(rdx); // Push parameters pointer. 868 __ Push(rbx); // Push rest parameter index. 869 __ PushReturnAddressFrom(rax); 870 __ TailCallRuntime(Runtime::kNewRestParam); 871 } 872 873 874 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) { 875 // Return address is on the stack. 876 Label slow; 877 878 Register receiver = LoadDescriptor::ReceiverRegister(); 879 Register key = LoadDescriptor::NameRegister(); 880 Register scratch = rax; 881 DCHECK(!scratch.is(receiver) && !scratch.is(key)); 882 883 // Check that the key is an array index, that is Uint32. 884 STATIC_ASSERT(kSmiValueSize <= 32); 885 __ JumpUnlessNonNegativeSmi(key, &slow); 886 887 // Everything is fine, call runtime. 888 __ PopReturnAddressTo(scratch); 889 __ Push(receiver); // receiver 890 __ Push(key); // key 891 __ PushReturnAddressFrom(scratch); 892 893 // Perform tail call to the entry. 894 __ TailCallRuntime(Runtime::kLoadElementWithInterceptor); 895 896 __ bind(&slow); 897 PropertyAccessCompiler::TailCallBuiltin( 898 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); 899 } 900 901 902 void LoadIndexedStringStub::Generate(MacroAssembler* masm) { 903 // Return address is on the stack. 904 Label miss; 905 906 Register receiver = LoadDescriptor::ReceiverRegister(); 907 Register index = LoadDescriptor::NameRegister(); 908 Register scratch = rdi; 909 Register result = rax; 910 DCHECK(!scratch.is(receiver) && !scratch.is(index)); 911 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) && 912 result.is(LoadDescriptor::SlotRegister())); 913 914 // StringCharAtGenerator doesn't use the result register until it's passed 915 // the different miss possibilities. If it did, we would have a conflict 916 // when FLAG_vector_ics is true. 917 StringCharAtGenerator char_at_generator(receiver, index, scratch, result, 918 &miss, // When not a string. 919 &miss, // When not a number. 920 &miss, // When index out of range. 921 STRING_INDEX_IS_ARRAY_INDEX, 922 RECEIVER_IS_STRING); 923 char_at_generator.GenerateFast(masm); 924 __ ret(0); 925 926 StubRuntimeCallHelper call_helper; 927 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper); 928 929 __ bind(&miss); 930 PropertyAccessCompiler::TailCallBuiltin( 931 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); 932 } 933 934 935 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { 936 // rcx : number of parameters (tagged) 937 // rdx : parameters pointer 938 // rdi : function 939 // rsp[0] : return address 940 941 DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function())); 942 DCHECK(rcx.is(ArgumentsAccessNewDescriptor::parameter_count())); 943 DCHECK(rdx.is(ArgumentsAccessNewDescriptor::parameter_pointer())); 944 945 // Check if the calling frame is an arguments adaptor frame. 946 Label adaptor_frame, try_allocate, runtime; 947 __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); 948 __ movp(rax, Operand(rbx, StandardFrameConstants::kContextOffset)); 949 __ Cmp(rax, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 950 __ j(equal, &adaptor_frame); 951 952 // Get the length from the frame. 953 __ SmiToInteger64(rax, rcx); 954 __ jmp(&try_allocate); 955 956 // Patch the arguments.length and the parameters pointer. 957 __ bind(&adaptor_frame); 958 __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); 959 __ SmiToInteger64(rax, rcx); 960 __ leap(rdx, Operand(rbx, rax, times_pointer_size, 961 StandardFrameConstants::kCallerSPOffset)); 962 963 // Try the new space allocation. Start out with computing the size of 964 // the arguments object and the elements array. 965 Label add_arguments_object; 966 __ bind(&try_allocate); 967 __ testp(rax, rax); 968 __ j(zero, &add_arguments_object, Label::kNear); 969 __ leap(rax, Operand(rax, times_pointer_size, FixedArray::kHeaderSize)); 970 __ bind(&add_arguments_object); 971 __ addp(rax, Immediate(Heap::kStrictArgumentsObjectSize)); 972 973 // Do the allocation of both objects in one go. 974 __ Allocate(rax, rax, rbx, no_reg, &runtime, TAG_OBJECT); 975 976 // Get the arguments map from the current native context. 977 __ movp(rdi, NativeContextOperand()); 978 __ movp(rdi, ContextOperand(rdi, Context::STRICT_ARGUMENTS_MAP_INDEX)); 979 980 __ movp(FieldOperand(rax, JSObject::kMapOffset), rdi); 981 __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex); 982 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister); 983 __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister); 984 985 // Get the length (smi tagged) and set that as an in-object property too. 986 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); 987 __ movp(FieldOperand(rax, JSObject::kHeaderSize + 988 Heap::kArgumentsLengthIndex * kPointerSize), 989 rcx); 990 991 // If there are no actual arguments, we're done. 992 Label done; 993 __ testp(rcx, rcx); 994 __ j(zero, &done); 995 996 // Set up the elements pointer in the allocated arguments object and 997 // initialize the header in the elements fixed array. 998 __ leap(rdi, Operand(rax, Heap::kStrictArgumentsObjectSize)); 999 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi); 1000 __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); 1001 __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); 1002 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); 1003 1004 // Untag the length for the loop below. 1005 __ SmiToInteger64(rcx, rcx); 1006 1007 // Copy the fixed array slots. 1008 Label loop; 1009 __ bind(&loop); 1010 __ movp(rbx, Operand(rdx, -1 * kPointerSize)); // Skip receiver. 1011 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize), rbx); 1012 __ addp(rdi, Immediate(kPointerSize)); 1013 __ subp(rdx, Immediate(kPointerSize)); 1014 __ decp(rcx); 1015 __ j(not_zero, &loop); 1016 1017 // Return. 1018 __ bind(&done); 1019 __ ret(0); 1020 1021 // Do the runtime call to allocate the arguments object. 1022 __ bind(&runtime); 1023 __ PopReturnAddressTo(rax); 1024 __ Push(rdi); // Push function. 1025 __ Push(rdx); // Push parameters pointer. 1026 __ Push(rcx); // Push parameter count. 1027 __ PushReturnAddressFrom(rax); 1028 __ TailCallRuntime(Runtime::kNewStrictArguments); 1029 } 1030 1031 1032 void RegExpExecStub::Generate(MacroAssembler* masm) { 1033 // Just jump directly to runtime if native RegExp is not selected at compile 1034 // time or if regexp entry in generated code is turned off runtime switch or 1035 // at compilation. 1036 #ifdef V8_INTERPRETED_REGEXP 1037 __ TailCallRuntime(Runtime::kRegExpExec); 1038 #else // V8_INTERPRETED_REGEXP 1039 1040 // Stack frame on entry. 1041 // rsp[0] : return address 1042 // rsp[8] : last_match_info (expected JSArray) 1043 // rsp[16] : previous index 1044 // rsp[24] : subject string 1045 // rsp[32] : JSRegExp object 1046 1047 enum RegExpExecStubArgumentIndices { 1048 JS_REG_EXP_OBJECT_ARGUMENT_INDEX, 1049 SUBJECT_STRING_ARGUMENT_INDEX, 1050 PREVIOUS_INDEX_ARGUMENT_INDEX, 1051 LAST_MATCH_INFO_ARGUMENT_INDEX, 1052 REG_EXP_EXEC_ARGUMENT_COUNT 1053 }; 1054 1055 StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT, 1056 ARGUMENTS_DONT_CONTAIN_RECEIVER); 1057 Label runtime; 1058 // Ensure that a RegExp stack is allocated. 1059 ExternalReference address_of_regexp_stack_memory_address = 1060 ExternalReference::address_of_regexp_stack_memory_address(isolate()); 1061 ExternalReference address_of_regexp_stack_memory_size = 1062 ExternalReference::address_of_regexp_stack_memory_size(isolate()); 1063 __ Load(kScratchRegister, address_of_regexp_stack_memory_size); 1064 __ testp(kScratchRegister, kScratchRegister); 1065 __ j(zero, &runtime); 1066 1067 // Check that the first argument is a JSRegExp object. 1068 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); 1069 __ JumpIfSmi(rax, &runtime); 1070 __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); 1071 __ j(not_equal, &runtime); 1072 1073 // Check that the RegExp has been compiled (data contains a fixed array). 1074 __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset)); 1075 if (FLAG_debug_code) { 1076 Condition is_smi = masm->CheckSmi(rax); 1077 __ Check(NegateCondition(is_smi), 1078 kUnexpectedTypeForRegExpDataFixedArrayExpected); 1079 __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister); 1080 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); 1081 } 1082 1083 // rax: RegExp data (FixedArray) 1084 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. 1085 __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset)); 1086 __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); 1087 __ j(not_equal, &runtime); 1088 1089 // rax: RegExp data (FixedArray) 1090 // Check that the number of captures fit in the static offsets vector buffer. 1091 __ SmiToInteger32(rdx, 1092 FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset)); 1093 // Check (number_of_captures + 1) * 2 <= offsets vector size 1094 // Or number_of_captures <= offsets vector size / 2 - 1 1095 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); 1096 __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1)); 1097 __ j(above, &runtime); 1098 1099 // Reset offset for possibly sliced string. 1100 __ Set(r14, 0); 1101 __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); 1102 __ JumpIfSmi(rdi, &runtime); 1103 __ movp(r15, rdi); // Make a copy of the original subject string. 1104 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 1105 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 1106 // rax: RegExp data (FixedArray) 1107 // rdi: subject string 1108 // r15: subject string 1109 // Handle subject string according to its encoding and representation: 1110 // (1) Sequential two byte? If yes, go to (9). 1111 // (2) Sequential one byte? If yes, go to (6). 1112 // (3) Anything but sequential or cons? If yes, go to (7). 1113 // (4) Cons string. If the string is flat, replace subject with first string. 1114 // Otherwise bailout. 1115 // (5a) Is subject sequential two byte? If yes, go to (9). 1116 // (5b) Is subject external? If yes, go to (8). 1117 // (6) One byte sequential. Load regexp code for one byte. 1118 // (E) Carry on. 1119 /// [...] 1120 1121 // Deferred code at the end of the stub: 1122 // (7) Not a long external string? If yes, go to (10). 1123 // (8) External string. Make it, offset-wise, look like a sequential string. 1124 // (8a) Is the external string one byte? If yes, go to (6). 1125 // (9) Two byte sequential. Load regexp code for one byte. Go to (E). 1126 // (10) Short external string or not a string? If yes, bail out to runtime. 1127 // (11) Sliced string. Replace subject with parent. Go to (5a). 1128 1129 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */, 1130 external_string /* 8 */, check_underlying /* 5a */, 1131 not_seq_nor_cons /* 7 */, check_code /* E */, 1132 not_long_external /* 10 */; 1133 1134 // (1) Sequential two byte? If yes, go to (9). 1135 __ andb(rbx, Immediate(kIsNotStringMask | 1136 kStringRepresentationMask | 1137 kStringEncodingMask | 1138 kShortExternalStringMask)); 1139 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); 1140 __ j(zero, &seq_two_byte_string); // Go to (9). 1141 1142 // (2) Sequential one byte? If yes, go to (6). 1143 // Any other sequential string must be one byte. 1144 __ andb(rbx, Immediate(kIsNotStringMask | 1145 kStringRepresentationMask | 1146 kShortExternalStringMask)); 1147 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6). 1148 1149 // (3) Anything but sequential or cons? If yes, go to (7). 1150 // We check whether the subject string is a cons, since sequential strings 1151 // have already been covered. 1152 STATIC_ASSERT(kConsStringTag < kExternalStringTag); 1153 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); 1154 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); 1155 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); 1156 __ cmpp(rbx, Immediate(kExternalStringTag)); 1157 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7). 1158 1159 // (4) Cons string. Check that it's flat. 1160 // Replace subject with first string and reload instance type. 1161 __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset), 1162 Heap::kempty_stringRootIndex); 1163 __ j(not_equal, &runtime); 1164 __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset)); 1165 __ bind(&check_underlying); 1166 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 1167 __ movp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 1168 1169 // (5a) Is subject sequential two byte? If yes, go to (9). 1170 __ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask)); 1171 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); 1172 __ j(zero, &seq_two_byte_string); // Go to (9). 1173 // (5b) Is subject external? If yes, go to (8). 1174 __ testb(rbx, Immediate(kStringRepresentationMask)); 1175 // The underlying external string is never a short external string. 1176 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); 1177 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); 1178 __ j(not_zero, &external_string); // Go to (8) 1179 1180 // (6) One byte sequential. Load regexp code for one byte. 1181 __ bind(&seq_one_byte_string); 1182 // rax: RegExp data (FixedArray) 1183 __ movp(r11, FieldOperand(rax, JSRegExp::kDataOneByteCodeOffset)); 1184 __ Set(rcx, 1); // Type is one byte. 1185 1186 // (E) Carry on. String handling is done. 1187 __ bind(&check_code); 1188 // r11: irregexp code 1189 // Check that the irregexp code has been generated for the actual string 1190 // encoding. If it has, the field contains a code object otherwise it contains 1191 // smi (code flushing support) 1192 __ JumpIfSmi(r11, &runtime); 1193 1194 // rdi: sequential subject string (or look-alike, external string) 1195 // r15: original subject string 1196 // rcx: encoding of subject string (1 if one_byte, 0 if two_byte); 1197 // r11: code 1198 // Load used arguments before starting to push arguments for call to native 1199 // RegExp code to avoid handling changing stack height. 1200 // We have to use r15 instead of rdi to load the length because rdi might 1201 // have been only made to look like a sequential string when it actually 1202 // is an external string. 1203 __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX)); 1204 __ JumpIfNotSmi(rbx, &runtime); 1205 __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset)); 1206 __ j(above_equal, &runtime); 1207 __ SmiToInteger64(rbx, rbx); 1208 1209 // rdi: subject string 1210 // rbx: previous index 1211 // rcx: encoding of subject string (1 if one_byte 0 if two_byte); 1212 // r11: code 1213 // All checks done. Now push arguments for native regexp code. 1214 Counters* counters = isolate()->counters(); 1215 __ IncrementCounter(counters->regexp_entry_native(), 1); 1216 1217 // Isolates: note we add an additional parameter here (isolate pointer). 1218 static const int kRegExpExecuteArguments = 9; 1219 int argument_slots_on_stack = 1220 masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); 1221 __ EnterApiExitFrame(argument_slots_on_stack); 1222 1223 // Argument 9: Pass current isolate address. 1224 __ LoadAddress(kScratchRegister, 1225 ExternalReference::isolate_address(isolate())); 1226 __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize), 1227 kScratchRegister); 1228 1229 // Argument 8: Indicate that this is a direct call from JavaScript. 1230 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize), 1231 Immediate(1)); 1232 1233 // Argument 7: Start (high end) of backtracking stack memory area. 1234 __ Move(kScratchRegister, address_of_regexp_stack_memory_address); 1235 __ movp(r9, Operand(kScratchRegister, 0)); 1236 __ Move(kScratchRegister, address_of_regexp_stack_memory_size); 1237 __ addp(r9, Operand(kScratchRegister, 0)); 1238 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9); 1239 1240 // Argument 6: Set the number of capture registers to zero to force global 1241 // regexps to behave as non-global. This does not affect non-global regexps. 1242 // Argument 6 is passed in r9 on Linux and on the stack on Windows. 1243 #ifdef _WIN64 1244 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize), 1245 Immediate(0)); 1246 #else 1247 __ Set(r9, 0); 1248 #endif 1249 1250 // Argument 5: static offsets vector buffer. 1251 __ LoadAddress( 1252 r8, ExternalReference::address_of_static_offsets_vector(isolate())); 1253 // Argument 5 passed in r8 on Linux and on the stack on Windows. 1254 #ifdef _WIN64 1255 __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8); 1256 #endif 1257 1258 // rdi: subject string 1259 // rbx: previous index 1260 // rcx: encoding of subject string (1 if one_byte 0 if two_byte); 1261 // r11: code 1262 // r14: slice offset 1263 // r15: original subject string 1264 1265 // Argument 2: Previous index. 1266 __ movp(arg_reg_2, rbx); 1267 1268 // Argument 4: End of string data 1269 // Argument 3: Start of string data 1270 Label setup_two_byte, setup_rest, got_length, length_not_from_slice; 1271 // Prepare start and end index of the input. 1272 // Load the length from the original sliced string if that is the case. 1273 __ addp(rbx, r14); 1274 __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset)); 1275 __ addp(r14, arg_reg_3); // Using arg3 as scratch. 1276 1277 // rbx: start index of the input 1278 // r14: end index of the input 1279 // r15: original subject string 1280 __ testb(rcx, rcx); // Last use of rcx as encoding of subject string. 1281 __ j(zero, &setup_two_byte, Label::kNear); 1282 __ leap(arg_reg_4, 1283 FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize)); 1284 __ leap(arg_reg_3, 1285 FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize)); 1286 __ jmp(&setup_rest, Label::kNear); 1287 __ bind(&setup_two_byte); 1288 __ leap(arg_reg_4, 1289 FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize)); 1290 __ leap(arg_reg_3, 1291 FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize)); 1292 __ bind(&setup_rest); 1293 1294 // Argument 1: Original subject string. 1295 // The original subject is in the previous stack frame. Therefore we have to 1296 // use rbp, which points exactly to one pointer size below the previous rsp. 1297 // (Because creating a new stack frame pushes the previous rbp onto the stack 1298 // and thereby moves up rsp by one kPointerSize.) 1299 __ movp(arg_reg_1, r15); 1300 1301 // Locate the code entry and call it. 1302 __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); 1303 __ call(r11); 1304 1305 __ LeaveApiExitFrame(true); 1306 1307 // Check the result. 1308 Label success; 1309 Label exception; 1310 __ cmpl(rax, Immediate(1)); 1311 // We expect exactly one result since we force the called regexp to behave 1312 // as non-global. 1313 __ j(equal, &success, Label::kNear); 1314 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); 1315 __ j(equal, &exception); 1316 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); 1317 // If none of the above, it can only be retry. 1318 // Handle that in the runtime system. 1319 __ j(not_equal, &runtime); 1320 1321 // For failure return null. 1322 __ LoadRoot(rax, Heap::kNullValueRootIndex); 1323 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); 1324 1325 // Load RegExp data. 1326 __ bind(&success); 1327 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); 1328 __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); 1329 __ SmiToInteger32(rax, 1330 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); 1331 // Calculate number of capture registers (number_of_captures + 1) * 2. 1332 __ leal(rdx, Operand(rax, rax, times_1, 2)); 1333 1334 // rdx: Number of capture registers 1335 // Check that the fourth object is a JSArray object. 1336 __ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX)); 1337 __ JumpIfSmi(r15, &runtime); 1338 __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister); 1339 __ j(not_equal, &runtime); 1340 // Check that the JSArray is in fast case. 1341 __ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset)); 1342 __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset)); 1343 __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex); 1344 __ j(not_equal, &runtime); 1345 // Check that the last match info has space for the capture registers and the 1346 // additional information. Ensure no overflow in add. 1347 STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); 1348 __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); 1349 __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead)); 1350 __ cmpl(rdx, rax); 1351 __ j(greater, &runtime); 1352 1353 // rbx: last_match_info backing store (FixedArray) 1354 // rdx: number of capture registers 1355 // Store the capture count. 1356 __ Integer32ToSmi(kScratchRegister, rdx); 1357 __ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), 1358 kScratchRegister); 1359 // Store last subject and last input. 