1 /* Portions are Copyright (C) 2011 Google Inc */ 2 /* ***** BEGIN LICENSE BLOCK ***** 3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4 * 5 * The contents of this file are subject to the Mozilla Public License Version 6 * 1.1 (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * http://www.mozilla.org/MPL/ 9 * 10 * Software distributed under the License is distributed on an "AS IS" basis, 11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12 * for the specific language governing rights and limitations under the 13 * License. 14 * 15 * The Original Code is the Netscape Portable Runtime (NSPR). 16 * 17 * The Initial Developer of the Original Code is 18 * Netscape Communications Corporation. 19 * Portions created by the Initial Developer are Copyright (C) 1998-2000 20 * the Initial Developer. All Rights Reserved. 21 * 22 * Contributor(s): 23 * 24 * Alternatively, the contents of this file may be used under the terms of 25 * either the GNU General Public License Version 2 or later (the "GPL"), or 26 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 27 * in which case the provisions of the GPL or the LGPL are applicable instead 28 * of those above. If you wish to allow use of your version of this file only 29 * under the terms of either the GPL or the LGPL, and not to allow others to 30 * use your version of this file under the terms of the MPL, indicate your 31 * decision by deleting the provisions above and replace them with the notice 32 * and other provisions required by the GPL or the LGPL. If you do not delete 33 * the provisions above, a recipient may use your version of this file under 34 * the terms of any one of the MPL, the GPL or the LGPL. 35 * 36 * ***** END LICENSE BLOCK ***** */ 37 38 /* 39 * prtime.cc -- 40 * NOTE: The original nspr file name is prtime.c 41 * 42 * NSPR date and time functions 43 * 44 * CVS revision 3.37 45 */ 46 47 /* 48 * The following functions were copied from the NSPR prtime.c file. 49 * PR_ParseTimeString 50 * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid 51 * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime 52 * and PR_ImplodeTime calls cancel each other out.) 53 * PR_NormalizeTime 54 * PR_GMTParameters 55 * PR_ImplodeTime 56 * This was modified to use the Win32 SYSTEMTIME/FILETIME structures 57 * and the timezone offsets are applied to the FILETIME structure. 58 * All types and macros are defined in the base/third_party/prtime.h file. 59 * These have been copied from the following nspr files. We have only copied 60 * over the types we need. 61 * 1. prtime.h 62 * 2. prtypes.h 63 * 3. prlong.h 64 * 65 * Unit tests are in base/time/pr_time_unittest.cc. 66 */ 67 68 #include <limits.h> 69 70 #include "base/logging.h" 71 #include "base/third_party/nspr/prtime.h" 72 #include "build/build_config.h" 73 74 #if defined(OS_WIN) 75 #include <windows.h> 76 #elif defined(OS_MACOSX) 77 #include <CoreFoundation/CoreFoundation.h> 78 #elif defined(OS_ANDROID) 79 #include <ctype.h> 80 #include "base/os_compat_android.h" // For timegm() 81 #elif defined(OS_NACL) 82 #include "base/os_compat_nacl.h" // For timegm() 83 #endif 84 #include <errno.h> /* for EINVAL */ 85 #include <time.h> 86 87 /* Implements the Unix localtime_r() function for windows */ 88 #if defined(OS_WIN) 89 static void localtime_r(const time_t* secs, struct tm* time) { 90 (void) localtime_s(time, secs); 91 } 92 #endif 93 94 /* 95 *------------------------------------------------------------------------ 96 * 97 * PR_ImplodeTime -- 98 * 99 * Cf. time_t mktime(struct tm *tp) 100 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. 101 * 102 *------------------------------------------------------------------------ 103 */ 104 PRTime 105 PR_ImplodeTime(const PRExplodedTime *exploded) 106 { 107 // This is important, we want to make sure multiplications are 108 // done with the correct precision. 109 static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000); 110 #if defined(OS_WIN) 111 // Create the system struct representing our exploded time. 112 SYSTEMTIME st = {}; 113 FILETIME ft = {}; 114 ULARGE_INTEGER uli = {}; 115 116 st.wYear = exploded->tm_year; 117 st.wMonth = static_cast<WORD>(exploded->tm_month + 1); 118 st.wDayOfWeek = exploded->tm_wday; 119 st.wDay = static_cast<WORD>(exploded->tm_mday); 120 st.wHour = static_cast<WORD>(exploded->tm_hour); 121 st.wMinute = static_cast<WORD>(exploded->tm_min); 122 st.wSecond = static_cast<WORD>(exploded->tm_sec); 123 st.wMilliseconds = static_cast<WORD>(exploded->tm_usec/1000); 124 // Convert to FILETIME. 125 if (!SystemTimeToFileTime(&st, &ft)) { 126 NOTREACHED() << "Unable to convert time"; 127 return 0; 128 } 129 // Apply offsets. 