Home | History | Annotate | Download | only in src
      1 // Copyright 2014 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Implementation notes:
      6 //
      7 // We need to remove a piece from the ELF shared library.  However, we also
      8 // want to avoid fixing DWARF cfi data and relative relocation addresses.
      9 // So after packing we shift offets and starting address of the RX segment
     10 // while preserving code/data vaddrs location.
     11 // This requires some fixups for symtab/hash/gnu_hash dynamic section addresses.
     12 
     13 #include "elf_file.h"
     14 
     15 #include <stdlib.h>
     16 #include <sys/types.h>
     17 #include <unistd.h>
     18 #include <algorithm>
     19 #include <string>
     20 #include <vector>
     21 
     22 #include "debug.h"
     23 #include "elf_traits.h"
     24 #include "libelf.h"
     25 #include "packer.h"
     26 
     27 namespace relocation_packer {
     28 
     29 // Out-of-band dynamic tags used to indicate the offset and size of the
     30 // android packed relocations section.
     31 static constexpr int32_t DT_ANDROID_REL = DT_LOOS + 2;
     32 static constexpr int32_t DT_ANDROID_RELSZ = DT_LOOS + 3;
     33 
     34 static constexpr int32_t DT_ANDROID_RELA = DT_LOOS + 4;
     35 static constexpr int32_t DT_ANDROID_RELASZ = DT_LOOS + 5;
     36 
     37 static constexpr uint32_t SHT_ANDROID_REL = SHT_LOOS + 1;
     38 static constexpr uint32_t SHT_ANDROID_RELA = SHT_LOOS + 2;
     39 
     40 static const size_t kPageSize = 4096;
     41 
     42 // Alignment to preserve, in bytes.  This must be at least as large as the
     43 // largest d_align and sh_addralign values found in the loaded file.
     44 // Out of caution for RELRO page alignment, we preserve to a complete target
     45 // page.  See http://www.airs.com/blog/archives/189.
     46 static const size_t kPreserveAlignment = kPageSize;
     47 
     48 // Get section data.  Checks that the section has exactly one data entry,
     49 // so that the section size and the data size are the same.  True in
     50 // practice for all sections we resize when packing or unpacking.  Done
     51 // by ensuring that a call to elf_getdata(section, data) returns NULL as
     52 // the next data entry.
     53 static Elf_Data* GetSectionData(Elf_Scn* section) {
     54   Elf_Data* data = elf_getdata(section, NULL);
     55   CHECK(data && elf_getdata(section, data) == NULL);
     56   return data;
     57 }
     58 
     59 // Rewrite section data.  Allocates new data and makes it the data element's
     60 // buffer.  Relies on program exit to free allocated data.
     61 static void RewriteSectionData(Elf_Scn* section,
     62                                const void* section_data,
     63                                size_t size) {
     64   Elf_Data* data = GetSectionData(section);
     65   CHECK(size == data->d_size);
     66   uint8_t* area = new uint8_t[size];
     67   memcpy(area, section_data, size);
     68   data->d_buf = area;
     69 }
     70 
     71 // Verbose ELF header logging.
     72 template <typename Ehdr>
     73 static void VerboseLogElfHeader(const Ehdr* elf_header) {
     74   VLOG(1) << "e_phoff = " << elf_header->e_phoff;
     75   VLOG(1) << "e_shoff = " << elf_header->e_shoff;
     76   VLOG(1) << "e_ehsize = " << elf_header->e_ehsize;
     77   VLOG(1) << "e_phentsize = " << elf_header->e_phentsize;
     78   VLOG(1) << "e_phnum = " << elf_header->e_phnum;
     79   VLOG(1) << "e_shnum = " << elf_header->e_shnum;
     80   VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx;
     81 }
     82 
     83 // Verbose ELF program header logging.
     84 template <typename Phdr>
     85 static void VerboseLogProgramHeader(size_t program_header_index,
     86                              const Phdr* program_header) {
     87   std::string type;
     88   switch (program_header->p_type) {
     89     case PT_NULL: type = "NULL"; break;
     90     case PT_LOAD: type = "LOAD"; break;
     91     case PT_DYNAMIC: type = "DYNAMIC"; break;
     92     case PT_INTERP: type = "INTERP"; break;
     93     case PT_PHDR: type = "PHDR"; break;
     94     case PT_GNU_RELRO: type = "GNU_RELRO"; break;
     95     case PT_GNU_STACK: type = "GNU_STACK"; break;
     96     case PT_ARM_EXIDX: type = "EXIDX"; break;
     97     default: type = "(OTHER)"; break;
     98   }
     99   VLOG(1) << "phdr[" << program_header_index << "] : " << type;
    100   VLOG(1) << "  p_offset = " << program_header->p_offset;
    101   VLOG(1) << "  p_vaddr = " << program_header->p_vaddr;
    102   VLOG(1) << "  p_paddr = " << program_header->p_paddr;
    103   VLOG(1) << "  p_filesz = " << program_header->p_filesz;
    104   VLOG(1) << "  p_memsz = " << program_header->p_memsz;
    105   VLOG(1) << "  p_flags = " << program_header->p_flags;
    106   VLOG(1) << "  p_align = " << program_header->p_align;
    107 }
    108 
    109 // Verbose ELF section header logging.
