1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Main internal TSan header file. 13 // 14 // Ground rules: 15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static 16 // function-scope locals) 17 // - All functions/classes/etc reside in namespace __tsan, except for those 18 // declared in tsan_interface.h. 19 // - Platform-specific files should be used instead of ifdefs (*). 20 // - No system headers included in header files (*). 21 // - Platform specific headres included only into platform-specific files (*). 22 // 23 // (*) Except when inlining is critical for performance. 24 //===----------------------------------------------------------------------===// 25 26 #ifndef TSAN_RTL_H 27 #define TSAN_RTL_H 28 29 #include "sanitizer_common/sanitizer_allocator.h" 30 #include "sanitizer_common/sanitizer_allocator_internal.h" 31 #include "sanitizer_common/sanitizer_asm.h" 32 #include "sanitizer_common/sanitizer_common.h" 33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" 34 #include "sanitizer_common/sanitizer_libignore.h" 35 #include "sanitizer_common/sanitizer_suppressions.h" 36 #include "sanitizer_common/sanitizer_thread_registry.h" 37 #include "tsan_clock.h" 38 #include "tsan_defs.h" 39 #include "tsan_flags.h" 40 #include "tsan_sync.h" 41 #include "tsan_trace.h" 42 #include "tsan_vector.h" 43 #include "tsan_report.h" 44 #include "tsan_platform.h" 45 #include "tsan_mutexset.h" 46 #include "tsan_ignoreset.h" 47 #include "tsan_stack_trace.h" 48 49 #if SANITIZER_WORDSIZE != 64 50 # error "ThreadSanitizer is supported only on 64-bit platforms" 51 #endif 52 53 namespace __tsan { 54 55 #ifndef SANITIZER_GO 56 struct MapUnmapCallback; 57 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__) 58 static const uptr kAllocatorSpace = 0; 59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE; 60 static const uptr kAllocatorRegionSizeLog = 20; 61 static const uptr kAllocatorNumRegions = 62 kAllocatorSize >> kAllocatorRegionSizeLog; 63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12, 64 MapUnmapCallback> ByteMap; 65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0, 66 CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap, 67 MapUnmapCallback> PrimaryAllocator; 68 #else 69 typedef SizeClassAllocator64<Mapping::kHeapMemBeg, 70 Mapping::kHeapMemEnd - Mapping::kHeapMemBeg, 0, 71 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator; 72 #endif 73 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; 74 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator; 75 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, 76 SecondaryAllocator> Allocator; 77 Allocator *allocator(); 78 #endif 79 80 void TsanCheckFailed(const char *file, int line, const char *cond, 81 u64 v1, u64 v2); 82 83 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker 84 85 // FastState (from most significant bit): 86 // ignore : 1 87 // tid : kTidBits 88 // unused : - 89 // history_size : 3 90 // epoch : kClkBits 91 class FastState { 92 public: 93 FastState(u64 tid, u64 epoch) { 94 x_ = tid << kTidShift; 95 x_ |= epoch; 96 DCHECK_EQ(tid, this->tid()); 97 DCHECK_EQ(epoch, this->epoch()); 98 DCHECK_EQ(GetIgnoreBit(), false); 99 } 100 101 explicit FastState(u64 x) 102 : x_(x) { 103 } 104 105 u64 raw() const { 106 return x_; 107 } 108 109 u64 tid() const { 110 u64 res = (x_ & ~kIgnoreBit) >> kTidShift; 111 return res; 112 } 113 114 u64 TidWithIgnore() const { 115 u64 res = x_ >> kTidShift; 116 return res; 117 } 118 119 u64 epoch() const { 120 u64 res = x_ & ((1ull << kClkBits) - 1); 121 return res; 122 } 123 124 void IncrementEpoch() { 125 u64 old_epoch = epoch(); 126 x_ += 1; 127 DCHECK_EQ(old_epoch + 1, epoch()); 128 (void)old_epoch; 129 } 130 131 void SetIgnoreBit() { x_ |= kIgnoreBit; } 132 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } 133 bool GetIgnoreBit() const { return (s64)x_ < 0; } 134 135 void SetHistorySize(int hs) { 136 CHECK_GE(hs, 0); 137 CHECK_LE(hs, 7); 138 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift); 139 } 140 141 ALWAYS_INLINE 142 int GetHistorySize() const { 143 return (int)((x_ >> kHistoryShift) & kHistoryMask); 144 } 145 146 void ClearHistorySize() { 147 SetHistorySize(0); 148 } 149 150 ALWAYS_INLINE 151 u64 GetTracePos() const { 152 const int hs = GetHistorySize(); 153 // When hs == 0, the trace consists of 2 parts. 