1 /* 2 * This file derives from SFMT 1.3.3 3 * (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was 4 * released under the terms of the following license: 5 * 6 * Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima 7 * University. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions are 11 * met: 12 * 13 * * Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * * Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * * Neither the name of the Hiroshima University nor the names of 20 * its contributors may be used to endorse or promote products 21 * derived from this software without specific prior written 22 * permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 27 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 28 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 29 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 30 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 34 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 */ 36 /** 37 * @file SFMT.c 38 * @brief SIMD oriented Fast Mersenne Twister(SFMT) 39 * 40 * @author Mutsuo Saito (Hiroshima University) 41 * @author Makoto Matsumoto (Hiroshima University) 42 * 43 * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima 44 * University. All rights reserved. 45 * 46 * The new BSD License is applied to this software, see LICENSE.txt 47 */ 48 #define SFMT_C_ 49 #include "test/jemalloc_test.h" 50 #include "test/SFMT-params.h" 51 52 #if defined(JEMALLOC_BIG_ENDIAN) && !defined(BIG_ENDIAN64) 53 #define BIG_ENDIAN64 1 54 #endif 55 #if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64) 56 #define BIG_ENDIAN64 1 57 #endif 58 #if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64) 59 #define BIG_ENDIAN64 1 60 #endif 61 #if defined(ONLY64) && !defined(BIG_ENDIAN64) 62 #if defined(__GNUC__) 63 #error "-DONLY64 must be specified with -DBIG_ENDIAN64" 64 #endif 65 #undef ONLY64 66 #endif 67 /*------------------------------------------------------ 68 128-bit SIMD data type for Altivec, SSE2 or standard C 69 ------------------------------------------------------*/ 70 #if defined(HAVE_ALTIVEC) 71 /** 128-bit data structure */ 72 union W128_T { 73 vector unsigned int s; 74 uint32_t u[4]; 75 }; 76 /** 128-bit data type */ 77 typedef union W128_T w128_t; 78 79 #elif defined(HAVE_SSE2) 80 /** 128-bit data structure */ 81 union W128_T { 82 __m128i si; 83 uint32_t u[4]; 84 }; 85 /** 128-bit data type */ 86 typedef union W128_T w128_t; 87 88 #else 89 90 /** 128-bit data structure */ 91 struct W128_T { 92 uint32_t u[4]; 93 }; 94 /** 128-bit data type */ 95 typedef struct W128_T w128_t; 96 97 #endif 98 99 struct sfmt_s { 100 /** the 128-bit internal state array */ 101 w128_t sfmt[N]; 102 /** index counter to the 32-bit internal state array */ 103 int idx; 104 /** a flag: it is 0 if and only if the internal state is not yet 105 * initialized. */ 106 int initialized; 107 }; 108 109 /*-------------------------------------- 110 FILE GLOBAL VARIABLES 111 internal state, index counter and flag 112 --------------------------------------*/ 113 114 /** a parity check vector which certificate the period of 2^{MEXP} */ 115 static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4}; 116 117 /*---------------- 118 STATIC FUNCTIONS 119 ----------------*/ 120 JEMALLOC_INLINE_C int idxof(int i); 121 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) 122 JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift); 123 JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift); 124 #endif 125 JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx); 126 JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size); 127 JEMALLOC_INLINE_C uint32_t func1(uint32_t x); 128 JEMALLOC_INLINE_C uint32_t func2(uint32_t x); 129 static void period_certification(sfmt_t *ctx); 130 #if defined(BIG_ENDIAN64) && !defined(ONLY64) 131 JEMALLOC_INLINE_C void swap(w128_t *array, int size); 132 #endif 133 134 #if defined(HAVE_ALTIVEC) 135 #include "test/SFMT-alti.h" 136 #elif defined(HAVE_SSE2) 137 #include "test/SFMT-sse2.h" 138 #endif 139 140 /** 141 * This function simulate a 64-bit index of LITTLE ENDIAN 142 * in BIG ENDIAN machine. 