    110 template <typename Shdr>
    111 static void VerboseLogSectionHeader(const std::string& section_name,
    112                              const Shdr* section_header) {
    113   VLOG(1) << "section " << section_name;
    114   VLOG(1) << "  sh_addr = " << section_header->sh_addr;
    115   VLOG(1) << "  sh_offset = " << section_header->sh_offset;
    116   VLOG(1) << "  sh_size = " << section_header->sh_size;
    117   VLOG(1) << "  sh_entsize = " << section_header->sh_entsize;
    118   VLOG(1) << "  sh_addralign = " << section_header->sh_addralign;
    119 }
    120 
    121 // Verbose ELF section data logging.
    122 static void VerboseLogSectionData(const Elf_Data* data) {
    123   VLOG(1) << "  data";
    124   VLOG(1) << "    d_buf = " << data->d_buf;
    125   VLOG(1) << "    d_off = " << data->d_off;
    126   VLOG(1) << "    d_size = " << data->d_size;
    127   VLOG(1) << "    d_align = " << data->d_align;
    128 }
    129 
    130 // Load the complete ELF file into a memory image in libelf, and identify
    131 // the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or
    132 // .android.rela.dyn sections.  No-op if the ELF file has already been loaded.
    133 template <typename ELF>
    134 bool ElfFile<ELF>::Load() {
    135   if (elf_)
    136     return true;
    137 
    138   Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL);
    139   CHECK(elf);
    140 
    141   if (elf_kind(elf) != ELF_K_ELF) {
    142     LOG(ERROR) << "File not in ELF format";
    143     return false;
    144   }
    145 
    146   auto elf_header = ELF::getehdr(elf);
    147   if (!elf_header) {
    148     LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno());
    149     return false;
    150   }
    151 
    152   if (elf_header->e_type != ET_DYN) {
    153     LOG(ERROR) << "ELF file is not a shared object";
    154     return false;
    155   }
    156 
    157   // Require that our endianness matches that of the target, and that both
    158   // are little-endian.  Safe for all current build/target combinations.
    159   const int endian = elf_header->e_ident[EI_DATA];
    160   CHECK(endian == ELFDATA2LSB);
    161   CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
    162 
    163   const int file_class = elf_header->e_ident[EI_CLASS];
    164   VLOG(1) << "endian = " << endian << ", file class = " << file_class;
    165   VerboseLogElfHeader(elf_header);
    166 
    167   auto elf_program_header = ELF::getphdr(elf);
    168   CHECK(elf_program_header != nullptr);
    169 
    170   const typename ELF::Phdr* dynamic_program_header = NULL;
    171   for (size_t i = 0; i < elf_header->e_phnum; ++i) {
    172     auto program_header = &elf_program_header[i];
    173     VerboseLogProgramHeader(i, program_header);
    174 
    175     if (program_header->p_type == PT_DYNAMIC) {
    176       CHECK(dynamic_program_header == NULL);
    177       dynamic_program_header = program_header;
    178     }
    179   }
    180   CHECK(dynamic_program_header != nullptr);
    181 
    182   size_t string_index;
    183   elf_getshdrstrndx(elf, &string_index);
    184 
    185   // Notes of the dynamic relocations, packed relocations, and .dynamic
    186   // sections.  Found while iterating sections, and later stored in class
    187   // attributes.
    188   Elf_Scn* found_relocations_section = nullptr;
    189   Elf_Scn* found_dynamic_section = nullptr;
    190 
    191   // Notes of relocation section types seen.  We require one or the other of
    192   // these; both is unsupported.
    193   bool has_rel_relocations = false;
    194   bool has_rela_relocations = false;
    195   bool has_android_relocations = false;
    196 
    197   Elf_Scn* section = NULL;
    198   while ((section = elf_nextscn(elf, section)) != nullptr) {
    199     auto section_header = ELF::getshdr(section);
    200     std::string name = elf_strptr(elf, string_index, section_header->sh_name);
    201     VerboseLogSectionHeader(name, section_header);
    202 
    203     // Note relocation section types.
    204     if (section_header->sh_type == SHT_REL || section_header->sh_type == SHT_ANDROID_REL) {
    205       has_rel_relocations = true;
    206     }
    207     if (section_header->sh_type == SHT_RELA || section_header->sh_type == SHT_ANDROID_RELA) {
    208       has_rela_relocations = true;
    209     }
    210 
    211     // Note special sections as we encounter them.
    212     if ((name == ".rel.dyn" || name == ".rela.dyn") &&
    213         section_header->sh_size > 0) {
    214       found_relocations_section = section;
    215 
    216       // Note if relocation section is already packed
    217       has_android_relocations =
    218           section_header->sh_type == SHT_ANDROID_REL ||
    219           section_header->sh_type == SHT_ANDROID_RELA;
    220     }
    221 
    222     if (section_header->sh_offset == dynamic_program_header->p_offset) {
    223       found_dynamic_section = section;
    224     }
    225 
    226     // Ensure we preserve alignment, repeated later for the data block(s).
    227     CHECK(section_header->sh_addralign <= kPreserveAlignment);
    228 
    229     Elf_Data* data = NULL;
    230     while ((data = elf_getdata(section, data)) != NULL) {
    231       CHECK(data->d_align <= kPreserveAlignment);
    232       VerboseLogSectionData(data);
    233     }
    234   }
    235 
    236   // Loading failed if we did not find the required special sections.
    237   if (!found_relocations_section) {
    238     LOG(ERROR) << "Missing or empty .rel.dyn or .rela.dyn section";
    239     return false;
    240   }
    241   if (!found_dynamic_section) {
    242     LOG(ERROR) << "Missing .dynamic section";
    243     return false;
    244   }
    245 
    246   // Loading failed if we could not identify the relocations type.
