Home | History | Annotate | Download | only in Scalar
      1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file transforms calls of the current function (self recursion) followed
     11 // by a return instruction with a branch to the entry of the function, creating
     12 // a loop.  This pass also implements the following extensions to the basic
     13 // algorithm:
     14 //
     15 //  1. Trivial instructions between the call and return do not prevent the
     16 //     transformation from taking place, though currently the analysis cannot
     17 //     support moving any really useful instructions (only dead ones).
     18 //  2. This pass transforms functions that are prevented from being tail
     19 //     recursive by an associative and commutative expression to use an
     20 //     accumulator variable, thus compiling the typical naive factorial or
     21 //     'fib' implementation into efficient code.
     22 //  3. TRE is performed if the function returns void, if the return
     23 //     returns the result returned by the call, or if the function returns a
     24 //     run-time constant on all exits from the function.  It is possible, though
     25 //     unlikely, that the return returns something else (like constant 0), and
     26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
     27 //     the function return the exact same value.
     28 //  4. If it can prove that callees do not access their caller stack frame,
     29 //     they are marked as eligible for tail call elimination (by the code
     30 //     generator).
     31 //
     32 // There are several improvements that could be made:
     33 //
     34 //  1. If the function has any alloca instructions, these instructions will be
     35 //     moved out of the entry block of the function, causing them to be
     36 //     evaluated each time through the tail recursion.  Safely keeping allocas
     37 //     in the entry block requires analysis to proves that the tail-called
     38 //     function does not read or write the stack object.
     39 //  2. Tail recursion is only performed if the call immediately precedes the
     40 //     return instruction.  It's possible that there could be a jump between
     41 //     the call and the return.
     42 //  3. There can be intervening operations between the call and the return that
     43 //     prevent the TRE from occurring.  For example, there could be GEP's and
     44 //     stores to memory that will not be read or written by the call.  This
     45 //     requires some substantial analysis (such as with DSA) to prove safe to
     46 //     move ahead of the call, but doing so could allow many more TREs to be
     47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
     48 //  4. The algorithm we use to detect if callees access their caller stack
     49 //     frames is very primitive.
     50 //
     51 //===----------------------------------------------------------------------===//
     52 
     53 #include "llvm/Transforms/Scalar.h"
     54 #include "llvm/ADT/STLExtras.h"
     55 #include "llvm/ADT/SmallPtrSet.h"
     56 #include "llvm/ADT/Statistic.h"
     57 #include "llvm/Analysis/GlobalsModRef.h"
     58 #include "llvm/Analysis/CFG.h"
     59 #include "llvm/Analysis/CaptureTracking.h"
     60 #include "llvm/Analysis/InlineCost.h"
     61 #include "llvm/Analysis/InstructionSimplify.h"
     62 #include "llvm/Analysis/Loads.h"
     63 #include "llvm/Analysis/TargetTransformInfo.h"
     64 #include "llvm/IR/CFG.h"
     65 #include "llvm/IR/CallSite.h"
     66 #include "llvm/IR/Constants.h"
     67 #include "llvm/IR/DataLayout.h"
     68 #include "llvm/IR/DerivedTypes.h"
     69 #include "llvm/IR/DiagnosticInfo.h"
     70 #include "llvm/IR/Function.h"
     71 #include "llvm/IR/Instructions.h"
     72 #include "llvm/IR/IntrinsicInst.h"
     73 #include "llvm/IR/Module.h"
     74 #include "llvm/IR/ValueHandle.h"
     75 #include "llvm/Pass.h"
     76 #include "llvm/Support/Debug.h"
     77 #include "llvm/Support/raw_ostream.h"
     78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     79 #include "llvm/Transforms/Utils/Local.h"
     80 using namespace llvm;
     81 
     82 #define DEBUG_TYPE "tailcallelim"
     83 
     84 STATISTIC(NumEliminated, "Number of tail calls removed");
     85 STATISTIC(NumRetDuped,   "Number of return duplicated");
     86 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
     87 
     88 namespace {
     89   struct TailCallElim : public FunctionPass {
     90     const TargetTransformInfo *TTI;
     91 
     92     static char ID; // Pass identification, replacement for typeid
     93     TailCallElim() : FunctionPass(ID) {
     94       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