130 uli.LowPart = ft.dwLowDateTime; 131 uli.HighPart = ft.dwHighDateTime; 132 // Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units 133 // to microsecond units. 134 PRTime result = 135 static_cast<PRTime>((uli.QuadPart / 10) - 11644473600000000i64); 136 // Adjust for time zone and dst. Convert from seconds to microseconds. 137 result -= (exploded->tm_params.tp_gmt_offset + 138 exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds; 139 // Add microseconds that cannot be represented in |st|. 140 result += exploded->tm_usec % 1000; 141 return result; 142 #elif defined(OS_MACOSX) 143 // Create the system struct representing our exploded time. 144 CFGregorianDate gregorian_date; 145 gregorian_date.year = exploded->tm_year; 146 gregorian_date.month = exploded->tm_month + 1; 147 gregorian_date.day = exploded->tm_mday; 148 gregorian_date.hour = exploded->tm_hour; 149 gregorian_date.minute = exploded->tm_min; 150 gregorian_date.second = exploded->tm_sec; 151 152 // Compute |absolute_time| in seconds, correct for gmt and dst 153 // (note the combined offset will be negative when we need to add it), then 154 // convert to microseconds which is what PRTime expects. 155 CFAbsoluteTime absolute_time = 156 CFGregorianDateGetAbsoluteTime(gregorian_date, NULL); 157 PRTime result = static_cast<PRTime>(absolute_time); 158 result -= exploded->tm_params.tp_gmt_offset + 159 exploded->tm_params.tp_dst_offset; 160 result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970 161 result *= kSecondsToMicroseconds; 162 result += exploded->tm_usec; 163 return result; 164 #elif defined(OS_POSIX) 165 struct tm exp_tm; 166 memset(&exp_tm, 0, sizeof(exp_tm)); 167 exp_tm.tm_sec = exploded->tm_sec; 168 exp_tm.tm_min = exploded->tm_min; 169 exp_tm.tm_hour = exploded->tm_hour; 170 exp_tm.tm_mday = exploded->tm_mday; 171 exp_tm.tm_mon = exploded->tm_month; 172 exp_tm.tm_year = exploded->tm_year - 1900; 173 174 time_t absolute_time = timegm(&exp_tm); 175 176 // If timegm returned -1. Since we don't pass it a time zone, the only 177 // valid case of returning -1 is 1 second before Epoch (Dec 31, 1969). 178 if (absolute_time == -1 && 179 !(exploded->tm_year == 1969 && exploded->tm_month == 11 && 180 exploded->tm_mday == 31 && exploded->tm_hour == 23 && 181 exploded->tm_min == 59 && exploded->tm_sec == 59)) { 182 // If we get here, time_t must be 32 bits. 183 // Date was possibly too far in the future and would overflow. Return 184 // the most future date possible (year 2038). 185 if (exploded->tm_year >= 1970) 186 return INT_MAX * kSecondsToMicroseconds; 187 // Date was possibly too far in the past and would underflow. Return 188 // the most past date possible (year 1901). 189 return INT_MIN * kSecondsToMicroseconds; 190 } 191 192 PRTime result = static_cast<PRTime>(absolute_time); 193 result -= exploded->tm_params.tp_gmt_offset + 194 exploded->tm_params.tp_dst_offset; 195 result *= kSecondsToMicroseconds; 196 result += exploded->tm_usec; 197 return result; 198 #else 199 #error No PR_ImplodeTime implemented on your platform. 200 #endif 201 } 202 203 /* 204 * The COUNT_LEAPS macro counts the number of leap years passed by 205 * till the start of the given year Y. At the start of the year 4 206 * A.D. the number of leap years passed by is 0, while at the start of 207 * the year 5 A.D. this count is 1. The number of years divisible by 208 * 100 but not divisible by 400 (the non-leap years) is deducted from 209 * the count to get the correct number of leap years. 210 * 211 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the 212 * start of the given year Y. The number of days at the start of the year 213 * 1 is 0 while the number of days at the start of the year 2 is 365 214 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 215 * midnight 00:00:00. 216 */ 217 218 #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) 219 #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) 220 #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) 221 222 /* 223 * Static variables used by functions in this file 224 */ 225 226 /* 227 * The following array contains the day of year for the last day of 228 * each month, where index 1 is January, and day 0 is January 1. 229 */ 230 231 static const int lastDayOfMonth[2][13] = { 232 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, 233 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} 234 }; 235 236 /* 237 * The number of days in a month 238 */ 239 240 static const PRInt8 nDays[2][12] = { 241 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, 242 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} 243 }; 244 245 /* 246 *------------------------------------------------------------------------- 247 * 248 * IsLeapYear -- 249 * 250 * Returns 1 if the year is a leap year, 0 otherwise. 