    247   if (!has_rel_relocations && !has_rela_relocations) {
    248     LOG(ERROR) << "No relocations sections found";
    249     return false;
    250   }
    251   if (has_rel_relocations && has_rela_relocations) {
    252     LOG(ERROR) << "Multiple relocations sections with different types found, "
    253                << "not currently supported";
    254     return false;
    255   }
    256 
    257   elf_ = elf;
    258   relocations_section_ = found_relocations_section;
    259   dynamic_section_ = found_dynamic_section;
    260   relocations_type_ = has_rel_relocations ? REL : RELA;
    261   has_android_relocations_ = has_android_relocations;
    262   return true;
    263 }
    264 
    265 // Helper for ResizeSection().  Adjust the main ELF header for the hole.
    266 template <typename ELF>
    267 static void AdjustElfHeaderForHole(typename ELF::Ehdr* elf_header,
    268                                    typename ELF::Off hole_start,
    269                                    ssize_t hole_size) {
    270   if (elf_header->e_phoff > hole_start) {
    271     elf_header->e_phoff += hole_size;
    272     VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff;
    273   }
    274   if (elf_header->e_shoff > hole_start) {
    275     elf_header->e_shoff += hole_size;
    276     VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff;
    277   }
    278 }
    279 
    280 // Helper for ResizeSection().  Adjust all section headers for the hole.
    281 template <typename ELF>
    282 static void AdjustSectionHeadersForHole(Elf* elf,
    283                                         typename ELF::Off hole_start,
    284                                         ssize_t hole_size) {
    285   size_t string_index;
    286   elf_getshdrstrndx(elf, &string_index);
    287 
    288   Elf_Scn* section = NULL;
    289   while ((section = elf_nextscn(elf, section)) != NULL) {
    290     auto section_header = ELF::getshdr(section);
    291     std::string name = elf_strptr(elf, string_index, section_header->sh_name);
    292 
    293     if (section_header->sh_offset > hole_start) {
    294       section_header->sh_offset += hole_size;
    295       VLOG(1) << "section " << name
    296               << " sh_offset adjusted to " << section_header->sh_offset;
    297     } else {
    298       section_header->sh_addr -= hole_size;
    299       VLOG(1) << "section " << name
    300               << " sh_addr adjusted to " << section_header->sh_addr;
    301     }
    302   }
    303 }
    304 
    305 // Helpers for ResizeSection().  On packing, reduce p_align for LOAD segments
    306 // to 4kb if larger.  On unpacking, restore p_align for LOAD segments if
    307 // packing reduced it to 4kb.  Return true if p_align was changed.
    308 template <typename ELF>
    309 static bool ClampLoadSegmentAlignment(typename ELF::Phdr* program_header) {
    310   CHECK(program_header->p_type == PT_LOAD);
    311 
    312   // If large, reduce p_align for a LOAD segment to page size on packing.
    313   if (program_header->p_align > kPageSize) {
    314     program_header->p_align = kPageSize;
    315     return true;
    316   }
    317   return false;
    318 }
    319 
    320 template <typename ELF>
    321 static bool RestoreLoadSegmentAlignment(typename ELF::Phdr* program_headers,
    322                                         size_t count,
    323                                         typename ELF::Phdr* program_header) {
    324   CHECK(program_header->p_type == PT_LOAD);
    325 
    326   // If p_align was reduced on packing, restore it to its previous value
    327   // on unpacking.  We do this by searching for a different LOAD segment
    328   // and setting p_align to that of the other LOAD segment found.
    329   //
    330   // Relies on the following observations:
    331   //   - a packable ELF executable has more than one LOAD segment;
    332   //   - before packing all LOAD segments have the same p_align;
    333   //   - on packing we reduce only one LOAD segment's p_align.
    334   if (program_header->p_align == kPageSize) {
    335     for (size_t i = 0; i < count; ++i) {
    336       typename ELF::Phdr* other_header = &program_headers[i];
    337       if (other_header->p_type == PT_LOAD && other_header != program_header) {
    338         program_header->p_align = other_header->p_align;
    339         return true;
    340       }
    341     }
    342     LOG(WARNING) << "Cannot find a LOAD segment from which to restore p_align";
    343   }
    344   return false;
    345 }
    346 
    347 template <typename ELF>
    348 static bool AdjustLoadSegmentAlignment(typename ELF::Phdr* program_headers,
    349                                        size_t count,
    350                                        typename ELF::Phdr* program_header,
    351                                        ssize_t hole_size) {
    352   CHECK(program_header->p_type == PT_LOAD);
    353 
    354   bool status = false;
    355   if (hole_size < 0) {
    356     status = ClampLoadSegmentAlignment<ELF>(program_header);
    357   } else if (hole_size > 0) {
    358     status = RestoreLoadSegmentAlignment<ELF>(program_headers,
    359                                               count,
    360                                               program_header);
    361   }
    362   return status;
    363 }
    364 
    365 // Helper for ResizeSection().  Adjust the offsets of any program headers
    366 // that have offsets currently beyond the hole start, and adjust the
    367 // virtual and physical addrs (and perhaps alignment) of the others.