     95     }
     96 
     97     void getAnalysisUsage(AnalysisUsage &AU) const override;
     98 
     99     bool runOnFunction(Function &F) override;
    100 
    101   private:
    102     bool runTRE(Function &F);
    103     bool markTails(Function &F, bool &AllCallsAreTailCalls);
    104 
    105     CallInst *FindTRECandidate(Instruction *I,
    106                                bool CannotTailCallElimCallsMarkedTail);
    107     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
    108                                     BasicBlock *&OldEntry,
    109                                     bool &TailCallsAreMarkedTail,
    110                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
    111                                     bool CannotTailCallElimCallsMarkedTail);
    112     bool FoldReturnAndProcessPred(BasicBlock *BB,
    113                                   ReturnInst *Ret, BasicBlock *&OldEntry,
    114                                   bool &TailCallsAreMarkedTail,
    115                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
    116                                   bool CannotTailCallElimCallsMarkedTail);
    117     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
    118                                bool &TailCallsAreMarkedTail,
    119                                SmallVectorImpl<PHINode *> &ArgumentPHIs,
    120                                bool CannotTailCallElimCallsMarkedTail);
    121     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
    122     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
    123   };
    124 }
    125 
    126 char TailCallElim::ID = 0;
    127 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
    128                       "Tail Call Elimination", false, false)
    129 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    130 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
    131                     "Tail Call Elimination", false, false)
    132 
    133 // Public interface to the TailCallElimination pass
    134 FunctionPass *llvm::createTailCallEliminationPass() {
    135   return new TailCallElim();
    136 }
    137 
    138 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
    139   AU.addRequired<TargetTransformInfoWrapperPass>();
    140   AU.addPreserved<GlobalsAAWrapperPass>();
    141 }
    142 
    143 /// \brief Scan the specified function for alloca instructions.
    144 /// If it contains any dynamic allocas, returns false.
    145 static bool CanTRE(Function &F) {
    146   // Because of PR962, we don't TRE dynamic allocas.
    147   for (auto &BB : F) {
    148     for (auto &I : BB) {
    149       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
    150         if (!AI->isStaticAlloca())
    151           return false;
    152       }
    153     }
    154   }
    155 
    156   return true;
    157 }
    158 
    159 bool TailCallElim::runOnFunction(Function &F) {
    160   if (skipOptnoneFunction(F))
    161     return false;
    162 
    163   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
    164     return false;
    165 
    166   bool AllCallsAreTailCalls = false;
    167   bool Modified = markTails(F, AllCallsAreTailCalls);
    168   if (AllCallsAreTailCalls)
    169     Modified |= runTRE(F);
    170   return Modified;
    171 }
    172 
    173 namespace {
    174 struct AllocaDerivedValueTracker {
    175   // Start at a root value and walk its use-def chain to mark calls that use the
    176   // value or a derived value in AllocaUsers, and places where it may escape in
    177   // EscapePoints.
    178   void walk(Value *Root) {
    179     SmallVector<Use *, 32> Worklist;
    180     SmallPtrSet<Use *, 32> Visited;
    181 
    182     auto AddUsesToWorklist = [&](Value *V) {
    183       for (auto &U : V->uses()) {
    184         if (!Visited.insert(&U).second)
    185           continue;
    186         Worklist.push_back(&U);
    187       }
    188     };
    189 
    190     AddUsesToWorklist(Root);
    191 
    192     while (!Worklist.empty()) {
    193       Use *U = Worklist.pop_back_val();
    194       Instruction *I = cast<Instruction>(U->getUser());
    195 
    196       switch (I->getOpcode()) {
    197       case Instruction::Call:
    198       case Instruction::Invoke: {
    199         CallSite CS(I);
    200         bool IsNocapture = !CS.isCallee(U) &&
    201                            CS.doesNotCapture(CS.getArgumentNo(U));
    202         callUsesLocalStack(CS, IsNocapture);
    203         if (IsNocapture) {
    204           // If the alloca-derived argument is passed in as nocapture, then it
    205           // can't propagate to the call's return. That would be capturing.