154 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1; 155 return epoch() & mask; 156 } 157 158 private: 159 friend class Shadow; 160 static const int kTidShift = 64 - kTidBits - 1; 161 static const u64 kIgnoreBit = 1ull << 63; 162 static const u64 kFreedBit = 1ull << 63; 163 static const u64 kHistoryShift = kClkBits; 164 static const u64 kHistoryMask = 7; 165 u64 x_; 166 }; 167 168 // Shadow (from most significant bit): 169 // freed : 1 170 // tid : kTidBits 171 // is_atomic : 1 172 // is_read : 1 173 // size_log : 2 174 // addr0 : 3 175 // epoch : kClkBits 176 class Shadow : public FastState { 177 public: 178 explicit Shadow(u64 x) 179 : FastState(x) { 180 } 181 182 explicit Shadow(const FastState &s) 183 : FastState(s.x_) { 184 ClearHistorySize(); 185 } 186 187 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { 188 DCHECK_EQ((x_ >> kClkBits) & 31, 0); 189 DCHECK_LE(addr0, 7); 190 DCHECK_LE(kAccessSizeLog, 3); 191 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits; 192 DCHECK_EQ(kAccessSizeLog, size_log()); 193 DCHECK_EQ(addr0, this->addr0()); 194 } 195 196 void SetWrite(unsigned kAccessIsWrite) { 197 DCHECK_EQ(x_ & kReadBit, 0); 198 if (!kAccessIsWrite) 199 x_ |= kReadBit; 200 DCHECK_EQ(kAccessIsWrite, IsWrite()); 201 } 202 203 void SetAtomic(bool kIsAtomic) { 204 DCHECK(!IsAtomic()); 205 if (kIsAtomic) 206 x_ |= kAtomicBit; 207 DCHECK_EQ(IsAtomic(), kIsAtomic); 208 } 209 210 bool IsAtomic() const { 211 return x_ & kAtomicBit; 212 } 213 214 bool IsZero() const { 215 return x_ == 0; 216 } 217 218 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { 219 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; 220 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore()); 221 return shifted_xor == 0; 222 } 223 224 static ALWAYS_INLINE 225 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { 226 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31; 227 return masked_xor == 0; 228 } 229 230 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2, 231 unsigned kS2AccessSize) { 232 bool res = false; 233 u64 diff = s1.addr0() - s2.addr0(); 234 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT 235 // if (s1.addr0() + size1) > s2.addr0()) return true; 236 if (s1.size() > -diff) 237 res = true; 238 } else { 239 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; 240 if (kS2AccessSize > diff) 241 res = true; 242 } 243 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2)); 244 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1)); 245 return res; 246 } 247 248 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; } 249 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); } 250 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); } 251 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; } 252 253 // The idea behind the freed bit is as follows. 254 // When the memory is freed (or otherwise unaccessible) we write to the shadow 255 // values with tid/epoch related to the free and the freed bit set. 256 // During memory accesses processing the freed bit is considered 257 // as msb of tid. So any access races with shadow with freed bit set 258 // (it is as if write from a thread with which we never synchronized before). 