1 //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains functions (and a class) useful for working with scaled 11 // numbers -- in particular, pairs of integers where one represents digits and 12 // another represents a scale. The functions are helpers and live in the 13 // namespace ScaledNumbers. The class ScaledNumber is useful for modelling 14 // certain cost metrics that need simple, integer-like semantics that are easy 15 // to reason about. 16 // 17 // These might remind you of soft-floats. If you want one of those, you're in 18 // the wrong place. Look at include/llvm/ADT/APFloat.h instead. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #ifndef LLVM_SUPPORT_SCALEDNUMBER_H 23 #define LLVM_SUPPORT_SCALEDNUMBER_H 24 25 #include "llvm/Support/MathExtras.h" 26 #include <algorithm> 27 #include <cstdint> 28 #include <limits> 29 #include <string> 30 #include <tuple> 31 #include <utility> 32 33 namespace llvm { 34 namespace ScaledNumbers { 35 36 /// \brief Maximum scale; same as APFloat for easy debug printing. 37 const int32_t MaxScale = 16383; 38 39 /// \brief Maximum scale; same as APFloat for easy debug printing. 40 const int32_t MinScale = -16382; 41 42 /// \brief Get the width of a number. 43 template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; } 44 45 /// \brief Conditionally round up a scaled number. 46 /// 47 /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true. 48 /// Always returns \c Scale unless there's an overflow, in which case it 49 /// returns \c 1+Scale. 50 /// 51 /// \pre adding 1 to \c Scale will not overflow INT16_MAX. 52 template <class DigitsT> 53 inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale, 54 bool ShouldRound) { 55 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 56 57 if (ShouldRound) 58 if (!++Digits) 59 // Overflow. 60 return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1); 61 return std::make_pair(Digits, Scale); 62 } 63 64 /// \brief Convenience helper for 32-bit rounding. 65 inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale, 66 bool ShouldRound) { 67 return getRounded(Digits, Scale, ShouldRound); 68 } 69 70 /// \brief Convenience helper for 64-bit rounding. 71 inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale, 72 bool ShouldRound) { 73 return getRounded(Digits, Scale, ShouldRound); 74 } 75 76 /// \brief Adjust a 64-bit scaled number down to the appropriate width. 77 /// 78 /// \pre Adding 64 to \c Scale will not overflow INT16_MAX. 79 template <class DigitsT> 80 inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits, 81 int16_t Scale = 0) { 82 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 83 84 const int Width = getWidth<DigitsT>(); 85 if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max()) 86 return std::make_pair(Digits, Scale); 87 88 // Shift right and round. 89 int Shift = 64 - Width - countLeadingZeros(Digits); 90 return getRounded<DigitsT>(Digits >> Shift, Scale + Shift, 91 Digits & (UINT64_C(1) << (Shift - 1))); 92 } 93 94 /// \brief Convenience helper for adjusting to 32 bits. 95 inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits, 96 int16_t Scale = 0) { 97 return getAdjusted<uint32_t>(Digits, Scale); 98 } 99 100 /// \brief Convenience helper for adjusting to 64 bits. 101 inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits, 102 int16_t Scale = 0) { 103 return getAdjusted<uint64_t>(Digits, Scale); 104 } 105 106 /// \brief Multiply two 64-bit integers to create a 64-bit scaled number. 107 /// 108 /// Implemented with four 64-bit integer multiplies. 109 std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS); 110 111 /// \brief Multiply two 32-bit integers to create a 32-bit scaled number. 112 /// 113 /// Implemented with one 64-bit integer multiply. 114 template <class DigitsT> 115 inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) { 116 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 117 118 if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX)) 119 return getAdjusted<DigitsT>(uint64_t(LHS) * RHS); 120 121 return multiply64(LHS, RHS); 122 } 123 124 /// \brief Convenience helper for 32-bit product. 125 inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) { 126 return getProduct(LHS, RHS); 127 } 128 129 /// \brief Convenience helper for 64-bit product. 130 inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) { 131 return getProduct(LHS, RHS); 132 } 133 134 /// \brief Divide two 64-bit integers to create a 64-bit scaled number. 