Home | History | Annotate | Download | only in cipher
      1 /* Copyright (c) 2014, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 #include <assert.h>
     16 #include <limits.h>
     17 #include <string.h>
     18 
     19 #include <openssl/aead.h>
     20 #include <openssl/cipher.h>
     21 #include <openssl/err.h>
     22 #include <openssl/hmac.h>
     23 #include <openssl/md5.h>
     24 #include <openssl/mem.h>
     25 #include <openssl/sha.h>
     26 #include <openssl/type_check.h>
     27 
     28 #include "../crypto/internal.h"
     29 #include "internal.h"
     30 
     31 
     32 typedef struct {
     33   EVP_CIPHER_CTX cipher_ctx;
     34   HMAC_CTX hmac_ctx;
     35   /* mac_key is the portion of the key used for the MAC. It is retained
     36    * separately for the constant-time CBC code. */
     37   uint8_t mac_key[EVP_MAX_MD_SIZE];
     38   uint8_t mac_key_len;
     39   /* implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
     40    * IV. */
     41   char implicit_iv;
     42 } AEAD_TLS_CTX;
     43 
     44 OPENSSL_COMPILE_ASSERT(EVP_MAX_MD_SIZE < 256, mac_key_len_fits_in_uint8_t);
     45 
     46 static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
     47   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
     48   EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
     49   HMAC_CTX_cleanup(&tls_ctx->hmac_ctx);
     50   OPENSSL_cleanse(&tls_ctx->mac_key, sizeof(tls_ctx->mac_key));
     51   OPENSSL_free(tls_ctx);
     52   ctx->aead_state = NULL;
     53 }
     54 
     55 static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
     56                          size_t tag_len, enum evp_aead_direction_t dir,
     57                          const EVP_CIPHER *cipher, const EVP_MD *md,
     58                          char implicit_iv) {
     59   if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH &&
     60       tag_len != EVP_MD_size(md)) {
     61     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
     62     return 0;
     63   }
     64 
     65   if (key_len != EVP_AEAD_key_length(ctx->aead)) {
     66     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
     67     return 0;
     68   }
     69 
     70   size_t mac_key_len = EVP_MD_size(md);
     71   size_t enc_key_len = EVP_CIPHER_key_length(cipher);
     72   assert(mac_key_len + enc_key_len +
     73          (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len);
     74   /* Although EVP_rc4() is a variable-length cipher, the default key size is
     75    * correct for TLS. */
     76 
     77   AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX));
     78   if (tls_ctx == NULL) {
     79     OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
     80     return 0;
     81   }
     82   EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
     83   HMAC_CTX_init(&tls_ctx->hmac_ctx);
     84   assert(mac_key_len <= EVP_MAX_MD_SIZE);
     85   memcpy(tls_ctx->mac_key, key, mac_key_len);
     86   tls_ctx->mac_key_len = (uint8_t)mac_key_len;
     87   tls_ctx->implicit_iv = implicit_iv;
     88 
     89   ctx->aead_state = tls_ctx;
     90   if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len],
     91                          implicit_iv ? &key[mac_key_len + enc_key_len] : NULL,
     92                          dir == evp_aead_seal) ||
     93       !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) {
     94     aead_tls_cleanup(ctx);
     95     ctx->aead_state = NULL;
     96     return 0;
     97   }
     98   EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
     99 
    100   return 1;
    101 }
    102 
    103 static int aead_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
    104                          size_t *out_len, size_t max_out_len,
    105                          const uint8_t *nonce, size_t nonce_len,
    106                          const uint8_t *in, size_t in_len,
    107                          const uint8_t *ad, size_t ad_len) {
    108   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
    109   size_t total = 0;
    110 
    111   if (!tls_ctx->cipher_ctx.encrypt) {
    112     /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */
    113     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
    114     return 0;
    115   }
    116 
    117   if (in_len + EVP_AEAD_max_overhead(ctx->aead) < in_len ||
    118       in_len > INT_MAX) {
    119     /* EVP_CIPHER takes int as input. */
    120     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    121     return 0;
    122   }
    123 
    124   if (max_out_len < in_len + EVP_AEAD_max_overhead(ctx->aead)) {
    125     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
    126     return 0;
    127   }
    128 
    129   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
    130     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
    131     return 0;
    132   }
    133 
    134   if (ad_len != 13 - 2 /* length bytes */) {
    135     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
    136     return 0;
    137   }
    138 
    139   /* To allow for CBC mode which changes cipher length, |ad| doesn't include the
    140    * length for legacy ciphers. */
    141   uint8_t ad_extra[2];
    142   ad_extra[0] = (uint8_t)(in_len >> 8);
    143   ad_extra[1] = (uint8_t)(in_len & 0xff);
    144 
    145   /* Compute the MAC. This must be first in case the operation is being done
    146    * in-place. */
    147   uint8_t mac[EVP_MAX_MD_SIZE];
    148   unsigned mac_len;
    149   if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
    150       !HMAC_Update(&tls_ctx->hmac_ctx, ad, ad_len) ||