251 * 252 *------------------------------------------------------------------------- 253 */ 254 255 static int IsLeapYear(PRInt16 year) 256 { 257 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) 258 return 1; 259 else 260 return 0; 261 } 262 263 /* 264 * 'secOffset' should be less than 86400 (i.e., a day). 265 * 'time' should point to a normalized PRExplodedTime. 266 */ 267 268 static void 269 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) 270 { 271 time->tm_sec += secOffset; 272 273 /* Note that in this implementation we do not count leap seconds */ 274 if (time->tm_sec < 0 || time->tm_sec >= 60) { 275 time->tm_min += time->tm_sec / 60; 276 time->tm_sec %= 60; 277 if (time->tm_sec < 0) { 278 time->tm_sec += 60; 279 time->tm_min--; 280 } 281 } 282 283 if (time->tm_min < 0 || time->tm_min >= 60) { 284 time->tm_hour += time->tm_min / 60; 285 time->tm_min %= 60; 286 if (time->tm_min < 0) { 287 time->tm_min += 60; 288 time->tm_hour--; 289 } 290 } 291 292 if (time->tm_hour < 0) { 293 /* Decrement mday, yday, and wday */ 294 time->tm_hour += 24; 295 time->tm_mday--; 296 time->tm_yday--; 297 if (time->tm_mday < 1) { 298 time->tm_month--; 299 if (time->tm_month < 0) { 300 time->tm_month = 11; 301 time->tm_year--; 302 if (IsLeapYear(time->tm_year)) 303 time->tm_yday = 365; 304 else 305 time->tm_yday = 364; 306 } 307 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; 308 } 309 time->tm_wday--; 310 if (time->tm_wday < 0) 311 time->tm_wday = 6; 312 } else if (time->tm_hour > 23) { 313 /* Increment mday, yday, and wday */ 314 time->tm_hour -= 24; 315 time->tm_mday++; 316 time->tm_yday++; 317 if (time->tm_mday > 318 nDays[IsLeapYear(time->tm_year)][time->tm_month]) { 319 time->tm_mday = 1; 320 time->tm_month++; 321 if (time->tm_month > 11) { 322 time->tm_month = 0; 323 time->tm_year++; 324 time->tm_yday = 0; 325 } 326 } 327 time->tm_wday++; 328 if (time->tm_wday > 6) 329 time->tm_wday = 0; 330 } 331 } 332 333 void 334 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) 335 { 336 int daysInMonth; 337 PRInt32 numDays; 338 339 /* Get back to GMT */ 340 time->tm_sec -= time->tm_params.tp_gmt_offset 341 + time->tm_params.tp_dst_offset; 342 time->tm_params.tp_gmt_offset = 0; 343 time->tm_params.tp_dst_offset = 0; 344 345 /* Now normalize GMT */ 346 347 if (time->tm_usec < 0 || time->tm_usec >= 1000000) { 348 time->tm_sec += time->tm_usec / 1000000; 349 time->tm_usec %= 1000000; 350 if (time->tm_usec < 0) { 351 time->tm_usec += 1000000; 352 time->tm_sec--; 353 } 354 } 355 356 /* Note that we do not count leap seconds in this implementation */ 357 if (time->tm_sec < 0 || time->tm_sec >= 60) { 358 time->tm_min += time->tm_sec / 60; 359 time->tm_sec %= 60; 360 if (time->tm_sec < 0) { 361 time->tm_sec += 60; 362 time->tm_min--; 363 } 364 } 365 366 if (time->tm_min < 0 || time->tm_min >= 60) { 367 time->tm_hour += time->tm_min / 60; 368 time->tm_min %= 60; 369 if (time->tm_min < 0) { 370 time->tm_min += 60; 371 time->tm_hour--; 372 } 373 } 374 375 if (time->tm_hour < 0 || time->tm_hour >= 24) { 376 time->tm_mday += time->tm_hour / 24; 377 time->tm_hour %= 24; 378 if (time->tm_hour < 0) { 379 time->tm_hour += 24; 380 time->tm_mday--; 381 } 382 } 383 384 /* Normalize month and year before mday */ 385 if (time->tm_month < 0 || time->tm_month >= 12) { 386 time->tm_year += static_cast<PRInt16>(time->tm_month / 12); 387 time->tm_month %= 12; 388 if (time->tm_month < 0) { 389 time->tm_month += 12; 390 time->tm_year--; 391 } 392 } 393 394 /* Now that month and year are in proper range, normalize mday */ 395 396 if (time->tm_mday < 1) { 397 /* mday too small */ 398 do { 399 /* the previous month */ 400 time->tm_month--; 401 if (time->tm_month < 0) { 402 time->tm_month = 11; 403 time->tm_year--; 404 } 405 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; 406 } while (time->tm_mday < 1); 407 } else { 408 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; 409 while (time->tm_mday > daysInMonth) { 410 /* mday too large */ 411 time->tm_mday -= daysInMonth; 412 time->tm_month++; 413 if (time->tm_month > 11) { 414 time->tm_month = 0; 415 time->tm_year++; 416 } 417 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; 418 } 419 } 420 421 /* Recompute yday and wday */ 422 time->tm_yday = static_cast<PRInt16>(time->tm_mday + 423 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]); 424 425 numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; 426 time->tm_wday = (numDays + 4) % 7; 427 if (time->tm_wday < 0) { 428 time->tm_wday += 7; 429 } 430 431 /* Recompute time parameters */ 432 433 time->tm_params = params(time); 434 435 ApplySecOffset(time, time->tm_params.tp_gmt_offset 436 + time->tm_params.tp_dst_offset); 437 } 438 439 /* 440 *------------------------------------------------------------------------ 441 * 442 * PR_GMTParameters -- 443 * 444 * Returns the PRTimeParameters for Greenwich Mean Time. 445 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. 