    368 template <typename ELF>
    369 static void AdjustProgramHeaderFields(typename ELF::Phdr* program_headers,
    370                                       size_t count,
    371                                       typename ELF::Off hole_start,
    372                                       ssize_t hole_size) {
    373   int alignment_changes = 0;
    374   for (size_t i = 0; i < count; ++i) {
    375     typename ELF::Phdr* program_header = &program_headers[i];
    376 
    377     // Do not adjust PT_GNU_STACK - it confuses gdb and results
    378     // in incorrect unwinding if the executable is stripped after
    379     // packing.
    380     if (program_header->p_type == PT_GNU_STACK) {
    381       continue;
    382     }
    383 
    384     if (program_header->p_offset > hole_start) {
    385       // The hole start is past this segment, so adjust offset.
    386       program_header->p_offset += hole_size;
    387       VLOG(1) << "phdr[" << i
    388               << "] p_offset adjusted to "<< program_header->p_offset;
    389     } else {
    390       program_header->p_vaddr -= hole_size;
    391       program_header->p_paddr -= hole_size;
    392 
    393       // If packing, clamp LOAD segment alignment to 4kb to prevent strip
    394       // from adjusting it unnecessarily if run on a packed file.  If
    395       // unpacking, attempt to restore a reduced alignment to its previous
    396       // value.  Ensure that we do this on at most one LOAD segment.
    397       if (program_header->p_type == PT_LOAD) {
    398         alignment_changes += AdjustLoadSegmentAlignment<ELF>(program_headers,
    399                                                              count,
    400                                                              program_header,
    401                                                              hole_size);
    402         LOG_IF(FATAL, alignment_changes > 1)
    403             << "Changed p_align on more than one LOAD segment";
    404       }
    405 
    406       VLOG(1) << "phdr[" << i
    407               << "] p_vaddr adjusted to "<< program_header->p_vaddr
    408               << "; p_paddr adjusted to "<< program_header->p_paddr
    409               << "; p_align adjusted to "<< program_header->p_align;
    410     }
    411   }
    412 }
    413 
    414 // Helper for ResizeSection().  Find the first loadable segment in the
    415 // file.  We expect it to map from file offset zero.
    416 template <typename ELF>
    417 static typename ELF::Phdr* FindLoadSegmentForHole(typename ELF::Phdr* program_headers,
    418                                                   size_t count,
    419                                                   typename ELF::Off hole_start) {
    420   for (size_t i = 0; i < count; ++i) {
    421     typename ELF::Phdr* program_header = &program_headers[i];
    422 
    423     if (program_header->p_type == PT_LOAD &&
    424         program_header->p_offset <= hole_start &&
    425         (program_header->p_offset + program_header->p_filesz) >= hole_start ) {
    426       return program_header;
    427     }
    428   }
    429   LOG(FATAL) << "Cannot locate a LOAD segment with hole_start=0x" << std::hex << hole_start;
    430   NOTREACHED();
    431 
    432   return nullptr;
    433 }
    434 
    435 // Helper for ResizeSection().  Rewrite program headers.
    436 template <typename ELF>
    437 static void RewriteProgramHeadersForHole(Elf* elf,
    438                                          typename ELF::Off hole_start,
    439                                          ssize_t hole_size) {
    440   const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
    441   CHECK(elf_header);
    442 
    443   typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
    444   CHECK(elf_program_header);
    445 
    446   const size_t program_header_count = elf_header->e_phnum;
    447 
    448   // Locate the segment that we can overwrite to form the new LOAD entry,
    449   // and the segment that we are going to split into two parts.
    450   typename ELF::Phdr* target_load_header =
    451       FindLoadSegmentForHole<ELF>(elf_program_header, program_header_count, hole_start);
    452 
    453   VLOG(1) << "phdr[" << target_load_header - elf_program_header << "] adjust";
    454   // Adjust PT_LOAD program header memsz and filesz
    455   target_load_header->p_filesz += hole_size;
    456   target_load_header->p_memsz += hole_size;
    457 
    458   // Adjust the offsets and p_vaddrs
    459   AdjustProgramHeaderFields<ELF>(elf_program_header,
    460                                  program_header_count,
    461                                  hole_start,
    462                                  hole_size);
    463 }
    464 
    465 // Helper for ResizeSection().  Locate and return the dynamic section.
    466 template <typename ELF>
    467 static Elf_Scn* GetDynamicSection(Elf* elf) {
    468   const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
    469   CHECK(elf_header);
    470 
    471   const typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
    472   CHECK(elf_program_header);
    473 
    474   // Find the program header that describes the dynamic section.
    475   const typename ELF::Phdr* dynamic_program_header = NULL;
    476   for (size_t i = 0; i < elf_header->e_phnum; ++i) {
    477     const typename ELF::Phdr* program_header = &elf_program_header[i];
    478 
    479     if (program_header->p_type == PT_DYNAMIC) {
    480       dynamic_program_header = program_header;
    481     }
    482   }
    483   CHECK(dynamic_program_header);
    484 
    485   // Now find the section with the same offset as this program header.
    486   Elf_Scn* dynamic_section = NULL;
    487   Elf_Scn* section = NULL;
    488   while ((section = elf_nextscn(elf, section)) != NULL) {
    489     typename ELF::Shdr* section_header = ELF::getshdr(section);
    490 
    491     if (section_header->sh_offset == dynamic_program_header->p_offset) {
    492       dynamic_section = section;
    493     }
    494   }
    495   CHECK(dynamic_section != NULL);
    496 
    497   return dynamic_section;
    498 }
    499 
    500 // Helper for ResizeSection().  Adjust the .dynamic section for the hole.