    206           continue;
    207         }
    208         break;
    209       }
    210       case Instruction::Load: {
    211         // The result of a load is not alloca-derived (unless an alloca has
    212         // otherwise escaped, but this is a local analysis).
    213         continue;
    214       }
    215       case Instruction::Store: {
    216         if (U->getOperandNo() == 0)
    217           EscapePoints.insert(I);
    218         continue;  // Stores have no users to analyze.
    219       }
    220       case Instruction::BitCast:
    221       case Instruction::GetElementPtr:
    222       case Instruction::PHI:
    223       case Instruction::Select:
    224       case Instruction::AddrSpaceCast:
    225         break;
    226       default:
    227         EscapePoints.insert(I);
    228         break;
    229       }
    230 
    231       AddUsesToWorklist(I);
    232     }
    233   }
    234 
    235   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
    236     // Add it to the list of alloca users.
    237     AllocaUsers.insert(CS.getInstruction());
    238 
    239     // If it's nocapture then it can't capture this alloca.
    240     if (IsNocapture)
    241       return;
    242 
    243     // If it can write to memory, it can leak the alloca value.
    244     if (!CS.onlyReadsMemory())
    245       EscapePoints.insert(CS.getInstruction());
    246   }
    247 
    248   SmallPtrSet<Instruction *, 32> AllocaUsers;
    249   SmallPtrSet<Instruction *, 32> EscapePoints;
    250 };
    251 }
    252 
    253 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
    254   if (F.callsFunctionThatReturnsTwice())
    255     return false;
    256   AllCallsAreTailCalls = true;
    257 
    258   // The local stack holds all alloca instructions and all byval arguments.
    259   AllocaDerivedValueTracker Tracker;
    260   for (Argument &Arg : F.args()) {
    261     if (Arg.hasByValAttr())
    262       Tracker.walk(&Arg);
    263   }
    264   for (auto &BB : F) {
    265     for (auto &I : BB)
    266       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
    267         Tracker.walk(AI);
    268   }
    269 
    270   bool Modified = false;
    271 
    272   // Track whether a block is reachable after an alloca has escaped. Blocks that
    273   // contain the escaping instruction will be marked as being visited without an
    274   // escaped alloca, since that is how the block began.
    275   enum VisitType {
    276     UNVISITED,
    277     UNESCAPED,
    278     ESCAPED
    279   };
    280   DenseMap<BasicBlock *, VisitType> Visited;
    281 
    282   // We propagate the fact that an alloca has escaped from block to successor.
    283   // Visit the blocks that are propagating the escapedness first. To do this, we
    284   // maintain two worklists.
    285   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
    286 
    287   // We may enter a block and visit it thinking that no alloca has escaped yet,
    288   // then see an escape point and go back around a loop edge and come back to
    289   // the same block twice. Because of this, we defer setting tail on calls when
    290   // we first encounter them in a block. Every entry in this list does not
    291   // statically use an alloca via use-def chain analysis, but may find an alloca
    292   // through other means if the block turns out to be reachable after an escape
    293   // point.
    294   SmallVector<CallInst *, 32> DeferredTails;
    295 
    296   BasicBlock *BB = &F.getEntryBlock();
    297   VisitType Escaped = UNESCAPED;
    298   do {
    299     for (auto &I : *BB) {
    300       if (Tracker.EscapePoints.count(&I))
    301         Escaped = ESCAPED;
    302 
    303       CallInst *CI = dyn_cast<CallInst>(&I);
    304       if (!CI || CI->isTailCall())
    305         continue;
    306 
    307       bool IsNoTail = CI->isNoTailCall();
    308 
    309       if (!IsNoTail && CI->doesNotAccessMemory()) {
    310         // A call to a readnone function whose arguments are all things computed
    311         // outside this function can be marked tail. Even if you stored the
    312         // alloca address into a global, a readnone function can't load the
    313         // global anyhow.