143 */ 144 #ifdef ONLY64 145 JEMALLOC_INLINE_C int idxof(int i) { 146 return i ^ 1; 147 } 148 #else 149 JEMALLOC_INLINE_C int idxof(int i) { 150 return i; 151 } 152 #endif 153 /** 154 * This function simulates SIMD 128-bit right shift by the standard C. 155 * The 128-bit integer given in in is shifted by (shift * 8) bits. 156 * This function simulates the LITTLE ENDIAN SIMD. 157 * @param out the output of this function 158 * @param in the 128-bit data to be shifted 159 * @param shift the shift value 160 */ 161 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) 162 #ifdef ONLY64 163 JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) { 164 uint64_t th, tl, oh, ol; 165 166 th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]); 167 tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]); 168 169 oh = th >> (shift * 8); 170 ol = tl >> (shift * 8); 171 ol |= th << (64 - shift * 8); 172 out->u[0] = (uint32_t)(ol >> 32); 173 out->u[1] = (uint32_t)ol; 174 out->u[2] = (uint32_t)(oh >> 32); 175 out->u[3] = (uint32_t)oh; 176 } 177 #else 178 JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) { 179 uint64_t th, tl, oh, ol; 180 181 th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]); 182 tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]); 183 184 oh = th >> (shift * 8); 185 ol = tl >> (shift * 8); 186 ol |= th << (64 - shift * 8); 187 out->u[1] = (uint32_t)(ol >> 32); 188 out->u[0] = (uint32_t)ol; 189 out->u[3] = (uint32_t)(oh >> 32); 190 out->u[2] = (uint32_t)oh; 191 } 192 #endif 193 /** 194 * This function simulates SIMD 128-bit left shift by the standard C. 195 * The 128-bit integer given in in is shifted by (shift * 8) bits. 196 * This function simulates the LITTLE ENDIAN SIMD. 197 * @param out the output of this function 198 * @param in the 128-bit data to be shifted 199 * @param shift the shift value 200 */ 201 #ifdef ONLY64 202 JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) { 203 uint64_t th, tl, oh, ol; 204 205 th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]); 206 tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]); 207 208 oh = th << (shift * 8); 209 ol = tl << (shift * 8); 210 oh |= tl >> (64 - shift * 8); 211 out->u[0] = (uint32_t)(ol >> 32); 212 out->u[1] = (uint32_t)ol; 213 out->u[2] = (uint32_t)(oh >> 32); 214 out->u[3] = (uint32_t)oh; 215 } 216 #else 217 JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) { 218 uint64_t th, tl, oh, ol; 219 220 th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]); 221 tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]); 222 223 oh = th << (shift * 8); 224 ol = tl << (shift * 8); 225 oh |= tl >> (64 - shift * 8); 226 out->u[1] = (uint32_t)(ol >> 32); 227 out->u[0] = (uint32_t)ol; 228 out->u[3] = (uint32_t)(oh >> 32); 229 out->u[2] = (uint32_t)oh; 230 } 231 #endif 232 #endif 233 234 /** 235 * This function represents the recursion formula. 236 * @param r output 237 * @param a a 128-bit part of the internal state array 238 * @param b a 128-bit part of the internal state array 239 * @param c a 128-bit part of the internal state array 240 * @param d a 128-bit part of the internal state array 241 */ 242 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) 243 #ifdef ONLY64 244 JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, 245 w128_t *d) { 246 w128_t x; 247 w128_t y; 248 249 lshift128(&x, a, SL2); 250 rshift128(&y, c, SR2); 251 r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0] 252 ^ (d->u[0] << SL1); 253 r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1] 254 ^ (d->u[1] << SL1); 255 r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2] 256 ^ (d->u[2] << SL1); 257 r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3] 258 ^ (d->u[3] << SL1); 259 } 260 #else 261 JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, 262 w128_t *d) { 263 w128_t x; 264 w128_t y; 265 266 lshift128(&x, a, SL2); 267 rshift128(&y, c, SR2); 268 r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0] 269 ^ (d->u[0] << SL1); 270 r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1] 271 ^ (d->u[1] << SL1); 272 r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2] 273 ^ (d->u[2] << SL1); 274 r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3] 275 ^ (d->u[3] << SL1); 276 } 277 #endif 278 #endif 279 280 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) 281 /** 282 * This function fills the internal state array with pseudorandom 283 * integers. 