1 2 /*--------------------------------------------------------------------*/ 3 /*--- Ptrcheck: a pointer-use checker. ---*/ 4 /*--- This file checks heap accesses. ---*/ 5 /*--- h_main.c ---*/ 6 /*--------------------------------------------------------------------*/ 7 8 /* 9 This file is part of Ptrcheck, a Valgrind tool for checking pointer 10 use in programs. 11 12 Initial version (Annelid): 13 14 Copyright (C) 2003-2015 Nicholas Nethercote 15 njn (at) valgrind.org 16 17 Valgrind-3.X port: 18 19 Copyright (C) 2008-2015 OpenWorks Ltd 20 info (at) open-works.co.uk 21 22 This program is free software; you can redistribute it and/or 23 modify it under the terms of the GNU General Public License as 24 published by the Free Software Foundation; either version 2 of the 25 License, or (at your option) any later version. 26 27 This program is distributed in the hope that it will be useful, but 28 WITHOUT ANY WARRANTY; without even the implied warranty of 29 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 30 General Public License for more details. 31 32 You should have received a copy of the GNU General Public License 33 along with this program; if not, write to the Free Software 34 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 35 02111-1307, USA. 36 37 The GNU General Public License is contained in the file COPYING. 38 */ 39 40 #include "pub_tool_basics.h" 41 #include "pub_tool_libcbase.h" 42 #include "pub_tool_libcprint.h" 43 #include "pub_tool_libcassert.h" 44 #include "pub_tool_mallocfree.h" 45 #include "pub_tool_execontext.h" 46 #include "pub_tool_hashtable.h" 47 #include "pub_tool_tooliface.h" 48 #include "pub_tool_replacemalloc.h" 49 #include "pub_tool_options.h" 50 #include "pub_tool_execontext.h" 51 #include "pub_tool_aspacemgr.h" // VG_(am_shadow_malloc) 52 #include "pub_tool_vki.h" // VKI_MAX_PAGE_SIZE 53 #include "pub_tool_machine.h" // VG_({get,set}_shadow_regs_area) et al 54 #include "pub_tool_debuginfo.h" // VG_(get_fnname) 55 #include "pub_tool_threadstate.h" // VG_(get_running_tid) 56 #include "pub_tool_oset.h" 57 #include "pub_tool_vkiscnums.h" 58 #include "pub_tool_machine.h" 59 #include "pub_tool_wordfm.h" 60 #include "pub_tool_xarray.h" 61 62 #include "pc_common.h" 63 64 //#include "h_list.h" 65 #include "h_main.h" 66 67 #include "sg_main.h" // sg_instrument_*, and struct _SGEnv 68 69 70 71 /*------------------------------------------------------------*/ 72 /*--- Debug/trace options ---*/ 73 /*------------------------------------------------------------*/ 74 75 static ULong stats__client_mallocs = 0; 76 static ULong stats__client_frees = 0; 77 static ULong stats__segs_allocd = 0; 78 static ULong stats__segs_recycled = 0; 79 80 81 ////////////////////////////////////////////////////////////// 82 // // 83 // Segments low level storage // 84 // // 85 ////////////////////////////////////////////////////////////// 86 87 // NONPTR, UNKNOWN, BOTTOM defined in h_main.h since 88 // pc_common.c needs to see them, for error processing 89 90 // we only start recycling segs when this many exist 91 #define N_FREED_SEGS (1 * 1000 * 1000) 92 93 struct _Seg { 94 Addr addr; 95 SizeT szB; /* may be zero */ 96 ExeContext* ec; /* where malloc'd or freed */ 97 /* When 1, indicates block is in use. Otherwise, used to form a 98 linked list of freed blocks, running from oldest freed block to 99 the most recently freed block. */ 100 struct _Seg* nextfree; 101 }; 102 103 // Determines if 'a' is before, within, or after seg's range. Sets 'cmp' to 104 // -1/0/1 accordingly. Sets 'n' to the number of bytes before/within/after. 