1 #include <stdio.h> 2 #include <string.h> 3 #include <sys/time.h> 4 #include <sys/types.h> 5 #include <sys/stat.h> 6 #include <dirent.h> 7 #include <libgen.h> 8 #include <math.h> 9 10 #include "fio.h" 11 #include "diskutil.h" 12 #include "lib/ieee754.h" 13 #include "json.h" 14 #include "lib/getrusage.h" 15 #include "idletime.h" 16 17 struct fio_mutex *stat_mutex; 18 19 void update_rusage_stat(struct thread_data *td) 20 { 21 struct thread_stat *ts = &td->ts; 22 23 fio_getrusage(&td->ru_end); 24 ts->usr_time += mtime_since(&td->ru_start.ru_utime, 25 &td->ru_end.ru_utime); 26 ts->sys_time += mtime_since(&td->ru_start.ru_stime, 27 &td->ru_end.ru_stime); 28 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw 29 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw); 30 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt; 31 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt; 32 33 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end)); 34 } 35 36 /* 37 * Given a latency, return the index of the corresponding bucket in 38 * the structure tracking percentiles. 39 * 40 * (1) find the group (and error bits) that the value (latency) 41 * belongs to by looking at its MSB. (2) find the bucket number in the 42 * group by looking at the index bits. 43 * 44 */ 45 static unsigned int plat_val_to_idx(unsigned int val) 46 { 47 unsigned int msb, error_bits, base, offset, idx; 48 49 /* Find MSB starting from bit 0 */ 50 if (val == 0) 51 msb = 0; 52 else 53 msb = (sizeof(val)*8) - __builtin_clz(val) - 1; 54 55 /* 56 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use 57 * all bits of the sample as index 58 */ 59 if (msb <= FIO_IO_U_PLAT_BITS) 60 return val; 61 62 /* Compute the number of error bits to discard*/ 63 error_bits = msb - FIO_IO_U_PLAT_BITS; 64 65 /* Compute the number of buckets before the group */ 66 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS; 67 68 /* 69 * Discard the error bits and apply the mask to find the 70 * index for the buckets in the group 71 */ 72 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits); 73 74 /* Make sure the index does not exceed (array size - 1) */ 75 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ? 76 (base + offset) : (FIO_IO_U_PLAT_NR - 1); 77 78 return idx; 79 } 80 81 /* 82 * Convert the given index of the bucket array to the value 83 * represented by the bucket 84 */ 85 static unsigned int plat_idx_to_val(unsigned int idx) 86 { 87 unsigned int error_bits, k, base; 88 89 assert(idx < FIO_IO_U_PLAT_NR); 90 91 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use 92 * all bits of the sample as index */ 93 if (idx < (FIO_IO_U_PLAT_VAL << 1)) 94 return idx; 95 96 /* Find the group and compute the minimum value of that group */ 97 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1; 98 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS); 99 100 /* Find its bucket number of the group */ 101 k = idx % FIO_IO_U_PLAT_VAL; 102 103 /* Return the mean of the range of the bucket */ 104 return base + ((k + 0.5) * (1 << error_bits)); 105 } 106 107 static int double_cmp(const void *a, const void *b) 108 { 109 const fio_fp64_t fa = *(const fio_fp64_t *) a; 110 const fio_fp64_t fb = *(const fio_fp64_t *) b; 111 int cmp = 0; 112 113 if (fa.u.f > fb.u.f) 114 cmp = 1; 115 else if (fa.u.f < fb.u.f) 116 cmp = -1; 117 118 return cmp; 119 } 120 121 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, 122 fio_fp64_t *plist, unsigned int **output, 123 unsigned int *maxv, unsigned int *minv) 124 { 125 unsigned long sum = 0; 126 unsigned int len, i, j = 0; 127 unsigned int oval_len = 0; 128 unsigned int *ovals = NULL; 129 int is_last; 130 131 *minv = -1U; 132 *maxv = 0; 133 134 len = 0; 135 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0) 136 len++; 137 138 if (!len) 139 return 0; 140 141 /* 142 * Sort the percentile list. Note that it may already be sorted if 143 * we are using the default values, but since it's a short list this 144 * isn't a worry. Also note that this does not work for NaN values. 145 */ 146 if (len > 1) 147 qsort((void *)plist, len, sizeof(plist[0]), double_cmp); 148 149 /* 150 * Calculate bucket values, note down max and min values 151 */ 152 is_last = 0; 153 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) { 154 sum += io_u_plat[i]; 155 while (sum >= (plist[j].u.f / 100.0 * nr)) { 156 assert(plist[j].u.f <= 100.0); 157 158 if (j == oval_len) { 159 oval_len += 100; 160 ovals = realloc(ovals, oval_len * sizeof(unsigned int)); 161 } 162 163 ovals[j] = plat_idx_to_val(i); 164 if (ovals[j] < *minv) 165 *minv = ovals[j]; 166 if (ovals[j] > *maxv) 167 *maxv = ovals[j]; 168 169 is_last = (j == len - 1); 170 if (is_last) 171 break; 172 173 j++; 174 } 175 } 176 177 *output = ovals; 178 return len; 179 } 180 181 /* 182 * Find and display the p-th percentile of clat 183 */ 184 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, 185 fio_fp64_t *plist, unsigned int precision) 186 { 187 unsigned int len, j = 0, minv, maxv; 188 unsigned int *ovals; 189 int is_last, per_line, scale_down; 190 char fmt[32]; 191 192 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv); 193 if (!len) 194 goto out; 195 196 /* 197 * We default to usecs, but if the value range is such that we 198 * should scale down to msecs, do that. 199 */ 200 if (minv > 2000 && maxv > 99999) { 201 scale_down = 1; 202 log_info(" clat percentiles (msec):\n |"); 203 } else { 204 scale_down = 0; 205 log_info(" clat percentiles (usec):\n |"); 206 } 207 208 snprintf(fmt, sizeof(fmt), "%%1.%uf", precision); 209 per_line = (80 - 7) / (precision + 14); 210 211 for (j = 0; j < len; j++) { 212 char fbuf[16], *ptr = fbuf; 213 214 /* for formatting */ 215 if (j != 0 && (j % per_line) == 0) 216 log_info(" |"); 217 218 /* end of the list */ 219 is_last = (j == len - 1); 220 221 if (plist[j].u.f < 10.0) 222 ptr += sprintf(fbuf, " "); 223 224 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f); 225 226 if (scale_down) 227 ovals[j] = (ovals[j] + 999) / 1000; 228 229 log_info(" %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ','); 230 231 if (is_last) 232 break; 233 234 if ((j % per_line) == per_line - 1) /* for formatting */ 235 log_info("\n"); 236 } 237 238 out: 239 if (ovals) 240 free(ovals); 241 } 242 243 int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, 244 double *mean, double *dev) 245 { 246 double n = (double) is->samples; 247 248 if (n == 0) 249 return 0; 250 251 *min = is->min_val; 252 *max = is->max_val; 253 *mean = is->mean.u.f; 254 255 if (n > 1.0) 256 *dev = sqrt(is->S.u.f / (n - 1.0)); 257 else 258 *dev = 0; 259 260 return 1; 261 } 262 263 void show_group_stats(struct group_run_stats *rs) 264 { 265 char *p1, *p2, *p3, *p4; 266 const char *str[] = { " READ", " WRITE" , " TRIM"}; 267 int i; 268 269 log_info("\nRun status group %d (all jobs):\n", rs->groupid); 270 271 for (i = 0; i < DDIR_RWDIR_CNT; i++) { 272 const int i2p = is_power_of_2(rs->kb_base); 273 274 if (!rs->max_run[i]) 275 continue; 276 277 p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8); 278 p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base); 279 p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base); 280 p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base); 281 282 log_info("%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s," 283 " mint=%llumsec, maxt=%llumsec\n", 284 rs->unified_rw_rep ? " MIXED" : str[i], 285 p1, p2, p3, p4, 286 (unsigned long long) rs->min_run[i], 287 (unsigned long long) rs->max_run[i]); 288 289 free(p1); 290 free(p2); 291 free(p3); 292 free(p4); 293 } 294 } 295 296 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist) 297 { 298 int i; 299 300 /* 301 * Do depth distribution calculations 302 */ 303 for (i = 0; i < FIO_IO_U_MAP_NR; i++) { 304 if (total) { 305 io_u_dist[i] = (double) map[i] / (double) total; 306 io_u_dist[i] *= 100.0; 307 if (io_u_dist[i] < 0.1 && map[i]) 308 io_u_dist[i] = 0.1; 309 } else 310 io_u_dist[i] = 0.0; 311 } 312 } 313 314 static void stat_calc_lat(struct thread_stat *ts, double *dst, 315 unsigned int *src, int nr) 316 { 317 unsigned long total = ddir_rw_sum(ts->total_io_u); 318 int i; 319 320 /* 321 * Do latency distribution calculations 322 */ 323 for (i = 0; i < nr; i++) { 324 if (total) { 325 dst[i] = (double) src[i] / (double) total; 326 dst[i] *= 100.0; 327 if (dst[i] < 0.01 && src[i]) 328 dst[i] = 0.01; 329 } else 330 dst[i] = 0.0; 331 } 332 } 333 334 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat) 335 { 336 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR); 337 } 338 339 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat) 340 { 341 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR); 342 } 343 344 static void display_lat(const char *name, unsigned long min, unsigned long max, 345 double mean, double dev) 346 { 347 const char *base = "(usec)"; 348 char *minp, *maxp; 349 350 if (!usec_to_msec(&min, &max, &mean, &dev)) 351 base = "(msec)"; 352 353 minp = num2str(min, 6, 1, 0, 0); 354 maxp = num2str(max, 6, 1, 0, 0); 355 356 log_info(" %s %s: min=%s, max=%s, avg=%5.02f," 357 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev); 358 359 free(minp); 360 free(maxp); 361 } 362 363 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts, 364 int ddir) 365 { 366 const char *str[] = { "read ", "write", "trim" }; 367 unsigned long min, max, runt; 368 unsigned long long bw, iops; 369 double mean, dev; 370 char *io_p, *bw_p, *iops_p; 371 int i2p; 372 373 assert(ddir_rw(ddir)); 374 375 if (!ts->runtime[ddir]) 376 return; 377 378 i2p = is_power_of_2(rs->kb_base); 379 runt = ts->runtime[ddir]; 380 381 bw = (1000 * ts->io_bytes[ddir]) / runt; 382 io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8); 383 bw_p = num2str(bw, 6, 1, i2p, ts->unit_base); 384 385 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt; 386 iops_p = num2str(iops, 6, 1, 0, 0); 387 388 log_info(" %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n", 389 rs->unified_rw_rep ? "mixed" : str[ddir], 390 io_p, bw_p, iops_p, 391 (unsigned long long) ts->runtime[ddir]); 392 393 free(io_p); 394 free(bw_p); 395 free(iops_p); 396 397 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) 398 display_lat("slat", min, max, mean, dev); 399 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) 400 display_lat("clat", min, max, mean, dev); 401 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) 402 display_lat(" lat", min, max, mean, dev); 403 404 if (ts->clat_percentiles) { 405 show_clat_percentiles(ts->io_u_plat[ddir], 406 ts->clat_stat[ddir].samples, 407 ts->percentile_list, 408 ts->percentile_precision); 409 } 410 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { 411 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base; 412 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB"); 413 414 if (rs->unit_base == 1) { 415 min *= 8.0; 416 max *= 8.0; 417 mean *= 8.0; 418 dev *= 8.0; 419 } 420 421 if (rs->agg[ddir]) { 422 p_of_agg = mean * 100 / (double) rs->agg[ddir]; 423 if (p_of_agg > 100.0) 424 p_of_agg = 100.0; 425 } 426 427 if (mean > fkb_base * fkb_base) { 428 min /= fkb_base; 429 max /= fkb_base; 430 mean /= fkb_base; 431 dev /= fkb_base; 432 bw_str = (rs->unit_base == 1 ? "Mbit" : "MB"); 433 } 434 435 log_info(" bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%," 436 " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max, 437 p_of_agg, mean, dev); 438 } 439 } 440 441 static int show_lat(double *io_u_lat, int nr, const char **ranges, 442 const char *msg) 443 { 444 int new_line = 1, i, line = 0, shown = 0; 445 446 for (i = 0; i < nr; i++) { 447 if (io_u_lat[i] <= 0.0) 448 continue; 449 shown = 1; 450 if (new_line) { 451 if (line) 452 log_info("\n"); 453 log_info(" lat (%s) : ", msg); 454 new_line = 0; 455 line = 0; 456 } 457 if (line) 458 log_info(", "); 459 log_info("%s%3.2f%%", ranges[i], io_u_lat[i]); 460 line++; 461 if (line == 5) 462 new_line = 1; 463 } 464 465 if (shown) 466 log_info("\n"); 467 468 return shown; 469 } 470 471 static void show_lat_u(double *io_u_lat_u) 472 { 473 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=", 474 "250=", "500=", "750=", "1000=", }; 475 476 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec"); 477 } 478 479 static void show_lat_m(double *io_u_lat_m) 480 { 481 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=", 482 "250=", "500=", "750=", "1000=", "2000=", 483 ">=2000=", }; 484 485 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec"); 486 } 487 488 static void show_latencies(struct thread_stat *ts) 489 { 490 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 491 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 492 493 stat_calc_lat_u(ts, io_u_lat_u); 494 stat_calc_lat_m(ts, io_u_lat_m); 495 496 show_lat_u(io_u_lat_u); 497 show_lat_m(io_u_lat_m); 498 } 499 500 static void show_thread_status_normal(struct thread_stat *ts, 501 struct group_run_stats *rs) 502 { 503 double usr_cpu, sys_cpu; 504 unsigned long runtime; 505 double io_u_dist[FIO_IO_U_MAP_NR]; 506 time_t time_p; 507 char time_buf[32]; 508 509 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u)) 510 return; 511 512 time(&time_p); 513 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf)); 514 515 if (!ts->error) { 516 log_info("%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s", 517 ts->name, ts->groupid, ts->members, 518 ts->error, (int) ts->pid, time_buf); 519 } else { 520 log_info("%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s", 521 ts->name, ts->groupid, ts->members, 522 ts->error, ts->verror, (int) ts->pid, 523 time_buf); 524 } 525 526 if (strlen(ts->description)) 527 log_info(" Description : [%s]\n", ts->description); 528 529 if (ts->io_bytes[DDIR_READ]) 530 show_ddir_status(rs, ts, DDIR_READ); 531 if (ts->io_bytes[DDIR_WRITE]) 532 show_ddir_status(rs, ts, DDIR_WRITE); 533 if (ts->io_bytes[DDIR_TRIM]) 534 show_ddir_status(rs, ts, DDIR_TRIM); 535 536 show_latencies(ts); 537 538 runtime = ts->total_run_time; 539 if (runtime) { 540 double runt = (double) runtime; 541 542 usr_cpu = (double) ts->usr_time * 100 / runt; 543 sys_cpu = (double) ts->sys_time * 100 / runt; 544 } else { 545 usr_cpu = 0; 546 sys_cpu = 0; 547 } 548 549 log_info(" cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu," 550 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu, 551 (unsigned long long) ts->ctx, 552 (unsigned long long) ts->majf, 553 (unsigned long long) ts->minf); 554 555 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 556 log_info(" IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%," 557 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], 558 io_u_dist[1], io_u_dist[2], 559 io_u_dist[3], io_u_dist[4], 560 io_u_dist[5], io_u_dist[6]); 561 562 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist); 563 log_info(" submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%," 564 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], 565 io_u_dist[1], io_u_dist[2], 566 io_u_dist[3], io_u_dist[4], 567 io_u_dist[5], io_u_dist[6]); 568 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist); 569 log_info(" complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%," 570 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], 571 io_u_dist[1], io_u_dist[2], 572 io_u_dist[3], io_u_dist[4], 573 io_u_dist[5], io_u_dist[6]); 574 log_info(" issued : total=r=%llu/w=%llu/d=%llu," 575 " short=r=%llu/w=%llu/d=%llu," 576 " drop=r=%llu/w=%llu/d=%llu\n", 577 (unsigned long long) ts->total_io_u[0], 578 (unsigned long long) ts->total_io_u[1], 579 (unsigned long long) ts->total_io_u[2], 580 (unsigned long long) ts->short_io_u[0], 581 (unsigned long long) ts->short_io_u[1], 582 (unsigned long long) ts->short_io_u[2], 583 (unsigned long long) ts->drop_io_u[0], 584 (unsigned long long) ts->drop_io_u[1], 585 (unsigned long long) ts->drop_io_u[2]); 586 if (ts->continue_on_error) { 587 log_info(" errors : total=%llu, first_error=%d/<%s>\n", 588 (unsigned long long)ts->total_err_count, 589 ts->first_error, 590 strerror(ts->first_error)); 591 } 592 if (ts->latency_depth) { 593 log_info(" latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n", 594 (unsigned long long)ts->latency_target, 595 (unsigned long long)ts->latency_window, 596 ts->latency_percentile.u.f, 597 ts->latency_depth); 598 } 599 } 600 601 static void show_ddir_status_terse(struct thread_stat *ts, 602 struct group_run_stats *rs, int ddir) 603 { 604 unsigned long min, max; 605 unsigned long long bw, iops; 606 unsigned int *ovals = NULL; 607 double mean, dev; 608 unsigned int len, minv, maxv; 609 int i; 610 611 assert(ddir_rw(ddir)); 612 613 iops = bw = 0; 614 if (ts->runtime[ddir]) { 615 uint64_t runt = ts->runtime[ddir]; 616 617 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; 618 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt; 619 } 620 621 log_info(";%llu;%llu;%llu;%llu", 622 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops, 623 (unsigned long long) ts->runtime[ddir]); 624 625 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) 626 log_info(";%lu;%lu;%f;%f", min, max, mean, dev); 627 else 628 log_info(";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0); 629 630 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) 631 log_info(";%lu;%lu;%f;%f", min, max, mean, dev); 632 else 633 log_info(";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0); 634 635 if (ts->clat_percentiles) { 636 len = calc_clat_percentiles(ts->io_u_plat[ddir], 637 ts->clat_stat[ddir].samples, 638 ts->percentile_list, &ovals, &maxv, 639 &minv); 640 } else 641 len = 0; 642 643 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) { 644 if (i >= len) { 645 log_info(";0%%=0"); 646 continue; 647 } 648 log_info(";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]); 649 } 650 651 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) 652 log_info(";%lu;%lu;%f;%f", min, max, mean, dev); 653 else 654 log_info(";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0); 655 656 if (ovals) 657 free(ovals); 658 659 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { 660 double p_of_agg = 100.0; 661 662 if (rs->agg[ddir]) { 663 p_of_agg = mean * 100 / (double) rs->agg[ddir]; 664 if (p_of_agg > 100.0) 665 p_of_agg = 100.0; 666 } 667 668 log_info(";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev); 669 } else 670 log_info(";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0); 671 } 672 673 static void add_ddir_status_json(struct thread_stat *ts, 674 struct group_run_stats *rs, int ddir, struct json_object *parent) 675 { 676 unsigned long min, max; 677 unsigned long long bw; 678 unsigned int *ovals = NULL; 679 double mean, dev, iops; 680 unsigned int len, minv, maxv; 681 int i; 682 const char *ddirname[] = {"read", "write", "trim"}; 683 struct json_object *dir_object, *tmp_object, *percentile_object; 684 char buf[120]; 685 double p_of_agg = 100.0; 686 687 assert(ddir_rw(ddir)); 688 689 if (ts->unified_rw_rep && ddir != DDIR_READ) 690 return; 691 692 dir_object = json_create_object(); 693 json_object_add_value_object(parent, 694 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object); 695 696 bw = 0; 697 iops = 0.0; 698 if (ts->runtime[ddir]) { 699 uint64_t runt = ts->runtime[ddir]; 700 701 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; 702 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt; 703 } 704 705 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10); 706 json_object_add_value_int(dir_object, "bw", bw); 707 json_object_add_value_float(dir_object, "iops", iops); 708 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]); 709 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]); 710 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]); 711 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]); 712 713 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) { 714 min = max = 0; 715 mean = dev = 0.0; 716 } 717 tmp_object = json_create_object(); 718 json_object_add_value_object(dir_object, "slat", tmp_object); 719 json_object_add_value_int(tmp_object, "min", min); 720 json_object_add_value_int(tmp_object, "max", max); 721 json_object_add_value_float(tmp_object, "mean", mean); 722 json_object_add_value_float(tmp_object, "stddev", dev); 723 724 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) { 725 min = max = 0; 726 mean = dev = 0.0; 727 } 728 tmp_object = json_create_object(); 729 json_object_add_value_object(dir_object, "clat", tmp_object); 730 json_object_add_value_int(tmp_object, "min", min); 731 json_object_add_value_int(tmp_object, "max", max); 732 json_object_add_value_float(tmp_object, "mean", mean); 733 json_object_add_value_float(tmp_object, "stddev", dev); 