284 */ 285 JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx) { 286 int i; 287 w128_t *r1, *r2; 288 289 r1 = &ctx->sfmt[N - 2]; 290 r2 = &ctx->sfmt[N - 1]; 291 for (i = 0; i < N - POS1; i++) { 292 do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, 293 r2); 294 r1 = r2; 295 r2 = &ctx->sfmt[i]; 296 } 297 for (; i < N; i++) { 298 do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1 - N], r1, 299 r2); 300 r1 = r2; 301 r2 = &ctx->sfmt[i]; 302 } 303 } 304 305 /** 306 * This function fills the user-specified array with pseudorandom 307 * integers. 308 * 309 * @param array an 128-bit array to be filled by pseudorandom numbers. 310 * @param size number of 128-bit pseudorandom numbers to be generated. 311 */ 312 JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) { 313 int i, j; 314 w128_t *r1, *r2; 315 316 r1 = &ctx->sfmt[N - 2]; 317 r2 = &ctx->sfmt[N - 1]; 318 for (i = 0; i < N - POS1; i++) { 319 do_recursion(&array[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, r2); 320 r1 = r2; 321 r2 = &array[i]; 322 } 323 for (; i < N; i++) { 324 do_recursion(&array[i], &ctx->sfmt[i], &array[i + POS1 - N], r1, r2); 325 r1 = r2; 326 r2 = &array[i]; 327 } 328 for (; i < size - N; i++) { 329 do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); 330 r1 = r2; 331 r2 = &array[i]; 332 } 333 for (j = 0; j < 2 * N - size; j++) { 334 ctx->sfmt[j] = array[j + size - N]; 335 } 336 for (; i < size; i++, j++) { 337 do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); 338 r1 = r2; 339 r2 = &array[i]; 340 ctx->sfmt[j] = array[i]; 341 } 342 } 343 #endif 344 345 #if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC) 346 JEMALLOC_INLINE_C void swap(w128_t *array, int size) { 347 int i; 348 uint32_t x, y; 349 350 for (i = 0; i < size; i++) { 351 x = array[i].u[0]; 352 y = array[i].u[2]; 353 array[i].u[0] = array[i].u[1]; 354 array[i].u[2] = array[i].u[3]; 355 array[i].u[1] = x; 356 array[i].u[3] = y; 357 } 358 } 359 #endif 360 /** 361 * This function represents a function used in the initialization 362 * by init_by_array 363 * @param x 32-bit integer 364 * @return 32-bit integer 365 */ 366 static uint32_t func1(uint32_t x) { 367 return (x ^ (x >> 27)) * (uint32_t)1664525UL; 368 } 369 370 /** 371 * This function represents a function used in the initialization 372 * by init_by_array 373 * @param x 32-bit integer 374 * @return 32-bit integer 375 */ 376 static uint32_t func2(uint32_t x) { 377 return (x ^ (x >> 27)) * (uint32_t)1566083941UL; 378 } 379 380 /** 381 * This function certificate the period of 2^{MEXP} 382 */ 383 static void period_certification(sfmt_t *ctx) { 384 int inner = 0; 385 int i, j; 386 uint32_t work; 387 uint32_t *psfmt32 = &ctx->sfmt[0].u[0]; 388 389 for (i = 0; i < 4; i++) 390 inner ^= psfmt32[idxof(i)] & parity[i]; 391 for (i = 16; i > 0; i >>= 1) 392 inner ^= inner >> i; 393 inner &= 1; 394 /* check OK */ 395 if (inner == 1) { 396 return; 397 } 398 /* check NG, and modification */ 399 for (i = 0; i < 4; i++) { 400 work = 1; 401 for (j = 0; j < 32; j++) { 402 if ((work & parity[i]) != 0) { 403 psfmt32[idxof(i)] ^= work; 404 return; 405 } 406 work = work << 1; 407 } 408 } 409 } 410 411 /*---------------- 412 PUBLIC FUNCTIONS 413 ----------------*/ 414 /** 415 * This function returns the identification string. 416 * The string shows the word size, the Mersenne exponent, 417 * and all parameters of this generator. 418 */ 419 const char *get_idstring(void) { 420 return IDSTR; 421 } 422 423 /** 424 * This function returns the minimum size of array used for \b 425 * fill_array32() function. 426 * @return minimum size of array used for fill_array32() function. 427 */ 428 int get_min_array_size32(void) { 429 return N32; 430 } 431 432 /** 433 * This function returns the minimum size of array used for \b 434 * fill_array64() function. 435 * @return minimum size of array used for fill_array64() function. 