259 // This allows us to detect accesses to freed memory w/o additional 260 // overheads in memory access processing and at the same time restore 261 // tid/epoch of free. 262 void MarkAsFreed() { 263 x_ |= kFreedBit; 264 } 265 266 bool IsFreed() const { 267 return x_ & kFreedBit; 268 } 269 270 bool GetFreedAndReset() { 271 bool res = x_ & kFreedBit; 272 x_ &= ~kFreedBit; 273 return res; 274 } 275 276 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const { 277 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift) 278 | (u64(kIsAtomic) << kAtomicShift)); 279 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic)); 280 return v; 281 } 282 283 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const { 284 bool v = ((x_ >> kReadShift) & 3) 285 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 286 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) || 287 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite)); 288 return v; 289 } 290 291 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const { 292 bool v = ((x_ >> kReadShift) & 3) 293 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 294 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) || 295 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite)); 296 return v; 297 } 298 299 private: 300 static const u64 kReadShift = 5 + kClkBits; 301 static const u64 kReadBit = 1ull << kReadShift; 302 static const u64 kAtomicShift = 6 + kClkBits; 303 static const u64 kAtomicBit = 1ull << kAtomicShift; 304 305 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; } 306 307 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) { 308 if (s1.addr0() == s2.addr0()) return true; 309 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) 310 return true; 311 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) 312 return true; 313 return false; 314 } 315 }; 316 317 struct ThreadSignalContext; 318 319 struct JmpBuf { 320 uptr sp; 321 uptr mangled_sp; 322 int int_signal_send; 323 bool in_blocking_func; 324 uptr in_signal_handler; 325 uptr *shadow_stack_pos; 326 }; 327 328 // This struct is stored in TLS. 329 struct ThreadState { 330 FastState fast_state; 331 // Synch epoch represents the threads's epoch before the last synchronization 332 // action. It allows to reduce number of shadow state updates. 333 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, 334 // if we are processing write to X from the same thread at epoch=200, 335 // we do nothing, because both writes happen in the same 'synch epoch'. 336 // That is, if another memory access does not race with the former write, 337 // it does not race with the latter as well. 338 // QUESTION: can we can squeeze this into ThreadState::Fast? 339 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are 340 // taken by epoch between synchs. 341 // This way we can save one load from tls. 342 u64 fast_synch_epoch; 343 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. 344 // We do not distinguish beteween ignoring reads and writes 345 // for better performance. 346 int ignore_reads_and_writes; 347 int ignore_sync; 348 // Go does not support ignores. 349 #ifndef SANITIZER_GO 350 IgnoreSet mop_ignore_set; 351 IgnoreSet sync_ignore_set; 352 #endif 353 // C/C++ uses fixed size shadow stack embed into Trace. 354 // Go uses malloc-allocated shadow stack with dynamic size. 355 uptr *shadow_stack; 356 uptr *shadow_stack_end; 357 uptr *shadow_stack_pos; 358 u64 *racy_shadow_addr; 359 u64 racy_state[2]; 360 MutexSet mset; 361 ThreadClock clock; 362 #ifndef SANITIZER_GO 363 AllocatorCache alloc_cache; 364 InternalAllocatorCache internal_alloc_cache; 365 Vector<JmpBuf> jmp_bufs; 366 int ignore_interceptors; 367 #endif 368 #if TSAN_COLLECT_STATS 369 u64 stat[StatCnt]; 370 #endif 371 const int tid; 372 const int unique_id; 373 bool in_symbolizer; 374 bool in_ignored_lib; 375 bool is_inited; 376 bool is_dead; 377 bool is_freeing; 378 bool is_vptr_access; 379 const uptr stk_addr; 380 const uptr stk_size; 381 const uptr tls_addr; 382 const uptr tls_size; 383 ThreadContext *tctx; 384 385 #if SANITIZER_DEBUG && !SANITIZER_GO 386 InternalDeadlockDetector internal_deadlock_detector; 387 #endif 388 DDPhysicalThread *dd_pt; 389 DDLogicalThread *dd_lt; 390 391 atomic_uintptr_t in_signal_handler; 392 ThreadSignalContext *signal_ctx; 393 394 DenseSlabAllocCache block_cache; 395 DenseSlabAllocCache sync_cache; 396 DenseSlabAllocCache clock_cache; 397 398 #ifndef SANITIZER_GO 399 u32 last_sleep_stack_id; 400 ThreadClock last_sleep_clock; 401 #endif 402 403 // Set in regions of runtime that must be signal-safe and fork-safe. 404 // If set, malloc must not be called. 