1360 __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); 1361 __ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); 1362 __ movp(rcx, rax); 1363 __ RecordWriteField(rbx, 1364 RegExpImpl::kLastSubjectOffset, 1365 rax, 1366 rdi, 1367 kDontSaveFPRegs); 1368 __ movp(rax, rcx); 1369 __ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); 1370 __ RecordWriteField(rbx, 1371 RegExpImpl::kLastInputOffset, 1372 rax, 1373 rdi, 1374 kDontSaveFPRegs); 1375 1376 // Get the static offsets vector filled by the native regexp code. 1377 __ LoadAddress( 1378 rcx, ExternalReference::address_of_static_offsets_vector(isolate())); 1379 1380 // rbx: last_match_info backing store (FixedArray) 1381 // rcx: offsets vector 1382 // rdx: number of capture registers 1383 Label next_capture, done; 1384 // Capture register counter starts from number of capture registers and 1385 // counts down until wraping after zero. 1386 __ bind(&next_capture); 1387 __ subp(rdx, Immediate(1)); 1388 __ j(negative, &done, Label::kNear); 1389 // Read the value from the static offsets vector buffer and make it a smi. 1390 __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); 1391 __ Integer32ToSmi(rdi, rdi); 1392 // Store the smi value in the last match info. 1393 __ movp(FieldOperand(rbx, 1394 rdx, 1395 times_pointer_size, 1396 RegExpImpl::kFirstCaptureOffset), 1397 rdi); 1398 __ jmp(&next_capture); 1399 __ bind(&done); 1400 1401 // Return last match info. 1402 __ movp(rax, r15); 1403 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); 1404 1405 __ bind(&exception); 1406 // Result must now be exception. If there is no pending exception already a 1407 // stack overflow (on the backtrack stack) was detected in RegExp code but 1408 // haven't created the exception yet. Handle that in the runtime system. 1409 // TODO(592): Rerunning the RegExp to get the stack overflow exception. 1410 ExternalReference pending_exception_address( 1411 Isolate::kPendingExceptionAddress, isolate()); 1412 Operand pending_exception_operand = 1413 masm->ExternalOperand(pending_exception_address, rbx); 1414 __ movp(rax, pending_exception_operand); 1415 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); 1416 __ cmpp(rax, rdx); 1417 __ j(equal, &runtime); 1418 1419 // For exception, throw the exception again. 1420 __ TailCallRuntime(Runtime::kRegExpExecReThrow); 1421 1422 // Do the runtime call to execute the regexp. 1423 __ bind(&runtime); 1424 __ TailCallRuntime(Runtime::kRegExpExec); 1425 1426 // Deferred code for string handling. 1427 // (7) Not a long external string? If yes, go to (10). 1428 __ bind(¬_seq_nor_cons); 1429 // Compare flags are still set from (3). 1430 __ j(greater, ¬_long_external, Label::kNear); // Go to (10). 1431 1432 // (8) External string. Short external strings have been ruled out. 1433 __ bind(&external_string); 1434 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 1435 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 1436 if (FLAG_debug_code) { 1437 // Assert that we do not have a cons or slice (indirect strings) here. 1438 // Sequential strings have already been ruled out. 1439 __ testb(rbx, Immediate(kIsIndirectStringMask)); 1440 __ Assert(zero, kExternalStringExpectedButNotFound); 1441 } 1442 __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); 1443 // Move the pointer so that offset-wise, it looks like a sequential string. 1444 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); 1445 __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 1446 STATIC_ASSERT(kTwoByteStringTag == 0); 1447 // (8a) Is the external string one byte? If yes, go to (6). 1448 __ testb(rbx, Immediate(kStringEncodingMask)); 1449 __ j(not_zero, &seq_one_byte_string); // Goto (6). 1450 1451 // rdi: subject string (flat two-byte) 1452 // rax: RegExp data (FixedArray) 1453 // (9) Two byte sequential. Load regexp code for one byte. Go to (E). 1454 __ bind(&seq_two_byte_string); 1455 __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset)); 1456 __ Set(rcx, 0); // Type is two byte. 1457 __ jmp(&check_code); // Go to (E). 1458 1459 // (10) Not a string or a short external string? If yes, bail out to runtime. 1460 __ bind(¬_long_external); 1461 // Catch non-string subject or short external string. 1462 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); 1463 __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask)); 1464 __ j(not_zero, &runtime); 1465 1466 // (11) Sliced string. Replace subject with parent. Go to (5a). 1467 // Load offset into r14 and replace subject string with parent. 1468 __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset)); 1469 __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset)); 1470 __ jmp(&check_underlying); 1471 #endif // V8_INTERPRETED_REGEXP 1472 } 1473 1474 1475 static int NegativeComparisonResult(Condition cc) { 1476 DCHECK(cc != equal); 1477 DCHECK((cc == less) || (cc == less_equal) 1478 || (cc == greater) || (cc == greater_equal)); 1479 return (cc == greater || cc == greater_equal) ? LESS : GREATER; 1480 } 1481 1482 1483 static void CheckInputType(MacroAssembler* masm, Register input, 1484 CompareICState::State expected, Label* fail) { 1485 Label ok; 1486 if (expected == CompareICState::SMI) { 1487 __ JumpIfNotSmi(input, fail); 1488 } else if (expected == CompareICState::NUMBER) { 1489 __ JumpIfSmi(input, &ok); 1490 __ CompareMap(input, masm->isolate()->factory()->heap_number_map()); 1491 __ j(not_equal, fail); 1492 } 1493 // We could be strict about internalized/non-internalized here, but as long as 1494 // hydrogen doesn't care, the stub doesn't have to care either. 1495 __ bind(&ok); 1496 } 1497 1498 1499 static void BranchIfNotInternalizedString(MacroAssembler* masm, 1500 Label* label, 1501 Register object, 1502 Register scratch) { 1503 __ JumpIfSmi(object, label); 1504 __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset)); 1505 __ movzxbp(scratch, 1506 FieldOperand(scratch, Map::kInstanceTypeOffset)); 1507 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 1508 __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); 1509 __ j(not_zero, label); 1510 } 1511 1512 1513 void CompareICStub::GenerateGeneric(MacroAssembler* masm) { 1514 Label runtime_call, check_unequal_objects, done; 1515 Condition cc = GetCondition(); 1516 Factory* factory = isolate()->factory(); 1517 1518 Label miss; 1519 CheckInputType(masm, rdx, left(), &miss); 1520 CheckInputType(masm, rax, right(), &miss); 1521 1522 // Compare two smis. 1523 Label non_smi, smi_done; 1524 __ JumpIfNotBothSmi(rax, rdx, &non_smi); 1525 __ subp(rdx, rax); 1526 __ j(no_overflow, &smi_done); 1527 __ notp(rdx); // Correct sign in case of overflow. rdx cannot be 0 here. 1528 __ bind(&smi_done); 1529 __ movp(rax, rdx); 1530 __ ret(0); 1531 __ bind(&non_smi); 1532 1533 // The compare stub returns a positive, negative, or zero 64-bit integer 1534 // value in rax, corresponding to result of comparing the two inputs. 1535 // NOTICE! This code is only reached after a smi-fast-case check, so 1536 // it is certain that at least one operand isn't a smi. 1537 1538 // Two identical objects are equal unless they are both NaN or undefined. 1539 { 1540 Label not_identical; 1541 __ cmpp(rax, rdx); 1542 __ j(not_equal, ¬_identical, Label::kNear); 1543 1544 if (cc != equal) { 1545 // Check for undefined. undefined OP undefined is false even though 1546 // undefined == undefined. 1547 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); 1548 if (is_strong(strength())) { 1549 // In strong mode, this comparison must throw, so call the runtime. 1550 __ j(equal, &runtime_call, Label::kFar); 1551 } else { 1552 Label check_for_nan; 1553 __ j(not_equal, &check_for_nan, Label::kNear); 1554 __ Set(rax, NegativeComparisonResult(cc)); 1555 __ ret(0); 1556 __ bind(&check_for_nan); 1557 } 1558 } 1559 1560 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), 1561 // so we do the second best thing - test it ourselves. 1562 Label heap_number; 1563 // If it's not a heap number, then return equal for (in)equality operator. 1564 __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), 1565 factory->heap_number_map()); 1566 __ j(equal, &heap_number, Label::kNear); 1567 if (cc != equal) { 1568 __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset)); 1569 __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset)); 1570 // Call runtime on identical objects. Otherwise return equal. 1571 __ cmpb(rcx, Immediate(static_cast<uint8_t>(FIRST_JS_RECEIVER_TYPE))); 1572 __ j(above_equal, &runtime_call, Label::kFar); 1573 // Call runtime on identical symbols since we need to throw a TypeError. 1574 __ cmpb(rcx, Immediate(static_cast<uint8_t>(SYMBOL_TYPE))); 1575 __ j(equal, &runtime_call, Label::kFar); 1576 // Call runtime on identical SIMD values since we must throw a TypeError. 1577 __ cmpb(rcx, Immediate(static_cast<uint8_t>(SIMD128_VALUE_TYPE))); 1578 __ j(equal, &runtime_call, Label::kFar); 1579 if (is_strong(strength())) { 1580 // We have already tested for smis and heap numbers, so if both 1581 // arguments are not strings we must proceed to the slow case. 1582 __ testb(rcx, Immediate(kIsNotStringMask)); 1583 __ j(not_zero, &runtime_call, Label::kFar); 1584 } 1585 } 1586 __ Set(rax, EQUAL); 1587 __ ret(0); 1588 1589 __ bind(&heap_number); 1590 // It is a heap number, so return equal if it's not NaN. 1591 // For NaN, return 1 for every condition except greater and 1592 // greater-equal. Return -1 for them, so the comparison yields 1593 // false for all conditions except not-equal. 1594 __ Set(rax, EQUAL); 1595 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 1596 __ Ucomisd(xmm0, xmm0); 1597 __ setcc(parity_even, rax); 1598 // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. 1599 if (cc == greater_equal || cc == greater) { 1600 __ negp(rax); 1601 } 1602 __ ret(0); 1603 1604 __ bind(¬_identical); 1605 } 1606 1607 if (cc == equal) { // Both strict and non-strict. 1608 Label slow; // Fallthrough label. 1609 1610 // If we're doing a strict equality comparison, we don't have to do 1611 // type conversion, so we generate code to do fast comparison for objects 1612 // and oddballs. Non-smi numbers and strings still go through the usual 1613 // slow-case code. 1614 if (strict()) { 1615 // If either is a Smi (we know that not both are), then they can only 1616 // be equal if the other is a HeapNumber. If so, use the slow case. 1617 { 1618 Label not_smis; 1619 __ SelectNonSmi(rbx, rax, rdx, ¬_smis); 1620 1621 // Check if the non-smi operand is a heap number. 1622 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), 1623 factory->heap_number_map()); 1624 // If heap number, handle it in the slow case. 1625 __ j(equal, &slow); 1626 // Return non-equal. ebx (the lower half of rbx) is not zero. 1627 __ movp(rax, rbx); 1628 __ ret(0); 1629 1630 __ bind(¬_smis); 1631 } 1632 1633 // If either operand is a JSObject or an oddball value, then they are not 1634 // equal since their pointers are different 1635 // There is no test for undetectability in strict equality. 1636 1637 // If the first object is a JS object, we have done pointer comparison. 1638 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); 1639 Label first_non_object; 1640 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); 1641 __ j(below, &first_non_object, Label::kNear); 1642 // Return non-zero (rax (not rax) is not zero) 1643 Label return_not_equal; 1644 STATIC_ASSERT(kHeapObjectTag != 0); 1645 __ bind(&return_not_equal); 1646 __ ret(0); 1647 1648 __ bind(&first_non_object); 1649 // Check for oddballs: true, false, null, undefined. 1650 __ CmpInstanceType(rcx, ODDBALL_TYPE); 1651 __ j(equal, &return_not_equal); 1652 1653 __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx); 1654 __ j(above_equal, &return_not_equal); 1655 1656 // Check for oddballs: true, false, null, undefined. 1657 __ CmpInstanceType(rcx, ODDBALL_TYPE); 1658 __ j(equal, &return_not_equal); 1659 1660 // Fall through to the general case. 1661 } 1662 __ bind(&slow); 1663 } 1664 1665 // Generate the number comparison code. 1666 Label non_number_comparison; 1667 Label unordered; 1668 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); 1669 __ xorl(rax, rax); 1670 __ xorl(rcx, rcx); 1671 __ Ucomisd(xmm0, xmm1); 1672 1673 // Don't base result on EFLAGS when a NaN is involved. 1674 __ j(parity_even, &unordered, Label::kNear); 1675 // Return a result of -1, 0, or 1, based on EFLAGS. 1676 __ setcc(above, rax); 1677 __ setcc(below, rcx); 1678 __ subp(rax, rcx); 1679 __ ret(0); 1680 1681 // If one of the numbers was NaN, then the result is always false. 1682 // The cc is never not-equal. 1683 __ bind(&unordered); 1684 DCHECK(cc != not_equal); 1685 if (cc == less || cc == less_equal) { 1686 __ Set(rax, 1); 1687 } else { 1688 __ Set(rax, -1); 1689 } 1690 __ ret(0); 1691 1692 // The number comparison code did not provide a valid result. 1693 __ bind(&non_number_comparison); 1694 1695 // Fast negative check for internalized-to-internalized equality. 1696 Label check_for_strings; 1697 if (cc == equal) { 1698 BranchIfNotInternalizedString( 1699 masm, &check_for_strings, rax, kScratchRegister); 1700 BranchIfNotInternalizedString( 1701 masm, &check_for_strings, rdx, kScratchRegister); 1702 1703 // We've already checked for object identity, so if both operands are 1704 // internalized strings they aren't equal. Register rax (not rax) already 1705 // holds a non-zero value, which indicates not equal, so just return. 1706 __ ret(0); 1707 } 1708 1709 __ bind(&check_for_strings); 1710 1711 __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx, 1712 &check_unequal_objects); 1713 1714 // Inline comparison of one-byte strings. 1715 if (cc == equal) { 1716 StringHelper::GenerateFlatOneByteStringEquals(masm, rdx, rax, rcx, rbx); 1717 } else { 1718 StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx, 1719 rdi, r8); 1720 } 1721 1722 #ifdef DEBUG 1723 __ Abort(kUnexpectedFallThroughFromStringComparison); 1724 #endif 1725 1726 __ bind(&check_unequal_objects); 1727 if (cc == equal && !strict()) { 1728 // Not strict equality. Objects are unequal if 1729 // they are both JSObjects and not undetectable, 1730 // and their pointers are different. 1731 Label return_unequal; 1732 // At most one is a smi, so we can test for smi by adding the two. 1733 // A smi plus a heap object has the low bit set, a heap object plus 1734 // a heap object has the low bit clear. 1735 STATIC_ASSERT(kSmiTag == 0); 1736 STATIC_ASSERT(kSmiTagMask == 1); 1737 __ leap(rcx, Operand(rax, rdx, times_1, 0)); 1738 __ testb(rcx, Immediate(kSmiTagMask)); 1739 __ j(not_zero, &runtime_call, Label::kNear); 1740 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rbx); 1741 __ j(below, &runtime_call, Label::kNear); 1742 __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx); 1743 __ j(below, &runtime_call, Label::kNear); 1744 __ testb(FieldOperand(rbx, Map::kBitFieldOffset), 1745 Immediate(1 << Map::kIsUndetectable)); 1746 __ j(zero, &return_unequal, Label::kNear); 1747 __ testb(FieldOperand(rcx, Map::kBitFieldOffset), 1748 Immediate(1 << Map::kIsUndetectable)); 1749 __ j(zero, &return_unequal, Label::kNear); 1750 // The objects are both undetectable, so they both compare as the value 1751 // undefined, and are equal. 1752 __ Set(rax, EQUAL); 1753 __ bind(&return_unequal); 1754 // Return non-equal by returning the non-zero object pointer in rax, 1755 // or return equal if we fell through to here. 1756 __ ret(0); 1757 } 1758 __ bind(&runtime_call); 1759 1760 // Push arguments below the return address to prepare jump to builtin. 1761 __ PopReturnAddressTo(rcx); 1762 __ Push(rdx); 1763 __ Push(rax); 1764 1765 // Figure out which native to call and setup the arguments. 1766 if (cc == equal) { 1767 __ PushReturnAddressFrom(rcx); 1768 __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals); 1769 } else { 1770 __ Push(Smi::FromInt(NegativeComparisonResult(cc))); 1771 __ PushReturnAddressFrom(rcx); 1772 __ TailCallRuntime(is_strong(strength()) ? Runtime::kCompare_Strong 1773 : Runtime::kCompare); 1774 } 1775 1776 __ bind(&miss); 1777 GenerateMiss(masm); 1778 } 1779 1780 1781 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { 1782 // rax : number of arguments to the construct function 1783 // rbx : feedback vector 1784 // rdx : slot in feedback vector (Smi) 1785 // rdi : the function to call 1786 FrameScope scope(masm, StackFrame::INTERNAL); 1787 1788 // Number-of-arguments register must be smi-tagged to call out. 1789 __ Integer32ToSmi(rax, rax); 1790 __ Push(rax); 1791 __ Push(rdi); 1792 __ Integer32ToSmi(rdx, rdx); 1793 __ Push(rdx); 1794 __ Push(rbx); 1795 1796 __ CallStub(stub); 1797 1798 __ Pop(rbx); 1799 __ Pop(rdx); 1800 __ Pop(rdi); 1801 __ Pop(rax); 1802 __ SmiToInteger32(rax, rax); 1803 } 1804 1805 1806 static void GenerateRecordCallTarget(MacroAssembler* masm) { 1807 // Cache the called function in a feedback vector slot. Cache states 1808 // are uninitialized, monomorphic (indicated by a JSFunction), and 1809 // megamorphic. 1810 // rax : number of arguments to the construct function 1811 // rbx : feedback vector 1812 // rdx : slot in feedback vector (Smi) 1813 // rdi : the function to call 1814 Isolate* isolate = masm->isolate(); 1815 Label initialize, done, miss, megamorphic, not_array_function, 1816 done_no_smi_convert; 1817 1818 // Load the cache state into r11. 1819 __ SmiToInteger32(rdx, rdx); 1820 __ movp(r11, 1821 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1822 1823 // A monomorphic cache hit or an already megamorphic state: invoke the 1824 // function without changing the state. 1825 // We don't know if r11 is a WeakCell or a Symbol, but it's harmless to read 1826 // at this position in a symbol (see static asserts in 1827 // type-feedback-vector.h). 1828 Label check_allocation_site; 1829 __ cmpp(rdi, FieldOperand(r11, WeakCell::kValueOffset)); 1830 __ j(equal, &done, Label::kFar); 1831 __ CompareRoot(r11, Heap::kmegamorphic_symbolRootIndex); 1832 __ j(equal, &done, Label::kFar); 1833 __ CompareRoot(FieldOperand(r11, HeapObject::kMapOffset), 1834 Heap::kWeakCellMapRootIndex); 1835 __ j(not_equal, &check_allocation_site); 1836 1837 // If the weak cell is cleared, we have a new chance to become monomorphic. 1838 __ CheckSmi(FieldOperand(r11, WeakCell::kValueOffset)); 1839 __ j(equal, &initialize); 1840 __ jmp(&megamorphic); 1841 1842 __ bind(&check_allocation_site); 1843 // If we came here, we need to see if we are the array function. 1844 // If we didn't have a matching function, and we didn't find the megamorph 1845 // sentinel, then we have in the slot either some other function or an 1846 // AllocationSite. 1847 __ CompareRoot(FieldOperand(r11, 0), Heap::kAllocationSiteMapRootIndex); 1848 __ j(not_equal, &miss); 1849 1850 // Make sure the function is the Array() function 1851 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11); 1852 __ cmpp(rdi, r11); 1853 __ j(not_equal, &megamorphic); 1854 __ jmp(&done); 1855 1856 __ bind(&miss); 1857 1858 // A monomorphic miss (i.e, here the cache is not uninitialized) goes 1859 // megamorphic. 1860 __ CompareRoot(r11, Heap::kuninitialized_symbolRootIndex); 1861 __ j(equal, &initialize); 1862 // MegamorphicSentinel is an immortal immovable object (undefined) so no 1863 // write-barrier is needed. 1864 __ bind(&megamorphic); 1865 __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), 1866 TypeFeedbackVector::MegamorphicSentinel(isolate)); 1867 __ jmp(&done); 1868 1869 // An uninitialized cache is patched with the function or sentinel to 1870 // indicate the ElementsKind if function is the Array constructor. 1871 __ bind(&initialize); 1872 1873 // Make sure the function is the Array() function 1874 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11); 1875 __ cmpp(rdi, r11); 1876 __ j(not_equal, ¬_array_function); 1877 1878 CreateAllocationSiteStub create_stub(isolate); 1879 CallStubInRecordCallTarget(masm, &create_stub); 1880 __ jmp(&done_no_smi_convert); 1881 1882 __ bind(¬_array_function); 1883 CreateWeakCellStub weak_cell_stub(isolate); 1884 CallStubInRecordCallTarget(masm, &weak_cell_stub); 1885 __ jmp(&done_no_smi_convert); 1886 1887 __ bind(&done); 1888 __ Integer32ToSmi(rdx, rdx); 1889 1890 __ bind(&done_no_smi_convert); 1891 } 1892 1893 1894 void CallConstructStub::Generate(MacroAssembler* masm) { 1895 // rax : number of arguments 1896 // rbx : feedback vector 1897 // rdx : slot in feedback vector (Smi) 1898 // rdi : constructor function 1899 1900 Label non_function; 1901 // Check that the constructor is not a smi. 1902 __ JumpIfSmi(rdi, &non_function); 1903 // Check that constructor is a JSFunction. 1904 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, r11); 1905 __ j(not_equal, &non_function); 1906 1907 GenerateRecordCallTarget(masm); 1908 1909 __ SmiToInteger32(rdx, rdx); 1910 Label feedback_register_initialized; 1911 // Put the AllocationSite from the feedback vector into rbx, or undefined. 1912 __ movp(rbx, 1913 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1914 __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex); 1915 __ j(equal, &feedback_register_initialized, Label::kNear); 1916 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); 1917 __ bind(&feedback_register_initialized); 1918 1919 __ AssertUndefinedOrAllocationSite(rbx); 1920 1921 // Pass new target to construct stub. 1922 __ movp(rdx, rdi); 1923 1924 // Tail call to the function-specific construct stub (still in the caller 1925 // context at this point). 