446 * 447 *------------------------------------------------------------------------ 448 */ 449 450 PRTimeParameters 451 PR_GMTParameters(const PRExplodedTime* /* gmt */) 452 { 453 PRTimeParameters retVal = { 0, 0 }; 454 return retVal; 455 } 456 457 /* 458 * The following code implements PR_ParseTimeString(). It is based on 459 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz (at) netscape.com>. 460 */ 461 462 /* 463 * We only recognize the abbreviations of a small subset of time zones 464 * in North America, Europe, and Japan. 465 * 466 * PST/PDT: Pacific Standard/Daylight Time 467 * MST/MDT: Mountain Standard/Daylight Time 468 * CST/CDT: Central Standard/Daylight Time 469 * EST/EDT: Eastern Standard/Daylight Time 470 * AST: Atlantic Standard Time 471 * NST: Newfoundland Standard Time 472 * GMT: Greenwich Mean Time 473 * BST: British Summer Time 474 * MET: Middle Europe Time 475 * EET: Eastern Europe Time 476 * JST: Japan Standard Time 477 */ 478 479 typedef enum 480 { 481 TT_UNKNOWN, 482 483 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, 484 485 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, 486 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, 487 488 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, 489 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST 490 } TIME_TOKEN; 491 492 /* 493 * This parses a time/date string into a PRTime 494 * (microseconds after "1-Jan-1970 00:00:00 GMT"). 495 * It returns PR_SUCCESS on success, and PR_FAILURE 496 * if the time/date string can't be parsed. 497 * 498 * Many formats are handled, including: 499 * 500 * 14 Apr 89 03:20:12 501 * 14 Apr 89 03:20 GMT 502 * Fri, 17 Mar 89 4:01:33 503 * Fri, 17 Mar 89 4:01 GMT 504 * Mon Jan 16 16:12 PDT 1989 505 * Mon Jan 16 16:12 +0130 1989 506 * 6 May 1992 16:41-JST (Wednesday) 507 * 22-AUG-1993 10:59:12.82 508 * 22-AUG-1993 10:59pm 509 * 22-AUG-1993 12:59am 510 * 22-AUG-1993 12:59 PM 511 * Friday, August 04, 1995 3:54 PM 512 * 06/21/95 04:24:34 PM 513 * 20/06/95 21:07 514 * 95-06-08 19:32:48 EDT 515 * 1995-06-17T23:11:25.342156Z 516 * 517 * If the input string doesn't contain a description of the timezone, 518 * we consult the `default_to_gmt' to decide whether the string should 519 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). 520 * The correct value for this argument depends on what standard specified 521 * the time string which you are parsing. 522 */ 523 524 PRStatus 525 PR_ParseTimeString( 526 const char *string, 527 PRBool default_to_gmt, 528 PRTime *result_imploded) 529 { 530 PRExplodedTime tm; 531 PRExplodedTime *result = &tm; 532 TIME_TOKEN dotw = TT_UNKNOWN; 533 TIME_TOKEN month = TT_UNKNOWN; 534 TIME_TOKEN zone = TT_UNKNOWN; 535 int zone_offset = -1; 536 int dst_offset = 0; 537 int date = -1; 538 PRInt32 year = -1; 539 int hour = -1; 540 int min = -1; 541 int sec = -1; 542 int usec = -1; 543 544 const char *rest = string; 545 546 int iterations = 0; 547 548 PR_ASSERT(string && result); 549 if (!string || !result) return PR_FAILURE; 550 551 while (*rest) 552 { 553 554 if (iterations++ > 1000) 555 { 556 return PR_FAILURE; 557 } 558 559 switch (*rest) 560 { 561 case 'a': case 'A': 562 if (month == TT_UNKNOWN && 563 (rest[1] == 'p' || rest[1] == 'P') && 564 (rest[2] == 'r' || rest[2] == 'R')) 565 month = TT_APR; 566 else if (zone == TT_UNKNOWN && 567 (rest[1] == 's' || rest[1] == 'S') && 568 (rest[2] == 't' || rest[2] == 'T')) 569 zone = TT_AST; 570 else if (month == TT_UNKNOWN && 571 (rest[1] == 'u' || rest[1] == 'U') && 572 (rest[2] == 'g' || rest[2] == 'G')) 573 month = TT_AUG; 574 break; 575 case 'b': case 'B': 576 if (zone == TT_UNKNOWN && 577 (rest[1] == 's' || rest[1] == 'S') && 578 (rest[2] == 't' || rest[2] == 'T')) 579 zone = TT_BST; 580 break; 581 case 'c': case 'C': 582 if (zone == TT_UNKNOWN && 583 (rest[1] == 'd' || rest[1] == 'D') && 584 (rest[2] == 't' || rest[2] == 'T')) 585 zone = TT_CDT; 586 else if (zone == TT_UNKNOWN && 587 (rest[1] == 's' || rest[1] == 'S') && 588 (rest[2] == 't' || rest[2] == 'T')) 589 zone = TT_CST; 590 break; 591 case 'd': case 'D': 592 if (month == TT_UNKNOWN && 593 (rest[1] == 'e' || rest[1] == 'E') && 594 (rest[2] == 'c' || rest[2] == 'C')) 595 month = TT_DEC; 596 break; 597 case 'e': case 'E': 598 if (zone == TT_UNKNOWN && 599 (rest[1] == 'd' || rest[1] == 'D') && 600 (rest[2] == 't' || rest[2] == 'T')) 601 zone = TT_EDT; 602 else if (zone == TT_UNKNOWN && 603 (rest[1] == 'e' || rest[1] == 'E') && 604 (rest[2] == 't' || rest[2] == 'T')) 605 zone = TT_EET; 606 else if (zone == TT_UNKNOWN && 607 (rest[1] == 's' || rest[1] == 'S') && 608 (rest[2] == 't' || rest[2] == 'T')) 609 zone = TT_EST; 610 break; 611 case 'f': case 'F': 612 if (month == TT_UNKNOWN && 613 (rest[1] == 'e' || rest[1] == 'E') && 614 (rest[2] == 'b' || rest[2] == 'B')) 615 month = TT_FEB; 616 else if (dotw == TT_UNKNOWN && 617 (rest[1] == 'r' || rest[1] == 'R') && 618 (rest[2] == 'i' || rest[2] == 'I')) 619 dotw = TT_FRI; 620 break; 621 case 'g': case 'G': 622 if (zone == TT_UNKNOWN && 623 (rest[1] == 'm' || rest[1] == 'M') && 624 (rest[2] == 't' || rest[2] == 'T')) 625 zone = TT_GMT; 626 break; 627 case 'j': case 'J': 628 if (month == TT_UNKNOWN && 629 (rest[1] == 'a' || rest[1] == 'A') && 630 (rest[2] == 'n' || rest[2] == 'N')) 631 month = TT_JAN; 632 else if (zone == TT_UNKNOWN && 633 (rest[1] == 's' || rest[1] == 'S') && 634 (rest[2] == 't' || rest[2] == 'T')) 635 zone = TT_JST; 636 else if (month == TT_UNKNOWN && 637 (rest[1] == 'u' || rest[1] == 'U') && 638 (rest[2] == 'l' || rest[2] == 'L')) 639 month = TT_JUL; 640 else if (month == TT_UNKNOWN && 641 (rest[1] == 'u' || rest[1] == 'U') && 642 (rest[2] == 'n' || rest[2] == 'N')) 643 month = TT_JUN; 644 break; 645 case 'm': case 'M': 646 if (month == TT_UNKNOWN && 647 (rest[1] == 'a' || rest[1] == 'A') && 648 (rest[2] == 'r' || rest[2] == 'R')) 649 month = TT_MAR; 650 else if (month == TT_UNKNOWN && 651 (rest[1] == 'a' || rest[1] == 'A') && 652 (rest[2] == 'y' || rest[2] == 'Y')) 653 month = TT_MAY; 654 else if (zone == TT_UNKNOWN && 655 (rest[1] == 'd' || rest[1] == 'D') && 656 (rest[2] == 't' || rest[2] == 'T')) 657 zone = TT_MDT; 658 else if (zone == TT_UNKNOWN && 659 (rest[1] == 'e' || rest[1] == 'E') && 660 (rest[2] == 't' || rest[2] == 'T')) 661 zone = TT_MET; 662 else if (dotw == TT_UNKNOWN && 663 (rest[1] == 'o' || rest[1] == 'O') && 664 (rest[2] == 'n' || rest[2] == 'N')) 665 dotw = TT_MON; 666 else if (zone == TT_UNKNOWN && 667 (rest[1] == 's' || rest[1] == 'S') && 668 (rest[2] == 't' || rest[2] == 'T')) 669 zone = TT_MST; 670 break; 671 case 'n': case 'N': 672 if (month == TT_UNKNOWN && 673 (rest[1] == 'o' || rest[1] == 'O') && 674 (rest[2] == 'v' || rest[2] == 'V')) 675 month = TT_NOV; 676 else if (zone == TT_UNKNOWN && 677 (rest[1] == 's' || rest[1] == 'S') && 678 (rest[2] == 't' || rest[2] == 'T')) 679 zone = TT_NST; 680 break; 681 case 'o': case 'O': 682 if (month == TT_UNKNOWN && 683 (rest[1] == 'c' || rest[1] == 'C') && 684 (rest[2] == 't' || rest[2] == 'T')) 685 month = TT_OCT; 686 break; 687 case 'p': case 'P': 688 if (zone == TT_UNKNOWN && 689 (rest[1] == 'd' || rest[1] == 'D') && 690 (rest[2] == 't' || rest[2] == 'T')) 691 zone = TT_PDT; 692 else if (zone == TT_UNKNOWN && 693 (rest[1] == 's' || rest[1] == 'S') && 694 (rest[2] == 't' || rest[2] == 'T')) 695 zone = TT_PST; 696 break; 697 case 's': case 'S': 698 if (dotw == TT_UNKNOWN && 699 (rest[1] == 'a' || rest[1] == 'A') && 700 (rest[2] == 't' || rest[2] == 'T')) 701 dotw = TT_SAT; 702 else if (month == TT_UNKNOWN && 703 (rest[1] == 'e' || rest[1] == 'E') && 704 (rest[2] == 'p' || rest[2] == 'P')) 705 month = TT_SEP; 706 else if (dotw == TT_UNKNOWN && 707 (rest[1] == 'u' || rest[1] == 'U') && 708 (rest[2] == 'n' || rest[2] == 'N')) 709 dotw = TT_SUN; 710 break; 711 case 't': case 'T': 712 if (dotw == TT_UNKNOWN && 713 (rest[1] == 'h' || rest[1] == 'H') && 714 (rest[2] == 'u' || rest[2] == 'U')) 715 dotw = TT_THU; 716 else if (dotw == TT_UNKNOWN && 717 (rest[1] == 'u' || rest[1] == 'U') && 718 (rest[2] == 'e' || rest[2] == 'E')) 719 dotw = TT_TUE; 720 break; 721 case 'u': case 'U': 722 if (zone == TT_UNKNOWN && 723 (rest[1] == 't' || rest[1] == 'T') && 724 !(rest[2] >= 'A' && rest[2] <= 'Z') && 725 !(rest[2] >= 'a' && rest[2] <= 'z')) 726 /* UT is the same as GMT but UTx is not. */ 727 zone = TT_GMT; 728 break; 729 case 'w': case 'W': 730 if (dotw == TT_UNKNOWN && 731 (rest[1] == 'e' || rest[1] == 'E') && 732 (rest[2] == 'd' || rest[2] == 'D')) 733 dotw = TT_WED; 734 break; 735 736 case '+': case '-': 737 { 738 const char *end; 739 int sign; 740 if (zone_offset != -1) 741 { 742 /* already got one... */ 743 rest++; 744 break; 745 } 746 if (zone != TT_UNKNOWN && zone != TT_GMT) 747 { 748 /* GMT+0300 is legal, but PST+0300 is not. */ 749 rest++; 750 break; 751 } 752 753 sign = ((*rest == '+') ? 