    314         //
    315         // Note that this runs whether we know an alloca has escaped or not. If
    316         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
    317         bool SafeToTail = true;
    318         for (auto &Arg : CI->arg_operands()) {
    319           if (isa<Constant>(Arg.getUser()))
    320             continue;
    321           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
    322             if (!A->hasByValAttr())
    323               continue;
    324           SafeToTail = false;
    325           break;
    326         }
    327         if (SafeToTail) {
    328           emitOptimizationRemark(
    329               F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
    330               "marked this readnone call a tail call candidate");
    331           CI->setTailCall();
    332           Modified = true;
    333           continue;
    334         }
    335       }
    336 
    337       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
    338         DeferredTails.push_back(CI);
    339       } else {
    340         AllCallsAreTailCalls = false;
    341       }
    342     }
    343 
    344     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
    345       auto &State = Visited[SuccBB];
    346       if (State < Escaped) {
    347         State = Escaped;
    348         if (State == ESCAPED)
    349           WorklistEscaped.push_back(SuccBB);
    350         else
    351           WorklistUnescaped.push_back(SuccBB);
    352       }
    353     }
    354 
    355     if (!WorklistEscaped.empty()) {
    356       BB = WorklistEscaped.pop_back_val();
    357       Escaped = ESCAPED;
    358     } else {
    359       BB = nullptr;
    360       while (!WorklistUnescaped.empty()) {
    361         auto *NextBB = WorklistUnescaped.pop_back_val();
    362         if (Visited[NextBB] == UNESCAPED) {
    363           BB = NextBB;
    364           Escaped = UNESCAPED;
    365           break;
    366         }
    367       }
    368     }
    369   } while (BB);
    370 
    371   for (CallInst *CI : DeferredTails) {
    372     if (Visited[CI->getParent()] != ESCAPED) {
    373       // If the escape point was part way through the block, calls after the
    374       // escape point wouldn't have been put into DeferredTails.
    375       emitOptimizationRemark(F.getContext(), "tailcallelim", F,
    376                              CI->getDebugLoc(),
    377                              "marked this call a tail call candidate");
    378       CI->setTailCall();
    379       Modified = true;
    380     } else {
    381       AllCallsAreTailCalls = false;
    382     }
    383   }
    384 
    385   return Modified;
    386 }
    387 
    388 bool TailCallElim::runTRE(Function &F) {
    389   // If this function is a varargs function, we won't be able to PHI the args
    390   // right, so don't even try to convert it...
    391   if (F.getFunctionType()->isVarArg()) return false;
    392 
    393   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    394   BasicBlock *OldEntry = nullptr;
    395   bool TailCallsAreMarkedTail = false;
    396   SmallVector<PHINode*, 8> ArgumentPHIs;
    397   bool MadeChange = false;
    398 
    399   // If false, we cannot perform TRE on tail calls marked with the 'tail'
    400   // attribute, because doing so would cause the stack size to increase (real
    401   // TRE would deallocate variable sized allocas, TRE doesn't).
    402   bool CanTRETailMarkedCall = CanTRE(F);
    403 
    404   // Change any tail recursive calls to loops.
    405   //
    406   // FIXME: The code generator produces really bad code when an 'escaping
    407   // alloca' is changed from being a static alloca to being a dynamic alloca.
    408   // Until this is resolved, disable this transformation if that would ever
    409   // happen.  This bug is PR962.
    410   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
    411     BasicBlock *BB = &*BBI++; // FoldReturnAndProcessPred may delete BB.
    412     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
    413       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
    414                                           ArgumentPHIs, !CanTRETailMarkedCall);
    415       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
    416         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
    417                                           TailCallsAreMarkedTail, ArgumentPHIs,
    418                                           !CanTRETailMarkedCall);
    419       MadeChange |= Change;
    420     }
    421   }
    422 
    423   // If we eliminated any tail recursions, it's possible that we inserted some
    424   // silly PHI nodes which just merge an initial value (the incoming operand)
    425   // with themselves.  Check to see if we did and clean up our mess if so.  This
    426   // occurs when a function passes an argument straight through to its tail
    427   // call.
    428   for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
    429     PHINode *PN = ArgumentPHIs[i];
    430 
    431     // If the PHI Node is a dynamic constant, replace it with the value it is.