1926 __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); 1927 __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset)); 1928 __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); 1929 __ jmp(rcx); 1930 1931 __ bind(&non_function); 1932 __ movp(rdx, rdi); 1933 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); 1934 } 1935 1936 1937 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) { 1938 // rdi - function 1939 // rdx - slot id 1940 // rbx - vector 1941 // rcx - allocation site (loaded from vector[slot]). 1942 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8); 1943 __ cmpp(rdi, r8); 1944 __ j(not_equal, miss); 1945 1946 __ movp(rax, Immediate(arg_count())); 1947 1948 // Increment the call count for monomorphic function calls. 1949 __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size, 1950 FixedArray::kHeaderSize + kPointerSize), 1951 Smi::FromInt(CallICNexus::kCallCountIncrement)); 1952 1953 __ movp(rbx, rcx); 1954 __ movp(rdx, rdi); 1955 ArrayConstructorStub stub(masm->isolate(), arg_count()); 1956 __ TailCallStub(&stub); 1957 } 1958 1959 1960 void CallICStub::Generate(MacroAssembler* masm) { 1961 // ----------- S t a t e ------------- 1962 // -- rdi - function 1963 // -- rdx - slot id 1964 // -- rbx - vector 1965 // ----------------------------------- 1966 Isolate* isolate = masm->isolate(); 1967 Label extra_checks_or_miss, call, call_function; 1968 int argc = arg_count(); 1969 StackArgumentsAccessor args(rsp, argc); 1970 ParameterCount actual(argc); 1971 1972 // The checks. First, does rdi match the recorded monomorphic target? 1973 __ SmiToInteger32(rdx, rdx); 1974 __ movp(rcx, 1975 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1976 1977 // We don't know that we have a weak cell. We might have a private symbol 1978 // or an AllocationSite, but the memory is safe to examine. 1979 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to 1980 // FixedArray. 1981 // WeakCell::kValueOffset - contains a JSFunction or Smi(0) 1982 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not 1983 // computed, meaning that it can't appear to be a pointer. If the low bit is 1984 // 0, then hash is computed, but the 0 bit prevents the field from appearing 1985 // to be a pointer. 1986 STATIC_ASSERT(WeakCell::kSize >= kPointerSize); 1987 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset == 1988 WeakCell::kValueOffset && 1989 WeakCell::kValueOffset == Symbol::kHashFieldSlot); 1990 1991 __ cmpp(rdi, FieldOperand(rcx, WeakCell::kValueOffset)); 1992 __ j(not_equal, &extra_checks_or_miss); 1993 1994 // The compare above could have been a SMI/SMI comparison. Guard against this 1995 // convincing us that we have a monomorphic JSFunction. 1996 __ JumpIfSmi(rdi, &extra_checks_or_miss); 1997 1998 // Increment the call count for monomorphic function calls. 1999 __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size, 2000 FixedArray::kHeaderSize + kPointerSize), 2001 Smi::FromInt(CallICNexus::kCallCountIncrement)); 2002 2003 __ bind(&call_function); 2004 __ Set(rax, argc); 2005 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode()), 2006 RelocInfo::CODE_TARGET); 2007 2008 __ bind(&extra_checks_or_miss); 2009 Label uninitialized, miss, not_allocation_site; 2010 2011 __ Cmp(rcx, TypeFeedbackVector::MegamorphicSentinel(isolate)); 2012 __ j(equal, &call); 2013 2014 // Check if we have an allocation site. 2015 __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), 2016 Heap::kAllocationSiteMapRootIndex); 2017 __ j(not_equal, ¬_allocation_site); 2018 2019 // We have an allocation site. 2020 HandleArrayCase(masm, &miss); 2021 2022 __ bind(¬_allocation_site); 2023 2024 // The following cases attempt to handle MISS cases without going to the 2025 // runtime. 2026 if (FLAG_trace_ic) { 2027 __ jmp(&miss); 2028 } 2029 2030 __ Cmp(rcx, TypeFeedbackVector::UninitializedSentinel(isolate)); 2031 __ j(equal, &uninitialized); 2032 2033 // We are going megamorphic. If the feedback is a JSFunction, it is fine 2034 // to handle it here. More complex cases are dealt with in the runtime. 2035 __ AssertNotSmi(rcx); 2036 __ CmpObjectType(rcx, JS_FUNCTION_TYPE, rcx); 2037 __ j(not_equal, &miss); 2038 __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), 2039 TypeFeedbackVector::MegamorphicSentinel(isolate)); 2040 2041 __ bind(&call); 2042 __ Set(rax, argc); 2043 __ Jump(masm->isolate()->builtins()->Call(convert_mode()), 2044 RelocInfo::CODE_TARGET); 2045 2046 __ bind(&uninitialized); 2047 2048 // We are going monomorphic, provided we actually have a JSFunction. 2049 __ JumpIfSmi(rdi, &miss); 2050 2051 // Goto miss case if we do not have a function. 2052 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); 2053 __ j(not_equal, &miss); 2054 2055 // Make sure the function is not the Array() function, which requires special 2056 // behavior on MISS. 2057 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rcx); 2058 __ cmpp(rdi, rcx); 2059 __ j(equal, &miss); 2060 2061 // Make sure the function belongs to the same native context. 2062 __ movp(rcx, FieldOperand(rdi, JSFunction::kContextOffset)); 2063 __ movp(rcx, ContextOperand(rcx, Context::NATIVE_CONTEXT_INDEX)); 2064 __ cmpp(rcx, NativeContextOperand()); 2065 __ j(not_equal, &miss); 2066 2067 // Initialize the call counter. 2068 __ Move(FieldOperand(rbx, rdx, times_pointer_size, 2069 FixedArray::kHeaderSize + kPointerSize), 2070 Smi::FromInt(CallICNexus::kCallCountIncrement)); 2071 2072 // Store the function. Use a stub since we need a frame for allocation. 2073 // rbx - vector 2074 // rdx - slot (needs to be in smi form) 2075 // rdi - function 2076 { 2077 FrameScope scope(masm, StackFrame::INTERNAL); 2078 CreateWeakCellStub create_stub(isolate); 2079 2080 __ Integer32ToSmi(rdx, rdx); 2081 __ Push(rdi); 2082 __ CallStub(&create_stub); 2083 __ Pop(rdi); 2084 } 2085 2086 __ jmp(&call_function); 2087 2088 // We are here because tracing is on or we encountered a MISS case we can't 2089 // handle here. 2090 __ bind(&miss); 2091 GenerateMiss(masm); 2092 2093 __ jmp(&call); 2094 2095 // Unreachable 2096 __ int3(); 2097 } 2098 2099 2100 void CallICStub::GenerateMiss(MacroAssembler* masm) { 2101 FrameScope scope(masm, StackFrame::INTERNAL); 2102 2103 // Push the receiver and the function and feedback info. 2104 __ Push(rdi); 2105 __ Push(rbx); 2106 __ Integer32ToSmi(rdx, rdx); 2107 __ Push(rdx); 2108 2109 // Call the entry. 2110 __ CallRuntime(Runtime::kCallIC_Miss); 2111 2112 // Move result to edi and exit the internal frame. 2113 __ movp(rdi, rax); 2114 } 2115 2116 2117 bool CEntryStub::NeedsImmovableCode() { 2118 return false; 2119 } 2120 2121 2122 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { 2123 CEntryStub::GenerateAheadOfTime(isolate); 2124 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); 2125 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); 2126 // It is important that the store buffer overflow stubs are generated first. 2127 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); 2128 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); 2129 CreateWeakCellStub::GenerateAheadOfTime(isolate); 2130 BinaryOpICStub::GenerateAheadOfTime(isolate); 2131 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); 2132 StoreFastElementStub::GenerateAheadOfTime(isolate); 2133 TypeofStub::GenerateAheadOfTime(isolate); 2134 } 2135 2136 2137 void CodeStub::GenerateFPStubs(Isolate* isolate) { 2138 } 2139 2140 2141 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { 2142 CEntryStub stub(isolate, 1, kDontSaveFPRegs); 2143 stub.GetCode(); 2144 CEntryStub save_doubles(isolate, 1, kSaveFPRegs); 2145 save_doubles.GetCode(); 2146 } 2147 2148 2149 void CEntryStub::Generate(MacroAssembler* masm) { 2150 // rax: number of arguments including receiver 2151 // rbx: pointer to C function (C callee-saved) 2152 // rbp: frame pointer of calling JS frame (restored after C call) 2153 // rsp: stack pointer (restored after C call) 2154 // rsi: current context (restored) 2155 // 2156 // If argv_in_register(): 2157 // r15: pointer to the first argument 2158 2159 ProfileEntryHookStub::MaybeCallEntryHook(masm); 2160 2161 // Enter the exit frame that transitions from JavaScript to C++. 2162 #ifdef _WIN64 2163 int arg_stack_space = (result_size() < 2 ? 2 : 4); 2164 #else // _WIN64 2165 int arg_stack_space = 0; 2166 #endif // _WIN64 2167 if (argv_in_register()) { 2168 DCHECK(!save_doubles()); 2169 __ EnterApiExitFrame(arg_stack_space); 2170 // Move argc into r14 (argv is already in r15). 2171 __ movp(r14, rax); 2172 } else { 2173 __ EnterExitFrame(arg_stack_space, save_doubles()); 2174 } 2175 2176 // rbx: pointer to builtin function (C callee-saved). 2177 // rbp: frame pointer of exit frame (restored after C call). 2178 // rsp: stack pointer (restored after C call). 2179 // r14: number of arguments including receiver (C callee-saved). 2180 // r15: argv pointer (C callee-saved). 2181 2182 // Simple results returned in rax (both AMD64 and Win64 calling conventions). 2183 // Complex results must be written to address passed as first argument. 2184 // AMD64 calling convention: a struct of two pointers in rax+rdx 2185 2186 // Check stack alignment. 2187 if (FLAG_debug_code) { 2188 __ CheckStackAlignment(); 2189 } 2190 2191 // Call C function. 2192 #ifdef _WIN64 2193 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. 2194 // Pass argv and argc as two parameters. The arguments object will 2195 // be created by stubs declared by DECLARE_RUNTIME_FUNCTION(). 2196 if (result_size() < 2) { 2197 // Pass a pointer to the Arguments object as the first argument. 2198 // Return result in single register (rax). 2199 __ movp(rcx, r14); // argc. 2200 __ movp(rdx, r15); // argv. 2201 __ Move(r8, ExternalReference::isolate_address(isolate())); 2202 } else { 2203 DCHECK_EQ(2, result_size()); 2204 // Pass a pointer to the result location as the first argument. 2205 __ leap(rcx, StackSpaceOperand(2)); 2206 // Pass a pointer to the Arguments object as the second argument. 2207 __ movp(rdx, r14); // argc. 2208 __ movp(r8, r15); // argv. 2209 __ Move(r9, ExternalReference::isolate_address(isolate())); 2210 } 2211 2212 #else // _WIN64 2213 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. 2214 __ movp(rdi, r14); // argc. 2215 __ movp(rsi, r15); // argv. 2216 __ Move(rdx, ExternalReference::isolate_address(isolate())); 2217 #endif // _WIN64 2218 __ call(rbx); 2219 // Result is in rax - do not destroy this register! 2220 2221 #ifdef _WIN64 2222 // If return value is on the stack, pop it to registers. 2223 if (result_size() > 1) { 2224 DCHECK_EQ(2, result_size()); 2225 // Read result values stored on stack. Result is stored 2226 // above the four argument mirror slots and the two 2227 // Arguments object slots. 2228 __ movq(rax, Operand(rsp, 6 * kRegisterSize)); 2229 __ movq(rdx, Operand(rsp, 7 * kRegisterSize)); 2230 } 2231 #endif // _WIN64 2232 2233 // Check result for exception sentinel. 2234 Label exception_returned; 2235 __ CompareRoot(rax, Heap::kExceptionRootIndex); 2236 __ j(equal, &exception_returned); 2237 2238 // Check that there is no pending exception, otherwise we 2239 // should have returned the exception sentinel. 2240 if (FLAG_debug_code) { 2241 Label okay; 2242 __ LoadRoot(r14, Heap::kTheHoleValueRootIndex); 2243 ExternalReference pending_exception_address( 2244 Isolate::kPendingExceptionAddress, isolate()); 2245 Operand pending_exception_operand = 2246 masm->ExternalOperand(pending_exception_address); 2247 __ cmpp(r14, pending_exception_operand); 2248 __ j(equal, &okay, Label::kNear); 2249 __ int3(); 2250 __ bind(&okay); 2251 } 2252 2253 // Exit the JavaScript to C++ exit frame. 2254 __ LeaveExitFrame(save_doubles(), !argv_in_register()); 2255 __ ret(0); 2256 2257 // Handling of exception. 2258 __ bind(&exception_returned); 2259 2260 ExternalReference pending_handler_context_address( 2261 Isolate::kPendingHandlerContextAddress, isolate()); 2262 ExternalReference pending_handler_code_address( 2263 Isolate::kPendingHandlerCodeAddress, isolate()); 2264 ExternalReference pending_handler_offset_address( 2265 Isolate::kPendingHandlerOffsetAddress, isolate()); 2266 ExternalReference pending_handler_fp_address( 2267 Isolate::kPendingHandlerFPAddress, isolate()); 2268 ExternalReference pending_handler_sp_address( 2269 Isolate::kPendingHandlerSPAddress, isolate()); 2270 2271 // Ask the runtime for help to determine the handler. This will set rax to 2272 // contain the current pending exception, don't clobber it. 2273 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, 2274 isolate()); 2275 { 2276 FrameScope scope(masm, StackFrame::MANUAL); 2277 __ movp(arg_reg_1, Immediate(0)); // argc. 2278 __ movp(arg_reg_2, Immediate(0)); // argv. 2279 __ Move(arg_reg_3, ExternalReference::isolate_address(isolate())); 2280 __ PrepareCallCFunction(3); 2281 __ CallCFunction(find_handler, 3); 2282 } 2283 2284 // Retrieve the handler context, SP and FP. 2285 __ movp(rsi, masm->ExternalOperand(pending_handler_context_address)); 2286 __ movp(rsp, masm->ExternalOperand(pending_handler_sp_address)); 2287 __ movp(rbp, masm->ExternalOperand(pending_handler_fp_address)); 2288 2289 // If the handler is a JS frame, restore the context to the frame. Note that 2290 // the context will be set to (rsi == 0) for non-JS frames. 2291 Label skip; 2292 __ testp(rsi, rsi); 2293 __ j(zero, &skip, Label::kNear); 2294 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); 2295 __ bind(&skip); 2296 2297 // Compute the handler entry address and jump to it. 2298 __ movp(rdi, masm->ExternalOperand(pending_handler_code_address)); 2299 __ movp(rdx, masm->ExternalOperand(pending_handler_offset_address)); 2300 __ leap(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize)); 2301 __ jmp(rdi); 2302 } 2303 2304 2305 void JSEntryStub::Generate(MacroAssembler* masm) { 2306 Label invoke, handler_entry, exit; 2307 Label not_outermost_js, not_outermost_js_2; 2308 2309 ProfileEntryHookStub::MaybeCallEntryHook(masm); 2310 2311 { // NOLINT. Scope block confuses linter. 2312 MacroAssembler::NoRootArrayScope uninitialized_root_register(masm); 2313 // Set up frame. 2314 __ pushq(rbp); 2315 __ movp(rbp, rsp); 2316 2317 // Push the stack frame type marker twice. 2318 int marker = type(); 2319 // Scratch register is neither callee-save, nor an argument register on any 2320 // platform. It's free to use at this point. 2321 // Cannot use smi-register for loading yet. 2322 __ Move(kScratchRegister, Smi::FromInt(marker), Assembler::RelocInfoNone()); 2323 __ Push(kScratchRegister); // context slot 2324 __ Push(kScratchRegister); // function slot 2325 // Save callee-saved registers (X64/X32/Win64 calling conventions). 2326 __ pushq(r12); 2327 __ pushq(r13); 2328 __ pushq(r14); 2329 __ pushq(r15); 2330 #ifdef _WIN64 2331 __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 2332 __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 2333 #endif 2334 __ pushq(rbx); 2335 2336 #ifdef _WIN64 2337 // On Win64 XMM6-XMM15 are callee-save 2338 __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); 2339 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); 2340 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); 2341 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); 2342 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); 2343 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); 2344 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); 2345 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); 2346 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); 2347 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); 2348 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); 2349 #endif 2350 2351 // Set up the roots and smi constant registers. 2352 // Needs to be done before any further smi loads. 2353 __ InitializeRootRegister(); 2354 } 2355 2356 // Save copies of the top frame descriptor on the stack. 2357 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate()); 2358 { 2359 Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 2360 __ Push(c_entry_fp_operand); 2361 } 2362 2363 // If this is the outermost JS call, set js_entry_sp value. 2364 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); 2365 __ Load(rax, js_entry_sp); 2366 __ testp(rax, rax); 2367 __ j(not_zero, ¬_outermost_js); 2368 __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); 2369 __ movp(rax, rbp); 2370 __ Store(js_entry_sp, rax); 2371 Label cont; 2372 __ jmp(&cont); 2373 __ bind(¬_outermost_js); 2374 __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); 2375 __ bind(&cont); 2376 2377 // Jump to a faked try block that does the invoke, with a faked catch 2378 // block that sets the pending exception. 2379 __ jmp(&invoke); 2380 __ bind(&handler_entry); 2381 handler_offset_ = handler_entry.pos(); 2382 // Caught exception: Store result (exception) in the pending exception 2383 // field in the JSEnv and return a failure sentinel. 2384 ExternalReference pending_exception(Isolate::kPendingExceptionAddress, 2385 isolate()); 2386 __ Store(pending_exception, rax); 2387 __ LoadRoot(rax, Heap::kExceptionRootIndex); 2388 __ jmp(&exit); 2389 2390 // Invoke: Link this frame into the handler chain. 2391 __ bind(&invoke); 2392 __ PushStackHandler(); 2393 2394 // Clear any pending exceptions. 2395 __ LoadRoot(rax, Heap::kTheHoleValueRootIndex); 2396 __ Store(pending_exception, rax); 2397 2398 // Fake a receiver (NULL). 2399 __ Push(Immediate(0)); // receiver 2400 2401 // Invoke the function by calling through JS entry trampoline builtin and 2402 // pop the faked function when we return. We load the address from an 2403 // external reference instead of inlining the call target address directly 2404 // in the code, because the builtin stubs may not have been generated yet 2405 // at the time this code is generated. 2406 if (type() == StackFrame::ENTRY_CONSTRUCT) { 2407 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, 2408 isolate()); 2409 __ Load(rax, construct_entry); 2410 } else { 2411 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); 2412 __ Load(rax, entry); 2413 } 2414 __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); 2415 __ call(kScratchRegister); 2416 2417 // Unlink this frame from the handler chain. 2418 __ PopStackHandler(); 2419 2420 __ bind(&exit); 2421 // Check if the current stack frame is marked as the outermost JS frame. 2422 __ Pop(rbx); 2423 __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); 2424 __ j(not_equal, ¬_outermost_js_2); 2425 __ Move(kScratchRegister, js_entry_sp); 2426 __ movp(Operand(kScratchRegister, 0), Immediate(0)); 2427 __ bind(¬_outermost_js_2); 2428 2429 // Restore the top frame descriptor from the stack. 2430 { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 2431 __ Pop(c_entry_fp_operand); 2432 } 2433 2434 // Restore callee-saved registers (X64 conventions). 2435 #ifdef _WIN64 2436 // On Win64 XMM6-XMM15 are callee-save 2437 __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); 2438 __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); 2439 __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); 2440 __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); 2441 __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); 2442 __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); 2443 __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); 2444 __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); 2445 __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); 2446 __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); 2447 __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); 2448 #endif 2449 2450 __ popq(rbx); 2451 #ifdef _WIN64 2452 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. 2453 __ popq(rsi); 2454 __ popq(rdi); 2455 #endif 2456 __ popq(r15); 2457 __ popq(r14); 2458 __ popq(r13); 2459 __ popq(r12); 2460 __ addp(rsp, Immediate(2 * kPointerSize)); // remove markers 2461 2462 // Restore frame pointer and return. 2463 __ popq(rbp); 2464 __ ret(0); 2465 } 2466 2467 2468 void InstanceOfStub::Generate(MacroAssembler* masm) { 2469 Register const object = rdx; // Object (lhs). 2470 Register const function = rax; // Function (rhs). 2471 Register const object_map = rcx; // Map of {object}. 2472 Register const function_map = r8; // Map of {function}. 2473 Register const function_prototype = rdi; // Prototype of {function}. 2474 2475 DCHECK(object.is(InstanceOfDescriptor::LeftRegister())); 2476 DCHECK(function.is(InstanceOfDescriptor::RightRegister())); 2477 2478 // Check if {object} is a smi. 2479 Label object_is_smi; 2480 __ JumpIfSmi(object, &object_is_smi, Label::kNear); 2481 2482 // Lookup the {function} and the {object} map in the global instanceof cache. 2483 // Note: This is safe because we clear the global instanceof cache whenever 2484 // we change the prototype of any object. 