405 int nomalloc; 406 407 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 408 unsigned reuse_count, 409 uptr stk_addr, uptr stk_size, 410 uptr tls_addr, uptr tls_size); 411 }; 412 413 #ifndef SANITIZER_GO 414 #if SANITIZER_MAC 415 ThreadState *cur_thread(); 416 void cur_thread_finalize(); 417 #else 418 __attribute__((tls_model("initial-exec"))) 419 extern THREADLOCAL char cur_thread_placeholder[]; 420 INLINE ThreadState *cur_thread() { 421 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); 422 } 423 INLINE void cur_thread_finalize() { } 424 #endif // SANITIZER_MAC 425 #endif // SANITIZER_GO 426 427 class ThreadContext : public ThreadContextBase { 428 public: 429 explicit ThreadContext(int tid); 430 ~ThreadContext(); 431 ThreadState *thr; 432 u32 creation_stack_id; 433 SyncClock sync; 434 // Epoch at which the thread had started. 435 // If we see an event from the thread stamped by an older epoch, 436 // the event is from a dead thread that shared tid with this thread. 437 u64 epoch0; 438 u64 epoch1; 439 440 // Override superclass callbacks. 441 void OnDead() override; 442 void OnJoined(void *arg) override; 443 void OnFinished() override; 444 void OnStarted(void *arg) override; 445 void OnCreated(void *arg) override; 446 void OnReset() override; 447 void OnDetached(void *arg) override; 448 }; 449 450 struct RacyStacks { 451 MD5Hash hash[2]; 452 bool operator==(const RacyStacks &other) const { 453 if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) 454 return true; 455 if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) 456 return true; 457 return false; 458 } 459 }; 460 461 struct RacyAddress { 462 uptr addr_min; 463 uptr addr_max; 464 }; 465 466 struct FiredSuppression { 467 ReportType type; 468 uptr pc_or_addr; 469 Suppression *supp; 470 }; 471 472 struct Context { 473 Context(); 474 475 bool initialized; 476 bool after_multithreaded_fork; 477 478 MetaMap metamap; 479 480 Mutex report_mtx; 481 int nreported; 482 int nmissed_expected; 483 atomic_uint64_t last_symbolize_time_ns; 484 485 void *background_thread; 486 atomic_uint32_t stop_background_thread; 487 488 ThreadRegistry *thread_registry; 489 490 Mutex racy_mtx; 491 Vector<RacyStacks> racy_stacks; 492 Vector<RacyAddress> racy_addresses; 493 // Number of fired suppressions may be large enough. 494 Mutex fired_suppressions_mtx; 495 InternalMmapVector<FiredSuppression> fired_suppressions; 496 DDetector *dd; 497 498 ClockAlloc clock_alloc; 499 500 Flags flags; 501 502 u64 stat[StatCnt]; 503 u64 int_alloc_cnt[MBlockTypeCount]; 504 u64 int_alloc_siz[MBlockTypeCount]; 505 }; 506 507 extern Context *ctx; // The one and the only global runtime context. 508 509 struct ScopedIgnoreInterceptors { 510 ScopedIgnoreInterceptors() { 511 #ifndef SANITIZER_GO 512 cur_thread()->ignore_interceptors++; 513 #endif 514 } 515 516 ~ScopedIgnoreInterceptors() { 517 #ifndef SANITIZER_GO 518 cur_thread()->ignore_interceptors--; 519 #endif 520 } 521 }; 522 523 class ScopedReport { 524 public: 525 explicit ScopedReport(ReportType typ); 526 ~ScopedReport(); 527 528 void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack, 529 const MutexSet *mset); 530 void AddStack(StackTrace stack, bool suppressable = false); 531 void AddThread(const ThreadContext *tctx, bool suppressable = false); 532 void AddThread(int unique_tid, bool suppressable = false); 533 void AddUniqueTid(int unique_tid); 534 void AddMutex(const SyncVar *s); 535 u64 AddMutex(u64 id); 536 void AddLocation(uptr addr, uptr size); 537 void AddSleep(u32 stack_id); 538 void SetCount(int count); 539 540 const ReportDesc *GetReport() const; 541 542 private: 543 ReportDesc *rep_; 544 // Symbolizer makes lots of intercepted calls. If we try to process them, 545 // at best it will cause deadlocks on internal mutexes. 