    432     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
    433       PN->replaceAllUsesWith(PNV);
    434       PN->eraseFromParent();
    435     }
    436   }
    437 
    438   return MadeChange;
    439 }
    440 
    441 
    442 /// Return true if it is safe to move the specified
    443 /// instruction from after the call to before the call, assuming that all
    444 /// instructions between the call and this instruction are movable.
    445 ///
    446 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
    447   // FIXME: We can move load/store/call/free instructions above the call if the
    448   // call does not mod/ref the memory location being processed.
    449   if (I->mayHaveSideEffects())  // This also handles volatile loads.
    450     return false;
    451 
    452   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    453     // Loads may always be moved above calls without side effects.
    454     if (CI->mayHaveSideEffects()) {
    455       // Non-volatile loads may be moved above a call with side effects if it
    456       // does not write to memory and the load provably won't trap.
    457       // FIXME: Writes to memory only matter if they may alias the pointer
    458       // being loaded from.
    459       if (CI->mayWriteToMemory() ||
    460           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
    461                                        L->getAlignment()))
    462         return false;
    463     }
    464   }
    465 
    466   // Otherwise, if this is a side-effect free instruction, check to make sure
    467   // that it does not use the return value of the call.  If it doesn't use the
    468   // return value of the call, it must only use things that are defined before
    469   // the call, or movable instructions between the call and the instruction
    470   // itself.
    471   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    472     if (I->getOperand(i) == CI)
    473       return false;
    474   return true;
    475 }
    476 
    477 /// Return true if the specified value is the same when the return would exit
    478 /// as it was when the initial iteration of the recursive function was executed.
    479 ///
    480 /// We currently handle static constants and arguments that are not modified as
    481 /// part of the recursion.
    482 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
    483   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
    484 
    485   // Check to see if this is an immutable argument, if so, the value
    486   // will be available to initialize the accumulator.
    487   if (Argument *Arg = dyn_cast<Argument>(V)) {
    488     // Figure out which argument number this is...
    489     unsigned ArgNo = 0;
    490     Function *F = CI->getParent()->getParent();
    491     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
    492       ++ArgNo;
    493 
    494     // If we are passing this argument into call as the corresponding
    495     // argument operand, then the argument is dynamically constant.
    496     // Otherwise, we cannot transform this function safely.
    497     if (CI->getArgOperand(ArgNo) == Arg)
    498       return true;
    499   }
    500 
    501   // Switch cases are always constant integers. If the value is being switched
    502   // on and the return is only reachable from one of its cases, it's
    503   // effectively constant.
    504   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
    505     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
    506       if (SI->getCondition() == V)
    507         return SI->getDefaultDest() != RI->getParent();
    508 
    509   // Not a constant or immutable argument, we can't safely transform.
    510   return false;
    511 }
    512 
    513 /// Check to see if the function containing the specified tail call consistently
    514 /// returns the same runtime-constant value at all exit points except for
    515 /// IgnoreRI. If so, return the returned value.
    516 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
    517   Function *F = CI->getParent()->getParent();
    518   Value *ReturnedValue = nullptr;
    519 
    520   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
    521     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
    522     if (RI == nullptr || RI == IgnoreRI) continue;
    523 
    524     // We can only perform this transformation if the value returned is
    525     // evaluatable at the start of the initial invocation of the function,
    526     // instead of at the end of the evaluation.
    527     //
    528     Value *RetOp = RI->getOperand(0);
    529     if (!isDynamicConstant(RetOp, CI, RI))
    530       return nullptr;
    531 
    532     if (ReturnedValue && RetOp != ReturnedValue)
    533       return nullptr;     // Cannot transform if differing values are returned.
    534     ReturnedValue = RetOp;
    535   }
    536   return ReturnedValue;
    537 }
    538 
    539 /// If the specified instruction can be transformed using accumulator recursion
    540 /// elimination, return the constant which is the start of the accumulator
    541 /// value.  Otherwise return null.
    542 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
    543                                                       CallInst *CI) {
    544   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
    545   assert(I->getNumOperands() == 2 &&
    546          "Associative/commutative operations should have 2 args!");
    547 
    548   // Exactly one operand should be the result of the call instruction.