    501 template <typename ELF>
    502 void ElfFile<ELF>::AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
    503                                                typename ELF::Off hole_start,
    504                                                ssize_t hole_size,
    505                                                relocations_type_t relocations_type) {
    506   CHECK(relocations_type != NONE);
    507   Elf_Data* data = GetSectionData(dynamic_section);
    508 
    509   auto dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
    510   std::vector<typename ELF::Dyn> dynamics(
    511       dynamic_base,
    512       dynamic_base + data->d_size / sizeof(dynamics[0]));
    513 
    514   if (hole_size > 0) { // expanding
    515     hole_start += hole_size;
    516   }
    517 
    518   for (size_t i = 0; i < dynamics.size(); ++i) {
    519     typename ELF::Dyn* dynamic = &dynamics[i];
    520     const typename ELF::Sword tag = dynamic->d_tag;
    521 
    522     // Any tags that hold offsets are adjustment candidates.
    523     const bool is_adjustable = (tag == DT_PLTGOT ||
    524                                 tag == DT_HASH ||
    525                                 tag == DT_GNU_HASH ||
    526                                 tag == DT_STRTAB ||
    527                                 tag == DT_SYMTAB ||
    528                                 tag == DT_RELA ||
    529                                 tag == DT_INIT ||
    530                                 tag == DT_FINI ||
    531                                 tag == DT_REL ||
    532                                 tag == DT_JMPREL ||
    533                                 tag == DT_INIT_ARRAY ||
    534                                 tag == DT_FINI_ARRAY ||
    535                                 tag == DT_VERSYM ||
    536                                 tag == DT_VERNEED ||
    537                                 tag == DT_VERDEF ||
    538                                 tag == DT_ANDROID_REL||
    539                                 tag == DT_ANDROID_RELA);
    540 
    541     if (is_adjustable && dynamic->d_un.d_ptr <= hole_start) {
    542       dynamic->d_un.d_ptr -= hole_size;
    543       VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
    544               << " d_ptr adjusted to " << dynamic->d_un.d_ptr;
    545     }
    546 
    547     // DT_RELSZ or DT_RELASZ indicate the overall size of relocations.
    548     // Only one will be present.  Adjust by hole size.
    549     if (tag == DT_RELSZ || tag == DT_RELASZ || tag == DT_ANDROID_RELSZ || tag == DT_ANDROID_RELASZ) {
    550       dynamic->d_un.d_val += hole_size;
    551       VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
    552               << " d_val adjusted to " << dynamic->d_un.d_val;
    553     }
    554 
    555     // Special case: DT_MIPS_RLD_MAP2 stores the difference between dynamic
    556     // entry address and the address of the _r_debug (used by GDB)
    557     // since the dynamic section and target address are on the
    558     // different sides of the hole it needs to be adjusted accordingly
    559     if (tag == DT_MIPS_RLD_MAP2) {
    560       dynamic->d_un.d_val += hole_size;
    561       VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
    562               << " d_val adjusted to " << dynamic->d_un.d_val;
    563     }
    564 
    565     // Ignore DT_RELCOUNT and DT_RELACOUNT: (1) nobody uses them and
    566     // technically (2) the relative relocation count is not changed.
    567 
    568     // DT_RELENT and DT_RELAENT don't change, ignore them as well.
    569   }
    570 
    571   void* section_data = &dynamics[0];
    572   size_t bytes = dynamics.size() * sizeof(dynamics[0]);
    573   RewriteSectionData(dynamic_section, section_data, bytes);
    574 }
    575 
    576 // Resize a section.  If the new size is larger than the current size, open
    577 // up a hole by increasing file offsets that come after the hole.  If smaller
    578 // than the current size, remove the hole by decreasing those offsets.
    579 template <typename ELF>
    580 void ElfFile<ELF>::ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size,
    581                                  typename ELF::Word new_sh_type,
    582                                  relocations_type_t relocations_type) {
    583 
    584   size_t string_index;
    585   elf_getshdrstrndx(elf, &string_index);
    586   auto section_header = ELF::getshdr(section);
    587   std::string name = elf_strptr(elf, string_index, section_header->sh_name);
    588 
    589   if (section_header->sh_size == new_size) {
    590     return;
    591   }
    592 
    593   // Require that the section size and the data size are the same.  True
    594   // in practice for all sections we resize when packing or unpacking.
    595   Elf_Data* data = GetSectionData(section);
    596   CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
    597 
    598   // Require that the section is not zero-length (that is, has allocated
    599   // data that we can validly expand).
    600   CHECK(data->d_size && data->d_buf);
    601 
    602   const auto hole_start = section_header->sh_offset;
    603   const ssize_t hole_size = new_size - data->d_size;
    604 
    605   VLOG_IF(1, (hole_size > 0)) << "expand section (" << name << ") size: " <<
    606       data->d_size << " -> " << (data->d_size + hole_size);
    607   VLOG_IF(1, (hole_size < 0)) << "shrink section (" << name << ") size: " <<
    608       data->d_size << " -> " << (data->d_size + hole_size);
    609 
    610   // libelf overrides sh_entsize for known sh_types, so it does not matter what we set
    611   // for SHT_REL/SHT_RELA.
    612   typename ELF::Xword new_entsize =
    613       (new_sh_type == SHT_ANDROID_REL || new_sh_type == SHT_ANDROID_RELA) ? 1 : 0;
    614 
    615   VLOG(1) << "Update section (" << name << ") entry size: " <<
    616       section_header->sh_entsize << " -> " << new_entsize;
    617 
    618   // Resize the data and the section header.