546 ScopedIgnoreInterceptors ignore_interceptors_; 547 548 void AddDeadMutex(u64 id); 549 550 ScopedReport(const ScopedReport&); 551 void operator = (const ScopedReport&); 552 }; 553 554 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk, 555 MutexSet *mset); 556 557 template<typename StackTraceTy> 558 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) { 559 uptr size = thr->shadow_stack_pos - thr->shadow_stack; 560 uptr start = 0; 561 if (size + !!toppc > kStackTraceMax) { 562 start = size + !!toppc - kStackTraceMax; 563 size = kStackTraceMax - !!toppc; 564 } 565 stack->Init(&thr->shadow_stack[start], size, toppc); 566 } 567 568 569 #if TSAN_COLLECT_STATS 570 void StatAggregate(u64 *dst, u64 *src); 571 void StatOutput(u64 *stat); 572 #endif 573 574 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { 575 #if TSAN_COLLECT_STATS 576 thr->stat[typ] += n; 577 #endif 578 } 579 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) { 580 #if TSAN_COLLECT_STATS 581 thr->stat[typ] = n; 582 #endif 583 } 584 585 void MapShadow(uptr addr, uptr size); 586 void MapThreadTrace(uptr addr, uptr size, const char *name); 587 void DontNeedShadowFor(uptr addr, uptr size); 588 void InitializeShadowMemory(); 589 void InitializeInterceptors(); 590 void InitializeLibIgnore(); 591 void InitializeDynamicAnnotations(); 592 593 void ForkBefore(ThreadState *thr, uptr pc); 594 void ForkParentAfter(ThreadState *thr, uptr pc); 595 void ForkChildAfter(ThreadState *thr, uptr pc); 596 597 void ReportRace(ThreadState *thr); 598 bool OutputReport(ThreadState *thr, const ScopedReport &srep); 599 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace); 600 bool IsExpectedReport(uptr addr, uptr size); 601 void PrintMatchedBenignRaces(); 602 603 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 604 # define DPrintf Printf 605 #else 606 # define DPrintf(...) 607 #endif 608 609 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 610 # define DPrintf2 Printf 611 #else 612 # define DPrintf2(...) 613 #endif 614 615 u32 CurrentStackId(ThreadState *thr, uptr pc); 616 ReportStack *SymbolizeStackId(u32 stack_id); 617 void PrintCurrentStack(ThreadState *thr, uptr pc); 618 void PrintCurrentStackSlow(uptr pc); // uses libunwind 619 620 void Initialize(ThreadState *thr); 621 int Finalize(ThreadState *thr); 622 623 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); 624 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); 625 626 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 627 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic); 628 void MemoryAccessImpl(ThreadState *thr, uptr addr, 629 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 630 u64 *shadow_mem, Shadow cur); 631 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, 632 uptr size, bool is_write); 633 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, 634 uptr size, uptr step, bool is_write); 635 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 636 int size, bool kAccessIsWrite, bool kIsAtomic); 637 638 const int kSizeLog1 = 0; 639 const int kSizeLog2 = 1; 640 const int kSizeLog4 = 2; 641 const int kSizeLog8 = 3; 642 643 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc, 644 uptr addr, int kAccessSizeLog) { 645 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false); 646 } 647 648 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc, 649 uptr addr, int kAccessSizeLog) { 650 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false); 651 } 652 653 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc, 654 uptr addr, int kAccessSizeLog) { 655 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true); 656 } 657 658 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc, 659 uptr addr, int kAccessSizeLog) { 660 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true); 661 } 662 663 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); 664 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); 665 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); 666 667 void ThreadIgnoreBegin(ThreadState *thr, uptr pc); 668 void ThreadIgnoreEnd(ThreadState *thr, uptr pc); 669 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc); 670 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc); 671 672 