2485 Label fast_case, slow_case; 2486 __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset)); 2487 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); 2488 __ j(not_equal, &fast_case, Label::kNear); 2489 __ CompareRoot(object_map, Heap::kInstanceofCacheMapRootIndex); 2490 __ j(not_equal, &fast_case, Label::kNear); 2491 __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); 2492 __ ret(0); 2493 2494 // If {object} is a smi we can safely return false if {function} is a JS 2495 // function, otherwise we have to miss to the runtime and throw an exception. 2496 __ bind(&object_is_smi); 2497 __ JumpIfSmi(function, &slow_case); 2498 __ CmpObjectType(function, JS_FUNCTION_TYPE, function_map); 2499 __ j(not_equal, &slow_case); 2500 __ LoadRoot(rax, Heap::kFalseValueRootIndex); 2501 __ ret(0); 2502 2503 // Fast-case: The {function} must be a valid JSFunction. 2504 __ bind(&fast_case); 2505 __ JumpIfSmi(function, &slow_case); 2506 __ CmpObjectType(function, JS_FUNCTION_TYPE, function_map); 2507 __ j(not_equal, &slow_case); 2508 2509 // Ensure that {function} has an instance prototype. 2510 __ testb(FieldOperand(function_map, Map::kBitFieldOffset), 2511 Immediate(1 << Map::kHasNonInstancePrototype)); 2512 __ j(not_zero, &slow_case); 2513 2514 // Get the "prototype" (or initial map) of the {function}. 2515 __ movp(function_prototype, 2516 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 2517 __ AssertNotSmi(function_prototype); 2518 2519 // Resolve the prototype if the {function} has an initial map. Afterwards the 2520 // {function_prototype} will be either the JSReceiver prototype object or the 2521 // hole value, which means that no instances of the {function} were created so 2522 // far and hence we should return false. 2523 Label function_prototype_valid; 2524 Register const function_prototype_map = kScratchRegister; 2525 __ CmpObjectType(function_prototype, MAP_TYPE, function_prototype_map); 2526 __ j(not_equal, &function_prototype_valid, Label::kNear); 2527 __ movp(function_prototype, 2528 FieldOperand(function_prototype, Map::kPrototypeOffset)); 2529 __ bind(&function_prototype_valid); 2530 __ AssertNotSmi(function_prototype); 2531 2532 // Update the global instanceof cache with the current {object} map and 2533 // {function}. The cached answer will be set when it is known below. 2534 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); 2535 __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex); 2536 2537 // Loop through the prototype chain looking for the {function} prototype. 2538 // Assume true, and change to false if not found. 2539 Label done, loop, fast_runtime_fallback; 2540 __ LoadRoot(rax, Heap::kTrueValueRootIndex); 2541 __ bind(&loop); 2542 2543 __ testb(FieldOperand(object_map, Map::kBitFieldOffset), 2544 Immediate(1 << Map::kIsAccessCheckNeeded)); 2545 __ j(not_zero, &fast_runtime_fallback, Label::kNear); 2546 __ CmpInstanceType(object_map, JS_PROXY_TYPE); 2547 __ j(equal, &fast_runtime_fallback, Label::kNear); 2548 2549 __ movp(object, FieldOperand(object_map, Map::kPrototypeOffset)); 2550 __ cmpp(object, function_prototype); 2551 __ j(equal, &done, Label::kNear); 2552 __ CompareRoot(object, Heap::kNullValueRootIndex); 2553 __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset)); 2554 __ j(not_equal, &loop); 2555 __ LoadRoot(rax, Heap::kFalseValueRootIndex); 2556 __ bind(&done); 2557 __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); 2558 __ ret(0); 2559 2560 // Found Proxy or access check needed: Call the runtime. 2561 __ bind(&fast_runtime_fallback); 2562 __ PopReturnAddressTo(kScratchRegister); 2563 __ Push(object); 2564 __ Push(function_prototype); 2565 __ PushReturnAddressFrom(kScratchRegister); 2566 // Invalidate the instanceof cache. 2567 __ Move(rax, Smi::FromInt(0)); 2568 __ StoreRoot(rax, Heap::kInstanceofCacheFunctionRootIndex); 2569 __ TailCallRuntime(Runtime::kHasInPrototypeChain); 2570 2571 // Slow-case: Call the %InstanceOf runtime function. 2572 __ bind(&slow_case); 2573 __ PopReturnAddressTo(kScratchRegister); 2574 __ Push(object); 2575 __ Push(function); 2576 __ PushReturnAddressFrom(kScratchRegister); 2577 __ TailCallRuntime(Runtime::kInstanceOf); 2578 } 2579 2580 2581 // ------------------------------------------------------------------------- 2582 // StringCharCodeAtGenerator 2583 2584 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { 2585 // If the receiver is a smi trigger the non-string case. 2586 if (check_mode_ == RECEIVER_IS_UNKNOWN) { 2587 __ JumpIfSmi(object_, receiver_not_string_); 2588 2589 // Fetch the instance type of the receiver into result register. 2590 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); 2591 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 2592 // If the receiver is not a string trigger the non-string case. 2593 __ testb(result_, Immediate(kIsNotStringMask)); 2594 __ j(not_zero, receiver_not_string_); 2595 } 2596 2597 // If the index is non-smi trigger the non-smi case. 2598 __ JumpIfNotSmi(index_, &index_not_smi_); 2599 __ bind(&got_smi_index_); 2600 2601 // Check for index out of range. 2602 __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset)); 2603 __ j(above_equal, index_out_of_range_); 2604 2605 __ SmiToInteger32(index_, index_); 2606 2607 StringCharLoadGenerator::Generate( 2608 masm, object_, index_, result_, &call_runtime_); 2609 2610 __ Integer32ToSmi(result_, result_); 2611 __ bind(&exit_); 2612 } 2613 2614 2615 void StringCharCodeAtGenerator::GenerateSlow( 2616 MacroAssembler* masm, EmbedMode embed_mode, 2617 const RuntimeCallHelper& call_helper) { 2618 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); 2619 2620 Factory* factory = masm->isolate()->factory(); 2621 // Index is not a smi. 2622 __ bind(&index_not_smi_); 2623 // If index is a heap number, try converting it to an integer. 2624 __ CheckMap(index_, 2625 factory->heap_number_map(), 2626 index_not_number_, 2627 DONT_DO_SMI_CHECK); 2628 call_helper.BeforeCall(masm); 2629 if (embed_mode == PART_OF_IC_HANDLER) { 2630 __ Push(LoadWithVectorDescriptor::VectorRegister()); 2631 __ Push(LoadDescriptor::SlotRegister()); 2632 } 2633 __ Push(object_); 2634 __ Push(index_); // Consumed by runtime conversion function. 2635 if (index_flags_ == STRING_INDEX_IS_NUMBER) { 2636 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero); 2637 } else { 2638 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); 2639 // NumberToSmi discards numbers that are not exact integers. 2640 __ CallRuntime(Runtime::kNumberToSmi); 2641 } 2642 if (!index_.is(rax)) { 2643 // Save the conversion result before the pop instructions below 2644 // have a chance to overwrite it. 2645 __ movp(index_, rax); 2646 } 2647 __ Pop(object_); 2648 if (embed_mode == PART_OF_IC_HANDLER) { 2649 __ Pop(LoadDescriptor::SlotRegister()); 2650 __ Pop(LoadWithVectorDescriptor::VectorRegister()); 2651 } 2652 // Reload the instance type. 2653 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); 2654 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 2655 call_helper.AfterCall(masm); 2656 // If index is still not a smi, it must be out of range. 2657 __ JumpIfNotSmi(index_, index_out_of_range_); 2658 // Otherwise, return to the fast path. 2659 __ jmp(&got_smi_index_); 2660 2661 // Call runtime. We get here when the receiver is a string and the 2662 // index is a number, but the code of getting the actual character 2663 // is too complex (e.g., when the string needs to be flattened). 2664 __ bind(&call_runtime_); 2665 call_helper.BeforeCall(masm); 2666 __ Push(object_); 2667 __ Integer32ToSmi(index_, index_); 2668 __ Push(index_); 2669 __ CallRuntime(Runtime::kStringCharCodeAtRT); 2670 if (!result_.is(rax)) { 2671 __ movp(result_, rax); 2672 } 2673 call_helper.AfterCall(masm); 2674 __ jmp(&exit_); 2675 2676 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); 2677 } 2678 2679 2680 // ------------------------------------------------------------------------- 2681 // StringCharFromCodeGenerator 2682 2683 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { 2684 // Fast case of Heap::LookupSingleCharacterStringFromCode. 2685 __ JumpIfNotSmi(code_, &slow_case_); 2686 __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode)); 2687 __ j(above, &slow_case_); 2688 2689 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); 2690 SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); 2691 __ movp(result_, FieldOperand(result_, index.reg, index.scale, 2692 FixedArray::kHeaderSize)); 2693 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); 2694 __ j(equal, &slow_case_); 2695 __ bind(&exit_); 2696 } 2697 2698 2699 void StringCharFromCodeGenerator::GenerateSlow( 2700 MacroAssembler* masm, 2701 const RuntimeCallHelper& call_helper) { 2702 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); 2703 2704 __ bind(&slow_case_); 2705 call_helper.BeforeCall(masm); 2706 __ Push(code_); 2707 __ CallRuntime(Runtime::kStringCharFromCode); 2708 if (!result_.is(rax)) { 2709 __ movp(result_, rax); 2710 } 2711 call_helper.AfterCall(masm); 2712 __ jmp(&exit_); 2713 2714 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); 2715 } 2716 2717 2718 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, 2719 Register dest, 2720 Register src, 2721 Register count, 2722 String::Encoding encoding) { 2723 // Nothing to do for zero characters. 2724 Label done; 2725 __ testl(count, count); 2726 __ j(zero, &done, Label::kNear); 2727 2728 // Make count the number of bytes to copy. 2729 if (encoding == String::TWO_BYTE_ENCODING) { 2730 STATIC_ASSERT(2 == sizeof(uc16)); 2731 __ addl(count, count); 2732 } 2733 2734 // Copy remaining characters. 2735 Label loop; 2736 __ bind(&loop); 2737 __ movb(kScratchRegister, Operand(src, 0)); 2738 __ movb(Operand(dest, 0), kScratchRegister); 2739 __ incp(src); 2740 __ incp(dest); 2741 __ decl(count); 2742 __ j(not_zero, &loop); 2743 2744 __ bind(&done); 2745 } 2746 2747 2748 void SubStringStub::Generate(MacroAssembler* masm) { 2749 Label runtime; 2750 2751 // Stack frame on entry. 2752 // rsp[0] : return address 2753 // rsp[8] : to 2754 // rsp[16] : from 2755 // rsp[24] : string 2756 2757 enum SubStringStubArgumentIndices { 2758 STRING_ARGUMENT_INDEX, 2759 FROM_ARGUMENT_INDEX, 2760 TO_ARGUMENT_INDEX, 2761 SUB_STRING_ARGUMENT_COUNT 2762 }; 2763 2764 StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT, 2765 ARGUMENTS_DONT_CONTAIN_RECEIVER); 2766 2767 // Make sure first argument is a string. 2768 __ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX)); 2769 STATIC_ASSERT(kSmiTag == 0); 2770 __ testl(rax, Immediate(kSmiTagMask)); 2771 __ j(zero, &runtime); 2772 Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); 2773 __ j(NegateCondition(is_string), &runtime); 2774 2775 // rax: string 2776 // rbx: instance type 2777 // Calculate length of sub string using the smi values. 2778 __ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX)); 2779 __ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX)); 2780 __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime); 2781 2782 __ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen. 2783 __ cmpp(rcx, FieldOperand(rax, String::kLengthOffset)); 2784 Label not_original_string; 2785 // Shorter than original string's length: an actual substring. 2786 __ j(below, ¬_original_string, Label::kNear); 2787 // Longer than original string's length or negative: unsafe arguments. 2788 __ j(above, &runtime); 2789 // Return original string. 2790 Counters* counters = isolate()->counters(); 2791 __ IncrementCounter(counters->sub_string_native(), 1); 2792 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); 2793 __ bind(¬_original_string); 2794 2795 Label single_char; 2796 __ SmiCompare(rcx, Smi::FromInt(1)); 2797 __ j(equal, &single_char); 2798 2799 __ SmiToInteger32(rcx, rcx); 2800 2801 // rax: string 2802 // rbx: instance type 2803 // rcx: sub string length 2804 // rdx: from index (smi) 2805 // Deal with different string types: update the index if necessary 2806 // and put the underlying string into edi. 2807 Label underlying_unpacked, sliced_string, seq_or_external_string; 2808 // If the string is not indirect, it can only be sequential or external. 2809 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); 2810 STATIC_ASSERT(kIsIndirectStringMask != 0); 2811 __ testb(rbx, Immediate(kIsIndirectStringMask)); 2812 __ j(zero, &seq_or_external_string, Label::kNear); 2813 2814 __ testb(rbx, Immediate(kSlicedNotConsMask)); 2815 __ j(not_zero, &sliced_string, Label::kNear); 2816 // Cons string. Check whether it is flat, then fetch first part. 2817 // Flat cons strings have an empty second part. 2818 __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset), 2819 Heap::kempty_stringRootIndex); 2820 __ j(not_equal, &runtime); 2821 __ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset)); 2822 // Update instance type. 2823 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 2824 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 2825 __ jmp(&underlying_unpacked, Label::kNear); 2826 2827 __ bind(&sliced_string); 2828 // Sliced string. Fetch parent and correct start index by offset. 2829 __ addp(rdx, FieldOperand(rax, SlicedString::kOffsetOffset)); 2830 __ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset)); 2831 // Update instance type. 2832 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 2833 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 2834 __ jmp(&underlying_unpacked, Label::kNear); 2835 2836 __ bind(&seq_or_external_string); 2837 // Sequential or external string. Just move string to the correct register. 2838 __ movp(rdi, rax); 2839 2840 __ bind(&underlying_unpacked); 2841 2842 if (FLAG_string_slices) { 2843 Label copy_routine; 2844 // rdi: underlying subject string 2845 // rbx: instance type of underlying subject string 2846 // rdx: adjusted start index (smi) 2847 // rcx: length 2848 // If coming from the make_two_character_string path, the string 2849 // is too short to be sliced anyways. 2850 __ cmpp(rcx, Immediate(SlicedString::kMinLength)); 2851 // Short slice. Copy instead of slicing. 2852 __ j(less, ©_routine); 2853 // Allocate new sliced string. At this point we do not reload the instance 2854 // type including the string encoding because we simply rely on the info 2855 // provided by the original string. It does not matter if the original 2856 // string's encoding is wrong because we always have to recheck encoding of 2857 // the newly created string's parent anyways due to externalized strings. 2858 Label two_byte_slice, set_slice_header; 2859 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); 2860 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); 2861 __ testb(rbx, Immediate(kStringEncodingMask)); 2862 __ j(zero, &two_byte_slice, Label::kNear); 2863 __ AllocateOneByteSlicedString(rax, rbx, r14, &runtime); 2864 __ jmp(&set_slice_header, Label::kNear); 2865 __ bind(&two_byte_slice); 2866 __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime); 2867 __ bind(&set_slice_header); 2868 __ Integer32ToSmi(rcx, rcx); 2869 __ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx); 2870 __ movp(FieldOperand(rax, SlicedString::kHashFieldOffset), 2871 Immediate(String::kEmptyHashField)); 2872 __ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi); 2873 __ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx); 2874 __ IncrementCounter(counters->sub_string_native(), 1); 2875 __ ret(3 * kPointerSize); 2876 2877 __ bind(©_routine); 2878 } 2879 2880 // rdi: underlying subject string 2881 // rbx: instance type of underlying subject string 2882 // rdx: adjusted start index (smi) 2883 // rcx: length 2884 // The subject string can only be external or sequential string of either 2885 // encoding at this point. 2886 Label two_byte_sequential, sequential_string; 2887 STATIC_ASSERT(kExternalStringTag != 0); 2888 STATIC_ASSERT(kSeqStringTag == 0); 2889 __ testb(rbx, Immediate(kExternalStringTag)); 2890 __ j(zero, &sequential_string); 2891 2892 // Handle external string. 2893 // Rule out short external strings. 2894 STATIC_ASSERT(kShortExternalStringTag != 0); 2895 __ testb(rbx, Immediate(kShortExternalStringMask)); 2896 __ j(not_zero, &runtime); 2897 __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); 2898 // Move the pointer so that offset-wise, it looks like a sequential string. 2899 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); 2900 __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 2901 2902 __ bind(&sequential_string); 2903 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); 2904 __ testb(rbx, Immediate(kStringEncodingMask)); 2905 __ j(zero, &two_byte_sequential); 2906 2907 // Allocate the result. 2908 __ AllocateOneByteString(rax, rcx, r11, r14, r15, &runtime); 2909 2910 // rax: result string 2911 // rcx: result string length 2912 { // Locate character of sub string start. 2913 SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1); 2914 __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale, 2915 SeqOneByteString::kHeaderSize - kHeapObjectTag)); 2916 } 2917 // Locate first character of result. 2918 __ leap(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize)); 2919 2920 // rax: result string 2921 // rcx: result length 2922 // r14: first character of result 2923 // rsi: character of sub string start 2924 StringHelper::GenerateCopyCharacters( 2925 masm, rdi, r14, rcx, String::ONE_BYTE_ENCODING); 2926 __ IncrementCounter(counters->sub_string_native(), 1); 2927 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); 2928 2929 __ bind(&two_byte_sequential); 2930 // Allocate the result. 2931 __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime); 2932 2933 // rax: result string 2934 // rcx: result string length 2935 { // Locate character of sub string start. 2936 SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2); 2937 __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale, 2938 SeqOneByteString::kHeaderSize - kHeapObjectTag)); 2939 } 2940 // Locate first character of result. 2941 __ leap(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); 2942 2943 // rax: result string 2944 // rcx: result length 2945 // rdi: first character of result 2946 // r14: character of sub string start 2947 StringHelper::GenerateCopyCharacters( 2948 masm, rdi, r14, rcx, String::TWO_BYTE_ENCODING); 2949 __ IncrementCounter(counters->sub_string_native(), 1); 2950 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); 2951 2952 // Just jump to runtime to create the sub string. 2953 __ bind(&runtime); 2954 __ TailCallRuntime(Runtime::kSubString); 2955 2956 __ bind(&single_char); 2957 // rax: string 2958 // rbx: instance type 2959 // rcx: sub string length (smi) 2960 // rdx: from index (smi) 2961 StringCharAtGenerator generator(rax, rdx, rcx, rax, &runtime, &runtime, 2962 &runtime, STRING_INDEX_IS_NUMBER, 2963 RECEIVER_IS_STRING); 2964 generator.GenerateFast(masm); 2965 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); 2966 generator.SkipSlow(masm, &runtime); 2967 } 2968 2969 2970 void ToNumberStub::Generate(MacroAssembler* masm) { 2971 // The ToNumber stub takes one argument in rax. 2972 Label not_smi; 2973 __ JumpIfNotSmi(rax, ¬_smi, Label::kNear); 2974 __ Ret(); 2975 __ bind(¬_smi); 2976 2977 Label not_heap_number; 2978 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), 2979 Heap::kHeapNumberMapRootIndex); 2980 __ j(not_equal, ¬_heap_number, Label::kNear); 2981 __ Ret(); 2982 __ bind(¬_heap_number); 2983 2984 Label not_string, slow_string; 2985 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdi); 2986 // rax: object 2987 // rdi: object map 2988 __ j(above_equal, ¬_string, Label::kNear); 2989 // Check if string has a cached array index. 2990 __ testl(FieldOperand(rax, String::kHashFieldOffset), 2991 Immediate(String::kContainsCachedArrayIndexMask)); 2992 __ j(not_zero, &slow_string, Label::kNear); 2993 __ movl(rax, FieldOperand(rax, String::kHashFieldOffset)); 2994 __ IndexFromHash(rax, rax); 2995 __ Ret(); 2996 __ bind(&slow_string); 2997 __ PopReturnAddressTo(rcx); // Pop return address. 2998 __ Push(rax); // Push argument. 2999 __ PushReturnAddressFrom(rcx); // Push return address. 3000 __ TailCallRuntime(Runtime::kStringToNumber); 3001 __ bind(¬_string); 3002 3003 Label not_oddball; 3004 __ CmpInstanceType(rdi, ODDBALL_TYPE); 3005 __ j(not_equal, ¬_oddball, Label::kNear); 3006 __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset)); 3007 __ Ret(); 3008 __ bind(¬_oddball); 3009 3010 __ PopReturnAddressTo(rcx); // Pop return address. 3011 __ Push(rax); // Push argument. 3012 __ PushReturnAddressFrom(rcx); // Push return address. 3013 __ TailCallRuntime(Runtime::kToNumber); 3014 } 3015 3016 3017 void ToLengthStub::Generate(MacroAssembler* masm) { 3018 // The ToLength stub takes on argument in rax. 3019 Label not_smi, positive_smi; 3020 __ JumpIfNotSmi(rax, ¬_smi, Label::kNear); 3021 STATIC_ASSERT(kSmiTag == 0); 3022 __ testp(rax, rax); 3023 __ j(greater_equal, &positive_smi, Label::kNear); 3024 __ xorl(rax, rax); 3025 __ bind(&positive_smi); 3026 __ Ret(); 3027 __ bind(¬_smi); 3028 3029 __ PopReturnAddressTo(rcx); // Pop return address. 