    619   data->d_size += hole_size;
    620   section_header->sh_size += hole_size;
    621   section_header->sh_entsize = new_entsize;
    622   section_header->sh_type = new_sh_type;
    623 
    624   // Add the hole size to all offsets in the ELF file that are after the
    625   // start of the hole.  If the hole size is positive we are expanding the
    626   // section to create a new hole; if negative, we are closing up a hole.
    627 
    628   // Start with the main ELF header.
    629   typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
    630   AdjustElfHeaderForHole<ELF>(elf_header, hole_start, hole_size);
    631 
    632   // Adjust all section headers.
    633   AdjustSectionHeadersForHole<ELF>(elf, hole_start, hole_size);
    634 
    635   // Rewrite the program headers to either split or coalesce segments,
    636   // and adjust dynamic entries to match.
    637   RewriteProgramHeadersForHole<ELF>(elf, hole_start, hole_size);
    638 
    639   Elf_Scn* dynamic_section = GetDynamicSection<ELF>(elf);
    640   AdjustDynamicSectionForHole(dynamic_section, hole_start, hole_size, relocations_type);
    641 }
    642 
    643 // Find the first slot in a dynamics array with the given tag.  The array
    644 // always ends with a free (unused) element, and which we exclude from the
    645 // search.  Returns dynamics->size() if not found.
    646 template <typename ELF>
    647 static size_t FindDynamicEntry(typename ELF::Sword tag,
    648                                std::vector<typename ELF::Dyn>* dynamics) {
    649   // Loop until the penultimate entry.  We exclude the end sentinel.
    650   for (size_t i = 0; i < dynamics->size() - 1; ++i) {
    651     if (dynamics->at(i).d_tag == tag) {
    652       return i;
    653     }
    654   }
    655 
    656   // The tag was not found.
    657   return dynamics->size();
    658 }
    659 
    660 // Replace dynamic entry.
    661 template <typename ELF>
    662 static void ReplaceDynamicEntry(typename ELF::Sword tag,
    663                                 const typename ELF::Dyn& dyn,
    664                                 std::vector<typename ELF::Dyn>* dynamics) {
    665   const size_t slot = FindDynamicEntry<ELF>(tag, dynamics);
    666   if (slot == dynamics->size()) {
    667     LOG(FATAL) << "Dynamic slot is not found for tag=" << tag;
    668   }
    669 
    670   // Replace this entry with the one supplied.
    671   dynamics->at(slot) = dyn;
    672   VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag;
    673 }
    674 
    675 // Remove relative entries from dynamic relocations and write as packed
    676 // data into android packed relocations.
    677 template <typename ELF>
    678 bool ElfFile<ELF>::PackRelocations() {
    679   // Load the ELF file into libelf.
    680   if (!Load()) {
    681     LOG(ERROR) << "Failed to load as ELF";
    682     return false;
    683   }
    684 
    685   // Retrieve the current dynamic relocations section data.
    686   Elf_Data* data = GetSectionData(relocations_section_);
    687   // we always pack rela, because packed format is pretty much the same
    688   std::vector<typename ELF::Rela> relocations;
    689 
    690   if (relocations_type_ == REL) {
    691     // Convert data to a vector of relocations.
    692     const typename ELF::Rel* relocations_base = reinterpret_cast<typename ELF::Rel*>(data->d_buf);
    693     ConvertRelArrayToRelaVector(relocations_base,
    694         data->d_size / sizeof(typename ELF::Rel), &relocations);
    695     VLOG(1) << "Relocations   : REL";
    696   } else if (relocations_type_ == RELA) {
    697     // Convert data to a vector of relocations with addends.
    698     const typename ELF::Rela* relocations_base = reinterpret_cast<typename ELF::Rela*>(data->d_buf);
    699     relocations = std::vector<typename ELF::Rela>(
    700         relocations_base,
    701         relocations_base + data->d_size / sizeof(relocations[0]));
    702 
    703     VLOG(1) << "Relocations   : RELA";
    704   } else {
    705     NOTREACHED();
    706   }
    707 
    708   return PackTypedRelocations(&relocations);
    709 }
    710 
    711 // Helper for PackRelocations().  Rel type is one of ELF::Rel or ELF::Rela.
    712 template <typename ELF>
    713 bool ElfFile<ELF>::PackTypedRelocations(std::vector<typename ELF::Rela>* relocations) {
    714   typedef typename ELF::Rela Rela;
    715 
    716   if (has_android_relocations_) {
    717     LOG(INFO) << "Relocation table is already packed";
    718     return true;
    719   }
    720 
    721   // If no relocations then we have nothing packable.  Perhaps
    722   // the shared object has already been packed?
    723   if (relocations->empty()) {
    724     LOG(ERROR) << "No relocations found";
    725     return false;
    726   }
    727 
    728   const size_t rel_size =
    729       relocations_type_ == RELA ? sizeof(typename ELF::Rela) : sizeof(typename ELF::Rel);
    730   const size_t initial_bytes = relocations->size() * rel_size;
    731 
    732   VLOG(1) << "Unpacked                   : " << initial_bytes << " bytes";
    733   std::vector<uint8_t> packed;
    734   RelocationPacker<ELF> packer;
    735 
    736   // Pack relocations: dry run to estimate memory savings.