105 void Seg__cmp(Seg* seg, Addr a, Int* cmp, UWord* n) 106 { 107 if (a < seg->addr) { 108 *cmp = -1; 109 *n = seg->addr - a; 110 } else if (a < seg->addr + seg->szB && seg->szB > 0) { 111 *cmp = 0; 112 *n = a - seg->addr; 113 } else { 114 *cmp = 1; 115 *n = a - (seg->addr + seg->szB); 116 } 117 } 118 119 /*inline*/ Bool Seg__is_freed(Seg* seg) 120 { 121 if (!is_known_segment(seg)) 122 return False; 123 else 124 return seg->nextfree != (Seg*)1; 125 } 126 127 ExeContext* Seg__where(Seg* seg) 128 { 129 tl_assert(is_known_segment(seg)); 130 return seg->ec; 131 } 132 133 SizeT Seg__size(Seg* seg) 134 { 135 tl_assert(is_known_segment(seg)); 136 return seg->szB; 137 } 138 139 Addr Seg__addr(Seg* seg) 140 { 141 tl_assert(is_known_segment(seg)); 142 return seg->addr; 143 } 144 145 146 #define N_SEGS_PER_GROUP 10000 147 148 typedef 149 struct _SegGroup { 150 struct _SegGroup* admin; 151 UWord nextfree; /* 0 .. N_SEGS_PER_GROUP */ 152 Seg segs[N_SEGS_PER_GROUP]; 153 } 154 SegGroup; 155 156 static SegGroup* group_list = NULL; 157 static UWord nFreeSegs = 0; 158 static Seg* freesegs_youngest = NULL; 159 static Seg* freesegs_oldest = NULL; 160 161 162 static SegGroup* new_SegGroup ( void ) { 163 SegGroup* g = VG_(malloc)("pc.h_main.nTG.1", sizeof(SegGroup)); 164 VG_(memset)(g, 0, sizeof(*g)); 165 return g; 166 } 167 168 /* Get a completely new Seg */ 169 static Seg* new_Seg ( void ) 170 { 171 Seg* teg; 172 SegGroup* g; 173 if (group_list == NULL) { 174 g = new_SegGroup(); 175 g->admin = NULL; 176 group_list = g; 177 } 178 tl_assert(group_list->nextfree <= N_SEGS_PER_GROUP); 179 if (group_list->nextfree == N_SEGS_PER_GROUP) { 180 g = new_SegGroup(); 181 g->admin = group_list; 182 group_list = g; 183 } 184 tl_assert(group_list->nextfree < N_SEGS_PER_GROUP); 185 teg = &group_list->segs[ group_list->nextfree ]; 186 group_list->nextfree++; 187 stats__segs_allocd++; 188 return teg; 189 } 190 191 static Seg* get_Seg_for_malloc ( void ) 192 { 193 Seg* seg; 194 if (nFreeSegs < N_FREED_SEGS) { 195 seg = new_Seg(); 196 seg->nextfree = (Seg*)1; 197 return seg; 198 } 199 /* else recycle the oldest Seg in the free list */ 200 tl_assert(freesegs_youngest); 201 tl_assert(freesegs_oldest); 202 tl_assert(freesegs_youngest != freesegs_oldest); 203 seg = freesegs_oldest; 204 freesegs_oldest = seg->nextfree; 205 nFreeSegs--; 206 seg->nextfree = (Seg*)1; 207 stats__segs_recycled++; 208 return seg; 209 } 210 211 static void set_Seg_freed ( Seg* seg ) 212 { 213 tl_assert(seg); 214 tl_assert(!Seg__is_freed(seg)); 215 if (nFreeSegs == 0) { 216 tl_assert(freesegs_oldest == NULL); 217 tl_assert(freesegs_youngest == NULL); 218 seg->nextfree = NULL; 219 freesegs_youngest = seg; 220 freesegs_oldest = seg; 221 nFreeSegs++; 222 } else { 223 tl_assert(freesegs_youngest); 224 tl_assert(freesegs_oldest); 