    549   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
    550       (I->getOperand(0) != CI && I->getOperand(1) != CI))
    551     return nullptr;
    552 
    553   // The only user of this instruction we allow is a single return instruction.
    554   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
    555     return nullptr;
    556 
    557   // Ok, now we have to check all of the other return instructions in this
    558   // function.  If they return non-constants or differing values, then we cannot
    559   // transform the function safely.
    560   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
    561 }
    562 
    563 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
    564   while (isa<DbgInfoIntrinsic>(I))
    565     ++I;
    566   return &*I;
    567 }
    568 
    569 CallInst*
    570 TailCallElim::FindTRECandidate(Instruction *TI,
    571                                bool CannotTailCallElimCallsMarkedTail) {
    572   BasicBlock *BB = TI->getParent();
    573   Function *F = BB->getParent();
    574 
    575   if (&BB->front() == TI) // Make sure there is something before the terminator.
    576     return nullptr;
    577 
    578   // Scan backwards from the return, checking to see if there is a tail call in
    579   // this block.  If so, set CI to it.
    580   CallInst *CI = nullptr;
    581   BasicBlock::iterator BBI(TI);
    582   while (true) {
    583     CI = dyn_cast<CallInst>(BBI);
    584     if (CI && CI->getCalledFunction() == F)
    585       break;
    586 
    587     if (BBI == BB->begin())
    588       return nullptr;          // Didn't find a potential tail call.
    589     --BBI;
    590   }
    591 
    592   // If this call is marked as a tail call, and if there are dynamic allocas in
    593   // the function, we cannot perform this optimization.
    594   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
    595     return nullptr;
    596 
    597   // As a special case, detect code like this:
    598   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
    599   // and disable this xform in this case, because the code generator will
    600   // lower the call to fabs into inline code.
    601   if (BB == &F->getEntryBlock() &&
    602       FirstNonDbg(BB->front().getIterator()) == CI &&
    603       FirstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
    604       !TTI->isLoweredToCall(CI->getCalledFunction())) {
    605     // A single-block function with just a call and a return. Check that
    606     // the arguments match.
    607     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
    608                            E = CallSite(CI).arg_end();
    609     Function::arg_iterator FI = F->arg_begin(),
    610                            FE = F->arg_end();
    611     for (; I != E && FI != FE; ++I, ++FI)
    612       if (*I != &*FI) break;
    613     if (I == E && FI == FE)
    614       return nullptr;
    615   }
    616 
    617   return CI;
    618 }
    619 
    620 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
    621                                        BasicBlock *&OldEntry,
    622                                        bool &TailCallsAreMarkedTail,
    623                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
    624                                        bool CannotTailCallElimCallsMarkedTail) {
    625   // If we are introducing accumulator recursion to eliminate operations after
    626   // the call instruction that are both associative and commutative, the initial
    627   // value for the accumulator is placed in this variable.  If this value is set
    628   // then we actually perform accumulator recursion elimination instead of
    629   // simple tail recursion elimination.  If the operation is an LLVM instruction
    630   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
    631   // we are handling the case when the return instruction returns a constant C
    632   // which is different to the constant returned by other return instructions
    633   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
    634   // special case of accumulator recursion, the operation being "return C".
    635   Value *AccumulatorRecursionEliminationInitVal = nullptr;
    636   Instruction *AccumulatorRecursionInstr = nullptr;
    637 
    638   // Ok, we found a potential tail call.  We can currently only transform the
    639   // tail call if all of the instructions between the call and the return are
    640   // movable to above the call itself, leaving the call next to the return.
    641   // Check that this is the case now.
    642   BasicBlock::iterator BBI(CI);
    643   for (++BBI; &*BBI != Ret; ++BBI) {
    644     if (CanMoveAboveCall(&*BBI, CI)) continue;
    645 
    646     // If we can't move the instruction above the call, it might be because it
    647     // is an associative and commutative operation that could be transformed
    648     // using accumulator recursion elimination.  Check to see if this is the
    649     // case, and if so, remember the initial accumulator value for later.