3030 __ Push(rax); // Push argument. 3031 __ PushReturnAddressFrom(rcx); // Push return address. 3032 __ TailCallRuntime(Runtime::kToLength); 3033 } 3034 3035 3036 void ToStringStub::Generate(MacroAssembler* masm) { 3037 // The ToString stub takes one argument in rax. 3038 Label is_number; 3039 __ JumpIfSmi(rax, &is_number, Label::kNear); 3040 3041 Label not_string; 3042 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdi); 3043 // rax: receiver 3044 // rdi: receiver map 3045 __ j(above_equal, ¬_string, Label::kNear); 3046 __ Ret(); 3047 __ bind(¬_string); 3048 3049 Label not_heap_number; 3050 __ CompareRoot(rdi, Heap::kHeapNumberMapRootIndex); 3051 __ j(not_equal, ¬_heap_number, Label::kNear); 3052 __ bind(&is_number); 3053 NumberToStringStub stub(isolate()); 3054 __ TailCallStub(&stub); 3055 __ bind(¬_heap_number); 3056 3057 Label not_oddball; 3058 __ CmpInstanceType(rdi, ODDBALL_TYPE); 3059 __ j(not_equal, ¬_oddball, Label::kNear); 3060 __ movp(rax, FieldOperand(rax, Oddball::kToStringOffset)); 3061 __ Ret(); 3062 __ bind(¬_oddball); 3063 3064 __ PopReturnAddressTo(rcx); // Pop return address. 3065 __ Push(rax); // Push argument. 3066 __ PushReturnAddressFrom(rcx); // Push return address. 3067 __ TailCallRuntime(Runtime::kToString); 3068 } 3069 3070 3071 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, 3072 Register left, 3073 Register right, 3074 Register scratch1, 3075 Register scratch2) { 3076 Register length = scratch1; 3077 3078 // Compare lengths. 3079 Label check_zero_length; 3080 __ movp(length, FieldOperand(left, String::kLengthOffset)); 3081 __ SmiCompare(length, FieldOperand(right, String::kLengthOffset)); 3082 __ j(equal, &check_zero_length, Label::kNear); 3083 __ Move(rax, Smi::FromInt(NOT_EQUAL)); 3084 __ ret(0); 3085 3086 // Check if the length is zero. 3087 Label compare_chars; 3088 __ bind(&check_zero_length); 3089 STATIC_ASSERT(kSmiTag == 0); 3090 __ SmiTest(length); 3091 __ j(not_zero, &compare_chars, Label::kNear); 3092 __ Move(rax, Smi::FromInt(EQUAL)); 3093 __ ret(0); 3094 3095 // Compare characters. 3096 __ bind(&compare_chars); 3097 Label strings_not_equal; 3098 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, 3099 &strings_not_equal, Label::kNear); 3100 3101 // Characters are equal. 3102 __ Move(rax, Smi::FromInt(EQUAL)); 3103 __ ret(0); 3104 3105 // Characters are not equal. 3106 __ bind(&strings_not_equal); 3107 __ Move(rax, Smi::FromInt(NOT_EQUAL)); 3108 __ ret(0); 3109 } 3110 3111 3112 void StringHelper::GenerateCompareFlatOneByteStrings( 3113 MacroAssembler* masm, Register left, Register right, Register scratch1, 3114 Register scratch2, Register scratch3, Register scratch4) { 3115 // Ensure that you can always subtract a string length from a non-negative 3116 // number (e.g. another length). 3117 STATIC_ASSERT(String::kMaxLength < 0x7fffffff); 3118 3119 // Find minimum length and length difference. 3120 __ movp(scratch1, FieldOperand(left, String::kLengthOffset)); 3121 __ movp(scratch4, scratch1); 3122 __ SmiSub(scratch4, 3123 scratch4, 3124 FieldOperand(right, String::kLengthOffset)); 3125 // Register scratch4 now holds left.length - right.length. 3126 const Register length_difference = scratch4; 3127 Label left_shorter; 3128 __ j(less, &left_shorter, Label::kNear); 3129 // The right string isn't longer that the left one. 3130 // Get the right string's length by subtracting the (non-negative) difference 3131 // from the left string's length. 3132 __ SmiSub(scratch1, scratch1, length_difference); 3133 __ bind(&left_shorter); 3134 // Register scratch1 now holds Min(left.length, right.length). 3135 const Register min_length = scratch1; 3136 3137 Label compare_lengths; 3138 // If min-length is zero, go directly to comparing lengths. 3139 __ SmiTest(min_length); 3140 __ j(zero, &compare_lengths, Label::kNear); 3141 3142 // Compare loop. 3143 Label result_not_equal; 3144 GenerateOneByteCharsCompareLoop( 3145 masm, left, right, min_length, scratch2, &result_not_equal, 3146 // In debug-code mode, SmiTest below might push 3147 // the target label outside the near range. 3148 Label::kFar); 3149 3150 // Completed loop without finding different characters. 3151 // Compare lengths (precomputed). 3152 __ bind(&compare_lengths); 3153 __ SmiTest(length_difference); 3154 Label length_not_equal; 3155 __ j(not_zero, &length_not_equal, Label::kNear); 3156 3157 // Result is EQUAL. 3158 __ Move(rax, Smi::FromInt(EQUAL)); 3159 __ ret(0); 3160 3161 Label result_greater; 3162 Label result_less; 3163 __ bind(&length_not_equal); 3164 __ j(greater, &result_greater, Label::kNear); 3165 __ jmp(&result_less, Label::kNear); 3166 __ bind(&result_not_equal); 3167 // Unequal comparison of left to right, either character or length. 3168 __ j(above, &result_greater, Label::kNear); 3169 __ bind(&result_less); 3170 3171 // Result is LESS. 3172 __ Move(rax, Smi::FromInt(LESS)); 3173 __ ret(0); 3174 3175 // Result is GREATER. 3176 __ bind(&result_greater); 3177 __ Move(rax, Smi::FromInt(GREATER)); 3178 __ ret(0); 3179 } 3180 3181 3182 void StringHelper::GenerateOneByteCharsCompareLoop( 3183 MacroAssembler* masm, Register left, Register right, Register length, 3184 Register scratch, Label* chars_not_equal, Label::Distance near_jump) { 3185 // Change index to run from -length to -1 by adding length to string 3186 // start. This means that loop ends when index reaches zero, which 3187 // doesn't need an additional compare. 3188 __ SmiToInteger32(length, length); 3189 __ leap(left, 3190 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize)); 3191 __ leap(right, 3192 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize)); 3193 __ negq(length); 3194 Register index = length; // index = -length; 3195 3196 // Compare loop. 3197 Label loop; 3198 __ bind(&loop); 3199 __ movb(scratch, Operand(left, index, times_1, 0)); 3200 __ cmpb(scratch, Operand(right, index, times_1, 0)); 3201 __ j(not_equal, chars_not_equal, near_jump); 3202 __ incq(index); 3203 __ j(not_zero, &loop); 3204 } 3205 3206 3207 void StringCompareStub::Generate(MacroAssembler* masm) { 3208 // ----------- S t a t e ------------- 3209 // -- rdx : left string 3210 // -- rax : right string 3211 // -- rsp[0] : return address 3212 // ----------------------------------- 3213 __ AssertString(rdx); 3214 __ AssertString(rax); 3215 3216 // Check for identity. 3217 Label not_same; 3218 __ cmpp(rdx, rax); 3219 __ j(not_equal, ¬_same, Label::kNear); 3220 __ Move(rax, Smi::FromInt(EQUAL)); 3221 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1); 3222 __ Ret(); 3223 3224 __ bind(¬_same); 3225 3226 // Check that both are sequential one-byte strings. 3227 Label runtime; 3228 __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx, &runtime); 3229 3230 // Inline comparison of one-byte strings. 3231 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1); 3232 StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx, rdi, 3233 r8); 3234 3235 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) 3236 // tagged as a small integer. 3237 __ bind(&runtime); 3238 __ PopReturnAddressTo(rcx); 3239 __ Push(rdx); 3240 __ Push(rax); 3241 __ PushReturnAddressFrom(rcx); 3242 __ TailCallRuntime(Runtime::kStringCompare); 3243 } 3244 3245 3246 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { 3247 // ----------- S t a t e ------------- 3248 // -- rdx : left 3249 // -- rax : right 3250 // -- rsp[0] : return address 3251 // ----------------------------------- 3252 3253 // Load rcx with the allocation site. We stick an undefined dummy value here 3254 // and replace it with the real allocation site later when we instantiate this 3255 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). 3256 __ Move(rcx, handle(isolate()->heap()->undefined_value())); 3257 3258 // Make sure that we actually patched the allocation site. 3259 if (FLAG_debug_code) { 3260 __ testb(rcx, Immediate(kSmiTagMask)); 3261 __ Assert(not_equal, kExpectedAllocationSite); 3262 __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset), 3263 isolate()->factory()->allocation_site_map()); 3264 __ Assert(equal, kExpectedAllocationSite); 3265 } 3266 3267 // Tail call into the stub that handles binary operations with allocation 3268 // sites. 3269 BinaryOpWithAllocationSiteStub stub(isolate(), state()); 3270 __ TailCallStub(&stub); 3271 } 3272 3273 3274 void CompareICStub::GenerateBooleans(MacroAssembler* masm) { 3275 DCHECK_EQ(CompareICState::BOOLEAN, state()); 3276 Label miss; 3277 Label::Distance const miss_distance = 3278 masm->emit_debug_code() ? Label::kFar : Label::kNear; 3279 3280 __ JumpIfSmi(rdx, &miss, miss_distance); 3281 __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); 3282 __ JumpIfSmi(rax, &miss, miss_distance); 3283 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); 3284 __ JumpIfNotRoot(rcx, Heap::kBooleanMapRootIndex, &miss, miss_distance); 3285 __ JumpIfNotRoot(rbx, Heap::kBooleanMapRootIndex, &miss, miss_distance); 3286 if (op() != Token::EQ_STRICT && is_strong(strength())) { 3287 __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion); 3288 } else { 3289 if (!Token::IsEqualityOp(op())) { 3290 __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset)); 3291 __ AssertSmi(rax); 3292 __ movp(rdx, FieldOperand(rdx, Oddball::kToNumberOffset)); 3293 __ AssertSmi(rdx); 3294 __ pushq(rax); 3295 __ movq(rax, rdx); 3296 __ popq(rdx); 3297 } 3298 __ subp(rax, rdx); 3299 __ Ret(); 3300 } 3301 3302 __ bind(&miss); 3303 GenerateMiss(masm); 3304 } 3305 3306 3307 void CompareICStub::GenerateSmis(MacroAssembler* masm) { 3308 DCHECK(state() == CompareICState::SMI); 3309 Label miss; 3310 __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear); 3311 3312 if (GetCondition() == equal) { 3313 // For equality we do not care about the sign of the result. 3314 __ subp(rax, rdx); 3315 } else { 3316 Label done; 3317 __ subp(rdx, rax); 3318 __ j(no_overflow, &done, Label::kNear); 3319 // Correct sign of result in case of overflow. 3320 __ notp(rdx); 3321 __ bind(&done); 3322 __ movp(rax, rdx); 3323 } 3324 __ ret(0); 3325 3326 __ bind(&miss); 3327 GenerateMiss(masm); 3328 } 3329 3330 3331 void CompareICStub::GenerateNumbers(MacroAssembler* masm) { 3332 DCHECK(state() == CompareICState::NUMBER); 3333 3334 Label generic_stub; 3335 Label unordered, maybe_undefined1, maybe_undefined2; 3336 Label miss; 3337 3338 if (left() == CompareICState::SMI) { 3339 __ JumpIfNotSmi(rdx, &miss); 3340 } 3341 if (right() == CompareICState::SMI) { 3342 __ JumpIfNotSmi(rax, &miss); 3343 } 3344 3345 // Load left and right operand. 3346 Label done, left, left_smi, right_smi; 3347 __ JumpIfSmi(rax, &right_smi, Label::kNear); 3348 __ CompareMap(rax, isolate()->factory()->heap_number_map()); 3349 __ j(not_equal, &maybe_undefined1, Label::kNear); 3350 __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 3351 __ jmp(&left, Label::kNear); 3352 __ bind(&right_smi); 3353 __ SmiToInteger32(rcx, rax); // Can't clobber rax yet. 3354 __ Cvtlsi2sd(xmm1, rcx); 3355 3356 __ bind(&left); 3357 __ JumpIfSmi(rdx, &left_smi, Label::kNear); 3358 __ CompareMap(rdx, isolate()->factory()->heap_number_map()); 3359 __ j(not_equal, &maybe_undefined2, Label::kNear); 3360 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 3361 __ jmp(&done); 3362 __ bind(&left_smi); 3363 __ SmiToInteger32(rcx, rdx); // Can't clobber rdx yet. 3364 __ Cvtlsi2sd(xmm0, rcx); 3365 3366 __ bind(&done); 3367 // Compare operands 3368 __ Ucomisd(xmm0, xmm1); 3369 3370 // Don't base result on EFLAGS when a NaN is involved. 3371 __ j(parity_even, &unordered, Label::kNear); 3372 3373 // Return a result of -1, 0, or 1, based on EFLAGS. 3374 // Performing mov, because xor would destroy the flag register. 3375 __ movl(rax, Immediate(0)); 3376 __ movl(rcx, Immediate(0)); 3377 __ setcc(above, rax); // Add one to zero if carry clear and not equal. 3378 __ sbbp(rax, rcx); // Subtract one if below (aka. carry set). 3379 __ ret(0); 3380 3381 __ bind(&unordered); 3382 __ bind(&generic_stub); 3383 CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC, 3384 CompareICState::GENERIC, CompareICState::GENERIC); 3385 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); 3386 3387 __ bind(&maybe_undefined1); 3388 if (Token::IsOrderedRelationalCompareOp(op())) { 3389 __ Cmp(rax, isolate()->factory()->undefined_value()); 3390 __ j(not_equal, &miss); 3391 __ JumpIfSmi(rdx, &unordered); 3392 __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); 3393 __ j(not_equal, &maybe_undefined2, Label::kNear); 3394 __ jmp(&unordered); 3395 } 3396 3397 __ bind(&maybe_undefined2); 3398 if (Token::IsOrderedRelationalCompareOp(op())) { 3399 __ Cmp(rdx, isolate()->factory()->undefined_value()); 3400 __ j(equal, &unordered); 3401 } 3402 3403 __ bind(&miss); 3404 GenerateMiss(masm); 3405 } 3406 3407 3408 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { 3409 DCHECK(state() == CompareICState::INTERNALIZED_STRING); 3410 DCHECK(GetCondition() == equal); 3411 3412 // Registers containing left and right operands respectively. 3413 Register left = rdx; 3414 Register right = rax; 3415 Register tmp1 = rcx; 3416 Register tmp2 = rbx; 3417 3418 // Check that both operands are heap objects. 3419 Label miss; 3420 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 3421 __ j(cond, &miss, Label::kNear); 3422 3423 // Check that both operands are internalized strings. 3424 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 3425 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 3426 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 3427 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 3428 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 3429 __ orp(tmp1, tmp2); 3430 __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); 3431 __ j(not_zero, &miss, Label::kNear); 3432 3433 // Internalized strings are compared by identity. 3434 Label done; 3435 __ cmpp(left, right); 3436 // Make sure rax is non-zero. At this point input operands are 3437 // guaranteed to be non-zero. 3438 DCHECK(right.is(rax)); 3439 __ j(not_equal, &done, Label::kNear); 3440 STATIC_ASSERT(EQUAL == 0); 3441 STATIC_ASSERT(kSmiTag == 0); 3442 __ Move(rax, Smi::FromInt(EQUAL)); 3443 __ bind(&done); 3444 __ ret(0); 3445 3446 __ bind(&miss); 3447 GenerateMiss(masm); 3448 } 3449 3450 3451 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { 3452 DCHECK(state() == CompareICState::UNIQUE_NAME); 3453 DCHECK(GetCondition() == equal); 3454 3455 // Registers containing left and right operands respectively. 3456 Register left = rdx; 3457 Register right = rax; 3458 Register tmp1 = rcx; 3459 Register tmp2 = rbx; 3460 3461 // Check that both operands are heap objects. 3462 Label miss; 3463 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 3464 __ j(cond, &miss, Label::kNear); 3465 3466 // Check that both operands are unique names. This leaves the instance 3467 // types loaded in tmp1 and tmp2. 3468 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 3469 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 3470 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 3471 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 3472 3473 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear); 3474 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear); 3475 3476 // Unique names are compared by identity. 3477 Label done; 3478 __ cmpp(left, right); 3479 // Make sure rax is non-zero. At this point input operands are 3480 // guaranteed to be non-zero. 3481 DCHECK(right.is(rax)); 3482 __ j(not_equal, &done, Label::kNear); 3483 STATIC_ASSERT(EQUAL == 0); 3484 STATIC_ASSERT(kSmiTag == 0); 3485 __ Move(rax, Smi::FromInt(EQUAL)); 3486 __ bind(&done); 3487 __ ret(0); 3488 3489 __ bind(&miss); 3490 GenerateMiss(masm); 3491 } 3492 3493 3494 void CompareICStub::GenerateStrings(MacroAssembler* masm) { 3495 DCHECK(state() == CompareICState::STRING); 3496 Label miss; 3497 3498 bool equality = Token::IsEqualityOp(op()); 3499 3500 // Registers containing left and right operands respectively. 3501 Register left = rdx; 3502 Register right = rax; 3503 Register tmp1 = rcx; 3504 Register tmp2 = rbx; 3505 Register tmp3 = rdi; 3506 3507 // Check that both operands are heap objects. 3508 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 3509 __ j(cond, &miss); 3510 3511 // Check that both operands are strings. This leaves the instance 3512 // types loaded in tmp1 and tmp2. 3513 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 3514 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 3515 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 3516 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 3517 __ movp(tmp3, tmp1); 3518 STATIC_ASSERT(kNotStringTag != 0); 3519 __ orp(tmp3, tmp2); 3520 __ testb(tmp3, Immediate(kIsNotStringMask)); 3521 __ j(not_zero, &miss); 3522 3523 // Fast check for identical strings. 3524 Label not_same; 3525 __ cmpp(left, right); 3526 __ j(not_equal, ¬_same, Label::kNear); 3527 STATIC_ASSERT(EQUAL == 0); 3528 STATIC_ASSERT(kSmiTag == 0); 3529 __ Move(rax, Smi::FromInt(EQUAL)); 3530 __ ret(0); 3531 3532 // Handle not identical strings. 3533 __ bind(¬_same); 3534 3535 // Check that both strings are internalized strings. If they are, we're done 3536 // because we already know they are not identical. We also know they are both 3537 // strings. 3538 if (equality) { 3539 Label do_compare; 3540 STATIC_ASSERT(kInternalizedTag == 0); 3541 __ orp(tmp1, tmp2); 3542 __ testb(tmp1, Immediate(kIsNotInternalizedMask)); 3543 __ j(not_zero, &do_compare, Label::kNear); 3544 // Make sure rax is non-zero. At this point input operands are 3545 // guaranteed to be non-zero. 3546 DCHECK(right.is(rax)); 3547 __ ret(0); 3548 __ bind(&do_compare); 3549 } 3550 3551 // Check that both strings are sequential one-byte. 3552 Label runtime; 3553 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime); 3554 3555 // Compare flat one-byte strings. Returns when done. 3556 if (equality) { 3557 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, 3558 tmp2); 3559 } else { 3560 StringHelper::GenerateCompareFlatOneByteStrings( 3561 masm, left, right, tmp1, tmp2, tmp3, kScratchRegister); 3562 } 3563 3564 // Handle more complex cases in runtime. 3565 __ bind(&runtime); 3566 __ PopReturnAddressTo(tmp1); 3567 __ Push(left); 3568 __ Push(right); 3569 __ PushReturnAddressFrom(tmp1); 3570 if (equality) { 3571 __ TailCallRuntime(Runtime::kStringEquals); 3572 } else { 3573 __ TailCallRuntime(Runtime::kStringCompare); 3574 } 3575 3576 __ bind(&miss); 3577 GenerateMiss(masm); 3578 } 3579 3580 3581 void CompareICStub::GenerateReceivers(MacroAssembler* masm) { 3582 DCHECK_EQ(CompareICState::RECEIVER, state()); 3583 Label miss; 3584 Condition either_smi = masm->CheckEitherSmi(rdx, rax); 3585 __ j(either_smi, &miss, Label::kNear); 3586 3587 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); 3588 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); 3589 __ j(below, &miss, Label::kNear); 3590 __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx); 3591 __ j(below, &miss, Label::kNear); 3592 3593 DCHECK_EQ(equal, GetCondition()); 3594 __ subp(rax, rdx); 3595 __ ret(0); 3596 3597 __ bind(&miss); 3598 GenerateMiss(masm); 3599 } 3600 3601 3602 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { 3603 Label miss; 3604 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_); 3605 Condition either_smi = masm->CheckEitherSmi(rdx, rax); 3606 __ j(either_smi, &miss, Label::kNear); 3607 3608 __ GetWeakValue(rdi, cell); 3609 __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rdi); 3610 __ j(not_equal, &miss, Label::kNear); 3611 __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rdi); 3612 __ j(not_equal, &miss, Label::kNear); 3613 3614 if (Token::IsEqualityOp(op())) { 3615 __ subp(rax, rdx); 3616 __ ret(0); 3617 } else if (is_strong(strength())) { 3618 __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion); 3619 } else { 3620 __ PopReturnAddressTo(rcx); 3621 __ Push(rdx); 3622 __ Push(rax); 3623 __ Push(Smi::FromInt(NegativeComparisonResult(GetCondition()))); 3624 __ PushReturnAddressFrom(rcx); 3625 __ TailCallRuntime(Runtime::kCompare); 3626 } 3627 3628 __ bind(&miss); 3629 GenerateMiss(masm); 3630 } 3631 3632 3633 void CompareICStub::GenerateMiss(MacroAssembler* masm) { 3634 { 3635 // Call the runtime system in a fresh internal frame. 3636 FrameScope scope(masm, StackFrame::INTERNAL); 3637 __ Push(rdx); 3638 __ Push(rax); 3639 __ Push(rdx); 3640 __ Push(rax); 3641 __ Push(Smi::FromInt(op())); 3642 __ CallRuntime(Runtime::kCompareIC_Miss); 3643 3644 // Compute the entry point of the rewritten stub. 3645 __ leap(rdi, FieldOperand(rax, Code::kHeaderSize)); 3646 __ Pop(rax); 3647 __ Pop(rdx); 3648 } 3649 3650 // Do a tail call to the rewritten stub. 3651 __ jmp(rdi); 3652 } 3653 3654 3655 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, 3656 Label* miss, 3657 Label* done, 3658 Register properties, 3659 Handle<Name> name, 3660 Register r0) { 3661 DCHECK(name->IsUniqueName()); 3662 // If names of slots in range from 1 to kProbes - 1 for the hash value are 3663 // not equal to the name and kProbes-th slot is not used (its name is the 3664 // undefined value), it guarantees the hash table doesn't contain the 3665 // property. It's true even if some slots represent deleted properties 3666 // (their names are the hole value). 