135 /// 136 /// Implemented with long division. 137 /// 138 /// \pre \c Dividend and \c Divisor are non-zero. 139 std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor); 140 141 /// \brief Divide two 32-bit integers to create a 32-bit scaled number. 142 /// 143 /// Implemented with one 64-bit integer divide/remainder pair. 144 /// 145 /// \pre \c Dividend and \c Divisor are non-zero. 146 std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor); 147 148 /// \brief Divide two 32-bit numbers to create a 32-bit scaled number. 149 /// 150 /// Implemented with one 64-bit integer divide/remainder pair. 151 /// 152 /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0). 153 template <class DigitsT> 154 std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) { 155 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 156 static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8, 157 "expected 32-bit or 64-bit digits"); 158 159 // Check for zero. 160 if (!Dividend) 161 return std::make_pair(0, 0); 162 if (!Divisor) 163 return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale); 164 165 if (getWidth<DigitsT>() == 64) 166 return divide64(Dividend, Divisor); 167 return divide32(Dividend, Divisor); 168 } 169 170 /// \brief Convenience helper for 32-bit quotient. 171 inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend, 172 uint32_t Divisor) { 173 return getQuotient(Dividend, Divisor); 174 } 175 176 /// \brief Convenience helper for 64-bit quotient. 177 inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend, 178 uint64_t Divisor) { 179 return getQuotient(Dividend, Divisor); 180 } 181 182 /// \brief Implementation of getLg() and friends. 183 /// 184 /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether 185 /// this was rounded up (1), down (-1), or exact (0). 186 /// 187 /// Returns \c INT32_MIN when \c Digits is zero. 188 template <class DigitsT> 189 inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) { 190 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 191 192 if (!Digits) 193 return std::make_pair(INT32_MIN, 0); 194 195 // Get the floor of the lg of Digits. 196 int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1; 197 198 // Get the actual floor. 199 int32_t Floor = Scale + LocalFloor; 200 if (Digits == UINT64_C(1) << LocalFloor) 201 return std::make_pair(Floor, 0); 202 203 // Round based on the next digit. 204 assert(LocalFloor >= 1); 205 bool Round = Digits & UINT64_C(1) << (LocalFloor - 1); 206 return std::make_pair(Floor + Round, Round ? 1 : -1); 207 } 208 209 /// \brief Get the lg (rounded) of a scaled number. 210 /// 211 /// Get the lg of \c Digits*2^Scale. 212 /// 213 /// Returns \c INT32_MIN when \c Digits is zero. 214 template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) { 215 return getLgImpl(Digits, Scale).first; 216 } 217 218 /// \brief Get the lg floor of a scaled number. 219 /// 220 /// Get the floor of the lg of \c Digits*2^Scale. 221 /// 222 /// Returns \c INT32_MIN when \c Digits is zero. 223 template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) { 224 auto Lg = getLgImpl(Digits, Scale); 225 return Lg.first - (Lg.second > 0); 226 } 227 228 /// \brief Get the lg ceiling of a scaled number. 229 /// 230 /// Get the ceiling of the lg of \c Digits*2^Scale. 231 /// 232 /// Returns \c INT32_MIN when \c Digits is zero. 233 template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) { 234 auto Lg = getLgImpl(Digits, Scale); 235 return Lg.first + (Lg.second < 0); 236 } 237 238 /// \brief Implementation for comparing scaled numbers. 239 /// 240 /// Compare two 64-bit numbers with different scales. Given that the scale of 241 /// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1, 242 /// 1, and 0 for less than, greater than, and equal, respectively. 243 /// 244 /// \pre 0 <= ScaleDiff < 64. 245 int compareImpl(uint64_t L, uint64_t R, int ScaleDiff); 246 247 /// \brief Compare two scaled numbers. 248 /// 249 /// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1 250 /// for greater than. 251 template <class DigitsT> 252 int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) { 253 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 254 255 // Check for zero. 256 if (!LDigits) 257 return RDigits ? -1 : 0; 258 if (!RDigits) 259 return 1; 260 261 // Check for the scale. Use getLgFloor to be sure that the scale difference 262 // is always lower than 64. 