734 735 if (ts->clat_percentiles) { 736 len = calc_clat_percentiles(ts->io_u_plat[ddir], 737 ts->clat_stat[ddir].samples, 738 ts->percentile_list, &ovals, &maxv, 739 &minv); 740 } else 741 len = 0; 742 743 percentile_object = json_create_object(); 744 json_object_add_value_object(tmp_object, "percentile", percentile_object); 745 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) { 746 if (i >= len) { 747 json_object_add_value_int(percentile_object, "0.00", 0); 748 continue; 749 } 750 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f); 751 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]); 752 } 753 754 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) { 755 min = max = 0; 756 mean = dev = 0.0; 757 } 758 tmp_object = json_create_object(); 759 json_object_add_value_object(dir_object, "lat", tmp_object); 760 json_object_add_value_int(tmp_object, "min", min); 761 json_object_add_value_int(tmp_object, "max", max); 762 json_object_add_value_float(tmp_object, "mean", mean); 763 json_object_add_value_float(tmp_object, "stddev", dev); 764 if (ovals) 765 free(ovals); 766 767 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { 768 if (rs->agg[ddir]) { 769 p_of_agg = mean * 100 / (double) rs->agg[ddir]; 770 if (p_of_agg > 100.0) 771 p_of_agg = 100.0; 772 } 773 } else { 774 min = max = 0; 775 p_of_agg = mean = dev = 0.0; 776 } 777 json_object_add_value_int(dir_object, "bw_min", min); 778 json_object_add_value_int(dir_object, "bw_max", max); 779 json_object_add_value_float(dir_object, "bw_agg", p_of_agg); 780 json_object_add_value_float(dir_object, "bw_mean", mean); 781 json_object_add_value_float(dir_object, "bw_dev", dev); 782 } 783 784 static void show_thread_status_terse_v2(struct thread_stat *ts, 785 struct group_run_stats *rs) 786 { 787 double io_u_dist[FIO_IO_U_MAP_NR]; 788 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 789 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 790 double usr_cpu, sys_cpu; 791 int i; 792 793 /* General Info */ 794 log_info("2;%s;%d;%d", ts->name, ts->groupid, ts->error); 795 /* Log Read Status */ 796 show_ddir_status_terse(ts, rs, DDIR_READ); 797 /* Log Write Status */ 798 show_ddir_status_terse(ts, rs, DDIR_WRITE); 799 /* Log Trim Status */ 800 show_ddir_status_terse(ts, rs, DDIR_TRIM); 801 802 /* CPU Usage */ 803 if (ts->total_run_time) { 804 double runt = (double) ts->total_run_time; 805 806 usr_cpu = (double) ts->usr_time * 100 / runt; 807 sys_cpu = (double) ts->sys_time * 100 / runt; 808 } else { 809 usr_cpu = 0; 810 sys_cpu = 0; 811 } 812 813 log_info(";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu, 814 (unsigned long long) ts->ctx, 815 (unsigned long long) ts->majf, 816 (unsigned long long) ts->minf); 817 818 /* Calc % distribution of IO depths, usecond, msecond latency */ 819 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 820 stat_calc_lat_u(ts, io_u_lat_u); 821 stat_calc_lat_m(ts, io_u_lat_m); 822 823 /* Only show fixed 7 I/O depth levels*/ 824 log_info(";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%", 825 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], 826 io_u_dist[4], io_u_dist[5], io_u_dist[6]); 827 828 /* Microsecond latency */ 829 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) 830 log_info(";%3.2f%%", io_u_lat_u[i]); 831 /* Millisecond latency */ 832 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) 833 log_info(";%3.2f%%", io_u_lat_m[i]); 834 /* Additional output if continue_on_error set - default off*/ 835 if (ts->continue_on_error) 836 log_info(";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error); 837 log_info("\n"); 838 839 /* Additional output if description is set */ 840 if (strlen(ts->description)) 841 log_info(";%s", ts->description); 842 843 log_info("\n"); 844 } 845 846 static void show_thread_status_terse_v3_v4(struct thread_stat *ts, 847 struct group_run_stats *rs, int ver) 848 { 849 double io_u_dist[FIO_IO_U_MAP_NR]; 850 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 851 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 852 double usr_cpu, sys_cpu; 853 int i; 854 855 /* General Info */ 856 log_info("%d;%s;%s;%d;%d", ver, fio_version_string, 857 ts->name, ts->groupid, ts->error); 858 /* Log Read Status */ 859 show_ddir_status_terse(ts, rs, DDIR_READ); 860 /* Log Write Status */ 861 show_ddir_status_terse(ts, rs, DDIR_WRITE); 862 /* Log Trim Status */ 863 if (ver == 4) 864 show_ddir_status_terse(ts, rs, DDIR_TRIM); 865 866 /* CPU Usage */ 867 if (ts->total_run_time) { 868 double runt = (double) ts->total_run_time; 869 870 usr_cpu = (double) ts->usr_time * 100 / runt; 871 sys_cpu = (double) ts->sys_time * 100 / runt; 872 } else { 873 usr_cpu = 0; 874 sys_cpu = 0; 875 } 876 877 log_info(";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu, 878 (unsigned long long) ts->ctx, 879 (unsigned long long) ts->majf, 880 (unsigned long long) ts->minf); 881 882 /* Calc % distribution of IO depths, usecond, msecond latency */ 883 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 884 stat_calc_lat_u(ts, io_u_lat_u); 885 stat_calc_lat_m(ts, io_u_lat_m); 886 887 /* Only show fixed 7 I/O depth levels*/ 888 log_info(";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%", 889 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], 890 io_u_dist[4], io_u_dist[5], io_u_dist[6]); 891 892 /* Microsecond latency */ 893 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) 894 log_info(";%3.2f%%", io_u_lat_u[i]); 895 /* Millisecond latency */ 896 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) 897 log_info(";%3.2f%%", io_u_lat_m[i]); 898 899 /* disk util stats, if any */ 900 show_disk_util(1, NULL); 901 902 /* Additional output if continue_on_error set - default off*/ 903 if (ts->continue_on_error) 904 log_info(";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error); 905 906 /* Additional output if description is set */ 907 if (strlen(ts->description)) 908 log_info(";%s", ts->description); 909 910 log_info("\n"); 911 } 912 913 static struct json_object *show_thread_status_json(struct thread_stat *ts, 914 struct group_run_stats *rs) 915 { 916 struct json_object *root, *tmp; 917 double io_u_dist[FIO_IO_U_MAP_NR]; 918 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 919 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 920 double usr_cpu, sys_cpu; 921 int i; 922 923 root = json_create_object(); 924 json_object_add_value_string(root, "jobname", ts->name); 925 json_object_add_value_int(root, "groupid", ts->groupid); 926 json_object_add_value_int(root, "error", ts->error); 927 928 add_ddir_status_json(ts, rs, DDIR_READ, root); 929 add_ddir_status_json(ts, rs, DDIR_WRITE, root); 930 add_ddir_status_json(ts, rs, DDIR_TRIM, root); 931 932 /* CPU Usage */ 933 if (ts->total_run_time) { 934 double runt = (double) ts->total_run_time; 935 936 usr_cpu = (double) ts->usr_time * 