436 */ 437 int get_min_array_size64(void) { 438 return N64; 439 } 440 441 #ifndef ONLY64 442 /** 443 * This function generates and returns 32-bit pseudorandom number. 444 * init_gen_rand or init_by_array must be called before this function. 445 * @return 32-bit pseudorandom number 446 */ 447 uint32_t gen_rand32(sfmt_t *ctx) { 448 uint32_t r; 449 uint32_t *psfmt32 = &ctx->sfmt[0].u[0]; 450 451 assert(ctx->initialized); 452 if (ctx->idx >= N32) { 453 gen_rand_all(ctx); 454 ctx->idx = 0; 455 } 456 r = psfmt32[ctx->idx++]; 457 return r; 458 } 459 460 /* Generate a random integer in [0..limit). */ 461 uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit) { 462 uint32_t ret, above; 463 464 above = 0xffffffffU - (0xffffffffU % limit); 465 while (1) { 466 ret = gen_rand32(ctx); 467 if (ret < above) { 468 ret %= limit; 469 break; 470 } 471 } 472 return ret; 473 } 474 #endif 475 /** 476 * This function generates and returns 64-bit pseudorandom number. 477 * init_gen_rand or init_by_array must be called before this function. 478 * The function gen_rand64 should not be called after gen_rand32, 479 * unless an initialization is again executed. 480 * @return 64-bit pseudorandom number 481 */ 482 uint64_t gen_rand64(sfmt_t *ctx) { 483 #if defined(BIG_ENDIAN64) && !defined(ONLY64) 484 uint32_t r1, r2; 485 uint32_t *psfmt32 = &ctx->sfmt[0].u[0]; 486 #else 487 uint64_t r; 488 uint64_t *psfmt64 = (uint64_t *)&ctx->sfmt[0].u[0]; 489 #endif 490 491 assert(ctx->initialized); 492 assert(ctx->idx % 2 == 0); 493 494 if (ctx->idx >= N32) { 495 gen_rand_all(ctx); 496 ctx->idx = 0; 497 } 498 #if defined(BIG_ENDIAN64) && !defined(ONLY64) 499 r1 = psfmt32[ctx->idx]; 500 r2 = psfmt32[ctx->idx + 1]; 501 ctx->idx += 2; 502 return ((uint64_t)r2 << 32) | r1; 503 #else 504 r = psfmt64[ctx->idx / 2]; 505 ctx->idx += 2; 506 return r; 507 #endif 508 } 509 510 /* Generate a random integer in [0..limit). */ 511 uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit) { 512 uint64_t ret, above; 513 514 above = KQU(0xffffffffffffffff) - (KQU(0xffffffffffffffff) % limit); 515 while (1) { 516 ret = gen_rand64(ctx); 517 if (ret < above) { 518 ret %= limit; 519 break; 520 } 521 } 522 return ret; 523 } 524 525 #ifndef ONLY64 526 /** 527 * This function generates pseudorandom 32-bit integers in the 528 * specified array[] by one call. The number of pseudorandom integers 529 * is specified by the argument size, which must be at least 624 and a 530 * multiple of four. The generation by this function is much faster 531 * than the following gen_rand function. 532 * 533 * For initialization, init_gen_rand or init_by_array must be called 534 * before the first call of this function. This function can not be 535 * used after calling gen_rand function, without initialization. 536 * 537 * @param array an array where pseudorandom 32-bit integers are filled 538 * by this function. The pointer to the array must be \b "aligned" 539 * (namely, must be a multiple of 16) in the SIMD version, since it 540 * refers to the address of a 128-bit integer. In the standard C 541 * version, the pointer is arbitrary. 542 * 543 * @param size the number of 32-bit pseudorandom integers to be 544 * generated. size must be a multiple of 4, and greater than or equal 545 * to (MEXP / 128 + 1) * 4. 546 * 547 * @note \b memalign or \b posix_memalign is available to get aligned 548 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX 549 * returns the pointer to the aligned memory block. 550 */ 551 void fill_array32(sfmt_t *ctx, uint32_t *array, int size) { 552 assert(ctx->initialized); 553 assert(ctx->idx == N32); 554 assert(size % 4 == 0); 555 assert(size >= N32); 556 557 gen_rand_array(ctx, (w128_t *)array, size / 4); 558 ctx->idx = N32; 559 } 560 #endif 561 562 /** 563 * This function generates pseudorandom 64-bit integers in the 564 * specified array[] by one call. The number of pseudorandom integers 565 * is specified by the argument size, which must be at least 312 and a 566 * multiple of two. The generation by this function is much faster 567 * than the following gen_rand function. 568 * 569 * For initialization, init_gen_rand or init_by_array must be called 570 * before the first call of this function. This function can not be 571 * used after calling gen_rand function, without initialization. 