3667 for (int i = 0; i < kInlinedProbes; i++) { 3668 // r0 points to properties hash. 3669 // Compute the masked index: (hash + i + i * i) & mask. 3670 Register index = r0; 3671 // Capacity is smi 2^n. 3672 __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset)); 3673 __ decl(index); 3674 __ andp(index, 3675 Immediate(name->Hash() + NameDictionary::GetProbeOffset(i))); 3676 3677 // Scale the index by multiplying by the entry size. 3678 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 3679 __ leap(index, Operand(index, index, times_2, 0)); // index *= 3. 3680 3681 Register entity_name = r0; 3682 // Having undefined at this place means the name is not contained. 3683 STATIC_ASSERT(kSmiTagSize == 1); 3684 __ movp(entity_name, Operand(properties, 3685 index, 3686 times_pointer_size, 3687 kElementsStartOffset - kHeapObjectTag)); 3688 __ Cmp(entity_name, masm->isolate()->factory()->undefined_value()); 3689 __ j(equal, done); 3690 3691 // Stop if found the property. 3692 __ Cmp(entity_name, Handle<Name>(name)); 3693 __ j(equal, miss); 3694 3695 Label good; 3696 // Check for the hole and skip. 3697 __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex); 3698 __ j(equal, &good, Label::kNear); 3699 3700 // Check if the entry name is not a unique name. 3701 __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); 3702 __ JumpIfNotUniqueNameInstanceType( 3703 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss); 3704 __ bind(&good); 3705 } 3706 3707 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0, 3708 NEGATIVE_LOOKUP); 3709 __ Push(Handle<Object>(name)); 3710 __ Push(Immediate(name->Hash())); 3711 __ CallStub(&stub); 3712 __ testp(r0, r0); 3713 __ j(not_zero, miss); 3714 __ jmp(done); 3715 } 3716 3717 3718 // Probe the name dictionary in the |elements| register. Jump to the 3719 // |done| label if a property with the given name is found leaving the 3720 // index into the dictionary in |r1|. Jump to the |miss| label 3721 // otherwise. 3722 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, 3723 Label* miss, 3724 Label* done, 3725 Register elements, 3726 Register name, 3727 Register r0, 3728 Register r1) { 3729 DCHECK(!elements.is(r0)); 3730 DCHECK(!elements.is(r1)); 3731 DCHECK(!name.is(r0)); 3732 DCHECK(!name.is(r1)); 3733 3734 __ AssertName(name); 3735 3736 __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset)); 3737 __ decl(r0); 3738 3739 for (int i = 0; i < kInlinedProbes; i++) { 3740 // Compute the masked index: (hash + i + i * i) & mask. 3741 __ movl(r1, FieldOperand(name, Name::kHashFieldOffset)); 3742 __ shrl(r1, Immediate(Name::kHashShift)); 3743 if (i > 0) { 3744 __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i))); 3745 } 3746 __ andp(r1, r0); 3747 3748 // Scale the index by multiplying by the entry size. 3749 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 3750 __ leap(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3 3751 3752 // Check if the key is identical to the name. 3753 __ cmpp(name, Operand(elements, r1, times_pointer_size, 3754 kElementsStartOffset - kHeapObjectTag)); 3755 __ j(equal, done); 3756 } 3757 3758 NameDictionaryLookupStub stub(masm->isolate(), elements, r0, r1, 3759 POSITIVE_LOOKUP); 3760 __ Push(name); 3761 __ movl(r0, FieldOperand(name, Name::kHashFieldOffset)); 3762 __ shrl(r0, Immediate(Name::kHashShift)); 3763 __ Push(r0); 3764 __ CallStub(&stub); 3765 3766 __ testp(r0, r0); 3767 __ j(zero, miss); 3768 __ jmp(done); 3769 } 3770 3771 3772 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { 3773 // This stub overrides SometimesSetsUpAFrame() to return false. That means 3774 // we cannot call anything that could cause a GC from this stub. 3775 // Stack frame on entry: 3776 // rsp[0 * kPointerSize] : return address. 3777 // rsp[1 * kPointerSize] : key's hash. 3778 // rsp[2 * kPointerSize] : key. 3779 // Registers: 3780 // dictionary_: NameDictionary to probe. 3781 // result_: used as scratch. 3782 // index_: will hold an index of entry if lookup is successful. 3783 // might alias with result_. 3784 // Returns: 3785 // result_ is zero if lookup failed, non zero otherwise. 3786 3787 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; 3788 3789 Register scratch = result(); 3790 3791 __ SmiToInteger32(scratch, FieldOperand(dictionary(), kCapacityOffset)); 3792 __ decl(scratch); 3793 __ Push(scratch); 3794 3795 // If names of slots in range from 1 to kProbes - 1 for the hash value are 3796 // not equal to the name and kProbes-th slot is not used (its name is the 3797 // undefined value), it guarantees the hash table doesn't contain the 3798 // property. It's true even if some slots represent deleted properties 3799 // (their names are the null value). 3800 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER, 3801 kPointerSize); 3802 for (int i = kInlinedProbes; i < kTotalProbes; i++) { 3803 // Compute the masked index: (hash + i + i * i) & mask. 3804 __ movp(scratch, args.GetArgumentOperand(1)); 3805 if (i > 0) { 3806 __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i))); 3807 } 3808 __ andp(scratch, Operand(rsp, 0)); 3809 3810 // Scale the index by multiplying by the entry size. 3811 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 3812 __ leap(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3. 3813 3814 // Having undefined at this place means the name is not contained. 3815 __ movp(scratch, Operand(dictionary(), index(), times_pointer_size, 3816 kElementsStartOffset - kHeapObjectTag)); 3817 3818 __ Cmp(scratch, isolate()->factory()->undefined_value()); 3819 __ j(equal, ¬_in_dictionary); 3820 3821 // Stop if found the property. 3822 __ cmpp(scratch, args.GetArgumentOperand(0)); 3823 __ j(equal, &in_dictionary); 3824 3825 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { 3826 // If we hit a key that is not a unique name during negative 3827 // lookup we have to bailout as this key might be equal to the 3828 // key we are looking for. 3829 3830 // Check if the entry name is not a unique name. 3831 __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); 3832 __ JumpIfNotUniqueNameInstanceType( 3833 FieldOperand(scratch, Map::kInstanceTypeOffset), 3834 &maybe_in_dictionary); 3835 } 3836 } 3837 3838 __ bind(&maybe_in_dictionary); 3839 // If we are doing negative lookup then probing failure should be 3840 // treated as a lookup success. For positive lookup probing failure 3841 // should be treated as lookup failure. 3842 if (mode() == POSITIVE_LOOKUP) { 3843 __ movp(scratch, Immediate(0)); 3844 __ Drop(1); 3845 __ ret(2 * kPointerSize); 3846 } 3847 3848 __ bind(&in_dictionary); 3849 __ movp(scratch, Immediate(1)); 3850 __ Drop(1); 3851 __ ret(2 * kPointerSize); 3852 3853 __ bind(¬_in_dictionary); 3854 __ movp(scratch, Immediate(0)); 3855 __ Drop(1); 3856 __ ret(2 * kPointerSize); 3857 } 3858 3859 3860 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( 3861 Isolate* isolate) { 3862 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); 3863 stub1.GetCode(); 3864 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); 3865 stub2.GetCode(); 3866 } 3867 3868 3869 // Takes the input in 3 registers: address_ value_ and object_. A pointer to 3870 // the value has just been written into the object, now this stub makes sure 3871 // we keep the GC informed. The word in the object where the value has been 3872 // written is in the address register. 3873 void RecordWriteStub::Generate(MacroAssembler* masm) { 3874 Label skip_to_incremental_noncompacting; 3875 Label skip_to_incremental_compacting; 3876 3877 // The first two instructions are generated with labels so as to get the 3878 // offset fixed up correctly by the bind(Label*) call. We patch it back and 3879 // forth between a compare instructions (a nop in this position) and the 3880 // real branch when we start and stop incremental heap marking. 3881 // See RecordWriteStub::Patch for details. 3882 __ jmp(&skip_to_incremental_noncompacting, Label::kNear); 3883 __ jmp(&skip_to_incremental_compacting, Label::kFar); 3884 3885 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 3886 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 3887 MacroAssembler::kReturnAtEnd); 3888 } else { 3889 __ ret(0); 3890 } 3891 3892 __ bind(&skip_to_incremental_noncompacting); 3893 GenerateIncremental(masm, INCREMENTAL); 3894 3895 __ bind(&skip_to_incremental_compacting); 3896 GenerateIncremental(masm, INCREMENTAL_COMPACTION); 3897 3898 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. 3899 // Will be checked in IncrementalMarking::ActivateGeneratedStub. 3900 masm->set_byte_at(0, kTwoByteNopInstruction); 3901 masm->set_byte_at(2, kFiveByteNopInstruction); 3902 } 3903 3904 3905 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { 3906 regs_.Save(masm); 3907 3908 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 3909 Label dont_need_remembered_set; 3910 3911 __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); 3912 __ JumpIfNotInNewSpace(regs_.scratch0(), 3913 regs_.scratch0(), 3914 &dont_need_remembered_set); 3915 3916 __ CheckPageFlag(regs_.object(), 3917 regs_.scratch0(), 3918 1 << MemoryChunk::SCAN_ON_SCAVENGE, 3919 not_zero, 3920 &dont_need_remembered_set); 3921 3922 // First notify the incremental marker if necessary, then update the 3923 // remembered set. 3924 CheckNeedsToInformIncrementalMarker( 3925 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); 3926 InformIncrementalMarker(masm); 3927 regs_.Restore(masm); 3928 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 3929 MacroAssembler::kReturnAtEnd); 3930 3931 __ bind(&dont_need_remembered_set); 3932 } 3933 3934 CheckNeedsToInformIncrementalMarker( 3935 masm, kReturnOnNoNeedToInformIncrementalMarker, mode); 3936 InformIncrementalMarker(masm); 3937 regs_.Restore(masm); 3938 __ ret(0); 3939 } 3940 3941 3942 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { 3943 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); 3944 Register address = 3945 arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address(); 3946 DCHECK(!address.is(regs_.object())); 3947 DCHECK(!address.is(arg_reg_1)); 3948 __ Move(address, regs_.address()); 3949 __ Move(arg_reg_1, regs_.object()); 3950 // TODO(gc) Can we just set address arg2 in the beginning? 3951 __ Move(arg_reg_2, address); 3952 __ LoadAddress(arg_reg_3, 3953 ExternalReference::isolate_address(isolate())); 3954 int argument_count = 3; 3955 3956 AllowExternalCallThatCantCauseGC scope(masm); 3957 __ PrepareCallCFunction(argument_count); 3958 __ CallCFunction( 3959 ExternalReference::incremental_marking_record_write_function(isolate()), 3960 argument_count); 3961 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); 3962 } 3963 3964 3965 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( 3966 MacroAssembler* masm, 3967 OnNoNeedToInformIncrementalMarker on_no_need, 3968 Mode mode) { 3969 Label on_black; 3970 Label need_incremental; 3971 Label need_incremental_pop_object; 3972 3973 __ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask)); 3974 __ andp(regs_.scratch0(), regs_.object()); 3975 __ movp(regs_.scratch1(), 3976 Operand(regs_.scratch0(), 3977 MemoryChunk::kWriteBarrierCounterOffset)); 3978 __ subp(regs_.scratch1(), Immediate(1)); 3979 __ movp(Operand(regs_.scratch0(), 3980 MemoryChunk::kWriteBarrierCounterOffset), 3981 regs_.scratch1()); 3982 __ j(negative, &need_incremental); 3983 3984 // Let's look at the color of the object: If it is not black we don't have 3985 // to inform the incremental marker. 3986 __ JumpIfBlack(regs_.object(), 3987 regs_.scratch0(), 3988 regs_.scratch1(), 3989 &on_black, 3990 Label::kNear); 3991 3992 regs_.Restore(masm); 3993 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 3994 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 3995 MacroAssembler::kReturnAtEnd); 3996 } else { 3997 __ ret(0); 3998 } 3999 4000 __ bind(&on_black); 4001 4002 // Get the value from the slot. 4003 __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); 4004 4005 if (mode == INCREMENTAL_COMPACTION) { 4006 Label ensure_not_white; 4007 4008 __ CheckPageFlag(regs_.scratch0(), // Contains value. 4009 regs_.scratch1(), // Scratch. 4010 MemoryChunk::kEvacuationCandidateMask, 4011 zero, 4012 &ensure_not_white, 4013 Label::kNear); 4014 4015 __ CheckPageFlag(regs_.object(), 4016 regs_.scratch1(), // Scratch. 4017 MemoryChunk::kSkipEvacuationSlotsRecordingMask, 4018 zero, 4019 &need_incremental); 4020 4021 __ bind(&ensure_not_white); 4022 } 4023 4024 // We need an extra register for this, so we push the object register 4025 // temporarily. 4026 __ Push(regs_.object()); 4027 __ JumpIfWhite(regs_.scratch0(), // The value. 4028 regs_.scratch1(), // Scratch. 4029 regs_.object(), // Scratch. 4030 &need_incremental_pop_object, Label::kNear); 4031 __ Pop(regs_.object()); 4032 4033 regs_.Restore(masm); 4034 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 4035 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 4036 MacroAssembler::kReturnAtEnd); 4037 } else { 4038 __ ret(0); 4039 } 4040 4041 __ bind(&need_incremental_pop_object); 4042 __ Pop(regs_.object()); 4043 4044 __ bind(&need_incremental); 4045 4046 // Fall through when we need to inform the incremental marker. 4047 } 4048 4049 4050 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { 4051 CEntryStub ces(isolate(), 1, kSaveFPRegs); 4052 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); 4053 int parameter_count_offset = 4054 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; 4055 __ movp(rbx, MemOperand(rbp, parameter_count_offset)); 4056 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); 4057 __ PopReturnAddressTo(rcx); 4058 int additional_offset = 4059 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0; 4060 __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset)); 4061 __ jmp(rcx); // Return to IC Miss stub, continuation still on stack. 4062 } 4063 4064 4065 void LoadICTrampolineStub::Generate(MacroAssembler* masm) { 4066 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister()); 4067 LoadICStub stub(isolate(), state()); 4068 stub.GenerateForTrampoline(masm); 4069 } 4070 4071 4072 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) { 4073 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister()); 4074 KeyedLoadICStub stub(isolate(), state()); 4075 stub.GenerateForTrampoline(masm); 4076 } 4077 4078 4079 static void HandleArrayCases(MacroAssembler* masm, Register feedback, 4080 Register receiver_map, Register scratch1, 4081 Register scratch2, Register scratch3, 4082 bool is_polymorphic, Label* miss) { 4083 // feedback initially contains the feedback array 4084 Label next_loop, prepare_next; 4085 Label start_polymorphic; 4086 4087 Register counter = scratch1; 4088 Register length = scratch2; 4089 Register cached_map = scratch3; 4090 4091 __ movp(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0))); 4092 __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 4093 __ j(not_equal, &start_polymorphic); 4094 4095 // found, now call handler. 4096 Register handler = feedback; 4097 __ movp(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1))); 4098 __ leap(handler, FieldOperand(handler, Code::kHeaderSize)); 4099 __ jmp(handler); 4100 4101 // Polymorphic, we have to loop from 2 to N 4102 __ bind(&start_polymorphic); 4103 __ SmiToInteger32(length, FieldOperand(feedback, FixedArray::kLengthOffset)); 4104 if (!is_polymorphic) { 4105 // If the IC could be monomorphic we have to make sure we don't go past the 4106 // end of the feedback array. 4107 __ cmpl(length, Immediate(2)); 4108 __ j(equal, miss); 4109 } 4110 __ movl(counter, Immediate(2)); 4111 4112 __ bind(&next_loop); 4113 __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size, 4114 FixedArray::kHeaderSize)); 4115 __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 4116 __ j(not_equal, &prepare_next); 4117 __ movp(handler, FieldOperand(feedback, counter, times_pointer_size, 4118 FixedArray::kHeaderSize + kPointerSize)); 4119 __ leap(handler, FieldOperand(handler, Code::kHeaderSize)); 4120 __ jmp(handler); 4121 4122 __ bind(&prepare_next); 4123 __ addl(counter, Immediate(2)); 4124 __ cmpl(counter, length); 4125 __ j(less, &next_loop); 4126 4127 // We exhausted our array of map handler pairs. 4128 __ jmp(miss); 4129 } 4130 4131 4132 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver, 4133 Register receiver_map, Register feedback, 4134 Register vector, Register integer_slot, 4135 Label* compare_map, Label* load_smi_map, 4136 Label* try_array) { 4137 __ JumpIfSmi(receiver, load_smi_map); 4138 __ movp(receiver_map, FieldOperand(receiver, 0)); 4139 4140 __ bind(compare_map); 4141 __ cmpp(receiver_map, FieldOperand(feedback, WeakCell::kValueOffset)); 4142 __ j(not_equal, try_array); 4143 Register handler = feedback; 4144 __ movp(handler, FieldOperand(vector, integer_slot, times_pointer_size, 4145 FixedArray::kHeaderSize + kPointerSize)); 4146 __ leap(handler, FieldOperand(handler, Code::kHeaderSize)); 4147 __ jmp(handler); 4148 } 4149 4150 4151 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); } 4152 4153 4154 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) { 4155 GenerateImpl(masm, true); 4156 } 4157 4158 4159 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { 4160 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // rdx 4161 Register name = LoadWithVectorDescriptor::NameRegister(); // rcx 4162 Register vector = LoadWithVectorDescriptor::VectorRegister(); // rbx 4163 Register slot = LoadWithVectorDescriptor::SlotRegister(); // rax 4164 Register feedback = rdi; 4165 Register integer_slot = r8; 4166 Register receiver_map = r9; 4167 4168 __ SmiToInteger32(integer_slot, slot); 4169 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 4170 FixedArray::kHeaderSize)); 4171 4172 // Try to quickly handle the monomorphic case without knowing for sure 4173 // if we have a weak cell in feedback. We do know it's safe to look 4174 // at WeakCell::kValueOffset. 4175 Label try_array, load_smi_map, compare_map; 4176 Label not_array, miss; 4177 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, 4178 integer_slot, &compare_map, &load_smi_map, &try_array); 4179 4180 // Is it a fixed array? 4181 __ bind(&try_array); 4182 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex); 4183 __ j(not_equal, ¬_array); 4184 HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, true, 4185 &miss); 4186 4187 __ bind(¬_array); 4188 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex); 4189 __ j(not_equal, &miss); 4190 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags( 4191 Code::ComputeHandlerFlags(Code::LOAD_IC)); 4192 masm->isolate()->stub_cache()->GenerateProbe( 4193 masm, Code::LOAD_IC, code_flags, receiver, name, feedback, no_reg); 4194 4195 __ bind(&miss); 4196 LoadIC::GenerateMiss(masm); 4197 4198 __ bind(&load_smi_map); 4199 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); 4200 __ jmp(&compare_map); 4201 } 4202 4203 4204 void KeyedLoadICStub::Generate(MacroAssembler* masm) { 4205 GenerateImpl(masm, false); 4206 } 4207 4208 4209 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) { 4210 GenerateImpl(masm, true); 4211 } 4212 4213 4214 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { 4215 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // rdx 4216 Register key = LoadWithVectorDescriptor::NameRegister(); // rcx 4217 Register vector = LoadWithVectorDescriptor::VectorRegister(); // rbx 4218 Register slot = LoadWithVectorDescriptor::SlotRegister(); // rax 4219 Register feedback = rdi; 4220 Register integer_slot = r8; 4221 Register receiver_map = r9; 4222 4223 __ SmiToInteger32(integer_slot, slot); 4224 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 4225 FixedArray::kHeaderSize)); 4226 4227 // Try to quickly handle the monomorphic case without knowing for sure 4228 // if we have a weak cell in feedback. We do know it's safe to look 4229 // at WeakCell::kValueOffset. 4230 Label try_array, load_smi_map, compare_map; 4231 Label not_array, miss; 4232 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, 4233 integer_slot, &compare_map, &load_smi_map, &try_array); 4234 4235 __ bind(&try_array); 4236 // Is it a fixed array? 4237 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex); 4238 __ j(not_equal, ¬_array); 4239 4240 // We have a polymorphic element handler. 4241 Label polymorphic, try_poly_name; 4242 __ bind(&polymorphic); 4243 HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, true, 4244 &miss); 4245 4246 __ bind(¬_array); 4247 // Is it generic? 