    650     if ((AccumulatorRecursionEliminationInitVal =
    651              CanTransformAccumulatorRecursion(&*BBI, CI))) {
    652       // Yes, this is accumulator recursion.  Remember which instruction
    653       // accumulates.
    654       AccumulatorRecursionInstr = &*BBI;
    655     } else {
    656       return false;   // Otherwise, we cannot eliminate the tail recursion!
    657     }
    658   }
    659 
    660   // We can only transform call/return pairs that either ignore the return value
    661   // of the call and return void, ignore the value of the call and return a
    662   // constant, return the value returned by the tail call, or that are being
    663   // accumulator recursion variable eliminated.
    664   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
    665       !isa<UndefValue>(Ret->getReturnValue()) &&
    666       AccumulatorRecursionEliminationInitVal == nullptr &&
    667       !getCommonReturnValue(nullptr, CI)) {
    668     // One case remains that we are able to handle: the current return
    669     // instruction returns a constant, and all other return instructions
    670     // return a different constant.
    671     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
    672       return false; // Current return instruction does not return a constant.
    673     // Check that all other return instructions return a common constant.  If
    674     // so, record it in AccumulatorRecursionEliminationInitVal.
    675     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
    676     if (!AccumulatorRecursionEliminationInitVal)
    677       return false;
    678   }
    679 
    680   BasicBlock *BB = Ret->getParent();
    681   Function *F = BB->getParent();
    682 
    683   emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
    684                          "transforming tail recursion to loop");
    685 
    686   // OK! We can transform this tail call.  If this is the first one found,
    687   // create the new entry block, allowing us to branch back to the old entry.
    688   if (!OldEntry) {
    689     OldEntry = &F->getEntryBlock();
    690     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
    691     NewEntry->takeName(OldEntry);
    692     OldEntry->setName("tailrecurse");
    693     BranchInst::Create(OldEntry, NewEntry);
    694 
    695     // If this tail call is marked 'tail' and if there are any allocas in the
    696     // entry block, move them up to the new entry block.
    697     TailCallsAreMarkedTail = CI->isTailCall();
    698     if (TailCallsAreMarkedTail)
    699       // Move all fixed sized allocas from OldEntry to NewEntry.
    700       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
    701              NEBI = NewEntry->begin(); OEBI != E; )
    702         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
    703           if (isa<ConstantInt>(AI->getArraySize()))
    704             AI->moveBefore(&*NEBI);
    705 
    706     // Now that we have created a new block, which jumps to the entry
    707     // block, insert a PHI node for each argument of the function.
    708     // For now, we initialize each PHI to only have the real arguments
    709     // which are passed in.
    710     Instruction *InsertPos = &OldEntry->front();
    711     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    712          I != E; ++I) {
    713       PHINode *PN = PHINode::Create(I->getType(), 2,
    714                                     I->getName() + ".tr", InsertPos);
    715       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
    716       PN->addIncoming(&*I, NewEntry);
    717       ArgumentPHIs.push_back(PN);
    718     }
    719   }
    720 
    721   // If this function has self recursive calls in the tail position where some
    722   // are marked tail and some are not, only transform one flavor or another.  We
    723   // have to choose whether we move allocas in the entry block to the new entry
    724   // block or not, so we can't make a good choice for both.  NOTE: We could do
    725   // slightly better here in the case that the function has no entry block
    726   // allocas.
    727   if (TailCallsAreMarkedTail && !CI->isTailCall())
    728     return false;
    729 
    730   // Ok, now that we know we have a pseudo-entry block WITH all of the
    731   // required PHI nodes, add entries into the PHI node for the actual
    732   // parameters passed into the tail-recursive call.
    733   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    734     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
    735 
    736   // If we are introducing an accumulator variable to eliminate the recursion,
    737   // do so now.  Note that we _know_ that no subsequent tail recursion
    738   // eliminations will happen on this function because of the way the
    739   // accumulator recursion predicate is set up.
    740   //
    741   if (AccumulatorRecursionEliminationInitVal) {
    742     Instruction *AccRecInstr = AccumulatorRecursionInstr;
    743     // Start by inserting a new PHI node for the accumulator.