263 int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale); 264 if (lgL != lgR) 265 return lgL < lgR ? -1 : 1; 266 267 // Compare digits. 268 if (LScale < RScale) 269 return compareImpl(LDigits, RDigits, RScale - LScale); 270 271 return -compareImpl(RDigits, LDigits, LScale - RScale); 272 } 273 274 /// \brief Match scales of two numbers. 275 /// 276 /// Given two scaled numbers, match up their scales. Change the digits and 277 /// scales in place. Shift the digits as necessary to form equivalent numbers, 278 /// losing precision only when necessary. 279 /// 280 /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of 281 /// \c LScale (\c RScale) is unspecified. 282 /// 283 /// As a convenience, returns the matching scale. If the output value of one 284 /// number is zero, returns the scale of the other. If both are zero, which 285 /// scale is returned is unspecified. 286 template <class DigitsT> 287 int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits, 288 int16_t &RScale) { 289 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 290 291 if (LScale < RScale) 292 // Swap arguments. 293 return matchScales(RDigits, RScale, LDigits, LScale); 294 if (!LDigits) 295 return RScale; 296 if (!RDigits || LScale == RScale) 297 return LScale; 298 299 // Now LScale > RScale. Get the difference. 300 int32_t ScaleDiff = int32_t(LScale) - RScale; 301 if (ScaleDiff >= 2 * getWidth<DigitsT>()) { 302 // Don't bother shifting. RDigits will get zero-ed out anyway. 303 RDigits = 0; 304 return LScale; 305 } 306 307 // Shift LDigits left as much as possible, then shift RDigits right. 308 int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff); 309 assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width"); 310 311 int32_t ShiftR = ScaleDiff - ShiftL; 312 if (ShiftR >= getWidth<DigitsT>()) { 313 // Don't bother shifting. RDigits will get zero-ed out anyway. 314 RDigits = 0; 315 return LScale; 316 } 317 318 LDigits <<= ShiftL; 319 RDigits >>= ShiftR; 320 321 LScale -= ShiftL; 322 RScale += ShiftR; 323 assert(LScale == RScale && "scales should match"); 324 return LScale; 325 } 326 327 /// \brief Get the sum of two scaled numbers. 328 /// 329 /// Get the sum of two scaled numbers with as much precision as possible. 330 /// 331 /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX. 332 template <class DigitsT> 333 std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale, 334 DigitsT RDigits, int16_t RScale) { 335 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 336 337 // Check inputs up front. This is only relevant if addition overflows, but 338 // testing here should catch more bugs. 339 assert(LScale < INT16_MAX && "scale too large"); 340 assert(RScale < INT16_MAX && "scale too large"); 341 342 // Normalize digits to match scales. 343 int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale); 344 345 // Compute sum. 346 DigitsT Sum = LDigits + RDigits; 347 if (Sum >= RDigits) 348 return std::make_pair(Sum, Scale); 349 350 // Adjust sum after arithmetic overflow. 351 DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1); 352 return std::make_pair(HighBit | Sum >> 1, Scale + 1); 353 } 354 355 /// \brief Convenience helper for 32-bit sum. 356 inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale, 357 uint32_t RDigits, int16_t RScale) { 358 return getSum(LDigits, LScale, RDigits, RScale); 359 } 360 361 /// \brief Convenience helper for 64-bit sum. 362 inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale, 363 uint64_t RDigits, int16_t RScale) { 364 return getSum(LDigits, LScale, RDigits, RScale); 365 } 366 367 /// \brief Get the difference of two scaled numbers. 368 /// 369 /// Get LHS minus RHS with as much precision as possible. 370 /// 371 /// Returns \c (0, 0) if the RHS is larger than the LHS. 372 template <class DigitsT> 373 std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale, 374 DigitsT RDigits, int16_t RScale) { 375 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 376 377 // Normalize digits to match scales. 378 const DigitsT SavedRDigits = RDigits; 379 const int16_t SavedRScale = RScale; 380 matchScales(LDigits, LScale, RDigits, RScale); 381 382 // Compute difference. 