1 : -1); 754 rest++; /* move over sign */ 755 end = rest; 756 while (*end >= '0' && *end <= '9') 757 end++; 758 if (rest == end) /* no digits here */ 759 break; 760 761 if ((end - rest) == 4) 762 /* offset in HHMM */ 763 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + 764 (((rest[2]-'0')*10) + (rest[3]-'0'))); 765 else if ((end - rest) == 2) 766 /* offset in hours */ 767 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; 768 else if ((end - rest) == 1) 769 /* offset in hours */ 770 zone_offset = (rest[0]-'0') * 60; 771 else 772 /* 3 or >4 */ 773 break; 774 775 zone_offset *= sign; 776 zone = TT_GMT; 777 break; 778 } 779 780 case '0': case '1': case '2': case '3': case '4': 781 case '5': case '6': case '7': case '8': case '9': 782 { 783 int tmp_hour = -1; 784 int tmp_min = -1; 785 int tmp_sec = -1; 786 int tmp_usec = -1; 787 const char *end = rest + 1; 788 while (*end >= '0' && *end <= '9') 789 end++; 790 791 /* end is now the first character after a range of digits. */ 792 793 if (*end == ':') 794 { 795 if (hour >= 0 && min >= 0) /* already got it */ 796 break; 797 798 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ 799 if ((end - rest) > 2) 800 /* it is [0-9][0-9][0-9]+: */ 801 break; 802 else if ((end - rest) == 2) 803 tmp_hour = ((rest[0]-'0')*10 + 804 (rest[1]-'0')); 805 else 806 tmp_hour = (rest[0]-'0'); 807 808 /* move over the colon, and parse minutes */ 809 810 rest = ++end; 811 while (*end >= '0' && *end <= '9') 812 end++; 813 814 if (end == rest) 815 /* no digits after first colon? */ 816 break; 817 else if ((end - rest) > 2) 818 /* it is [0-9][0-9][0-9]+: */ 819 break; 820 else if ((end - rest) == 2) 821 tmp_min = ((rest[0]-'0')*10 + 822 (rest[1]-'0')); 823 else 824 tmp_min = (rest[0]-'0'); 825 826 /* now go for seconds */ 827 rest = end; 828 if (*rest == ':') 829 rest++; 830 end = rest; 831 while (*end >= '0' && *end <= '9') 832 end++; 833 834 if (end == rest) 835 /* no digits after second colon - that's ok. */ 836 ; 837 else if ((end - rest) > 2) 838 /* it is [0-9][0-9][0-9]+: */ 839 break; 840 else if ((end - rest) == 2) 841 tmp_sec = ((rest[0]-'0')*10 + 842 (rest[1]-'0')); 843 else 844 tmp_sec = (rest[0]-'0'); 845 846 /* fractional second */ 847 rest = end; 848 if (*rest == '.') 849 { 850 rest++; 851 end++; 852 tmp_usec = 0; 853 /* use up to 6 digits, skip over the rest */ 854 while (*end >= '0' && *end <= '9') 855 { 856 if (end - rest < 6) 857 tmp_usec = tmp_usec * 10 + *end - '0'; 858 end++; 859 } 860 int ndigits = end - rest; 861 while (ndigits++ < 6) 862 tmp_usec *= 10; 863 rest = end; 864 } 865 866 if (*rest == 'Z') 867 { 868 zone = TT_GMT; 869 rest++; 870 } 871 else if (tmp_hour <= 12) 872 { 873 /* If we made it here, we've parsed hour and min, 874 and possibly sec, so the current token is a time. 875 Now skip over whitespace and see if there's an AM 876 or PM directly following the time. 877 */ 878 const char *s = end; 879 while (*s && (*s == ' ' || *s == '\t')) 880 s++; 881 if ((s[0] == 'p' || s[0] == 'P') && 882 (s[1] == 'm' || s[1] == 'M')) 883 /* 10:05pm == 22:05, and 12:05pm == 12:05 */ 884 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); 885 else if (tmp_hour == 12 && 886 (s[0] == 'a' || s[0] == 'A') && 887 (s[1] == 'm' || s[1] == 'M')) 888 /* 12:05am == 00:05 */ 889 tmp_hour = 0; 890 } 891 892 hour = tmp_hour; 893 min = tmp_min; 894 sec = tmp_sec; 895 usec = tmp_usec; 896 rest = end; 897 break; 898 } 899 else if ((*end == '/' || *end == '-') && 900 end[1] >= '0' && end[1] <= '9') 901 { 902 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 903 or even 95-06-05 or 1995-06-22. 904 */ 905 int n1, n2, n3; 906 const char *s; 907 908 if (month != TT_UNKNOWN) 909 /* if we saw a month name, this can't be. */ 910 break; 911 912 s = rest; 913 914 n1 = (*s++ - '0'); /* first 1, 2 or 4 digits */ 915 if (*s >= '0' && *s <= '9') 916 { 917 n1 = n1*10 + (*s++ - '0'); 918 919 if (*s >= '0' && *s <= '9') /* optional digits 3 and 4 */ 920 { 921 n1 = n1*10 + (*s++ - '0'); 922 if (*s < '0' || *s > '9') 923 break; 924 n1 = n1*10 + (*s++ - '0'); 925 } 926 } 927 928 if (*s != '/' && *s != '-') /* slash */ 929 break; 930 s++; 931 932 if (*s < '0' || *s > '9') /* second 1 or 2 digits */ 933 break; 934 n2 = (*s++ - '0'); 935 if (*s >= '0' && *s <= '9') 936 n2 = n2*10 + (*s++ - '0'); 937 938 if (*s != '/' && *s != '-') /* slash */ 939 break; 940 s++; 941 942 if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */ 943 break; 944 n3 = (*s++ - '0'); 945 if (*s >= '0' && *s <= '9') 946 n3 = n3*10 + (*s++ - '0'); 947 948 if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ 949 { 950 n3 = n3*10 + (*s++ - '0'); 951 if (*s < '0' || *s > '9') 952 break; 953 n3 = n3*10 + (*s++ - '0'); 954 if (*s >= '0' && *s <= '9') 955 n3 = n3*10 + (*s++ - '0'); 956 } 957 958 if (*s == 'T' && s[1] >= '0' && s[1] <= '9') 959 /* followed by ISO 8601 T delimiter and number is ok */ 960 ; 961 else if ((*s >= '0' && *s <= '9') || 962 (*s >= 'A' && *s <= 'Z') || 963 (*s >= 'a' && *s <= 'z')) 964 /* but other alphanumerics are not ok */ 965 break; 966 967 /* Ok, we parsed three