    151       !HMAC_Update(&tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) ||
    152       !HMAC_Update(&tls_ctx->hmac_ctx, in, in_len) ||
    153       !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len)) {
    154     return 0;
    155   }
    156 
    157   /* Configure the explicit IV. */
    158   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
    159       !tls_ctx->implicit_iv &&
    160       !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
    161     return 0;
    162   }
    163 
    164   /* Encrypt the input. */
    165   int len;
    166   if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in,
    167                          (int)in_len)) {
    168     return 0;
    169   }
    170   total = len;
    171 
    172   /* Feed the MAC into the cipher. */
    173   if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, mac,
    174                          (int)mac_len)) {
    175     return 0;
    176   }
    177   total += len;
    178 
    179   unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
    180   if (block_size > 1) {
    181     assert(block_size <= 256);
    182     assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
    183 
    184     /* Compute padding and feed that into the cipher. */
    185     uint8_t padding[256];
    186     unsigned padding_len = block_size - ((in_len + mac_len) % block_size);
    187     memset(padding, padding_len - 1, padding_len);
    188     if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, padding,
    189                            (int)padding_len)) {
    190       return 0;
    191     }
    192     total += len;
    193   }
    194 
    195   if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
    196     return 0;
    197   }
    198   total += len;
    199 
    200   *out_len = total;
    201   return 1;
    202 }
    203 
    204 static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
    205                          size_t *out_len, size_t max_out_len,
    206                          const uint8_t *nonce, size_t nonce_len,
    207                          const uint8_t *in, size_t in_len,
    208                          const uint8_t *ad, size_t ad_len) {
    209   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
    210 
    211   if (tls_ctx->cipher_ctx.encrypt) {
    212     /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */
    213     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
    214     return 0;
    215   }
    216 
    217   if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) {
    218     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    219     return 0;
    220   }
    221 
    222   if (max_out_len < in_len) {
    223     /* This requires that the caller provide space for the MAC, even though it
    224      * will always be removed on return. */
    225     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
    226     return 0;
    227   }
    228 
    229   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
    230     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
    231     return 0;
    232   }
    233 
    234   if (ad_len != 13 - 2 /* length bytes */) {
    235     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
    236     return 0;
    237   }
    238 
    239   if (in_len > INT_MAX) {
    240     /* EVP_CIPHER takes int as input. */
    241     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    242     return 0;
    243   }
    244 
    245   /* Configure the explicit IV. */
    246   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
    247       !tls_ctx->implicit_iv &&
    248       !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
    249     return 0;
    250   }
    251 
    252   /* Decrypt to get the plaintext + MAC + padding. */
    253   size_t total = 0;
    254   int len;
    255   if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
    256     return 0;
    257   }
    258   total += len;
    259   if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
    260     return 0;
    261   }
    262   total += len;
    263   assert(total == in_len);
    264 
    265   /* Remove CBC padding. Code from here on is timing-sensitive with respect to
    266    * |padding_ok| and |data_plus_mac_len| for CBC ciphers. */
    267   int padding_ok;
    268   unsigned data_plus_mac_len, data_len;
    269   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) {
    270     padding_ok = EVP_tls_cbc_remove_padding(
    271         &data_plus_mac_len, out, total,
    272         EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx),
    273         (unsigned)HMAC_size(&tls_ctx->hmac_ctx));
    274     /* Publicly invalid. This can be rejected in non-constant time. */
    275     if (padding_ok == 0) {
    276       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    277       return 0;
    278     }
    279   } else {
    280     padding_ok = 1;
    281     data_plus_mac_len = total;
    282     /* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has
    283      * already been checked against the MAC size at the top of the function. */
    284     assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx));
    285   }
    286   data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx);
    287 
    288   /* At this point, |padding_ok| is 1 or -1. If 1, the padding is valid and the
    289    * first |data_plus_mac_size| bytes after |out| are the plaintext and
    290    * MAC. Either way, |data_plus_mac_size| is large enough to extract a MAC. */
    291 
    292   /* To allow for CBC mode which changes cipher length, |ad| doesn't include the