383 if (LDigits <= RDigits) 384 return std::make_pair(0, 0); 385 if (RDigits || !SavedRDigits) 386 return std::make_pair(LDigits - RDigits, LScale); 387 388 // Check if RDigits just barely lost its last bit. E.g., for 32-bit: 389 // 390 // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32 391 const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale); 392 if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>())) 393 return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor); 394 395 return std::make_pair(LDigits, LScale); 396 } 397 398 /// \brief Convenience helper for 32-bit difference. 399 inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits, 400 int16_t LScale, 401 uint32_t RDigits, 402 int16_t RScale) { 403 return getDifference(LDigits, LScale, RDigits, RScale); 404 } 405 406 /// \brief Convenience helper for 64-bit difference. 407 inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits, 408 int16_t LScale, 409 uint64_t RDigits, 410 int16_t RScale) { 411 return getDifference(LDigits, LScale, RDigits, RScale); 412 } 413 414 } // end namespace ScaledNumbers 415 } // end namespace llvm 416 417 namespace llvm { 418 419 class raw_ostream; 420 class ScaledNumberBase { 421 public: 422 static const int DefaultPrecision = 10; 423 424 static void dump(uint64_t D, int16_t E, int Width); 425 static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width, 426 unsigned Precision); 427 static std::string toString(uint64_t D, int16_t E, int Width, 428 unsigned Precision); 429 static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); } 430 static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); } 431 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } 432 433 static std::pair<uint64_t, bool> splitSigned(int64_t N) { 434 if (N >= 0) 435 return std::make_pair(N, false); 436 uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N); 437 return std::make_pair(Unsigned, true); 438 } 439 static int64_t joinSigned(uint64_t U, bool IsNeg) { 440 if (U > uint64_t(INT64_MAX)) 441 return IsNeg ? INT64_MIN : INT64_MAX; 442 return IsNeg ? -int64_t(U) : int64_t(U); 443 } 444 }; 445 446 /// \brief Simple representation of a scaled number. 447 /// 448 /// ScaledNumber is a number represented by digits and a scale. It uses simple 449 /// saturation arithmetic and every operation is well-defined for every value. 450 /// It's somewhat similar in behaviour to a soft-float, but is *not* a 451 /// replacement for one. If you're doing numerics, look at \a APFloat instead. 452 /// Nevertheless, we've found these semantics useful for modelling certain cost 453 /// metrics. 454 /// 455 /// The number is split into a signed scale and unsigned digits. The number 456 /// represented is \c getDigits()*2^getScale(). In this way, the digits are 457 /// much like the mantissa in the x87 long double, but there is no canonical 458 /// form so the same number can be represented by many bit representations. 459 /// 460 /// ScaledNumber is templated on the underlying integer type for digits, which 461 /// is expected to be unsigned. 462 /// 463 /// Unlike APFloat, ScaledNumber does not model architecture floating point 464 /// behaviour -- while this might make it a little faster and easier to reason 465 /// about, it certainly makes it more dangerous for general numerics. 466 /// 467 /// ScaledNumber is totally ordered. However, there is no canonical form, so 468 /// there are multiple representations of most scalars. E.g.: 469 /// 470 /// ScaledNumber(8u, 0) == ScaledNumber(4u, 1) 471 /// ScaledNumber(4u, 1) == ScaledNumber(2u, 2) 472 /// ScaledNumber(2u, 2) == ScaledNumber(1u, 3) 473 /// 474 /// ScaledNumber implements most arithmetic operations. Precision is kept 475 /// where possible. Uses simple saturation arithmetic, so that operations 476 /// saturate to 0.0 or getLargest() rather than under or overflowing. It has 477 /// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0. 478 /// Any other division by 0.0 is defined to be getLargest(). 479 /// 480 /// As a convenience for modifying the exponent, left and right shifting are 481 /// both implemented, and both interpret negative shifts as positive shifts in 482 /// the opposite direction. 483 /// 484 /// Scales are limited to the range accepted by x87 long double. This makes 485 /// it trivial to add functionality to convert to APFloat (this is already 486 /// relied on for the implementation of printing). 