1 /* 2 * Copyright (c) 2012, The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * * Neither the name of Google, Inc. nor the names of its contributors 15 * may be used to endorse or promote products derived from this 16 * software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <stdio.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <unistd.h> 36 37 #define MAX_BUF_SIZE 64 38 39 struct freq_info { 40 unsigned freq; 41 long unsigned time; 42 }; 43 44 struct cpu_info { 45 long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime; 46 struct freq_info *freqs; 47 int freq_count; 48 }; 49 50 #define die(...) { fprintf(stderr, __VA_ARGS__); exit(EXIT_FAILURE); } 51 52 static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus; 53 static int cpu_count, delay, iterations; 54 static char minimal, aggregate_freq_stats; 55 56 static int get_cpu_count(); 57 static int get_cpu_count_from_file(char *filename); 58 static long unsigned get_cpu_total_time(struct cpu_info *cpu); 59 static int get_freq_scales_count(int cpu); 60 static void print_stats(); 61 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu, 62 char print_freq); 63 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu); 64 static void read_stats(); 65 static void read_freq_stats(int cpu); 66 static char should_aggregate_freq_stats(); 67 static char should_print_freq_stats(); 68 static void usage(char *cmd); 69 70 int main(int argc, char *argv[]) { 71 struct cpu_info *tmp_cpus, tmp_total_cpu; 72 int i, freq_count; 73 74 delay = 3; 75 iterations = -1; 76 minimal = 0; 77 aggregate_freq_stats = 0; 78 79 for (i = 0; i < argc; i++) { 80 if (!strcmp(argv[i], "-n")) { 81 if (i + 1 >= argc) { 82 fprintf(stderr, "Option -n expects an argument.\n"); 83 usage(argv[0]); 84 exit(EXIT_FAILURE); 85 } 86 iterations = atoi(argv[++i]); 87 continue; 88 } 89 if (!strcmp(argv[i], "-d")) { 90 if (i + 1 >= argc) { 91 fprintf(stderr, "Option -d expects an argument.\n"); 92 usage(argv[0]); 93 exit(EXIT_FAILURE); 94 } 95 delay = atoi(argv[++i]); 96 continue; 97 } 98 if (!strcmp(argv[i], "-m")) { 99 minimal = 1; 100 } 101 if (!strcmp(argv[i], "-h")) { 102 usage(argv[0]); 103 exit(EXIT_SUCCESS); 104 } 105 } 106 107 cpu_count = get_cpu_count(); 108 109 old_cpus = malloc(sizeof(struct cpu_info) * cpu_count); 110 if (!old_cpus) die("Could not allocate struct cpu_info\n"); 111 new_cpus = malloc(sizeof(struct cpu_info) * cpu_count); 112 if (!new_cpus) die("Could not allocate struct cpu_info\n"); 113 114 for (i = 0; i < cpu_count; i++) { 115 old_cpus[i].freq_count = new_cpus[i].freq_count = get_freq_scales_count(i); 116 new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count); 117 if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n"); 118 old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count); 119 if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n"); 120 } 121 122 // Read stats without aggregating freq stats in the total cpu 123 read_stats(); 124 125 aggregate_freq_stats = should_aggregate_freq_stats(); 126 if (aggregate_freq_stats) { 127 old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count; 128 new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count); 129 if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n"); 130 old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count); 131 if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n"); 132 133 // Read stats again with aggregating freq stats in the total cpu 134 read_stats(); 135 } 136 137 while ((iterations == -1) || (iterations-- > 0)) { 138 // Swap new and old cpu buffers; 139 tmp_total_cpu = old_total_cpu; 140 old_total_cpu = new_total_cpu; 141 new_total_cpu = tmp_total_cpu; 142 143 tmp_cpus = old_cpus; 144 old_cpus = new_cpus; 145 new_cpus = tmp_cpus; 146 147 sleep(delay); 148 read_stats(); 149 print_stats(); 150 } 151 152 // Clean up 153 if (aggregate_freq_stats) { 154 free(new_total_cpu.freqs); 155 free(old_total_cpu.freqs); 156 } 157 for (i = 0; i < cpu_count; i++) { 158 free(new_cpus[i].freqs); 159 free(old_cpus[i].freqs); 160 } 161 free(new_cpus); 162 free(old_cpus); 163 164 return 0; 165 } 166 167 /* 168 * Get the number of CPUs of the system. 