    744     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
    745     PHINode *AccPN = PHINode::Create(
    746         AccumulatorRecursionEliminationInitVal->getType(),
    747         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
    748 
    749     // Loop over all of the predecessors of the tail recursion block.  For the
    750     // real entry into the function we seed the PHI with the initial value,
    751     // computed earlier.  For any other existing branches to this block (due to
    752     // other tail recursions eliminated) the accumulator is not modified.
    753     // Because we haven't added the branch in the current block to OldEntry yet,
    754     // it will not show up as a predecessor.
    755     for (pred_iterator PI = PB; PI != PE; ++PI) {
    756       BasicBlock *P = *PI;
    757       if (P == &F->getEntryBlock())
    758         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
    759       else
    760         AccPN->addIncoming(AccPN, P);
    761     }
    762 
    763     if (AccRecInstr) {
    764       // Add an incoming argument for the current block, which is computed by
    765       // our associative and commutative accumulator instruction.
    766       AccPN->addIncoming(AccRecInstr, BB);
    767 
    768       // Next, rewrite the accumulator recursion instruction so that it does not
    769       // use the result of the call anymore, instead, use the PHI node we just
    770       // inserted.
    771       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
    772     } else {
    773       // Add an incoming argument for the current block, which is just the
    774       // constant returned by the current return instruction.
    775       AccPN->addIncoming(Ret->getReturnValue(), BB);
    776     }
    777 
    778     // Finally, rewrite any return instructions in the program to return the PHI
    779     // node instead of the "initval" that they do currently.  This loop will
    780     // actually rewrite the return value we are destroying, but that's ok.
    781     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
    782       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
    783         RI->setOperand(0, AccPN);
    784     ++NumAccumAdded;
    785   }
    786 
    787   // Now that all of the PHI nodes are in place, remove the call and
    788   // ret instructions, replacing them with an unconditional branch.
    789   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
    790   NewBI->setDebugLoc(CI->getDebugLoc());
    791 
    792   BB->getInstList().erase(Ret);  // Remove return.
    793   BB->getInstList().erase(CI);   // Remove call.
    794   ++NumEliminated;
    795   return true;
    796 }
    797 
    798 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
    799                                        ReturnInst *Ret, BasicBlock *&OldEntry,
    800                                        bool &TailCallsAreMarkedTail,
    801                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
    802                                        bool CannotTailCallElimCallsMarkedTail) {
    803   bool Change = false;
    804 
    805   // If the return block contains nothing but the return and PHI's,
    806   // there might be an opportunity to duplicate the return in its
    807   // predecessors and perform TRC there. Look for predecessors that end
    808   // in unconditional branch and recursive call(s).
    809   SmallVector<BranchInst*, 8> UncondBranchPreds;
    810   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    811     BasicBlock *Pred = *PI;
    812     TerminatorInst *PTI = Pred->getTerminator();
    813     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
    814       if (BI->isUnconditional())
    815         UncondBranchPreds.push_back(BI);
    816   }
    817 
    818   while (!UncondBranchPreds.empty()) {
    819     BranchInst *BI = UncondBranchPreds.pop_back_val();
    820     BasicBlock *Pred = BI->getParent();
    821     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
    822       DEBUG(dbgs() << "FOLDING: " << *BB
    823             << "INTO UNCOND BRANCH PRED: " << *Pred);
    824       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
    825 
    826       // Cleanup: if all predecessors of BB have been eliminated by
    827       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
    828       // because the ret instruction in there is still using a value which
    829       // EliminateRecursiveTailCall will attempt to remove.
    830       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
    831         BB->eraseFromParent();
    832 
    833       EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
    834                                  ArgumentPHIs,
    835                                  CannotTailCallElimCallsMarkedTail);
    836       ++NumRetDuped;
    837       Change = true;
    838     }
    839   }
    840 
    841   return Change;
    842 }
    843 
    844 bool
    845 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
    846                                     bool &TailCallsAreMarkedTail,
    847                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
    848                                     bool CannotTailCallElimCallsMarkedTail) {
    849   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
    850   if (!CI)
    851     return false;
    852 
    853   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
    854                                     ArgumentPHIs,
    855                                     CannotTailCallElimCallsMarkedTail);
    856 }
    857