487 /// 488 /// Possible (and conflicting) future directions: 489 /// 490 /// 1. Turn this into a wrapper around \a APFloat. 491 /// 2. Share the algorithm implementations with \a APFloat. 492 /// 3. Allow \a ScaledNumber to represent a signed number. 493 template <class DigitsT> class ScaledNumber : ScaledNumberBase { 494 public: 495 static_assert(!std::numeric_limits<DigitsT>::is_signed, 496 "only unsigned floats supported"); 497 498 typedef DigitsT DigitsType; 499 500 private: 501 typedef std::numeric_limits<DigitsType> DigitsLimits; 502 503 static const int Width = sizeof(DigitsType) * 8; 504 static_assert(Width <= 64, "invalid integer width for digits"); 505 506 private: 507 DigitsType Digits; 508 int16_t Scale; 509 510 public: 511 ScaledNumber() : Digits(0), Scale(0) {} 512 513 ScaledNumber(DigitsType Digits, int16_t Scale) 514 : Digits(Digits), Scale(Scale) {} 515 516 private: 517 ScaledNumber(const std::pair<DigitsT, int16_t> &X) 518 : Digits(X.first), Scale(X.second) {} 519 520 public: 521 static ScaledNumber getZero() { return ScaledNumber(0, 0); } 522 static ScaledNumber getOne() { return ScaledNumber(1, 0); } 523 static ScaledNumber getLargest() { 524 return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale); 525 } 526 static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); } 527 static ScaledNumber getInverse(uint64_t N) { 528 return get(N).invert(); 529 } 530 static ScaledNumber getFraction(DigitsType N, DigitsType D) { 531 return getQuotient(N, D); 532 } 533 534 int16_t getScale() const { return Scale; } 535 DigitsType getDigits() const { return Digits; } 536 537 /// \brief Convert to the given integer type. 538 /// 539 /// Convert to \c IntT using simple saturating arithmetic, truncating if 540 /// necessary. 541 template <class IntT> IntT toInt() const; 542 543 bool isZero() const { return !Digits; } 544 bool isLargest() const { return *this == getLargest(); } 545 bool isOne() const { 546 if (Scale > 0 || Scale <= -Width) 547 return false; 548 return Digits == DigitsType(1) << -Scale; 549 } 550 551 /// \brief The log base 2, rounded. 552 /// 553 /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN. 554 int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); } 555 556 /// \brief The log base 2, rounded towards INT32_MIN. 557 /// 558 /// Get the lg floor. lg 0 is defined to be INT32_MIN. 559 int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); } 560 561 /// \brief The log base 2, rounded towards INT32_MAX. 562 /// 563 /// Get the lg ceiling. lg 0 is defined to be INT32_MIN. 564 int32_t lgCeiling() const { 565 return ScaledNumbers::getLgCeiling(Digits, Scale); 566 } 567 568 bool operator==(const ScaledNumber &X) const { return compare(X) == 0; } 569 bool operator<(const ScaledNumber &X) const { return compare(X) < 0; } 570 bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; } 571 bool operator>(const ScaledNumber &X) const { return compare(X) > 0; } 572 bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; } 573 bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; } 574 575 bool operator!() const { return isZero(); } 576 577 /// \brief Convert to a decimal representation in a string. 578 /// 579 /// Convert to a string. Uses scientific notation for very large/small 580 /// numbers. Scientific notation is used roughly for numbers outside of the 581 /// range 2^-64 through 2^64. 582 /// 583 /// \c Precision indicates the number of decimal digits of precision to use; 584 /// 0 requests the maximum available. 585 /// 586 /// As a special case to make debugging easier, if the number is small enough 587 /// to convert without scientific notation and has more than \c Precision 588 /// digits before the decimal place, it's printed accurately to the first 589 /// digit past zero. E.g., assuming 10 digits of precision: 590 /// 591 /// 98765432198.7654... => 98765432198.8 592 /// 8765432198.7654... => 8765432198.8 593 /// 765432198.7654... => 765432198.8 594 /// 65432198.7654... => 65432198.77 595 /// 5432198.7654... => 5432198.765 596 std::string toString(unsigned Precision = DefaultPrecision) { 597 return ScaledNumberBase::toString(Digits, Scale, Width, Precision); 598 } 599 600 /// \brief Print a decimal representation. 601 /// 602 /// Print a string. See toString for documentation. 