4248 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex); 4249 __ j(not_equal, &try_poly_name); 4250 Handle<Code> megamorphic_stub = 4251 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState()); 4252 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET); 4253 4254 __ bind(&try_poly_name); 4255 // We might have a name in feedback, and a fixed array in the next slot. 4256 __ cmpp(key, feedback); 4257 __ j(not_equal, &miss); 4258 // If the name comparison succeeded, we know we have a fixed array with 4259 // at least one map/handler pair. 4260 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 4261 FixedArray::kHeaderSize + kPointerSize)); 4262 HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, false, 4263 &miss); 4264 4265 __ bind(&miss); 4266 KeyedLoadIC::GenerateMiss(masm); 4267 4268 __ bind(&load_smi_map); 4269 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); 4270 __ jmp(&compare_map); 4271 } 4272 4273 4274 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) { 4275 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister()); 4276 VectorStoreICStub stub(isolate(), state()); 4277 stub.GenerateForTrampoline(masm); 4278 } 4279 4280 4281 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) { 4282 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister()); 4283 VectorKeyedStoreICStub stub(isolate(), state()); 4284 stub.GenerateForTrampoline(masm); 4285 } 4286 4287 4288 void VectorStoreICStub::Generate(MacroAssembler* masm) { 4289 GenerateImpl(masm, false); 4290 } 4291 4292 4293 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) { 4294 GenerateImpl(masm, true); 4295 } 4296 4297 4298 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { 4299 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // rdx 4300 Register key = VectorStoreICDescriptor::NameRegister(); // rcx 4301 Register vector = VectorStoreICDescriptor::VectorRegister(); // rbx 4302 Register slot = VectorStoreICDescriptor::SlotRegister(); // rdi 4303 DCHECK(VectorStoreICDescriptor::ValueRegister().is(rax)); // rax 4304 Register feedback = r8; 4305 Register integer_slot = r9; 4306 Register receiver_map = r11; 4307 DCHECK(!AreAliased(feedback, integer_slot, vector, slot, receiver_map)); 4308 4309 __ SmiToInteger32(integer_slot, slot); 4310 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 4311 FixedArray::kHeaderSize)); 4312 4313 // Try to quickly handle the monomorphic case without knowing for sure 4314 // if we have a weak cell in feedback. We do know it's safe to look 4315 // at WeakCell::kValueOffset. 4316 Label try_array, load_smi_map, compare_map; 4317 Label not_array, miss; 4318 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, 4319 integer_slot, &compare_map, &load_smi_map, &try_array); 4320 4321 // Is it a fixed array? 4322 __ bind(&try_array); 4323 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex); 4324 __ j(not_equal, ¬_array); 4325 HandleArrayCases(masm, feedback, receiver_map, integer_slot, r14, r15, true, 4326 &miss); 4327 4328 __ bind(¬_array); 4329 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex); 4330 __ j(not_equal, &miss); 4331 4332 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags( 4333 Code::ComputeHandlerFlags(Code::STORE_IC)); 4334 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, code_flags, 4335 receiver, key, feedback, no_reg); 4336 4337 __ bind(&miss); 4338 StoreIC::GenerateMiss(masm); 4339 4340 __ bind(&load_smi_map); 4341 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); 4342 __ jmp(&compare_map); 4343 } 4344 4345 4346 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) { 4347 GenerateImpl(masm, false); 4348 } 4349 4350 4351 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) { 4352 GenerateImpl(masm, true); 4353 } 4354 4355 4356 static void HandlePolymorphicKeyedStoreCase(MacroAssembler* masm, 4357 Register receiver_map, 4358 Register feedback, Register scratch, 4359 Register scratch1, 4360 Register scratch2, Label* miss) { 4361 // feedback initially contains the feedback array 4362 Label next, next_loop, prepare_next; 4363 Label transition_call; 4364 4365 Register cached_map = scratch; 4366 Register counter = scratch1; 4367 Register length = scratch2; 4368 4369 // Polymorphic, we have to loop from 0 to N - 1 4370 __ movp(counter, Immediate(0)); 4371 __ movp(length, FieldOperand(feedback, FixedArray::kLengthOffset)); 4372 __ SmiToInteger32(length, length); 4373 4374 __ bind(&next_loop); 4375 __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size, 4376 FixedArray::kHeaderSize)); 4377 __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 4378 __ j(not_equal, &prepare_next); 4379 __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size, 4380 FixedArray::kHeaderSize + kPointerSize)); 4381 __ CompareRoot(cached_map, Heap::kUndefinedValueRootIndex); 4382 __ j(not_equal, &transition_call); 4383 __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size, 4384 FixedArray::kHeaderSize + 2 * kPointerSize)); 4385 __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize)); 4386 __ jmp(feedback); 4387 4388 __ bind(&transition_call); 4389 DCHECK(receiver_map.is(VectorStoreTransitionDescriptor::MapRegister())); 4390 __ movp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 4391 // The weak cell may have been cleared. 4392 __ JumpIfSmi(receiver_map, miss); 4393 // Get the handler in value. 4394 __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size, 4395 FixedArray::kHeaderSize + 2 * kPointerSize)); 4396 __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize)); 4397 __ jmp(feedback); 4398 4399 __ bind(&prepare_next); 4400 __ addl(counter, Immediate(3)); 4401 __ cmpl(counter, length); 4402 __ j(less, &next_loop); 4403 4404 // We exhausted our array of map handler pairs. 4405 __ jmp(miss); 4406 } 4407 4408 4409 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { 4410 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // rdx 4411 Register key = VectorStoreICDescriptor::NameRegister(); // rcx 4412 Register vector = VectorStoreICDescriptor::VectorRegister(); // rbx 4413 Register slot = VectorStoreICDescriptor::SlotRegister(); // rdi 4414 DCHECK(VectorStoreICDescriptor::ValueRegister().is(rax)); // rax 4415 Register feedback = r8; 4416 Register integer_slot = r9; 4417 Register receiver_map = r11; 4418 DCHECK(!AreAliased(feedback, integer_slot, vector, slot, receiver_map)); 4419 4420 __ SmiToInteger32(integer_slot, slot); 4421 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 4422 FixedArray::kHeaderSize)); 4423 4424 // Try to quickly handle the monomorphic case without knowing for sure 4425 // if we have a weak cell in feedback. We do know it's safe to look 4426 // at WeakCell::kValueOffset. 4427 Label try_array, load_smi_map, compare_map; 4428 Label not_array, miss; 4429 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, 4430 integer_slot, &compare_map, &load_smi_map, &try_array); 4431 4432 // Is it a fixed array? 4433 __ bind(&try_array); 4434 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex); 4435 __ j(not_equal, ¬_array); 4436 HandlePolymorphicKeyedStoreCase(masm, receiver_map, feedback, integer_slot, 4437 r15, r14, &miss); 4438 4439 __ bind(¬_array); 4440 Label try_poly_name; 4441 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex); 4442 __ j(not_equal, &try_poly_name); 4443 4444 Handle<Code> megamorphic_stub = 4445 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState()); 4446 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET); 4447 4448 __ bind(&try_poly_name); 4449 // We might have a name in feedback, and a fixed array in the next slot. 4450 __ cmpp(key, feedback); 4451 __ j(not_equal, &miss); 4452 // If the name comparison succeeded, we know we have a fixed array with 4453 // at least one map/handler pair. 4454 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 4455 FixedArray::kHeaderSize + kPointerSize)); 4456 HandleArrayCases(masm, feedback, receiver_map, integer_slot, r14, r15, false, 4457 &miss); 4458 4459 __ bind(&miss); 4460 KeyedStoreIC::GenerateMiss(masm); 4461 4462 __ bind(&load_smi_map); 4463 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); 4464 __ jmp(&compare_map); 4465 } 4466 4467 4468 void CallICTrampolineStub::Generate(MacroAssembler* masm) { 4469 __ EmitLoadTypeFeedbackVector(rbx); 4470 CallICStub stub(isolate(), state()); 4471 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); 4472 } 4473 4474 4475 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { 4476 if (masm->isolate()->function_entry_hook() != NULL) { 4477 ProfileEntryHookStub stub(masm->isolate()); 4478 masm->CallStub(&stub); 4479 } 4480 } 4481 4482 4483 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { 4484 // This stub can be called from essentially anywhere, so it needs to save 4485 // all volatile and callee-save registers. 4486 const size_t kNumSavedRegisters = 2; 4487 __ pushq(arg_reg_1); 4488 __ pushq(arg_reg_2); 4489 4490 // Calculate the original stack pointer and store it in the second arg. 4491 __ leap(arg_reg_2, 4492 Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize)); 4493 4494 // Calculate the function address to the first arg. 4495 __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize)); 4496 __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength)); 4497 4498 // Save the remainder of the volatile registers. 4499 masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); 4500 4501 // Call the entry hook function. 4502 __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()), 4503 Assembler::RelocInfoNone()); 4504 4505 AllowExternalCallThatCantCauseGC scope(masm); 4506 4507 const int kArgumentCount = 2; 4508 __ PrepareCallCFunction(kArgumentCount); 4509 __ CallCFunction(rax, kArgumentCount); 4510 4511 // Restore volatile regs. 4512 masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); 4513 __ popq(arg_reg_2); 4514 __ popq(arg_reg_1); 4515 4516 __ Ret(); 4517 } 4518 4519 4520 template<class T> 4521 static void CreateArrayDispatch(MacroAssembler* masm, 4522 AllocationSiteOverrideMode mode) { 4523 if (mode == DISABLE_ALLOCATION_SITES) { 4524 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); 4525 __ TailCallStub(&stub); 4526 } else if (mode == DONT_OVERRIDE) { 4527 int last_index = GetSequenceIndexFromFastElementsKind( 4528 TERMINAL_FAST_ELEMENTS_KIND); 4529 for (int i = 0; i <= last_index; ++i) { 4530 Label next; 4531 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 4532 __ cmpl(rdx, Immediate(kind)); 4533 __ j(not_equal, &next); 4534 T stub(masm->isolate(), kind); 4535 __ TailCallStub(&stub); 4536 __ bind(&next); 4537 } 4538 4539 // If we reached this point there is a problem. 4540 __ Abort(kUnexpectedElementsKindInArrayConstructor); 4541 } else { 4542 UNREACHABLE(); 4543 } 4544 } 4545 4546 4547 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, 4548 AllocationSiteOverrideMode mode) { 4549 // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES) 4550 // rdx - kind (if mode != DISABLE_ALLOCATION_SITES) 4551 // rax - number of arguments 4552 // rdi - constructor? 4553 // rsp[0] - return address 4554 // rsp[8] - last argument 4555 Handle<Object> undefined_sentinel( 4556 masm->isolate()->heap()->undefined_value(), 4557 masm->isolate()); 4558 4559 Label normal_sequence; 4560 if (mode == DONT_OVERRIDE) { 4561 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 4562 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 4563 STATIC_ASSERT(FAST_ELEMENTS == 2); 4564 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); 4565 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); 4566 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); 4567 4568 // is the low bit set? If so, we are holey and that is good. 4569 __ testb(rdx, Immediate(1)); 4570 __ j(not_zero, &normal_sequence); 4571 } 4572 4573 // look at the first argument 4574 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); 4575 __ movp(rcx, args.GetArgumentOperand(0)); 4576 __ testp(rcx, rcx); 4577 __ j(zero, &normal_sequence); 4578 4579 if (mode == DISABLE_ALLOCATION_SITES) { 4580 ElementsKind initial = GetInitialFastElementsKind(); 4581 ElementsKind holey_initial = GetHoleyElementsKind(initial); 4582 4583 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), 4584 holey_initial, 4585 DISABLE_ALLOCATION_SITES); 4586 __ TailCallStub(&stub_holey); 4587 4588 __ bind(&normal_sequence); 4589 ArraySingleArgumentConstructorStub stub(masm->isolate(), 4590 initial, 4591 DISABLE_ALLOCATION_SITES); 4592 __ TailCallStub(&stub); 4593 } else if (mode == DONT_OVERRIDE) { 4594 // We are going to create a holey array, but our kind is non-holey. 4595 // Fix kind and retry (only if we have an allocation site in the slot). 4596 __ incl(rdx); 4597 4598 if (FLAG_debug_code) { 4599 Handle<Map> allocation_site_map = 4600 masm->isolate()->factory()->allocation_site_map(); 4601 __ Cmp(FieldOperand(rbx, 0), allocation_site_map); 4602 __ Assert(equal, kExpectedAllocationSite); 4603 } 4604 4605 // Save the resulting elements kind in type info. We can't just store r3 4606 // in the AllocationSite::transition_info field because elements kind is 4607 // restricted to a portion of the field...upper bits need to be left alone. 4608 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 4609 __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset), 4610 Smi::FromInt(kFastElementsKindPackedToHoley)); 4611 4612 __ bind(&normal_sequence); 4613 int last_index = GetSequenceIndexFromFastElementsKind( 4614 TERMINAL_FAST_ELEMENTS_KIND); 4615 for (int i = 0; i <= last_index; ++i) { 4616 Label next; 4617 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 4618 __ cmpl(rdx, Immediate(kind)); 4619 __ j(not_equal, &next); 4620 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); 4621 __ TailCallStub(&stub); 4622 __ bind(&next); 4623 } 4624 4625 // If we reached this point there is a problem. 4626 __ Abort(kUnexpectedElementsKindInArrayConstructor); 4627 } else { 4628 UNREACHABLE(); 4629 } 4630 } 4631 4632 4633 template<class T> 4634 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { 4635 int to_index = GetSequenceIndexFromFastElementsKind( 4636 TERMINAL_FAST_ELEMENTS_KIND); 4637 for (int i = 0; i <= to_index; ++i) { 4638 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 4639 T stub(isolate, kind); 4640 stub.GetCode(); 4641 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { 4642 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); 4643 stub1.GetCode(); 4644 } 4645 } 4646 } 4647 4648 4649 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { 4650 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( 4651 isolate); 4652 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( 4653 isolate); 4654 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( 4655 isolate); 4656 } 4657 4658 4659 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( 4660 Isolate* isolate) { 4661 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; 4662 for (int i = 0; i < 2; i++) { 4663 // For internal arrays we only need a few things 4664 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); 4665 stubh1.GetCode(); 4666 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); 4667 stubh2.GetCode(); 4668 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); 4669 stubh3.GetCode(); 4670 } 4671 } 4672 4673 4674 void ArrayConstructorStub::GenerateDispatchToArrayStub( 4675 MacroAssembler* masm, 4676 AllocationSiteOverrideMode mode) { 4677 if (argument_count() == ANY) { 4678 Label not_zero_case, not_one_case; 4679 __ testp(rax, rax); 4680 __ j(not_zero, ¬_zero_case); 4681 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); 4682 4683 __ bind(¬_zero_case); 4684 __ cmpl(rax, Immediate(1)); 4685 __ j(greater, ¬_one_case); 4686 CreateArrayDispatchOneArgument(masm, mode); 4687 4688 __ bind(¬_one_case); 4689 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); 4690 } else if (argument_count() == NONE) { 4691 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); 4692 } else if (argument_count() == ONE) { 4693 CreateArrayDispatchOneArgument(masm, mode); 4694 } else if (argument_count() == MORE_THAN_ONE) { 4695 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); 4696 } else { 4697 UNREACHABLE(); 4698 } 4699 } 4700 4701 4702 void ArrayConstructorStub::Generate(MacroAssembler* masm) { 4703 // ----------- S t a t e ------------- 4704 // -- rax : argc 4705 // -- rbx : AllocationSite or undefined 4706 // -- rdi : constructor 4707 // -- rdx : new target 4708 // -- rsp[0] : return address 4709 // -- rsp[8] : last argument 4710 // ----------------------------------- 4711 if (FLAG_debug_code) { 4712 // The array construct code is only set for the global and natives 4713 // builtin Array functions which always have maps. 4714 4715 // Initial map for the builtin Array function should be a map. 4716 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 4717 // Will both indicate a NULL and a Smi. 4718 STATIC_ASSERT(kSmiTag == 0); 4719 Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); 4720 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); 4721 __ CmpObjectType(rcx, MAP_TYPE, rcx); 4722 __ Check(equal, kUnexpectedInitialMapForArrayFunction); 4723 4724 // We should either have undefined in rbx or a valid AllocationSite 4725 __ AssertUndefinedOrAllocationSite(rbx); 4726 } 4727 4728 // Enter the context of the Array function. 4729 __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); 4730 4731 Label subclassing; 4732 __ cmpp(rdi, rdx); 4733 __ j(not_equal, &subclassing); 4734 4735 Label no_info; 4736 // If the feedback vector is the undefined value call an array constructor 4737 // that doesn't use AllocationSites. 4738 __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); 4739 __ j(equal, &no_info); 4740 4741 // Only look at the lower 16 bits of the transition info. 4742 __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset)); 4743 __ SmiToInteger32(rdx, rdx); 4744 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 4745 __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask)); 4746 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); 4747 4748 __ bind(&no_info); 4749 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); 4750 4751 // Subclassing 4752 __ bind(&subclassing); 4753 switch (argument_count()) { 4754 case ANY: 4755 case MORE_THAN_ONE: { 4756 StackArgumentsAccessor args(rsp, rax); 4757 __ movp(args.GetReceiverOperand(), rdi); 4758 __ addp(rax, Immediate(3)); 4759 break; 4760 } 4761 case NONE: { 4762 StackArgumentsAccessor args(rsp, 0); 4763 __ movp(args.GetReceiverOperand(), rdi); 4764 __ Set(rax, 3); 4765 break; 4766 } 4767 case ONE: { 4768 StackArgumentsAccessor args(rsp, 1); 4769 __ movp(args.GetReceiverOperand(), rdi); 4770 __ Set(rax, 4); 4771 break; 4772 } 4773 } 4774 __ PopReturnAddressTo(rcx); 4775 __ Push(rdx); 4776 __ Push(rbx); 4777 __ PushReturnAddressFrom(rcx); 4778 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); 4779 } 4780 4781 4782 void InternalArrayConstructorStub::GenerateCase( 4783 MacroAssembler* masm, ElementsKind kind) { 4784 Label not_zero_case, not_one_case; 4785 Label normal_sequence; 4786 4787 __ testp(rax, rax); 4788 __ j(not_zero, ¬_zero_case); 4789 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); 4790 __ TailCallStub(&stub0); 4791 4792 __ bind(¬_zero_case); 4793 __ cmpl(rax, Immediate(1)); 4794 __ j(greater, ¬_one_case); 4795 4796 if (IsFastPackedElementsKind(kind)) { 4797 // We might need to create a holey array 4798 // look at the first argument 4799 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); 4800 __ movp(rcx, args.GetArgumentOperand(0)); 4801 __ testp(rcx, rcx); 4802 __ j(zero, &normal_sequence); 4803 4804 InternalArraySingleArgumentConstructorStub 4805 stub1_holey(isolate(), GetHoleyElementsKind(kind)); 4806 __ TailCallStub(&stub1_holey); 4807 } 4808 4809 __ bind(&normal_sequence); 4810 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); 4811 __ TailCallStub(&stub1); 4812 4813 __ bind(¬_one_case); 4814 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); 4815 __ TailCallStub(&stubN); 4816 } 4817 4818 4819 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { 4820 // ----------- S t a t e ------------- 4821 // -- rax : argc 4822 // -- rdi : constructor 4823 // -- rsp[0] : return address 4824 // -- rsp[8] : last argument 4825 // ----------------------------------- 4826 4827 if (FLAG_debug_code) { 4828 // The array construct code is only set for the global and natives 4829 // builtin Array functions which always have maps. 4830 4831 // Initial map for the builtin Array function should be a map. 4832 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 4833 // Will both indicate a NULL and a Smi. 4834 STATIC_ASSERT(kSmiTag == 0); 4835 Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); 4836 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); 4837 __ CmpObjectType(rcx, MAP_TYPE, rcx); 4838 __ Check(equal, kUnexpectedInitialMapForArrayFunction); 4839 } 4840 4841 // Figure out the right elements kind 4842 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 4843 4844 // Load the map's "bit field 2" into |result|. We only need the first byte, 4845 // but the following masking takes care of that anyway. 4846 __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset)); 4847 // Retrieve elements_kind from bit field 2. 