    293    * length for legacy ciphers. */
    294   uint8_t ad_fixed[13];
    295   memcpy(ad_fixed, ad, 11);
    296   ad_fixed[11] = (uint8_t)(data_len >> 8);
    297   ad_fixed[12] = (uint8_t)(data_len & 0xff);
    298   ad_len += 2;
    299 
    300   /* Compute the MAC and extract the one in the record. */
    301   uint8_t mac[EVP_MAX_MD_SIZE];
    302   size_t mac_len;
    303   uint8_t record_mac_tmp[EVP_MAX_MD_SIZE];
    304   uint8_t *record_mac;
    305   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
    306       EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) {
    307     if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len,
    308                                    ad_fixed, out, data_plus_mac_len, total,
    309                                    tls_ctx->mac_key, tls_ctx->mac_key_len)) {
    310       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    311       return 0;
    312     }
    313     assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
    314 
    315     record_mac = record_mac_tmp;
    316     EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total);
    317   } else {
    318     /* We should support the constant-time path for all CBC-mode ciphers
    319      * implemented. */
    320     assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE);
    321 
    322     unsigned mac_len_u;
    323     if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
    324         !HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) ||
    325         !HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) ||
    326         !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) {
    327       return 0;
    328     }
    329     mac_len = mac_len_u;
    330 
    331     assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
    332     record_mac = &out[data_len];
    333   }
    334 
    335   /* Perform the MAC check and the padding check in constant-time. It should be
    336    * safe to simply perform the padding check first, but it would not be under a
    337    * different choice of MAC location on padding failure. See
    338    * EVP_tls_cbc_remove_padding. */
    339   unsigned good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len),
    340                                        0);
    341   good &= constant_time_eq_int(padding_ok, 1);
    342   if (!good) {
    343     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    344     return 0;
    345   }
    346 
    347   /* End of timing-sensitive code. */
    348 
    349   *out_len = data_len;
    350   return 1;
    351 }
    352 
    353 static int aead_rc4_md5_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
    354                                  size_t key_len, size_t tag_len,
    355                                  enum evp_aead_direction_t dir) {
    356   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_rc4(), EVP_md5(),
    357                        0);
    358 }
    359 
    360 static int aead_rc4_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
    361                                   size_t key_len, size_t tag_len,
    362                                   enum evp_aead_direction_t dir) {
    363   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_rc4(), EVP_sha1(),
    364                        0);
    365 }
    366 
    367 static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
    368                                           size_t key_len, size_t tag_len,
    369                                           enum evp_aead_direction_t dir) {
    370   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
    371                        EVP_sha1(), 0);
    372 }
    373 
    374 static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(
    375     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
    376     enum evp_aead_direction_t dir) {
    377   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
    378                        EVP_sha1(), 1);
    379 }
    380 
    381 static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
    382                                             const uint8_t *key, size_t key_len,
    383                                             size_t tag_len,
    384                                             enum evp_aead_direction_t dir) {
    385   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
    386                        EVP_sha256(), 0);
    387 }
    388 
    389 static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
    390                                           size_t key_len, size_t tag_len,
    391                                           enum evp_aead_direction_t dir) {
    392   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
    393                        EVP_sha1(), 0);
    394 }
    395 
    396 static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(
    397     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
    398     enum evp_aead_direction_t dir) {
    399   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
    400                        EVP_sha1(), 1);
    401 }
    402 
    403 static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
    404                                             const uint8_t *key, size_t key_len,
    405                                             size_t tag_len,
    406                                             enum evp_aead_direction_t dir) {
    407   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
    408                        EVP_sha256(), 0);
    409 }
    410 