603 raw_ostream &print(raw_ostream &OS, 604 unsigned Precision = DefaultPrecision) const { 605 return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision); 606 } 607 void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); } 608 609 ScaledNumber &operator+=(const ScaledNumber &X) { 610 std::tie(Digits, Scale) = 611 ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale); 612 // Check for exponent past MaxScale. 613 if (Scale > ScaledNumbers::MaxScale) 614 *this = getLargest(); 615 return *this; 616 } 617 ScaledNumber &operator-=(const ScaledNumber &X) { 618 std::tie(Digits, Scale) = 619 ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale); 620 return *this; 621 } 622 ScaledNumber &operator*=(const ScaledNumber &X); 623 ScaledNumber &operator/=(const ScaledNumber &X); 624 ScaledNumber &operator<<=(int16_t Shift) { 625 shiftLeft(Shift); 626 return *this; 627 } 628 ScaledNumber &operator>>=(int16_t Shift) { 629 shiftRight(Shift); 630 return *this; 631 } 632 633 private: 634 void shiftLeft(int32_t Shift); 635 void shiftRight(int32_t Shift); 636 637 /// \brief Adjust two floats to have matching exponents. 638 /// 639 /// Adjust \c this and \c X to have matching exponents. Returns the new \c X 640 /// by value. Does nothing if \a isZero() for either. 641 /// 642 /// The value that compares smaller will lose precision, and possibly become 643 /// \a isZero(). 644 ScaledNumber matchScales(ScaledNumber X) { 645 ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale); 646 return X; 647 } 648 649 public: 650 /// \brief Scale a large number accurately. 651 /// 652 /// Scale N (multiply it by this). Uses full precision multiplication, even 653 /// if Width is smaller than 64, so information is not lost. 654 uint64_t scale(uint64_t N) const; 655 uint64_t scaleByInverse(uint64_t N) const { 656 // TODO: implement directly, rather than relying on inverse. Inverse is 657 // expensive. 658 return inverse().scale(N); 659 } 660 int64_t scale(int64_t N) const { 661 std::pair<uint64_t, bool> Unsigned = splitSigned(N); 662 return joinSigned(scale(Unsigned.first), Unsigned.second); 663 } 664 int64_t scaleByInverse(int64_t N) const { 665 std::pair<uint64_t, bool> Unsigned = splitSigned(N); 666 return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second); 667 } 668 669 int compare(const ScaledNumber &X) const { 670 return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale); 671 } 672 int compareTo(uint64_t N) const { 673 return ScaledNumbers::compare<uint64_t>(Digits, Scale, N, 0); 674 } 675 int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); } 676 677 ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; } 678 ScaledNumber inverse() const { return ScaledNumber(*this).invert(); } 679 680 private: 681 static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) { 682 return ScaledNumbers::getProduct(LHS, RHS); 683 } 684 static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) { 685 return ScaledNumbers::getQuotient(Dividend, Divisor); 686 } 687 688 static int countLeadingZerosWidth(DigitsType Digits) { 689 if (Width == 64) 690 return countLeadingZeros64(Digits); 691 if (Width == 32) 692 return countLeadingZeros32(Digits); 693 return countLeadingZeros32(Digits) + Width - 32; 694 } 695 696 /// \brief Adjust a number to width, rounding up if necessary. 697 /// 698 /// Should only be called for \c Shift close to zero. 699 /// 700 /// \pre Shift >= MinScale && Shift + 64 <= MaxScale. 701 static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) { 702 assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0"); 703 assert(Shift <= ScaledNumbers::MaxScale - 64 && 704 "Shift should be close to 0"); 705 auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift); 706 return Adjusted; 707 } 708 709 static ScaledNumber getRounded(ScaledNumber P, bool Round) { 710 // Saturate. 