100 / runt; 937 sys_cpu = (double) ts->sys_time * 100 / runt; 938 } else { 939 usr_cpu = 0; 940 sys_cpu = 0; 941 } 942 json_object_add_value_float(root, "usr_cpu", usr_cpu); 943 json_object_add_value_float(root, "sys_cpu", sys_cpu); 944 json_object_add_value_int(root, "ctx", ts->ctx); 945 json_object_add_value_int(root, "majf", ts->majf); 946 json_object_add_value_int(root, "minf", ts->minf); 947 948 949 /* Calc % distribution of IO depths, usecond, msecond latency */ 950 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 951 stat_calc_lat_u(ts, io_u_lat_u); 952 stat_calc_lat_m(ts, io_u_lat_m); 953 954 tmp = json_create_object(); 955 json_object_add_value_object(root, "iodepth_level", tmp); 956 /* Only show fixed 7 I/O depth levels*/ 957 for (i = 0; i < 7; i++) { 958 char name[20]; 959 if (i < 6) 960 snprintf(name, 20, "%d", 1 << i); 961 else 962 snprintf(name, 20, ">=%d", 1 << i); 963 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]); 964 } 965 966 tmp = json_create_object(); 967 json_object_add_value_object(root, "latency_us", tmp); 968 /* Microsecond latency */ 969 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) { 970 const char *ranges[] = { "2", "4", "10", "20", "50", "100", 971 "250", "500", "750", "1000", }; 972 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]); 973 } 974 /* Millisecond latency */ 975 tmp = json_create_object(); 976 json_object_add_value_object(root, "latency_ms", tmp); 977 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) { 978 const char *ranges[] = { "2", "4", "10", "20", "50", "100", 979 "250", "500", "750", "1000", "2000", 980 ">=2000", }; 981 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]); 982 } 983 984 /* Additional output if continue_on_error set - default off*/ 985 if (ts->continue_on_error) { 986 json_object_add_value_int(root, "total_err", ts->total_err_count); 987 json_object_add_value_int(root, "first_error", ts->first_error); 988 } 989 990 if (ts->latency_depth) { 991 json_object_add_value_int(root, "latency_depth", ts->latency_depth); 992 json_object_add_value_int(root, "latency_target", ts->latency_target); 993 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f); 994 json_object_add_value_int(root, "latency_window", ts->latency_window); 995 } 996 997 /* Additional output if description is set */ 998 if (strlen(ts->description)) 999 json_object_add_value_string(root, "desc", ts->description); 1000 1001 return root; 1002 } 1003 1004 static void show_thread_status_terse(struct thread_stat *ts, 1005 struct group_run_stats *rs) 1006 { 1007 if (terse_version == 2) 1008 show_thread_status_terse_v2(ts, rs); 1009 else if (terse_version == 3 || terse_version == 4) 1010 show_thread_status_terse_v3_v4(ts, rs, terse_version); 1011 else 1012 log_err("fio: bad terse version!? %d\n", terse_version); 1013 } 1014 1015 struct json_object *show_thread_status(struct thread_stat *ts, 1016 struct group_run_stats *rs) 1017 { 1018 if (output_format == FIO_OUTPUT_TERSE) 1019 show_thread_status_terse(ts, rs); 1020 else if (output_format == FIO_OUTPUT_JSON) 1021 return show_thread_status_json(ts, rs); 1022 else 1023 show_thread_status_normal(ts, rs); 1024 return NULL; 1025 } 1026 1027 static void sum_stat(struct io_stat *dst, struct io_stat *src, int nr) 1028 { 1029 double mean, S; 1030 1031 if (src->samples == 0) 1032 return; 1033 1034 dst->min_val = min(dst->min_val, src->min_val); 1035 dst->max_val = max(dst->max_val, src->max_val); 1036 1037 /* 1038 * Compute new mean and S after the merge 1039 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance 1040 * #Parallel_algorithm> 1041 */ 1042 if (nr == 1) { 1043 mean = src->mean.u.f; 1044 S = src->S.u.f; 1045 } else { 1046 double delta = src->mean.u.f - dst->mean.u.f; 1047 1048 mean = ((src->mean.u.f * src->samples) + 1049 (dst->mean.u.f * dst->samples)) / 1050 (dst->samples + src->samples); 1051 1052 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) * 1053 (dst->samples * src->samples) / 1054 (dst->samples + src->samples); 1055 } 1056 1057 dst->samples += src->samples; 1058 dst->mean.u.f = mean; 1059 dst->S.u.f = S; 1060 } 1061 1062 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src) 1063 { 1064 int i; 1065 1066 for (i = 0; i < DDIR_RWDIR_CNT; i++) { 1067 if (dst->max_run[i] < src->max_run[i]) 1068 dst->max_run[i] = src->max_run[i]; 1069 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i]) 1070 dst->min_run[i] = src->min_run[i]; 1071 if (dst->max_bw[i] < src->max_bw[i]) 1072 dst->max_bw[i] = src->max_bw[i]; 1073 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i]) 1074 dst->min_bw[i] = src->min_bw[i]; 1075 1076 dst->io_kb[i] += src->io_kb[i]; 1077 dst->agg[i] += src->agg[i]; 1078 } 1079 1080 if (!dst->kb_base) 1081 dst->kb_base = src->kb_base; 1082 if (!dst->unit_base) 1083 dst->unit_base = src->unit_base; 1084 } 1085 1086 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr) 1087 { 1088 int l, k; 1089 1090 for (l = 0; l < DDIR_RWDIR_CNT; l++) { 1091 if (!dst->unified_rw_rep) { 1092 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], nr); 1093 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], nr); 1094 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], nr); 1095 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], nr); 1096 1097 dst->io_bytes[l] += src->io_bytes[l]; 1098 1099 if (dst->runtime[l] < src->runtime[l]) 1100 dst->runtime[l] = src->runtime[l]; 1101 } else { 1102 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], nr); 1103 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], nr); 1104 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], nr); 1105 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], nr); 1106 1107 dst->io_bytes[0] += src->io_bytes[l]; 1108 1109 if (dst->runtime[0] < src->runtime[l]) 1110 dst->runtime[0] = src->runtime[l]; 1111 } 1112 } 1113 1114 dst->usr_time += src->usr_time; 1115 dst->sys_time += src->sys_time; 1116 dst->ctx += src->ctx; 1117 dst->majf += src->majf; 1118 dst->minf += src->minf; 1119 1120 for (k = 0; k < FIO_IO_U_MAP_NR; k++) 1121 dst->io_u_map[k] += src->io_u_map[k]; 1122 for (k = 0; k < FIO_IO_U_MAP_NR; k++) 1123 dst->io_u_submit[k] += src->io_u_submit[k]; 1124 for (k = 0; k < FIO_IO_U_MAP_NR; k++) 1125 dst->io_u_complete[k] += src->io_u_complete[k]; 1126 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++) 1127 dst->io_u_lat_u[k] += src->io_u_lat_u[k]; 1128 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++) 1129 dst->io_u_lat_m[k] += src->io_u_lat_m[k]; 1130 1131 for (k = 0; k < DDIR_RWDIR_CNT; k++) { 1132 if (!dst->unified_rw_rep) { 1133 dst->total_io_u[k] += src->total_io_u[k]; 1134 dst->short_io_u[k] += src->short_io_u[k]; 1135 dst->drop_io_u[k] += src->drop_io_u[k]; 1136 } else { 1137 dst->total_io_u[0] += src->total_io_u[k]; 1138 dst->short_io_u[0] += src->short_io_u[k]; 1139 dst->drop_io_u[0] += src->drop_io_u[k]; 1140 } 1141 } 1142 1143 for (k = 0; k < DDIR_RWDIR_CNT; k++) { 1144 int m; 1145 1146 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) { 1147 /* HACK to prevent bus error in arm GCC 4.9 */ 1148 dst->io_u_plat[k][m]+=1; 1149 if (!dst->unified_rw_rep) 1150 dst->io_u_plat[k][m] += src->io_u_plat[k][m]; 1151 else 1152 dst->io_u_plat[0][m] += src->io_u_plat[k][m]; 1153 /* HACK to prevent bus error in arm GCC 4.9 */ 1154 dst->io_u_plat[k][m]-=1; 1155 } 1156 } 1157 1158 dst->total_run_time += src->total_run_time; 1159 dst->total_submit += src->total_submit; 1160 dst->total_complete += src->total_complete; 1161 } 1162 1163 void init_group_run_stat(struct group_run_stats *gs) 1164 { 1165 int i; 1166 memset(gs, 0, sizeof(*gs)); 1167 1168 for (i = 0; i < DDIR_RWDIR_CNT; i++) 1169 gs->min_bw[i] = gs->min_run[i] = ~0UL; 1170 } 1171 1172 void init_thread_stat(struct thread_stat *ts) 1173 { 1174 int j; 1175 1176 memset(ts, 0, sizeof(*ts)); 1177 1178 for (j = 0; j < DDIR_RWDIR_CNT; j++) { 1179 ts->lat_stat[j].min_val = -1UL; 1180 ts->clat_stat[j].min_val = -1UL; 1181 ts->slat_stat[j].min_val = -1UL; 1182 ts->bw_stat[j].min_val = -1UL; 1183 } 1184 ts->groupid = -1; 1185 } 1186 1187 void __show_run_stats(void) 1188 { 1189 struct group_run_stats *runstats, *rs; 1190 struct thread_data *td; 1191 struct thread_stat *threadstats, *ts; 1192 int i, j, nr_ts, last_ts, idx; 1193 int kb_base_warned = 0; 1194 int unit_base_warned = 0; 1195 struct json_object *root = NULL; 1196 struct json_array *array = NULL; 1197 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1)); 1198 1199 for (i = 0; i < groupid + 1; i++) 1200 init_group_run_stat(&runstats[i]); 1201 1202 /* 1203 * find out how many threads stats we need. if group reporting isn't 1204 * enabled, it's one-per-td. 1205 */ 1206 nr_ts = 0; 1207 last_ts = -1; 1208 for_each_td(td, i) { 1209 if (!td->o.group_reporting) { 1210 nr_ts++; 1211 continue; 1212 } 1213 if (last_ts == td->groupid) 1214 continue; 1215 1216 last_ts = td->groupid; 1217 nr_ts++; 1218 } 1219 1220 threadstats = malloc(nr_ts * sizeof(struct thread_stat)); 1221 1222 for (i = 0; i < nr_ts; i++) 1223 init_thread_stat(&threadstats[i]); 1224 1225 j = 0; 1226 last_ts = -1; 1227 idx = 0; 1228 for_each_td(td, i) { 1229 if (idx && (!td->o.group_reporting || 1230 (td->o.group_reporting && last_ts != td->groupid))) { 1231 idx = 0; 1232 j++; 1233 } 1234 1235 last_ts = td->groupid; 1236 1237 ts = &threadstats[j]; 1238 1239 ts->clat_percentiles = td->o.clat_percentiles; 1240 ts->percentile_precision = td->o.percentile_precision; 1241 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list)); 1242 1243 idx++; 1244 ts->members++; 1245 1246 if (ts->groupid == -1) { 1247 /* 1248 * These are per-group shared already 1249 */ 1250 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1); 1251 if (td->o.description) 1252 strncpy(ts->description, td->o.description, 1253 FIO_JOBDESC_SIZE - 1); 1254 else 1255 memset(ts->description, 0, FIO_JOBDESC_SIZE); 1256 1257 /* 1258 * If multiple entries in this group, this is 1259 * the first member. 1260 */ 1261 ts->thread_number = td->thread_number; 1262 ts->groupid = td->groupid; 1263 1264 /* 1265 * first pid in group, not very useful... 1266 */ 1267 ts->pid = td->pid; 1268 1269 ts->kb_base = td->o.kb_base; 1270 ts->unit_base = td->o.unit_base; 1271 ts->unified_rw_rep = td->o.unified_rw_rep; 1272 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) { 1273 log_info("fio: kb_base differs for jobs in group, using" 1274 " %u as the base\n", ts->kb_base); 1275 kb_base_warned = 1; 1276 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) { 1277 log_info("fio: unit_base differs for jobs in group, using" 1278 " %u as the base\n", ts->unit_base); 1279 unit_base_warned = 1; 1280 } 1281 1282 ts->continue_on_error = td->o.continue_on_error; 1283 ts->total_err_count += td->total_err_count; 1284 ts->first_error = td->first_error; 1285 if (!ts->error) { 1286 if (!td->error && td->o.continue_on_error && 1287 td->first_error) { 1288 ts->error = td->first_error; 1289 ts->verror[sizeof(ts->verror) - 1] = '\0'; 1290 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1); 1291 } else if (td->error) { 1292 ts->error = td->error; 1293 ts->verror[sizeof(ts->verror) - 1] = '\0'; 1294 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1); 1295 } 1296 } 1297 1298 ts->latency_depth = td->latency_qd; 1299 ts->latency_target = td->o.latency_target; 1300 ts->latency_percentile = td->o.latency_percentile; 1301 ts->latency_window = td->o.latency_window; 1302 1303 sum_thread_stats(ts, &td->ts, idx); 1304 } 1305 1306 for (i = 0; i < nr_ts; i++) { 1307 unsigned long long bw; 1308 1309 ts = &threadstats[i]; 1310 rs = &runstats[ts->groupid]; 1311 rs->kb_base = ts->kb_base; 1312 rs->unit_base = ts->unit_base; 1313 rs->unified_rw_rep += ts->unified_rw_rep; 1314 1315 for (j = 0; j < DDIR_RWDIR_CNT; j++) { 1316 if (!ts->runtime[j]) 1317 continue; 1318 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j]) 1319 rs->min_run[j] = ts->runtime[j]; 1320 if (ts->runtime[j] > rs->max_run[j]) 1321 rs->max_run[j] = ts->runtime[j]; 1322 1323 bw = 0; 1324 if (ts->runtime[j]) { 1325 unsigned long runt = ts->runtime[j]; 1326 unsigned long long kb; 1327 1328 kb = ts->io_bytes[j] / rs->kb_base; 1329 bw = kb * 1000 / runt; 1330 } 1331 if (bw < rs->min_bw[j]) 1332 rs->min_bw[j] = bw; 1333 if (bw > rs->max_bw[j]) 1334 rs->max_bw[j] = bw; 1335 1336 rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base; 1337 } 1338 } 1339 1340 for (i = 0; i < groupid + 1; i++) { 1341 int ddir; 1342 1343 rs = &runstats[i]; 1344 1345 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { 1346 if (rs->max_run[ddir]) 1347 rs->agg[ddir] = (rs->io_kb[ddir] * 1000) / 1348 rs->max_run[ddir]; 1349 } 1350 } 1351 1352 /* 1353 * don't overwrite last signal output 1354 */ 1355 if (output_format == FIO_OUTPUT_NORMAL) 1356 log_info("\n"); 1357 else if (output_format == FIO_OUTPUT_JSON) { 1358 char time_buf[32]; 1359 time_t time_p; 1360 1361 time(&time_p); 1362 os_ctime_r((const time_t *) &time_p, time_buf, 1363 sizeof(time_buf)); 1364 time_buf[strlen(time_buf) - 1] = '\0'; 1365 1366 root = json_create_object(); 1367 json_object_add_value_string(root, "fio version", fio_version_string); 1368 json_object_add_value_int(root, "timestamp", time_p); 1369 json_object_add_value_string(root, "time", time_buf); 1370 array = json_create_array(); 1371 json_object_add_value_array(root, "jobs", array); 1372 } 1373 1374 for (i = 0; i < nr_ts; i++) { 1375 ts = &threadstats[i]; 1376 rs = &runstats[ts->groupid]; 1377 1378 if (is_backend) 1379 fio_server_send_ts(ts, rs); 1380 else if (output_format == FIO_OUTPUT_TERSE) 1381 show_thread_status_terse(ts, rs); 1382 else if (output_format == FIO_OUTPUT_JSON) { 1383 struct json_object *tmp = show_thread_status_json(ts, rs); 1384 json_array_add_value_object(array, tmp); 1385 } else 1386 show_thread_status_normal(ts, rs); 1387 } 1388 if (output_format == FIO_OUTPUT_JSON) { 1389 /* disk util stats, if any */ 1390 show_disk_util(1, root); 1391 1392 show_idle_prof_stats(FIO_OUTPUT_JSON, root); 1393 1394 json_print_object(root); 1395 log_info("\n"); 1396 json_free_object(root); 1397 } 1398 1399 for (i = 0; i < groupid + 1; i++) { 1400 rs = &runstats[i]; 1401 1402 rs->groupid = i; 1403 if (is_backend) 1404 fio_server_send_gs(rs); 1405 else if (output_format == FIO_OUTPUT_NORMAL) 1406 show_group_stats(rs); 1407 } 1408 1409 if (is_backend) 1410 fio_server_send_du(); 1411 else if (output_format == FIO_OUTPUT_NORMAL) { 1412 show_disk_util(0, NULL); 1413 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL); 1414 } 1415 1416 if ( !