169 * 170 * Uses the two files /sys/devices/system/cpu/present and 171 * /sys/devices/system/cpu/online to determine the number of CPUs. Expects the 172 * format of both files to be either 0 or 0-N where N+1 is the number of CPUs. 173 * 174 * Exits if the present CPUs is not equal to the online CPUs 175 */ 176 static int get_cpu_count() { 177 int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present"); 178 if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) { 179 die("present cpus != online cpus\n"); 180 } 181 return cpu_count; 182 } 183 184 /* 185 * Get the number of CPUs from a given filename. 186 */ 187 static int get_cpu_count_from_file(char *filename) { 188 FILE *file; 189 char line[MAX_BUF_SIZE]; 190 int cpu_count; 191 192 file = fopen(filename, "r"); 193 if (!file) die("Could not open %s\n", filename); 194 if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename); 195 fclose(file); 196 197 if (strcmp(line, "0\n") == 0) { 198 return 1; 199 } 200 201 if (1 == sscanf(line, "0-%d\n", &cpu_count)) { 202 return cpu_count + 1; 203 } 204 205 die("Unexpected input in file %s (%s).\n", filename, line); 206 return -1; 207 } 208 209 /* 210 * Get the number of frequency states a given CPU can be scaled to. 211 */ 212 static int get_freq_scales_count(int cpu) { 213 FILE *file; 214 char filename[MAX_BUF_SIZE]; 215 long unsigned freq; 216 int count = 0; 217 218 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu); 219 file = fopen(filename, "r"); 220 if (!file) die("Could not open %s\n", filename); 221 do { 222 freq = 0; 223 fscanf(file, "%lu %*d\n", &freq); 224 if (freq) count++; 225 } while(freq); 226 fclose(file); 227 228 return count; 229 } 230 231 /* 232 * Read the CPU and frequency stats for all cpus. 233 */ 234 static void read_stats() { 235 FILE *file; 236 char scanline[MAX_BUF_SIZE]; 237 int i; 238 239 file = fopen("/proc/stat", "r"); 240 if (!file) die("Could not open /proc/stat.\n"); 241 fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n", 242 &new_total_cpu.utime, &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime, 243 &new_total_cpu.iowtime, &new_total_cpu.irqtime, &new_total_cpu.sirqtime); 244 if (aggregate_freq_stats) { 245 for (i = 0; i < new_total_cpu.freq_count; i++) { 246 new_total_cpu.freqs[i].time = 0; 247 } 248 } 249 250 for (i = 0; i < cpu_count; i++) { 251 sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i); 252 fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime, 253 &new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime, 254 &new_cpus[i].sirqtime); 255 read_freq_stats(i); 256 } 257 fclose(file); 258 } 259 260 /* 261 * Read the frequency stats for a given cpu. 262 */ 263 static void read_freq_stats(int cpu) { 264 FILE *file; 265 char filename[MAX_BUF_SIZE]; 266 int i; 267 268 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu); 269 file = fopen(filename, "r"); 270 for (i = 0; i < new_cpus[cpu].freq_count; i++) { 271 if (file) { 272 fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq, 273 &new_cpus[cpu].freqs[i].time); 274 } else { 275 /* The CPU has been off lined for some reason */ 276 new_cpus[cpu].freqs[i].freq = old_cpus[cpu].freqs[i].freq; 277 new_cpus[cpu].freqs[i].time = old_cpus[cpu].freqs[i].time; 278 } 279 if (aggregate_freq_stats) { 280 new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq; 281 new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time; 282 } 283 } 284 if (file) 285 fclose(file); 286 } 287 288 /* 289 * Get the sum of the cpu time from all categories. 