4848 __ DecodeField<Map::ElementsKindBits>(rcx); 4849 4850 if (FLAG_debug_code) { 4851 Label done; 4852 __ cmpl(rcx, Immediate(FAST_ELEMENTS)); 4853 __ j(equal, &done); 4854 __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS)); 4855 __ Assert(equal, 4856 kInvalidElementsKindForInternalArrayOrInternalPackedArray); 4857 __ bind(&done); 4858 } 4859 4860 Label fast_elements_case; 4861 __ cmpl(rcx, Immediate(FAST_ELEMENTS)); 4862 __ j(equal, &fast_elements_case); 4863 GenerateCase(masm, FAST_HOLEY_ELEMENTS); 4864 4865 __ bind(&fast_elements_case); 4866 GenerateCase(masm, FAST_ELEMENTS); 4867 } 4868 4869 4870 void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) { 4871 Register context_reg = rsi; 4872 Register slot_reg = rbx; 4873 Register result_reg = rax; 4874 Label slow_case; 4875 4876 // Go up context chain to the script context. 4877 for (int i = 0; i < depth(); ++i) { 4878 __ movp(rdi, ContextOperand(context_reg, Context::PREVIOUS_INDEX)); 4879 context_reg = rdi; 4880 } 4881 4882 // Load the PropertyCell value at the specified slot. 4883 __ movp(result_reg, ContextOperand(context_reg, slot_reg)); 4884 __ movp(result_reg, FieldOperand(result_reg, PropertyCell::kValueOffset)); 4885 4886 // Check that value is not the_hole. 4887 __ CompareRoot(result_reg, Heap::kTheHoleValueRootIndex); 4888 __ j(equal, &slow_case, Label::kNear); 4889 __ Ret(); 4890 4891 // Fallback to the runtime. 4892 __ bind(&slow_case); 4893 __ Integer32ToSmi(slot_reg, slot_reg); 4894 __ PopReturnAddressTo(kScratchRegister); 4895 __ Push(slot_reg); 4896 __ Push(kScratchRegister); 4897 __ TailCallRuntime(Runtime::kLoadGlobalViaContext); 4898 } 4899 4900 4901 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) { 4902 Register context_reg = rsi; 4903 Register slot_reg = rbx; 4904 Register value_reg = rax; 4905 Register cell_reg = r8; 4906 Register cell_details_reg = rdx; 4907 Register cell_value_reg = r9; 4908 Label fast_heapobject_case, fast_smi_case, slow_case; 4909 4910 if (FLAG_debug_code) { 4911 __ CompareRoot(value_reg, Heap::kTheHoleValueRootIndex); 4912 __ Check(not_equal, kUnexpectedValue); 4913 } 4914 4915 // Go up context chain to the script context. 4916 for (int i = 0; i < depth(); ++i) { 4917 __ movp(rdi, ContextOperand(context_reg, Context::PREVIOUS_INDEX)); 4918 context_reg = rdi; 4919 } 4920 4921 // Load the PropertyCell at the specified slot. 4922 __ movp(cell_reg, ContextOperand(context_reg, slot_reg)); 4923 4924 // Load PropertyDetails for the cell (actually only the cell_type, kind and 4925 // READ_ONLY bit of attributes). 4926 __ SmiToInteger32(cell_details_reg, 4927 FieldOperand(cell_reg, PropertyCell::kDetailsOffset)); 4928 __ andl(cell_details_reg, 4929 Immediate(PropertyDetails::PropertyCellTypeField::kMask | 4930 PropertyDetails::KindField::kMask | 4931 PropertyDetails::kAttributesReadOnlyMask)); 4932 4933 // Check if PropertyCell holds mutable data. 4934 Label not_mutable_data; 4935 __ cmpl(cell_details_reg, 4936 Immediate(PropertyDetails::PropertyCellTypeField::encode( 4937 PropertyCellType::kMutable) | 4938 PropertyDetails::KindField::encode(kData))); 4939 __ j(not_equal, ¬_mutable_data); 4940 __ JumpIfSmi(value_reg, &fast_smi_case); 4941 __ bind(&fast_heapobject_case); 4942 __ movp(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg); 4943 __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg, 4944 cell_value_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET, 4945 OMIT_SMI_CHECK); 4946 // RecordWriteField clobbers the value register, so we need to reload. 4947 __ movp(value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset)); 4948 __ Ret(); 4949 __ bind(¬_mutable_data); 4950 4951 // Check if PropertyCell value matches the new value (relevant for Constant, 4952 // ConstantType and Undefined cells). 4953 Label not_same_value; 4954 __ movp(cell_value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset)); 4955 __ cmpp(cell_value_reg, value_reg); 4956 __ j(not_equal, ¬_same_value, 4957 FLAG_debug_code ? Label::kFar : Label::kNear); 4958 // Make sure the PropertyCell is not marked READ_ONLY. 4959 __ testl(cell_details_reg, 4960 Immediate(PropertyDetails::kAttributesReadOnlyMask)); 4961 __ j(not_zero, &slow_case); 4962 if (FLAG_debug_code) { 4963 Label done; 4964 // This can only be true for Constant, ConstantType and Undefined cells, 4965 // because we never store the_hole via this stub. 4966 __ cmpl(cell_details_reg, 4967 Immediate(PropertyDetails::PropertyCellTypeField::encode( 4968 PropertyCellType::kConstant) | 4969 PropertyDetails::KindField::encode(kData))); 4970 __ j(equal, &done); 4971 __ cmpl(cell_details_reg, 4972 Immediate(PropertyDetails::PropertyCellTypeField::encode( 4973 PropertyCellType::kConstantType) | 4974 PropertyDetails::KindField::encode(kData))); 4975 __ j(equal, &done); 4976 __ cmpl(cell_details_reg, 4977 Immediate(PropertyDetails::PropertyCellTypeField::encode( 4978 PropertyCellType::kUndefined) | 4979 PropertyDetails::KindField::encode(kData))); 4980 __ Check(equal, kUnexpectedValue); 4981 __ bind(&done); 4982 } 4983 __ Ret(); 4984 __ bind(¬_same_value); 4985 4986 // Check if PropertyCell contains data with constant type (and is not 4987 // READ_ONLY). 4988 __ cmpl(cell_details_reg, 4989 Immediate(PropertyDetails::PropertyCellTypeField::encode( 4990 PropertyCellType::kConstantType) | 4991 PropertyDetails::KindField::encode(kData))); 4992 __ j(not_equal, &slow_case, Label::kNear); 4993 4994 // Now either both old and new values must be SMIs or both must be heap 4995 // objects with same map. 4996 Label value_is_heap_object; 4997 __ JumpIfNotSmi(value_reg, &value_is_heap_object, Label::kNear); 4998 __ JumpIfNotSmi(cell_value_reg, &slow_case, Label::kNear); 4999 // Old and new values are SMIs, no need for a write barrier here. 5000 __ bind(&fast_smi_case); 5001 __ movp(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg); 5002 __ Ret(); 5003 __ bind(&value_is_heap_object); 5004 __ JumpIfSmi(cell_value_reg, &slow_case, Label::kNear); 5005 Register cell_value_map_reg = cell_value_reg; 5006 __ movp(cell_value_map_reg, 5007 FieldOperand(cell_value_reg, HeapObject::kMapOffset)); 5008 __ cmpp(cell_value_map_reg, FieldOperand(value_reg, HeapObject::kMapOffset)); 5009 __ j(equal, &fast_heapobject_case); 5010 5011 // Fallback to the runtime. 5012 __ bind(&slow_case); 5013 __ Integer32ToSmi(slot_reg, slot_reg); 5014 __ PopReturnAddressTo(kScratchRegister); 5015 __ Push(slot_reg); 5016 __ Push(value_reg); 5017 __ Push(kScratchRegister); 5018 __ TailCallRuntime(is_strict(language_mode()) 5019 ? Runtime::kStoreGlobalViaContext_Strict 5020 : Runtime::kStoreGlobalViaContext_Sloppy); 5021 } 5022 5023 5024 static int Offset(ExternalReference ref0, ExternalReference ref1) { 5025 int64_t offset = (ref0.address() - ref1.address()); 5026 // Check that fits into int. 5027 DCHECK(static_cast<int>(offset) == offset); 5028 return static_cast<int>(offset); 5029 } 5030 5031 5032 // Prepares stack to put arguments (aligns and so on). WIN64 calling 5033 // convention requires to put the pointer to the return value slot into 5034 // rcx (rcx must be preserverd until CallApiFunctionAndReturn). Saves 5035 // context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize 5036 // inside the exit frame (not GCed) accessible via StackSpaceOperand. 5037 static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) { 5038 __ EnterApiExitFrame(arg_stack_space); 5039 } 5040 5041 5042 // Calls an API function. Allocates HandleScope, extracts returned value 5043 // from handle and propagates exceptions. Clobbers r14, r15, rbx and 5044 // caller-save registers. Restores context. On return removes 5045 // stack_space * kPointerSize (GCed). 5046 static void CallApiFunctionAndReturn(MacroAssembler* masm, 5047 Register function_address, 5048 ExternalReference thunk_ref, 5049 Register thunk_last_arg, int stack_space, 5050 Operand* stack_space_operand, 5051 Operand return_value_operand, 5052 Operand* context_restore_operand) { 5053 Label prologue; 5054 Label promote_scheduled_exception; 5055 Label delete_allocated_handles; 5056 Label leave_exit_frame; 5057 Label write_back; 5058 5059 Isolate* isolate = masm->isolate(); 5060 Factory* factory = isolate->factory(); 5061 ExternalReference next_address = 5062 ExternalReference::handle_scope_next_address(isolate); 5063 const int kNextOffset = 0; 5064 const int kLimitOffset = Offset( 5065 ExternalReference::handle_scope_limit_address(isolate), next_address); 5066 const int kLevelOffset = Offset( 5067 ExternalReference::handle_scope_level_address(isolate), next_address); 5068 ExternalReference scheduled_exception_address = 5069 ExternalReference::scheduled_exception_address(isolate); 5070 5071 DCHECK(rdx.is(function_address) || r8.is(function_address)); 5072 // Allocate HandleScope in callee-save registers. 5073 Register prev_next_address_reg = r14; 5074 Register prev_limit_reg = rbx; 5075 Register base_reg = r15; 5076 __ Move(base_reg, next_address); 5077 __ movp(prev_next_address_reg, Operand(base_reg, kNextOffset)); 5078 __ movp(prev_limit_reg, Operand(base_reg, kLimitOffset)); 5079 __ addl(Operand(base_reg, kLevelOffset), Immediate(1)); 5080 5081 if (FLAG_log_timer_events) { 5082 FrameScope frame(masm, StackFrame::MANUAL); 5083 __ PushSafepointRegisters(); 5084 __ PrepareCallCFunction(1); 5085 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 5086 __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 5087 1); 5088 __ PopSafepointRegisters(); 5089 } 5090 5091 Label profiler_disabled; 5092 Label end_profiler_check; 5093 __ Move(rax, ExternalReference::is_profiling_address(isolate)); 5094 __ cmpb(Operand(rax, 0), Immediate(0)); 5095 __ j(zero, &profiler_disabled); 5096 5097 // Third parameter is the address of the actual getter function. 5098 __ Move(thunk_last_arg, function_address); 5099 __ Move(rax, thunk_ref); 5100 __ jmp(&end_profiler_check); 5101 5102 __ bind(&profiler_disabled); 5103 // Call the api function! 5104 __ Move(rax, function_address); 5105 5106 __ bind(&end_profiler_check); 5107 5108 // Call the api function! 5109 __ call(rax); 5110 5111 if (FLAG_log_timer_events) { 5112 FrameScope frame(masm, StackFrame::MANUAL); 5113 __ PushSafepointRegisters(); 5114 __ PrepareCallCFunction(1); 5115 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 5116 __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 5117 1); 5118 __ PopSafepointRegisters(); 5119 } 5120 5121 // Load the value from ReturnValue 5122 __ movp(rax, return_value_operand); 5123 __ bind(&prologue); 5124 5125 // No more valid handles (the result handle was the last one). Restore 5126 // previous handle scope. 5127 __ subl(Operand(base_reg, kLevelOffset), Immediate(1)); 5128 __ movp(Operand(base_reg, kNextOffset), prev_next_address_reg); 5129 __ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset)); 5130 __ j(not_equal, &delete_allocated_handles); 5131 5132 // Leave the API exit frame. 5133 __ bind(&leave_exit_frame); 5134 bool restore_context = context_restore_operand != NULL; 5135 if (restore_context) { 5136 __ movp(rsi, *context_restore_operand); 5137 } 5138 if (stack_space_operand != nullptr) { 5139 __ movp(rbx, *stack_space_operand); 5140 } 5141 __ LeaveApiExitFrame(!restore_context); 5142 5143 // Check if the function scheduled an exception. 5144 __ Move(rdi, scheduled_exception_address); 5145 __ Cmp(Operand(rdi, 0), factory->the_hole_value()); 5146 __ j(not_equal, &promote_scheduled_exception); 5147 5148 #if DEBUG 5149 // Check if the function returned a valid JavaScript value. 5150 Label ok; 5151 Register return_value = rax; 5152 Register map = rcx; 5153 5154 __ JumpIfSmi(return_value, &ok, Label::kNear); 5155 __ movp(map, FieldOperand(return_value, HeapObject::kMapOffset)); 5156 5157 __ CmpInstanceType(map, LAST_NAME_TYPE); 5158 __ j(below_equal, &ok, Label::kNear); 5159 5160 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); 5161 __ j(above_equal, &ok, Label::kNear); 5162 5163 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); 5164 __ j(equal, &ok, Label::kNear); 5165 5166 __ CompareRoot(return_value, Heap::kUndefinedValueRootIndex); 5167 __ j(equal, &ok, Label::kNear); 5168 5169 __ CompareRoot(return_value, Heap::kTrueValueRootIndex); 5170 __ j(equal, &ok, Label::kNear); 5171 5172 __ CompareRoot(return_value, Heap::kFalseValueRootIndex); 5173 __ j(equal, &ok, Label::kNear); 5174 5175 __ CompareRoot(return_value, Heap::kNullValueRootIndex); 5176 __ j(equal, &ok, Label::kNear); 5177 5178 __ Abort(kAPICallReturnedInvalidObject); 5179 5180 __ bind(&ok); 5181 #endif 5182 5183 if (stack_space_operand != nullptr) { 5184 DCHECK_EQ(stack_space, 0); 5185 __ PopReturnAddressTo(rcx); 5186 __ addq(rsp, rbx); 5187 __ jmp(rcx); 5188 } else { 5189 __ ret(stack_space * kPointerSize); 5190 } 5191 5192 // Re-throw by promoting a scheduled exception. 5193 __ bind(&promote_scheduled_exception); 5194 __ TailCallRuntime(Runtime::kPromoteScheduledException); 5195 5196 // HandleScope limit has changed. Delete allocated extensions. 5197 __ bind(&delete_allocated_handles); 5198 __ movp(Operand(base_reg, kLimitOffset), prev_limit_reg); 5199 __ movp(prev_limit_reg, rax); 5200 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 5201 __ LoadAddress(rax, 5202 ExternalReference::delete_handle_scope_extensions(isolate)); 5203 __ call(rax); 5204 __ movp(rax, prev_limit_reg); 5205 __ jmp(&leave_exit_frame); 5206 } 5207 5208 5209 static void CallApiFunctionStubHelper(MacroAssembler* masm, 5210 const ParameterCount& argc, 5211 bool return_first_arg, 5212 bool call_data_undefined) { 5213 // ----------- S t a t e ------------- 5214 // -- rdi : callee 5215 // -- rbx : call_data 5216 // -- rcx : holder 5217 // -- rdx : api_function_address 5218 // -- rsi : context 5219 // -- rax : number of arguments if argc is a register 5220 // -- rsp[0] : return address 5221 // -- rsp[8] : last argument 5222 // -- ... 5223 // -- rsp[argc * 8] : first argument 5224 // -- rsp[(argc + 1) * 8] : receiver 5225 // ----------------------------------- 5226 5227 Register callee = rdi; 5228 Register call_data = rbx; 5229 Register holder = rcx; 5230 Register api_function_address = rdx; 5231 Register context = rsi; 5232 Register return_address = r8; 5233 5234 typedef FunctionCallbackArguments FCA; 5235 5236 STATIC_ASSERT(FCA::kContextSaveIndex == 6); 5237 STATIC_ASSERT(FCA::kCalleeIndex == 5); 5238 STATIC_ASSERT(FCA::kDataIndex == 4); 5239 STATIC_ASSERT(FCA::kReturnValueOffset == 3); 5240 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); 5241 STATIC_ASSERT(FCA::kIsolateIndex == 1); 5242 STATIC_ASSERT(FCA::kHolderIndex == 0); 5243 STATIC_ASSERT(FCA::kArgsLength == 7); 5244 5245 DCHECK(argc.is_immediate() || rax.is(argc.reg())); 5246 5247 __ PopReturnAddressTo(return_address); 5248 5249 // context save 5250 __ Push(context); 5251 5252 // callee 5253 __ Push(callee); 5254 5255 // call data 5256 __ Push(call_data); 5257 Register scratch = call_data; 5258 if (!call_data_undefined) { 5259 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 5260 } 5261 // return value 5262 __ Push(scratch); 5263 // return value default 5264 __ Push(scratch); 5265 // isolate 5266 __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); 5267 __ Push(scratch); 5268 // holder 5269 __ Push(holder); 5270 5271 __ movp(scratch, rsp); 5272 // Push return address back on stack. 5273 __ PushReturnAddressFrom(return_address); 5274 5275 // load context from callee 5276 __ movp(context, FieldOperand(callee, JSFunction::kContextOffset)); 5277 5278 // Allocate the v8::Arguments structure in the arguments' space since 5279 // it's not controlled by GC. 5280 const int kApiStackSpace = 4; 5281 5282 PrepareCallApiFunction(masm, kApiStackSpace); 5283 5284 // FunctionCallbackInfo::implicit_args_. 5285 __ movp(StackSpaceOperand(0), scratch); 5286 if (argc.is_immediate()) { 5287 __ addp(scratch, Immediate((argc.immediate() + FCA::kArgsLength - 1) * 5288 kPointerSize)); 5289 // FunctionCallbackInfo::values_. 5290 __ movp(StackSpaceOperand(1), scratch); 5291 // FunctionCallbackInfo::length_. 5292 __ Set(StackSpaceOperand(2), argc.immediate()); 5293 // FunctionCallbackInfo::is_construct_call_. 5294 __ Set(StackSpaceOperand(3), 0); 5295 } else { 5296 __ leap(scratch, Operand(scratch, argc.reg(), times_pointer_size, 5297 (FCA::kArgsLength - 1) * kPointerSize)); 5298 // FunctionCallbackInfo::values_. 5299 __ movp(StackSpaceOperand(1), scratch); 5300 // FunctionCallbackInfo::length_. 5301 __ movp(StackSpaceOperand(2), argc.reg()); 5302 // FunctionCallbackInfo::is_construct_call_. 5303 __ leap(argc.reg(), Operand(argc.reg(), times_pointer_size, 5304 (FCA::kArgsLength + 1) * kPointerSize)); 5305 __ movp(StackSpaceOperand(3), argc.reg()); 5306 } 5307 5308 #if defined(__MINGW64__) || defined(_WIN64) 5309 Register arguments_arg = rcx; 5310 Register callback_arg = rdx; 5311 #else 5312 Register arguments_arg = rdi; 5313 Register callback_arg = rsi; 5314 #endif 5315 5316 // It's okay if api_function_address == callback_arg 5317 // but not arguments_arg 5318 DCHECK(!api_function_address.is(arguments_arg)); 5319 5320 // v8::InvocationCallback's argument. 5321 __ leap(arguments_arg, StackSpaceOperand(0)); 5322 5323 ExternalReference thunk_ref = 5324 ExternalReference::invoke_function_callback(masm->isolate()); 5325 5326 // Accessor for FunctionCallbackInfo and first js arg. 5327 StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1, 5328 ARGUMENTS_DONT_CONTAIN_RECEIVER); 5329 Operand context_restore_operand = args_from_rbp.GetArgumentOperand( 5330 FCA::kArgsLength - FCA::kContextSaveIndex); 5331 Operand is_construct_call_operand = StackSpaceOperand(3); 5332 Operand return_value_operand = args_from_rbp.GetArgumentOperand( 5333 return_first_arg ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset); 5334 int stack_space = 0; 5335 Operand* stack_space_operand = &is_construct_call_operand; 5336 if (argc.is_immediate()) { 5337 stack_space = argc.immediate() + FCA::kArgsLength + 1; 5338 stack_space_operand = nullptr; 5339 } 5340 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg, 5341 stack_space, stack_space_operand, 5342 return_value_operand, &context_restore_operand); 5343 } 5344 5345 5346 void CallApiFunctionStub::Generate(MacroAssembler* masm) { 5347 bool call_data_undefined = this->call_data_undefined(); 5348 CallApiFunctionStubHelper(masm, ParameterCount(rax), false, 5349 call_data_undefined); 5350 } 5351 5352 5353 void CallApiAccessorStub::Generate(MacroAssembler* masm) { 5354 bool is_store = this->is_store(); 5355 int argc = this->argc(); 5356 bool call_data_undefined = this->call_data_undefined(); 5357 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store, 5358 call_data_undefined); 5359 } 5360 5361 5362 void CallApiGetterStub::Generate(MacroAssembler* masm) { 5363 // ----------- S t a t e ------------- 5364 // -- rsp[0] : return address 5365 // -- rsp[8] : name 5366 // -- rsp[16 - kArgsLength*8] : PropertyCallbackArguments object 5367 // -- ... 5368 // -- r8 : api_function_address 5369 // ----------------------------------- 5370 5371 #if defined(__MINGW64__) || defined(_WIN64) 5372 Register getter_arg = r8; 5373 Register accessor_info_arg = rdx; 5374 Register name_arg = rcx; 5375 #else 5376 Register getter_arg = rdx; 5377 Register accessor_info_arg = rsi; 5378 Register name_arg = rdi; 5379 #endif 5380 Register api_function_address = ApiGetterDescriptor::function_address(); 5381 DCHECK(api_function_address.is(r8)); 5382 Register scratch = rax; 5383 5384 // v8::Arguments::values_ and handler for name. 5385 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1; 5386 5387 // Allocate v8::AccessorInfo in non-GCed stack space. 5388 const int kArgStackSpace = 1; 5389 5390 __ leap(name_arg, Operand(rsp, kPCOnStackSize)); 5391 5392 PrepareCallApiFunction(masm, kArgStackSpace); 5393 __ leap(scratch, Operand(name_arg, 1 * kPointerSize)); 5394 5395 // v8::PropertyAccessorInfo::args_. 5396 __ movp(StackSpaceOperand(0), scratch); 5397 5398 // The context register (rsi) has been saved in PrepareCallApiFunction and 5399 // could be used to pass arguments. 5400 __ leap(accessor_info_arg, StackSpaceOperand(0)); 5401 5402 ExternalReference thunk_ref = 5403 ExternalReference::invoke_accessor_getter_callback(isolate()); 5404 5405 // It's okay if api_function_address == getter_arg 5406 // but not accessor_info_arg or name_arg 5407 DCHECK(!api_function_address.is(accessor_info_arg) && 5408 !api_function_address.is(name_arg)); 5409 5410 // The name handler is counted as an argument. 5411 StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength); 5412 Operand return_value_operand = args.GetArgumentOperand( 5413 PropertyCallbackArguments::kArgsLength - 1 - 5414 PropertyCallbackArguments::kReturnValueOffset); 5415 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg, 5416 kStackSpace, nullptr, return_value_operand, NULL); 5417 } 5418 5419 5420 #undef __ 5421 5422 } // namespace internal 5423 } // namespace v8 5424 5425 #endif // V8_TARGET_ARCH_X64 5426