711 if (P.isLargest()) 712 return P; 713 714 return ScaledNumbers::getRounded(P.Digits, P.Scale, Round); 715 } 716 }; 717 718 #define SCALED_NUMBER_BOP(op, base) \ 719 template <class DigitsT> \ 720 ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \ 721 const ScaledNumber<DigitsT> &R) { \ 722 return ScaledNumber<DigitsT>(L) base R; \ 723 } 724 SCALED_NUMBER_BOP(+, += ) 725 SCALED_NUMBER_BOP(-, -= ) 726 SCALED_NUMBER_BOP(*, *= ) 727 SCALED_NUMBER_BOP(/, /= ) 728 #undef SCALED_NUMBER_BOP 729 730 template <class DigitsT> 731 ScaledNumber<DigitsT> operator<<(const ScaledNumber<DigitsT> &L, 732 int16_t Shift) { 733 return ScaledNumber<DigitsT>(L) <<= Shift; 734 } 735 736 template <class DigitsT> 737 ScaledNumber<DigitsT> operator>>(const ScaledNumber<DigitsT> &L, 738 int16_t Shift) { 739 return ScaledNumber<DigitsT>(L) >>= Shift; 740 } 741 742 template <class DigitsT> 743 raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) { 744 return X.print(OS, 10); 745 } 746 747 #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \ 748 template <class DigitsT> \ 749 bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \ 750 return L.compareTo(T2(R)) op 0; \ 751 } \ 752 template <class DigitsT> \ 753 bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \ 754 return 0 op R.compareTo(T2(L)); \ 755 } 756 #define SCALED_NUMBER_COMPARE_TO(op) \ 757 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \ 758 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \ 759 SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \ 760 SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t) 761 SCALED_NUMBER_COMPARE_TO(< ) 762 SCALED_NUMBER_COMPARE_TO(> ) 763 SCALED_NUMBER_COMPARE_TO(== ) 764 SCALED_NUMBER_COMPARE_TO(!= ) 765 SCALED_NUMBER_COMPARE_TO(<= ) 766 SCALED_NUMBER_COMPARE_TO(>= ) 767 #undef SCALED_NUMBER_COMPARE_TO 768 #undef SCALED_NUMBER_COMPARE_TO_TYPE 769 770 template <class DigitsT> 771 uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const { 772 if (Width == 64 || N <= DigitsLimits::max()) 773 return (get(N) * *this).template toInt<uint64_t>(); 774 775 // Defer to the 64-bit version. 776 return ScaledNumber<uint64_t>(Digits, Scale).scale(N); 777 } 778 779 template <class DigitsT> 780 template <class IntT> 781 IntT ScaledNumber<DigitsT>::toInt() const { 782 typedef std::numeric_limits<IntT> Limits; 783 if (*this < 1) 784 return 0; 785 if (*this >= Limits::max()) 786 return Limits::max(); 787 788 IntT N = Digits; 789 if (Scale > 0) { 790 assert(size_t(Scale) < sizeof(IntT) * 8); 791 return N << Scale; 792 } 793 if (Scale < 0) { 794 assert(size_t(-Scale) < sizeof(IntT) * 8); 795 return N >> -Scale; 796 } 797 return N; 798 } 799 800 template <class DigitsT> 801 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>:: 802 operator*=(const ScaledNumber &X) { 803 if (isZero()) 804 return *this; 805 if (X.isZero()) 806 return *this = X; 807 808 // Save the exponents. 809 int32_t Scales = int32_t(Scale) + int32_t(X.Scale); 810 811 // Get the raw product. 812 *this = getProduct(Digits, X.Digits); 813 814 // Combine with exponents. 815 return *this <<= Scales; 816 } 817 template <class DigitsT> 818 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>:: 819 operator/=(const ScaledNumber &X) { 820 if (isZero()) 821 return *this; 822 if (X.isZero()) 823 return *this = getLargest(); 824 825 // Save the exponents. 826 int32_t Scales = int32_t(Scale) - int32_t(X.Scale); 827 828 // Get the raw quotient. 829 *this = getQuotient(Digits, X.Digits); 830 831 // Combine with exponents. 832 return *this <<= Scales; 833 } 834 template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) { 835 if (!Shift || isZero()) 836 return; 837 assert(Shift != INT32_MIN); 838 if (Shift < 0) { 839 shiftRight(-Shift); 840 return; 841 } 842 843 // Shift as much as we can in the exponent. 844 int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale); 845 Scale += ScaleShift; 846 if (ScaleShift == Shift) 847 return; 848 849 // Check this late, since it's rare. 850 if (isLargest()) 851 return; 852 853 // Shift the digits themselves. 854 Shift -= ScaleShift; 855 if (Shift > countLeadingZerosWidth(Digits)) { 856 // Saturate. 857 *this = getLargest(); 858 return; 859 } 860 861 Digits <<= Shift; 862 return; 863 } 864 865 template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) { 866 if (!Shift || isZero()) 867 return; 868 assert(Shift != INT32_MIN); 869 if (Shift < 0) { 870 shiftLeft(-Shift); 871 return; 872 } 873 874 // Shift as much as we can in the exponent. 875 int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale); 876 Scale -= ScaleShift; 877 if (ScaleShift == Shift) 878 return; 879 880 // Shift the digits themselves. 881 Shift -= ScaleShift; 882 if (Shift >= Width) { 883 // Saturate. 884 *this = getZero(); 885 return; 886 } 887 888 Digits >>= Shift; 889 return; 890 } 891 892 template <typename T> struct isPodLike; 893 template <typename T> struct isPodLike<ScaledNumber<T>> { 894 static const bool value = true; 895 }; 896 897 } // end namespace llvm 898 899 #endif 900