void FuncEntry(ThreadState *thr, uptr pc); 673 void FuncExit(ThreadState *thr); 674 675 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); 676 void ThreadStart(ThreadState *thr, int tid, uptr os_id); 677 void ThreadFinish(ThreadState *thr); 678 int ThreadTid(ThreadState *thr, uptr pc, uptr uid); 679 void ThreadJoin(ThreadState *thr, uptr pc, int tid); 680 void ThreadDetach(ThreadState *thr, uptr pc, int tid); 681 void ThreadFinalize(ThreadState *thr); 682 void ThreadSetName(ThreadState *thr, const char *name); 683 int ThreadCount(ThreadState *thr); 684 void ProcessPendingSignals(ThreadState *thr); 685 686 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, 687 bool rw, bool recursive, bool linker_init); 688 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); 689 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1, 690 bool try_lock = false); 691 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false); 692 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false); 693 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); 694 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); 695 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD 696 697 void Acquire(ThreadState *thr, uptr pc, uptr addr); 698 // AcquireGlobal synchronizes the current thread with all other threads. 699 // In terms of happens-before relation, it draws a HB edge from all threads 700 // (where they happen to execute right now) to the current thread. We use it to 701 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal 702 // right before executing finalizers. This provides a coarse, but simple 703 // approximation of the actual required synchronization. 704 void AcquireGlobal(ThreadState *thr, uptr pc); 705 void Release(ThreadState *thr, uptr pc, uptr addr); 706 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); 707 void AfterSleep(ThreadState *thr, uptr pc); 708 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c); 709 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 710 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c); 711 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 712 713 // The hacky call uses custom calling convention and an assembly thunk. 714 // It is considerably faster that a normal call for the caller 715 // if it is not executed (it is intended for slow paths from hot functions). 716 // The trick is that the call preserves all registers and the compiler 717 // does not treat it as a call. 718 // If it does not work for you, use normal call. 719 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC 720 // The caller may not create the stack frame for itself at all, 721 // so we create a reserve stack frame for it (1024b must be enough). 722 #define HACKY_CALL(f) \ 723 __asm__ __volatile__("sub $1024, %%rsp;" \ 724 CFI_INL_ADJUST_CFA_OFFSET(1024) \ 725 ".hidden " #f "_thunk;" \ 726 "call " #f "_thunk;" \ 727 "add $1024, %%rsp;" \ 728 CFI_INL_ADJUST_CFA_OFFSET(-1024) \ 729 ::: "memory", "cc"); 730 #else 731 #define HACKY_CALL(f) f() 732 #endif 733 734 void TraceSwitch(ThreadState *thr); 735 uptr TraceTopPC(ThreadState *thr); 736 uptr TraceSize(); 737 uptr TraceParts(); 738 Trace *ThreadTrace(int tid); 739 740 extern "C" void __tsan_trace_switch(); 741 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs, 742 EventType typ, u64 addr) { 743 if (!kCollectHistory) 744 return; 745 DCHECK_GE((int)typ, 0); 746 DCHECK_LE((int)typ, 7); 747 DCHECK_EQ(GetLsb(addr, 61), addr); 748 StatInc(thr, StatEvents); 749 u64 pos = fs.GetTracePos(); 750 if (UNLIKELY((pos % kTracePartSize) == 0)) { 751 #ifndef SANITIZER_GO 752 HACKY_CALL(__tsan_trace_switch); 753 #else 754 TraceSwitch(thr); 755 #endif 756 } 757 Event *trace = (Event*)GetThreadTrace(fs.tid()); 758 Event *evp = &trace[pos]; 759 Event ev = (u64)addr | ((u64)typ << 61); 760 *evp = ev; 761 } 762 763 #ifndef SANITIZER_GO 764 uptr ALWAYS_INLINE HeapEnd() { 765 return HeapMemEnd() + PrimaryAllocator::AdditionalSize(); 766 } 767 #endif 768 769 } // namespace __tsan 770 771 #endif // TSAN_RTL_H 772