    411 static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx,
    412                                             const uint8_t *key, size_t key_len,
    413                                             size_t tag_len,
    414                                             enum evp_aead_direction_t dir) {
    415   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
    416                        EVP_sha384(), 0);
    417 }
    418 
    419 static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
    420                                            const uint8_t *key, size_t key_len,
    421                                            size_t tag_len,
    422                                            enum evp_aead_direction_t dir) {
    423   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
    424                        EVP_sha1(), 0);
    425 }
    426 
    427 static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(
    428     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
    429     enum evp_aead_direction_t dir) {
    430   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
    431                        EVP_sha1(), 1);
    432 }
    433 
    434 static int aead_rc4_tls_get_rc4_state(const EVP_AEAD_CTX *ctx,
    435                                       const RC4_KEY **out_key) {
    436   const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX*) ctx->aead_state;
    437   if (EVP_CIPHER_CTX_cipher(&tls_ctx->cipher_ctx) != EVP_rc4()) {
    438     return 0;
    439   }
    440 
    441   *out_key = (const RC4_KEY*) tls_ctx->cipher_ctx.cipher_data;
    442   return 1;
    443 }
    444 
    445 static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv,
    446                            size_t *out_iv_len) {
    447   const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX*) ctx->aead_state;
    448   const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx);
    449   if (iv_len <= 1) {
    450     return 0;
    451   }
    452 
    453   *out_iv = tls_ctx->cipher_ctx.iv;
    454   *out_iv_len = iv_len;
    455   return 1;
    456 }
    457 
    458 static int aead_null_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
    459                                    size_t key_len, size_t tag_len,
    460                                    enum evp_aead_direction_t dir) {
    461   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_enc_null(),
    462                        EVP_sha1(), 1 /* implicit iv */);
    463 }
    464 
    465 static const EVP_AEAD aead_rc4_md5_tls = {
    466     MD5_DIGEST_LENGTH + 16, /* key len (MD5 + RC4) */
    467     0,                      /* nonce len */
    468     MD5_DIGEST_LENGTH,      /* overhead */
    469     MD5_DIGEST_LENGTH,      /* max tag length */
    470     NULL,                   /* init */
    471     aead_rc4_md5_tls_init,
    472     aead_tls_cleanup,
    473     aead_tls_seal,
    474     aead_tls_open,
    475     aead_rc4_tls_get_rc4_state, /* get_rc4_state */
    476     NULL,                       /* get_iv */
    477 };
    478 
    479 static const EVP_AEAD aead_rc4_sha1_tls = {
    480     SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + RC4) */
    481     0,                      /* nonce len */
    482     SHA_DIGEST_LENGTH,      /* overhead */
    483     SHA_DIGEST_LENGTH,      /* max tag length */
    484     NULL,                   /* init */
    485     aead_rc4_sha1_tls_init,
    486     aead_tls_cleanup,
    487     aead_tls_seal,
    488     aead_tls_open,
    489     aead_rc4_tls_get_rc4_state, /* get_rc4_state */
    490     NULL,                       /* get_iv */
    491 };
    492 
    493 static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
    494     SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + AES128) */
    495     16,                     /* nonce len (IV) */
    496     16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
    497     SHA_DIGEST_LENGTH,      /* max tag length */
    498     NULL, /* init */
    499     aead_aes_128_cbc_sha1_tls_init,
    500     aead_tls_cleanup,
    501     aead_tls_seal,
    502     aead_tls_open,
    503     NULL,                   /* get_rc4_state */
    504     NULL,                   /* get_iv */
    505 };
    506 
    507 static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
    508     SHA_DIGEST_LENGTH + 16 + 16, /* key len (SHA1 + AES128 + IV) */
    509     0,                           /* nonce len */
    510     16 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */
    511     SHA_DIGEST_LENGTH,           /* max tag length */
    512     NULL, /* init */
    513     aead_aes_128_cbc_sha1_tls_implicit_iv_init,
    514     aead_tls_cleanup,
    515     aead_tls_seal,
    516     aead_tls_open,
    517     NULL,                        /* get_rc4_state */
    518     aead_tls_get_iv,             /* get_iv */
    519 };
    520 
    521 static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
    522     SHA256_DIGEST_LENGTH + 16, /* key len (SHA256 + AES128) */
    523     16,                        /* nonce len (IV) */
    524     16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
    525     SHA256_DIGEST_LENGTH,      /* max tag length */
    526     NULL, /* init */
    527     aead_aes_128_cbc_sha256_tls_init,
    528     aead_tls_cleanup,
    529     aead_tls_seal,
    530     aead_tls_open,
    531     NULL,                      /* get_rc4_state */
    532     NULL,                      /* get_iv */
    533 };
    534 
    535 static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
    536     SHA_DIGEST_LENGTH + 32, /* key len (SHA1 + AES256) */