(output_format == FIO_OUTPUT_TERSE) && append_terse_output) { 1417 log_info("\nAdditional Terse Output:\n"); 1418 1419 for (i = 0; i < nr_ts; i++) { 1420 ts = &threadstats[i]; 1421 rs = &runstats[ts->groupid]; 1422 show_thread_status_terse(ts, rs); 1423 } 1424 } 1425 1426 log_info_flush(); 1427 free(runstats); 1428 free(threadstats); 1429 } 1430 1431 void show_run_stats(void) 1432 { 1433 fio_mutex_down(stat_mutex); 1434 __show_run_stats(); 1435 fio_mutex_up(stat_mutex); 1436 } 1437 1438 void __show_running_run_stats(void) 1439 { 1440 struct thread_data *td; 1441 unsigned long long *rt; 1442 struct timeval tv; 1443 int i; 1444 1445 fio_mutex_down(stat_mutex); 1446 1447 rt = malloc(thread_number * sizeof(unsigned long long)); 1448 fio_gettime(&tv, NULL); 1449 1450 for_each_td(td, i) { 1451 rt[i] = mtime_since(&td->start, &tv); 1452 if (td_read(td) && td->io_bytes[DDIR_READ]) 1453 td->ts.runtime[DDIR_READ] += rt[i]; 1454 if (td_write(td) && td->io_bytes[DDIR_WRITE]) 1455 td->ts.runtime[DDIR_WRITE] += rt[i]; 1456 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) 1457 td->ts.runtime[DDIR_TRIM] += rt[i]; 1458 1459 td->update_rusage = 1; 1460 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ]; 1461 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE]; 1462 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM]; 1463 td->ts.total_run_time = mtime_since(&td->epoch, &tv); 1464 } 1465 1466 for_each_td(td, i) { 1467 if (td->runstate >= TD_EXITED) 1468 continue; 1469 if (td->rusage_sem) { 1470 td->update_rusage = 1; 1471 fio_mutex_down(td->rusage_sem); 1472 } 1473 td->update_rusage = 0; 1474 } 1475 1476 __show_run_stats(); 1477 1478 for_each_td(td, i) { 1479 if (td_read(td) && td->io_bytes[DDIR_READ]) 1480 td->ts.runtime[DDIR_READ] -= rt[i]; 1481 if (td_write(td) && td->io_bytes[DDIR_WRITE]) 1482 td->ts.runtime[DDIR_WRITE] -= rt[i]; 1483 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) 1484 td->ts.runtime[DDIR_TRIM] -= rt[i]; 1485 } 1486 1487 free(rt); 1488 fio_mutex_up(stat_mutex); 1489 } 1490 1491 static int status_interval_init; 1492 static struct timeval status_time; 1493 static int status_file_disabled; 1494 1495 #define FIO_STATUS_FILE "fio-dump-status" 1496 1497 static int check_status_file(void) 1498 { 1499 struct stat sb; 1500 const char *temp_dir; 1501 char fio_status_file_path[PATH_MAX]; 1502 1503 if (status_file_disabled) 1504 return 0; 1505 1506 temp_dir = getenv("TMPDIR"); 1507 if (temp_dir == NULL) { 1508 temp_dir = getenv("TEMP"); 1509 if (temp_dir && strlen(temp_dir) >= PATH_MAX) 1510 temp_dir = NULL; 1511 } 1512 if (temp_dir == NULL) 1513 temp_dir = "/tmp"; 1514 1515 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE); 1516 1517 if (stat(fio_status_file_path, &sb)) 1518 return 0; 1519 1520 if (unlink(fio_status_file_path) < 0) { 1521 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path, 1522 strerror(errno)); 1523 log_err("fio: disabling status file updates\n"); 1524 status_file_disabled = 1; 1525 } 1526 1527 return 1; 1528 } 1529 1530 void check_for_running_stats(void) 1531 { 1532 if (status_interval) { 1533 if (!status_interval_init) { 1534 fio_gettime(&status_time, NULL); 1535 status_interval_init = 1; 1536 } else if (mtime_since_now(&status_time) >= status_interval) { 1537 show_running_run_stats(); 1538 fio_gettime(&status_time, NULL); 1539 return; 1540 } 1541 } 1542 if (check_status_file()) { 1543 show_running_run_stats(); 1544 return; 1545 } 1546 } 1547 1548 static inline void add_stat_sample(struct io_stat *is, unsigned long data) 1549 { 1550 double val = data; 1551 double delta; 1552 1553 if (data > is->max_val) 1554 is->max_val = data; 1555 if (data < is->min_val) 1556 is->min_val = data; 1557 1558 delta = val - is->mean.u.f; 1559 if (delta) { 1560 is->mean.u.f += delta / (is->samples + 1.0); 1561 is->S.u.f += delta * (val - is->mean.u.f); 1562 } 1563 1564 is->samples++; 1565 } 1566 1567 static void __add_log_sample(struct io_log *iolog, unsigned long val, 1568 enum fio_ddir ddir, unsigned int bs, 1569 unsigned long t, uint64_t offset) 1570 { 1571 uint64_t nr_samples = iolog->nr_samples; 1572 struct io_sample *s; 1573 1574 if (iolog->disabled) 1575 return; 1576 1577 if (!iolog->nr_samples) 1578 iolog->avg_last = t; 1579 1580 if (iolog->nr_samples == iolog->max_samples) { 1581 size_t new_size; 1582 void *new_log; 1583 1584 new_size = 2 * iolog->max_samples * log_entry_sz(iolog); 1585 1586 if (iolog->log_gz && (new_size > iolog->log_gz)) { 1587 if (iolog_flush(iolog, 0)) { 1588 log_err("fio: failed flushing iolog! Will stop logging.\n"); 1589 iolog->disabled = 1; 1590 return; 1591 } 1592 nr_samples = iolog->nr_samples; 1593 } else { 1594 new_log = realloc(iolog->log, new_size); 1595 if (!new_log) { 1596 log_err("fio: failed extending iolog! Will stop logging.\n"); 1597 iolog->disabled = 1; 1598 return; 1599 } 1600 iolog->log = new_log; 1601 iolog->max_samples <<= 1; 1602 } 1603 } 1604 1605 s = get_sample(iolog, nr_samples); 1606 1607 s->val = val; 1608 s->time = t; 1609 io_sample_set_ddir(iolog, s, ddir); 1610 s->bs = bs; 1611 1612 if (iolog->log_offset) { 1613 struct io_sample_offset *so = (void *) s; 1614 1615 so->offset = offset; 1616 } 1617 1618 iolog->nr_samples++; 1619 } 1620 1621 static inline void reset_io_stat(struct io_stat *ios) 1622 { 1623 ios->max_val = ios->min_val = ios->samples = 0; 1624 ios->mean.u.f = ios->S.u.f = 0; 1625 } 1626 1627 void reset_io_stats(struct thread_data *td) 1628 { 1629 struct thread_stat *ts = &td->ts; 1630 int i, j; 1631 1632 for (i = 0; i < DDIR_RWDIR_CNT; i++) { 1633 reset_io_stat(&ts->clat_stat[i]); 1634 reset_io_stat(&ts->slat_stat[i]); 1635 reset_io_stat(&ts->lat_stat[i]); 1636 reset_io_stat(&ts->bw_stat[i]); 1637 reset_io_stat(&ts->iops_stat[i]); 1638 1639 ts->io_bytes[i] = 0; 1640 ts->runtime[i] = 0; 1641 1642 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) 1643 ts->io_u_plat[i][j] = 0; 1644 } 1645 1646 for (i = 0; i < FIO_IO_U_MAP_NR; i++) { 1647 ts->io_u_map[i] = 0; 1648 ts->io_u_submit[i] = 0; 1649 ts->io_u_complete[i] = 0; 1650 ts->io_u_lat_u[i] = 0; 1651 ts->io_u_lat_m[i] = 0; 1652 ts->total_submit = 0; 1653 ts->total_complete = 0; 1654 } 1655 1656 for (i = 0; i < 3; i++) { 1657 ts->total_io_u[i] = 0; 1658 ts->short_io_u[i] = 0; 1659 ts->drop_io_u[i] = 0; 1660 } 1661 } 1662 1663 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed) 1664 { 1665 /* 1666 * Note an entry in the log. Use the mean from the logged samples, 1667 * making sure to properly round up. Only write a log entry if we 1668 * had actual samples done. 1669 */ 1670 if (iolog->avg_window[DDIR_READ].samples) { 1671 unsigned long mr; 1672 1673 mr = iolog->avg_window[DDIR_READ].mean.u.f + 0.50; 1674 __add_log_sample(iolog, mr, DDIR_READ, 0, elapsed, 0); 1675 } 1676 if (iolog->avg_window[DDIR_WRITE].samples) { 1677 unsigned long mw; 1678 1679 mw = iolog->avg_window[DDIR_WRITE].mean.u.f + 0.50; 1680 __add_log_sample(iolog, mw, DDIR_WRITE, 0, elapsed, 0); 1681 } 1682 if (iolog->avg_window[DDIR_TRIM].samples) { 1683 unsigned long mw; 1684 1685 mw = iolog->avg_window[DDIR_TRIM].mean.u.f + 0.50; 1686 __add_log_sample(iolog, mw, DDIR_TRIM, 0, elapsed, 0); 1687 } 1688 1689 reset_io_stat(&iolog->avg_window[DDIR_READ]); 1690 reset_io_stat(&iolog->avg_window[DDIR_WRITE]); 1691 reset_io_stat(&iolog->avg_window[DDIR_TRIM]); 1692 } 1693 1694 static void add_log_sample(struct thread_data *td, struct io_log *iolog, 1695 unsigned long val, enum fio_ddir ddir, 1696 unsigned int bs, uint64_t offset) 1697 { 1698 unsigned long elapsed, this_window; 1699 1700 if (!ddir_rw(ddir)) 1701 return; 1702 1703 elapsed = mtime_since_now(&td->epoch); 1704 1705 /* 1706 * If no time averaging, just add the log sample. 1707 */ 1708 if (!iolog->avg_msec) { 1709 __add_log_sample(iolog, val, ddir, bs, elapsed, offset); 1710 return; 1711 } 1712 1713 /* 1714 * Add the sample. If the time period has passed, then 1715 * add that entry to the log and clear. 1716 */ 1717 add_stat_sample(&iolog->avg_window[ddir], val); 1718 1719 /* 1720 * If period hasn't passed, adding the above sample is all we 1721 * need to do. 1722 */ 1723 this_window = elapsed - iolog->avg_last; 1724 if (this_window < iolog->avg_msec) 1725 return; 1726 1727 _add_stat_to_log(iolog, elapsed); 1728 1729 iolog->avg_last = elapsed; 1730 } 1731 1732 void finalize_logs(struct thread_data *td) 1733 { 1734 unsigned long elapsed; 1735 1736 elapsed = mtime_since_now(&td->epoch); 1737 1738 if (td->clat_log) 1739 _add_stat_to_log(td->clat_log, elapsed); 1740 if (td->slat_log) 1741 _add_stat_to_log(td->slat_log, elapsed); 1742 if (td->lat_log) 1743 _add_stat_to_log(td->lat_log, elapsed); 1744 if (td->bw_log) 1745 _add_stat_to_log(td->bw_log, elapsed); 1746 if (td->iops_log) 1747 _add_stat_to_log(td->iops_log, elapsed); 1748 } 1749 1750 void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs) 1751 { 1752 struct io_log *iolog; 1753 1754 if (!ddir_rw(ddir)) 1755 return; 1756 1757 iolog = agg_io_log[ddir]; 1758 __add_log_sample(iolog, val, ddir, bs, mtime_since_genesis(), 0); 1759 } 1760 1761 static void add_clat_percentile_sample(struct thread_stat *ts, 1762 unsigned long usec, enum fio_ddir ddir) 1763 { 1764 unsigned int idx = plat_val_to_idx(usec); 1765 assert(idx < FIO_IO_U_PLAT_NR); 1766 1767 ts->io_u_plat[ddir][idx]++; 1768 } 1769 1770 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir, 1771 unsigned long usec, unsigned int bs, uint64_t offset) 1772 { 1773 struct thread_stat *ts = &td->ts; 1774 1775 if (!ddir_rw(ddir)) 1776 return; 1777 1778 add_stat_sample(&ts->clat_stat[ddir], usec); 1779 1780 if (td->clat_log) 1781 add_log_sample(td, td->clat_log, usec, ddir, bs, offset); 1782 1783 if (ts->clat_percentiles) 1784 add_clat_percentile_sample(ts, usec, ddir); 1785 } 1786 1787 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir, 1788 unsigned long usec, unsigned int bs, uint64_t offset) 1789 { 1790 struct thread_stat *ts = &td->ts; 1791 1792 if (!ddir_rw(ddir)) 1793 return; 1794 1795 add_stat_sample(&ts->slat_stat[ddir], usec); 1796 1797 if (td->slat_log) 1798 add_log_sample(td, td->slat_log, usec, ddir, bs, offset); 1799 } 1800 1801 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir, 1802 unsigned long usec, unsigned int bs, uint64_t offset) 1803 { 1804 struct thread_stat *ts = &td->ts; 1805 1806 if (!ddir_rw(ddir)) 1807 return; 1808 1809 add_stat_sample(&ts->lat_stat[ddir], usec); 1810 1811 if (td->lat_log) 1812 add_log_sample(td, td->lat_log, usec, ddir, bs, offset); 1813 } 1814 1815 void add_bw_sample(struct thread_data *td, enum fio_ddir ddir, unsigned int bs, 1816 struct timeval *t) 1817 { 1818 struct thread_stat *ts = &td->ts; 1819 unsigned long spent, rate; 1820 1821 if (!ddir_rw(ddir)) 1822 return; 1823 1824 spent = mtime_since(&td->bw_sample_time, t); 1825 if (spent < td->o.bw_avg_time) 1826 return; 1827 1828 /* 1829 * Compute both read and write rates for the interval. 1830 */ 1831 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) { 1832 uint64_t delta; 1833 1834 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir]; 1835 if (!delta) 1836 continue; /* No entries for interval */ 1837 1838 if (spent) 1839 rate = delta * 1000 / spent / 1024; 1840 else 1841 rate = 0; 1842 1843 add_stat_sample(&ts->bw_stat[ddir], rate); 1844 1845 if (td->bw_log) 1846 add_log_sample(td, td->bw_log, rate, ddir, bs, 0); 1847 1848 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir]; 1849 } 1850 1851 fio_gettime(&td->bw_sample_time, NULL); 1852 } 1853 1854 void add_iops_sample(struct thread_data *td, enum fio_ddir ddir, unsigned int bs, 1855 struct timeval *t) 1856 { 1857 struct thread_stat *ts = &td->ts; 1858 unsigned long spent, iops; 1859 1860 if (!ddir_rw(ddir)) 1861 return; 1862 1863 spent = mtime_since(&td->iops_sample_time, t); 1864 if (spent < td->o.iops_avg_time) 1865 return; 1866 1867 /* 1868 * Compute both read and write rates for the interval. 1869 */ 1870 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) { 1871 uint64_t delta; 1872 1873 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir]; 1874 if (!delta) 1875 continue; /* No entries for interval */ 1876 1877 if (spent) 1878 iops = (delta * 1000) / spent; 1879 else 1880 iops = 0; 1881 1882 add_stat_sample(&ts->iops_stat[ddir], iops); 1883 1884 if (td->iops_log) 1885 add_log_sample(td, td->iops_log, iops, ddir, bs, 0); 1886 1887 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir]; 1888 } 1889 1890 fio_gettime(&td->iops_sample_time, NULL); 1891 } 1892 1893 void stat_init(void) 1894 { 1895 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED); 1896 } 1897 1898 void stat_exit(void) 1899 { 1900 /* 1901 * When we have the mutex, we know out-of-band access to it 1902 * have ended. 1903 */ 1904 fio_mutex_down(stat_mutex); 1905 fio_mutex_remove(stat_mutex); 1906 } 1907 1908 /* 1909 * Called from signal handler. Wake up status thread. 1910 */ 1911 void show_running_run_stats(void) 1912 { 1913 helper_do_stat = 1; 1914 pthread_cond_signal(&helper_cond); 1915 } 1916