572 * 573 * @param array an array where pseudorandom 64-bit integers are filled 574 * by this function. The pointer to the array must be "aligned" 575 * (namely, must be a multiple of 16) in the SIMD version, since it 576 * refers to the address of a 128-bit integer. In the standard C 577 * version, the pointer is arbitrary. 578 * 579 * @param size the number of 64-bit pseudorandom integers to be 580 * generated. size must be a multiple of 2, and greater than or equal 581 * to (MEXP / 128 + 1) * 2 582 * 583 * @note \b memalign or \b posix_memalign is available to get aligned 584 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX 585 * returns the pointer to the aligned memory block. 586 */ 587 void fill_array64(sfmt_t *ctx, uint64_t *array, int size) { 588 assert(ctx->initialized); 589 assert(ctx->idx == N32); 590 assert(size % 2 == 0); 591 assert(size >= N64); 592 593 gen_rand_array(ctx, (w128_t *)array, size / 2); 594 ctx->idx = N32; 595 596 #if defined(BIG_ENDIAN64) && !defined(ONLY64) 597 swap((w128_t *)array, size /2); 598 #endif 599 } 600 601 /** 602 * This function initializes the internal state array with a 32-bit 603 * integer seed. 604 * 605 * @param seed a 32-bit integer used as the seed. 606 */ 607 sfmt_t *init_gen_rand(uint32_t seed) { 608 void *p; 609 sfmt_t *ctx; 610 int i; 611 uint32_t *psfmt32; 612 613 if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) { 614 return NULL; 615 } 616 ctx = (sfmt_t *)p; 617 psfmt32 = &ctx->sfmt[0].u[0]; 618 619 psfmt32[idxof(0)] = seed; 620 for (i = 1; i < N32; i++) { 621 psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)] 622 ^ (psfmt32[idxof(i - 1)] >> 30)) 623 + i; 624 } 625 ctx->idx = N32; 626 period_certification(ctx); 627 ctx->initialized = 1; 628 629 return ctx; 630 } 631 632 /** 633 * This function initializes the internal state array, 634 * with an array of 32-bit integers used as the seeds 635 * @param init_key the array of 32-bit integers, used as a seed. 636 * @param key_length the length of init_key. 637 */ 638 sfmt_t *init_by_array(uint32_t *init_key, int key_length) { 639 void *p; 640 sfmt_t *ctx; 641 int i, j, count; 642 uint32_t r; 643 int lag; 644 int mid; 645 int size = N * 4; 646 uint32_t *psfmt32; 647 648 if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) { 649 return NULL; 650 } 651 ctx = (sfmt_t *)p; 652 psfmt32 = &ctx->sfmt[0].u[0]; 653 654 if (size >= 623) { 655 lag = 11; 656 } else if (size >= 68) { 657 lag = 7; 658 } else if (size >= 39) { 659 lag = 5; 660 } else { 661 lag = 3; 662 } 663 mid = (size - lag) / 2; 664 665 memset(ctx->sfmt, 0x8b, sizeof(ctx->sfmt)); 666 if (key_length + 1 > N32) { 667 count = key_length + 1; 668 } else { 669 count = N32; 670 } 671 r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)] 672 ^ psfmt32[idxof(N32 - 1)]); 673 psfmt32[idxof(mid)] += r; 674 r += key_length; 675 psfmt32[idxof(mid + lag)] += r; 676 psfmt32[idxof(0)] = r; 677 678 count--; 679 for (i = 1, j = 0; (j < count) && (j < key_length); j++) { 680 r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] 681 ^ psfmt32[idxof((i + N32 - 1) % N32)]); 682 psfmt32[idxof((i + mid) % N32)] += r; 683 r += init_key[j] + i; 684 psfmt32[idxof((i + mid + lag) % N32)] += r; 685 psfmt32[idxof(i)] = r; 686 i = (i + 1) % N32; 687 } 688 for (; j < count; j++) { 689 r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] 690 ^ psfmt32[idxof((i + N32 - 1) % N32)]); 691 psfmt32[idxof((i + mid) % N32)] += r; 692 r += i; 693 psfmt32[idxof((i + mid + lag) % N32)] += r; 694 psfmt32[idxof(i)] = r; 695 i = (i + 1) % N32; 696 } 697 for (j = 0; j < N32; j++) { 698 r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)] 699 + psfmt32[idxof((i + N32 - 1) % N32)]); 700 psfmt32[idxof((i + mid) % N32)] ^= r; 701 r -= i; 702 psfmt32[idxof((i + mid + lag) % N32)] ^= r; 703 psfmt32[idxof(i)] = r; 704 i = (i + 1) % N32; 705 } 706 707 ctx->idx = N32; 708 period_certification(ctx); 709 ctx->initialized = 1; 710 711 return ctx; 712 } 713 714 void fini_gen_rand(sfmt_t *ctx) { 715 assert(ctx != NULL); 716 717 ctx->initialized = 0; 718 free(ctx); 719 } 720