290 */ 291 static long unsigned get_cpu_total_time(struct cpu_info *cpu) { 292 return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime + 293 cpu->sirqtime); 294 } 295 296 /* 297 * Print the stats for all CPUs. 298 */ 299 static void print_stats() { 300 char label[8]; 301 int i, j; 302 char print_freq; 303 304 print_freq = should_print_freq_stats(); 305 306 print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1); 307 for (i = 0; i < cpu_count; i++) { 308 sprintf(label, "cpu%d", i); 309 print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq); 310 } 311 printf("\n"); 312 } 313 314 /* 315 * Print the stats for a single CPU. 316 */ 317 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu, 318 char print_freq) { 319 long int total_delta_time; 320 321 if (!minimal) { 322 total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu); 323 printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = " 324 "%ld\n", label, 325 new_cpu->utime - old_cpu->utime, 326 new_cpu->ntime - old_cpu->ntime, 327 new_cpu->stime - old_cpu->stime, 328 new_cpu->itime - old_cpu->itime, 329 new_cpu->iowtime - old_cpu->iowtime, 330 new_cpu->irqtime - old_cpu->irqtime, 331 new_cpu->sirqtime - old_cpu->sirqtime, 332 total_delta_time); 333 if (print_freq) { 334 print_freq_stats(new_cpu, old_cpu); 335 } 336 } else { 337 printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label, 338 new_cpu->utime - old_cpu->utime, 339 new_cpu->ntime - old_cpu->ntime, 340 new_cpu->stime - old_cpu->stime, 341 new_cpu->itime - old_cpu->itime, 342 new_cpu->iowtime - old_cpu->iowtime, 343 new_cpu->irqtime - old_cpu->irqtime, 344 new_cpu->sirqtime - old_cpu->sirqtime); 345 print_freq_stats(new_cpu, old_cpu); 346 printf("\n"); 347 } 348 } 349 350 /* 351 * Print the CPU stats for a single CPU. 352 */ 353 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu) { 354 long int delta_time, total_delta_time; 355 int i; 356 357 if (new_cpu->freq_count > 0) { 358 if (!minimal) { 359 total_delta_time = 0; 360 printf(" "); 361 for (i = 0; i < new_cpu->freq_count; i++) { 362 delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time; 363 total_delta_time += delta_time; 364 printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time); 365 if (i + 1 != new_cpu->freq_count) { 366 printf(" + \n "); 367 } else { 368 printf(" = "); 369 } 370 } 371 printf("%ld\n", total_delta_time); 372 } else { 373 for (i = 0; i < new_cpu->freq_count; i++) { 374 printf(",%u,%ld", new_cpu->freqs[i].freq, 375 new_cpu->freqs[i].time - old_cpu->freqs[i].time); 376 } 377 } 378 } 379 } 380 381 /* 382 * Determine if frequency stats should be printed. 383 * 384 * If the frequency stats are different between CPUs, the stats should be 385 * printed for each CPU, else only the aggregate frequency stats should be 386 * printed. 387 */ 388 static char should_print_freq_stats() { 389 int i, j; 390 391 for (i = 1; i < cpu_count; i++) { 392 for (j = 0; j < new_cpus[i].freq_count; j++) { 393 if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time != 394 new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) { 395 return 1; 396 } 397 } 398 } 399 return 0; 400 } 401 402 /* 403 * Determine if the frequency stats should be aggregated. 404 * 405 * Only aggregate the frequency stats in the total cpu stats if the frequencies 406 * reported by all CPUs are identical. Must be called after read_stats() has 407 * been called once. 408 */ 409 static char should_aggregate_freq_stats() { 410 int i, j; 411 412 for (i = 1; i < cpu_count; i++) { 413 if (new_cpus[i].freq_count != new_cpus[0].freq_count) { 414 return 0; 415 } 416 for (j = 0; j < new_cpus[i].freq_count; j++) { 417 if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) { 418 return 0; 419 } 420 } 421 } 422 423 return 1; 424 } 425 426 /* 427 * Print the usage message. 428 */ 429 static void usage(char *cmd) { 430 fprintf(stderr, "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n" 431 " -n num Updates to show before exiting.\n" 432 " -d num Seconds to wait between updates.\n" 433 " -m Display minimal output.\n" 434 " -h Display this help screen.\n", 435 cmd); 436 } 437