    537     16,                     /* nonce len (IV) */
    538     16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
    539     SHA_DIGEST_LENGTH,      /* max tag length */
    540     NULL, /* init */
    541     aead_aes_256_cbc_sha1_tls_init,
    542     aead_tls_cleanup,
    543     aead_tls_seal,
    544     aead_tls_open,
    545     NULL,                   /* get_rc4_state */
    546     NULL,                   /* get_iv */
    547 };
    548 
    549 static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
    550     SHA_DIGEST_LENGTH + 32 + 16, /* key len (SHA1 + AES256 + IV) */
    551     0,                           /* nonce len */
    552     16 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */
    553     SHA_DIGEST_LENGTH,           /* max tag length */
    554     NULL, /* init */
    555     aead_aes_256_cbc_sha1_tls_implicit_iv_init,
    556     aead_tls_cleanup,
    557     aead_tls_seal,
    558     aead_tls_open,
    559     NULL,                        /* get_rc4_state */
    560     aead_tls_get_iv,             /* get_iv */
    561 };
    562 
    563 static const EVP_AEAD aead_aes_256_cbc_sha256_tls = {
    564     SHA256_DIGEST_LENGTH + 32, /* key len (SHA256 + AES256) */
    565     16,                        /* nonce len (IV) */
    566     16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
    567     SHA256_DIGEST_LENGTH,      /* max tag length */
    568     NULL, /* init */
    569     aead_aes_256_cbc_sha256_tls_init,
    570     aead_tls_cleanup,
    571     aead_tls_seal,
    572     aead_tls_open,
    573     NULL,                      /* get_rc4_state */
    574     NULL,                      /* get_iv */
    575 };
    576 
    577 static const EVP_AEAD aead_aes_256_cbc_sha384_tls = {
    578     SHA384_DIGEST_LENGTH + 32, /* key len (SHA384 + AES256) */
    579     16,                        /* nonce len (IV) */
    580     16 + SHA384_DIGEST_LENGTH, /* overhead (padding + SHA384) */
    581     SHA384_DIGEST_LENGTH,      /* max tag length */
    582     NULL, /* init */
    583     aead_aes_256_cbc_sha384_tls_init,
    584     aead_tls_cleanup,
    585     aead_tls_seal,
    586     aead_tls_open,
    587     NULL,                      /* get_rc4_state */
    588     NULL,                      /* get_iv */
    589 };
    590 
    591 static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
    592     SHA_DIGEST_LENGTH + 24, /* key len (SHA1 + 3DES) */
    593     8,                      /* nonce len (IV) */
    594     8 + SHA_DIGEST_LENGTH,  /* overhead (padding + SHA1) */
    595     SHA_DIGEST_LENGTH,      /* max tag length */
    596     NULL, /* init */
    597     aead_des_ede3_cbc_sha1_tls_init,
    598     aead_tls_cleanup,
    599     aead_tls_seal,
    600     aead_tls_open,
    601     NULL,                   /* get_rc4_state */
    602     NULL,                   /* get_iv */
    603 };
    604 
    605 static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
    606     SHA_DIGEST_LENGTH + 24 + 8, /* key len (SHA1 + 3DES + IV) */
    607     0,                          /* nonce len */
    608     8 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */
    609     SHA_DIGEST_LENGTH,          /* max tag length */
    610     NULL, /* init */
    611     aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
    612     aead_tls_cleanup,
    613     aead_tls_seal,
    614     aead_tls_open,
    615     NULL,                       /* get_rc4_state */
    616     aead_tls_get_iv,            /* get_iv */
    617 };
    618 
    619 static const EVP_AEAD aead_null_sha1_tls = {
    620     SHA_DIGEST_LENGTH,          /* key len */
    621     0,                          /* nonce len */
    622     SHA_DIGEST_LENGTH,          /* overhead (SHA1) */
    623     SHA_DIGEST_LENGTH,          /* max tag length */
    624     NULL,                       /* init */
    625     aead_null_sha1_tls_init,
    626     aead_tls_cleanup,
    627     aead_tls_seal,
    628     aead_tls_open,
    629     NULL,                       /* get_rc4_state */
    630     NULL,                       /* get_iv */
    631 };
    632 
    633 const EVP_AEAD *EVP_aead_rc4_md5_tls(void) { return &aead_rc4_md5_tls; }
    634 
    635 const EVP_AEAD *EVP_aead_rc4_sha1_tls(void) { return &aead_rc4_sha1_tls; }
    636 
    637 const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
    638   return &aead_aes_128_cbc_sha1_tls;
    639 }
    640 
    641 const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
    642   return &aead_aes_128_cbc_sha1_tls_implicit_iv;
    643 }
    644 
    645 const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
    646   return &aead_aes_128_cbc_sha256_tls;
    647 }
    648 
    649 const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
    650   return &aead_aes_256_cbc_sha1_tls;
    651 }
    652 
    653 const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
    654   return &aead_aes_256_cbc_sha1_tls_implicit_iv;
    655 }
    656 
    657 const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) {
    658   return &aead_aes_256_cbc_sha256_tls;
    659 }
    660 
    661 const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) {
    662   return &aead_aes_256_cbc_sha384_tls;
    663 }
    664 
    665 const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
    666   return &aead_des_ede3_cbc_sha1_tls;
    667 }
    668 
    669 const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
    670   return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
    671 }
    672 
    673 const EVP_AEAD *EVP_aead_null_sha1_tls(void) { return &aead_null_sha1_tls; }
    674