    737   packer.PackRelocations(*relocations, &packed);
    738   const size_t packed_bytes_estimate = packed.size() * sizeof(packed[0]);
    739   VLOG(1) << "Packed         (no padding): " << packed_bytes_estimate << " bytes";
    740 
    741   if (packed.empty()) {
    742     VLOG(1) << "Too few relocations to pack";
    743     return true;
    744   }
    745 
    746   // Pre-calculate the size of the hole we will close up when we rewrite
    747   // dynamic relocations.  We have to adjust relocation addresses to
    748   // account for this.
    749   typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
    750   ssize_t hole_size = initial_bytes - packed_bytes_estimate;
    751 
    752   // hole_size needs to be page_aligned.
    753   hole_size -= hole_size % kPreserveAlignment;
    754 
    755   VLOG(1) << "Compaction                 : " << hole_size << " bytes";
    756 
    757   // Adjusting for alignment may have removed any packing benefit.
    758   if (hole_size == 0) {
    759     VLOG(1) << "Too few relocations to pack after alignment";
    760     return true;
    761   }
    762 
    763   if (hole_size <= 0) {
    764     VLOG(1) << "Packing relocations saves no space";
    765     return true;
    766   }
    767 
    768   size_t data_padding_bytes = is_padding_relocations_ ?
    769       initial_bytes - packed_bytes_estimate :
    770       initial_bytes - hole_size - packed_bytes_estimate;
    771 
    772   // pad data
    773   std::vector<uint8_t> padding(data_padding_bytes, 0);
    774   packed.insert(packed.end(), padding.begin(), padding.end());
    775 
    776   const void* packed_data = &packed[0];
    777 
    778   // Run a loopback self-test as a check that packing is lossless.
    779   std::vector<Rela> unpacked;
    780   packer.UnpackRelocations(packed, &unpacked);
    781   CHECK(unpacked.size() == relocations->size());
    782   CHECK(!memcmp(&unpacked[0],
    783                 &relocations->at(0),
    784                 unpacked.size() * sizeof(unpacked[0])));
    785 
    786   // Rewrite the current dynamic relocations section with packed one then shrink it to size.
    787   const size_t bytes = packed.size() * sizeof(packed[0]);
    788   ResizeSection(elf_, relocations_section_, bytes,
    789       relocations_type_ == REL ? SHT_ANDROID_REL : SHT_ANDROID_RELA, relocations_type_);
    790   RewriteSectionData(relocations_section_, packed_data, bytes);
    791 
    792   // TODO (dimitry): fix string table and replace .rel.dyn/plt with .android.rel.dyn/plt
    793 
    794   // Rewrite .dynamic and rename relocation tags describing the packed android
    795   // relocations.
    796   Elf_Data* data = GetSectionData(dynamic_section_);
    797   const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
    798   std::vector<typename ELF::Dyn> dynamics(
    799       dynamic_base,
    800       dynamic_base + data->d_size / sizeof(dynamics[0]));
    801   section_header = ELF::getshdr(relocations_section_);
    802   {
    803     typename ELF::Dyn dyn;
    804     dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA;
    805     dyn.d_un.d_ptr = section_header->sh_addr;
    806     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_REL : DT_RELA, dyn, &dynamics);
    807   }
    808   {
    809     typename ELF::Dyn dyn;
    810     dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ;
    811     dyn.d_un.d_val = section_header->sh_size;
    812     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_RELSZ : DT_RELASZ, dyn, &dynamics);
    813   }
    814 
    815   const void* dynamics_data = &dynamics[0];
    816   const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
    817   RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
    818 
    819   Flush();
    820   return true;
    821 }
    822 
    823 // Find packed relative relocations in the packed android relocations
    824 // section, unpack them, and rewrite the dynamic relocations section to
    825 // contain unpacked data.
    826 template <typename ELF>
    827 bool ElfFile<ELF>::UnpackRelocations() {
    828   // Load the ELF file into libelf.
    829   if (!Load()) {
    830     LOG(ERROR) << "Failed to load as ELF";
    831     return false;
    832   }
    833 
    834   typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
    835   // Retrieve the current packed android relocations section data.
    836   Elf_Data* data = GetSectionData(relocations_section_);
    837 
    838   // Convert data to a vector of bytes.
    839   const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
    840   std::vector<uint8_t> packed(
    841       packed_base,
    842       packed_base + data->d_size / sizeof(packed[0]));
    843 
    844   if ((section_header->sh_type == SHT_ANDROID_RELA || section_header->sh_type == SHT_ANDROID_REL) &&
    845       packed.size() > 3 &&
    846       packed[0] == 'A' &&
    847       packed[1] == 'P' &&
    848       packed[2] == 'S' &&
    849       packed[3] == '2') {
    850     LOG(INFO) << "Relocations   : " << (relocations_type_ == REL ? "REL" : "RELA");
    851   } else {
    852     LOG(ERROR) << "Packed relocations not found (not packed?)";
    853     return false;
    854   }
    855 
    856   return UnpackTypedRelocations(packed);
    857 }
    858 
    859 // Helper for UnpackRelocations().  Rel type is one of ELF::Rel or ELF::Rela.
    860 template <typename ELF>
    861 bool ElfFile<ELF>::UnpackTypedRelocations(const std::vector<uint8_t>& packed) {
    862   // Unpack the data to re-materialize the relative relocations.