multi-digit numbers, with / or - 968 between them. Now decide what the hell they are 969 (DD/MM/YY or MM/DD/YY or [YY]YY/MM/DD.) 970 */ 971 972 if (n1 > 31 || n1 == 0) /* must be [YY]YY/MM/DD */ 973 { 974 if (n2 > 12) break; 975 if (n3 > 31) break; 976 year = n1; 977 if (year < 70) 978 year += 2000; 979 else if (year < 100) 980 year += 1900; 981 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); 982 date = n3; 983 rest = s; 984 break; 985 } 986 987 if (n1 > 12 && n2 > 12) /* illegal */ 988 { 989 rest = s; 990 break; 991 } 992 993 if (n3 < 70) 994 n3 += 2000; 995 else if (n3 < 100) 996 n3 += 1900; 997 998 if (n1 > 12) /* must be DD/MM/YY */ 999 { 1000 date = n1; 1001 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); 1002 year = n3; 1003 } 1004 else /* assume MM/DD/YY */ 1005 { 1006 /* #### In the ambiguous case, should we consult the 1007 locale to find out the local default? */ 1008 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); 1009 date = n2; 1010 year = n3; 1011 } 1012 rest = s; 1013 } 1014 else if ((*end >= 'A' && *end <= 'Z') || 1015 (*end >= 'a' && *end <= 'z')) 1016 /* Digits followed by non-punctuation - what's that? */ 1017 ; 1018 else if ((end - rest) == 5) /* five digits is a year */ 1019 year = (year < 0 1020 ? ((rest[0]-'0')*10000L + 1021 (rest[1]-'0')*1000L + 1022 (rest[2]-'0')*100L + 1023 (rest[3]-'0')*10L + 1024 (rest[4]-'0')) 1025 : year); 1026 else if ((end - rest) == 4) /* four digits is a year */ 1027 year = (year < 0 1028 ? ((rest[0]-'0')*1000L + 1029 (rest[1]-'0')*100L + 1030 (rest[2]-'0')*10L + 1031 (rest[3]-'0')) 1032 : year); 1033 else if ((end - rest) == 2) /* two digits - date or year */ 1034 { 1035 int n = ((rest[0]-'0')*10 + 1036 (rest[1]-'0')); 1037 /* If we don't have a date (day of the month) and we see a number 1038 less than 32, then assume that is the date. 1039 1040 Otherwise, if we have a date and not a year, assume this is the 1041 year. If it is less than 70, then assume it refers to the 21st 1042 century. If it is two digits (>= 70), assume it refers to this 1043 century. Otherwise, assume it refers to an unambiguous year. 1044 1045 The world will surely end soon. 1046 */ 1047 if (date < 0 && n < 32) 1048 date = n; 1049 else if (year < 0) 1050 { 1051 if (n < 70) 1052 year = 2000 + n; 1053 else if (n < 100) 1054 year = 1900 + n; 1055 else 1056 year = n; 1057 } 1058 /* else what the hell is this. */ 1059 } 1060 else if ((end - rest) == 1) /* one digit - date */ 1061 date = (date < 0 ? (rest[0]-'0') : date); 1062 /* else, three or more than five digits - what's that? */ 1063 1064 break; 1065 } /* case '0' .. '9' */ 1066 } /* switch */ 1067 1068 /* Skip to the end of this token, whether we parsed it or not. 1069 Tokens are delimited by whitespace, or ,;-+/()[] but explicitly not .: 1070 'T' is also treated as delimiter when followed by a digit (ISO 8601). 1071 */ 1072 while (*rest && 1073 *rest != ' ' && *rest != '\t' && 1074 *rest != ',' && *rest != ';' && 1075 *rest != '-' && *rest != '+' && 1076 *rest != '/' && 1077 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']' && 1078 !(*rest == 'T' && rest[1] >= '0' && rest[1] <= '9') 1079 ) 1080 rest++; 1081 /* skip over uninteresting chars. */ 1082 SKIP_MORE: 1083 while (*rest == ' ' || *rest == '\t' || 1084 *rest == ',' || *rest == ';' || *rest == '/' || 1085 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']') 1086 rest++; 1087 1088 /* "-" is ignored at the beginning of a token if we have not yet 1089 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if 1090 the character after the dash is not a digit. */ 1091 if (*rest == '-' && ((rest > string && 1092 isalpha((unsigned char)rest[-1]) && year < 0) || 1093 rest[1] < '0' || rest[1] > '9')) 1094 { 1095 rest++; 1096 goto SKIP_MORE; 1097 } 1098 1099 /* Skip T that may precede ISO 8601 time. */ 1100 if (*rest == 'T' && rest[1] >= '0' && rest[1] <= '9') 1101 rest++; 1102 } /* while */ 1103 1104 if (zone != TT_UNKNOWN && zone_offset == -1) 1105 { 1106 switch (zone) 1107 { 1108 case TT_PST: zone_offset = -8 * 60; break; 1109 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; 1110 case TT_MST: zone_offset = -7 * 60; break; 1111 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; 1112 case TT_CST: zone_offset = -6 * 60; break; 1113 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; 1114 case TT_EST: zone_offset = -5 * 60; break; 1115 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; 1116 case TT_AST: zone_offset = -4 * 60; break; 1117 case TT_NST: zone_offset = -3 * 60 - 30; break; 1118 case TT_GMT: zone_offset = 0 * 60; break; 1119 case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; 1120 case TT_MET: zone_offset = 1 * 60; break; 1121 case TT_EET: zone_offset = 2 * 60; break; 1122 case TT_JST: zone_offset = 9 * 60; break; 1123 default: 1124 PR_ASSERT (0); 1125 break; 1126 } 1127 } 1128 1129 /* If we didn't find a year, month, or day-of-the-month, we can't 1130 possibly parse this, and in fact, mktime() will do something random 1131 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt 1132 a numerologically significant date... */ 1133 if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) 1134 return PR_FAILURE; 1135 1136 memset(result, 0, sizeof(*result)); 1137 if (usec != -1) 1138 result->tm_usec = usec; 1139 if (sec != -1) 1140 result->tm_sec = sec; 1141 if (min != -1) 1142 result->tm_min = min; 1143 if (hour != -1) 1144 result->tm_hour = hour; 1145 if (date != -1) 1146 result->tm_mday = date; 1147 if (month != TT_UNKNOWN) 1148 result->tm_month = (((int)month) - ((int)TT_JAN)); 1149 if (year != -1) 1150 result->tm_year = static_cast<PRInt16>(year); 1151 if (dotw != TT_UNKNOWN) 1152 result->tm_wday = static_cast<PRInt8>(((int)dotw) - ((int)TT_SUN)); 1153 /* 1154 * Mainly to compute wday and yday, but normalized time is also required 1155 * by the check below that works around a Visual C++ 2005 mktime problem. 1156 */ 1157 PR_NormalizeTime(result, PR_GMTParameters); 1158 /* The remaining work is to set the gmt and dst offsets in tm_params. */ 1159 1160 if (zone == TT_UNKNOWN && default_to_gmt) 1161 { 1162 /* No zone was specified, so pretend the zone was GMT. */ 1163 zone = TT_GMT; 1164 zone_offset = 0; 1165 } 1166 1167 if (zone_offset == -1) 1168 { 1169 /* no zone was specified, and we're to assume that everything 1170 is local. */ 1171 struct tm localTime; 1172 time_t secs; 1173 1174 PR_ASSERT(result->tm_month > -1 && 1175 result->tm_mday > 0 && 1176 result->tm_hour > -1 && 1177 result->tm_min > -1 && 1178 result->tm_sec > -1); 1179 1180 /* 1181 * To obtain time_t from a tm structure representing the local 1182 * time, we call mktime(). However, we need to see if we are 1183 * on 1-Jan-1970 or before. If we are, we can't call mktime() 1184 * because mktime() will crash on win16. In that case, we 1185 * calculate zone_offset based on the zone offset at 1186 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the 1187 * date we are parsing to transform the date to GMT. We also 1188 * do so if mktime() returns (time_t) -1 (time out of range). 1189 */ 1190 1191 /* month, day, hours, mins and secs are always non-negative 1192 so we dont need to worry about them. */ 1193 if (result->tm_year >= 1970) 1194 { 1195 localTime.tm_sec = result->tm_sec; 1196 localTime.tm_min = result->tm_min; 1197 localTime.tm_hour = result->tm_hour; 1198 localTime.tm_mday = result->tm_mday; 1199 localTime.tm_mon = result->tm_month; 1200 localTime.tm_year = result->tm_year - 1900; 1201 /* Set this to -1 to tell mktime "I don't care". If you set 1202 it to 0 or 1, you are making assertions about whether the 1203 date you are handing it is in daylight savings mode or not; 1204 and if you're wrong, it will "fix" it for you. */ 1205 localTime.tm_isdst = -1; 1206 1207 #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ 1208 /* 1209 * mktime will return (time_t) -1 if the input is a date 1210 * after 23:59:59, December 31, 3000, US Pacific Time (not 1211 * UTC as documented): 1212 * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx 1213 * But if the year is 3001, mktime also invokes the invalid 1214 * parameter handler, causing the application to crash. This 1215 * problem has been reported in 1216 * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. 1217 * We avoid this crash by not calling mktime if the date is 1218 * out of range. To use a simple test that works in any time 1219 * zone, we consider year 3000 out of range as well. (See 1220 * bug 480740.) 1221 */ 1222 if (result->tm_year >= 3000) { 1223 /* Emulate what mktime would have done. */ 1224 errno = EINVAL; 1225 secs = (time_t) -1; 1226 } else { 1227 secs = mktime(&localTime); 1228 } 1229 #else 1230 secs = mktime(&localTime); 1231 #endif 1232 if (secs != (time_t) -1) 1233 { 1234 *result_imploded = (PRInt64)secs * PR_USEC_PER_SEC; 1235 *result_imploded += result->tm_usec; 1236 return PR_SUCCESS; 1237 } 1238 } 1239 1240 /* So mktime() can't handle this case. We assume the 1241 zone_offset for the date we are parsing is the same as 1242 the zone offset on 00:00:00 2 Jan 1970 GMT. */ 1243 secs = 86400; 1244 localtime_r(&secs, &localTime); 1245 zone_offset = localTime.tm_min 1246 + 60 * localTime.tm_hour 1247 + 1440 * (localTime.tm_mday - 2); 1248 } 1249 1250 result->tm_params.tp_gmt_offset = zone_offset * 60; 1251 result->tm_params.tp_dst_offset = dst_offset * 60; 1252 1253 *result_imploded = PR_ImplodeTime(result); 1254 return PR_SUCCESS; 1255 } 1256