    863   const size_t packed_bytes = packed.size() * sizeof(packed[0]);
    864   LOG(INFO) << "Packed           : " << packed_bytes << " bytes";
    865   std::vector<typename ELF::Rela> unpacked_relocations;
    866   RelocationPacker<ELF> packer;
    867   packer.UnpackRelocations(packed, &unpacked_relocations);
    868 
    869   const size_t relocation_entry_size =
    870       relocations_type_ == REL ? sizeof(typename ELF::Rel) : sizeof(typename ELF::Rela);
    871   const size_t unpacked_bytes = unpacked_relocations.size() * relocation_entry_size;
    872   LOG(INFO) << "Unpacked         : " << unpacked_bytes << " bytes";
    873 
    874   // Retrieve the current dynamic relocations section data.
    875   Elf_Data* data = GetSectionData(relocations_section_);
    876 
    877   LOG(INFO) << "Relocations      : " << unpacked_relocations.size() << " entries";
    878 
    879   // If we found the same number of null relocation entries in the dynamic
    880   // relocations section as we hold as unpacked relative relocations, then
    881   // this is a padded file.
    882 
    883   const bool is_padded = packed_bytes == unpacked_bytes;
    884 
    885   // Unless padded, pre-apply relative relocations to account for the
    886   // hole, and pre-adjust all relocation offsets accordingly.
    887   typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
    888 
    889   if (!is_padded) {
    890     LOG(INFO) << "Expansion     : " << unpacked_bytes - packed_bytes << " bytes";
    891   }
    892 
    893   // Rewrite the current dynamic relocations section with unpacked version of
    894   // relocations.
    895   const void* section_data = nullptr;
    896   std::vector<typename ELF::Rel> unpacked_rel_relocations;
    897   if (relocations_type_ == RELA) {
    898     section_data = &unpacked_relocations[0];
    899   } else if (relocations_type_ == REL) {
    900     ConvertRelaVectorToRelVector(unpacked_relocations, &unpacked_rel_relocations);
    901     section_data = &unpacked_rel_relocations[0];
    902   } else {
    903     NOTREACHED();
    904   }
    905 
    906   ResizeSection(elf_, relocations_section_, unpacked_bytes,
    907       relocations_type_ == REL ? SHT_REL : SHT_RELA, relocations_type_);
    908   RewriteSectionData(relocations_section_, section_data, unpacked_bytes);
    909 
    910   // Rewrite .dynamic to remove two tags describing packed android relocations.
    911   data = GetSectionData(dynamic_section_);
    912   const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
    913   std::vector<typename ELF::Dyn> dynamics(
    914       dynamic_base,
    915       dynamic_base + data->d_size / sizeof(dynamics[0]));
    916   {
    917     typename ELF::Dyn dyn;
    918     dyn.d_tag = relocations_type_ == REL ? DT_REL : DT_RELA;
    919     dyn.d_un.d_ptr = section_header->sh_addr;
    920     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA,
    921         dyn, &dynamics);
    922   }
    923 
    924   {
    925     typename ELF::Dyn dyn;
    926     dyn.d_tag = relocations_type_ == REL ? DT_RELSZ : DT_RELASZ;
    927     dyn.d_un.d_val = section_header->sh_size;
    928     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ,
    929         dyn, &dynamics);
    930   }
    931 
    932   const void* dynamics_data = &dynamics[0];
    933   const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
    934   RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
    935 
    936   Flush();
    937   return true;
    938 }
    939 
    940 // Flush rewritten shared object file data.
    941 template <typename ELF>
    942 void ElfFile<ELF>::Flush() {
    943   // Flag all ELF data held in memory as needing to be written back to the
    944   // file, and tell libelf that we have controlled the file layout.
    945   elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
    946   elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
    947 
    948   // Write ELF data back to disk.
    949   const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
    950   if (file_bytes == -1) {
    951     LOG(ERROR) << "elf_update failed: " << elf_errmsg(elf_errno());
    952   }
    953 
    954   CHECK(file_bytes > 0);
    955   VLOG(1) << "elf_update returned: " << file_bytes;
    956 
    957   // Clean up libelf, and truncate the output file to the number of bytes
    958   // written by elf_update().
    959   elf_end(elf_);
    960   elf_ = NULL;
    961   const int truncate = ftruncate(fd_, file_bytes);
    962   CHECK(truncate == 0);
    963 }
    964 
    965 template <typename ELF>
    966 void ElfFile<ELF>::ConvertRelArrayToRelaVector(const typename ELF::Rel* rel_array,
    967                                                size_t rel_array_size,
    968                                                std::vector<typename ELF::Rela>* rela_vector) {
    969   for (size_t i = 0; i<rel_array_size; ++i) {
    970     typename ELF::Rela rela;
    971     rela.r_offset = rel_array[i].r_offset;
    972     rela.r_info = rel_array[i].r_info;
    973     rela.r_addend = 0;
    974     rela_vector->push_back(rela);
    975   }
    976 }
    977 
    978 template <typename ELF>
    979 void ElfFile<ELF>::ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela>& rela_vector,
    980                                                 std::vector<typename ELF::Rel>* rel_vector) {
    981   for (auto rela : rela_vector) {
    982     typename ELF::Rel rel;
    983     rel.r_offset = rela.r_offset;
    984     rel.r_info = rela.r_info;
    985     CHECK(rela.r_addend == 0);
    986     rel_vector->push_back(rel);
    987   }
    988 }
    989 
    990 template class ElfFile<ELF32_traits>;
    991 template class ElfFile<ELF64_traits>;
    992 
    993 }  // namespace relocation_packer
    994