225 if (nFreeSegs == 1) { 226 tl_assert(freesegs_youngest == freesegs_oldest); 227 } else { 228 tl_assert(freesegs_youngest != freesegs_oldest); 229 } 230 tl_assert(freesegs_youngest->nextfree == NULL); 231 tl_assert(seg != freesegs_youngest && seg != freesegs_oldest); 232 seg->nextfree = NULL; 233 freesegs_youngest->nextfree = seg; 234 freesegs_youngest = seg; 235 nFreeSegs++; 236 } 237 } 238 239 static WordFM* addr_to_seg_map = NULL; /* GuestAddr -> Seg* */ 240 241 static void addr_to_seg_map_ENSURE_INIT ( void ) 242 { 243 if (UNLIKELY(addr_to_seg_map == NULL)) { 244 addr_to_seg_map = VG_(newFM)( VG_(malloc), "pc.h_main.attmEI.1", 245 VG_(free), NULL/*unboxedcmp*/ ); 246 } 247 } 248 249 static Seg* find_Seg_by_addr ( Addr ga ) 250 { 251 UWord keyW, valW; 252 addr_to_seg_map_ENSURE_INIT(); 253 if (VG_(lookupFM)( addr_to_seg_map, &keyW, &valW, (UWord)ga )) { 254 tl_assert(keyW == ga); 255 return (Seg*)valW; 256 } else { 257 return NULL; 258 } 259 } 260 261 static void bind_addr_to_Seg ( Addr ga, Seg* seg ) 262 { 263 Bool b; 264 addr_to_seg_map_ENSURE_INIT(); 265 b = VG_(addToFM)( addr_to_seg_map, (UWord)ga, (UWord)seg ); 266 tl_assert(!b); /* else ga is already bound */ 267 } 268 269 static void unbind_addr_from_Seg ( Addr ga ) 270 { 271 Bool b; 272 UWord keyW, valW; 273 addr_to_seg_map_ENSURE_INIT(); 274 b = VG_(delFromFM)( addr_to_seg_map, &keyW, &valW, (UWord)ga ); 275 tl_assert(b); /* else ga was not already bound */ 276 tl_assert(keyW == ga); 277 tl_assert(valW != 0); 278 } 279 280 281 ////////////////////////////////////////////////////////////// 282 ////////////////////////////////////////////////////////////// 283 ////////////////////////////////////////////////////////////// 284 285 // Returns the added heap segment 286 static Seg* add_new_segment ( ThreadId tid, Addr p, SizeT size ) 287 { 288 Seg* seg = get_Seg_for_malloc(); 289 tl_assert(seg != (Seg*)1); /* since we're using 1 as a special value */ 290 seg->addr = p; 291 seg->szB = size; 292 seg->ec = VG_(record_ExeContext)( tid, 0/*first_ip_delta*/ ); 293 tl_assert(!Seg__is_freed(seg)); 294 295 bind_addr_to_Seg(p, seg); 296 297 return seg; 298 } 299 300 301 302 static 303 void* alloc_and_new_mem_heap ( ThreadId tid, 304 SizeT size, SizeT alignment, Bool is_zeroed ) 305 { 306 Addr p; 307 308 if ( ((SSizeT)size) < 0) return NULL; 309 310 p = (Addr)VG_(cli_malloc)(alignment, size); 311 if (is_zeroed) VG_(memset)((void*)p, 0, size); 312 313 add_new_segment( tid, p, size ); 314 315 stats__client_mallocs++; 316 return (void*)p; 317 } 318 319 static void die_and_free_mem_heap ( ThreadId tid, Seg* seg ) 320 { 321 // Empty and free the actual block 322 tl_assert(!Seg__is_freed(seg)); 323 324 VG_(cli_free)( (void*)seg->addr ); 325 326 // Remember where freed 327 seg->ec = VG_(record_ExeContext)( tid, 0/*first_ip_delta*/ ); 328 329 set_Seg_freed(seg); 330 unbind_addr_from_Seg( seg->addr ); 331 332 stats__client_frees++; 333 } 334 335 static void handle_free_heap( ThreadId tid, void* p ) 336 { 337 Seg* seg = find_Seg_by_addr( (Addr)p ); 338 if (!seg) { 339 /* freeing a block that wasn't malloc'd. Ignore. */ 340 return; 341 } 342 die_and_free_mem_heap( tid, seg ); 343 } 344 345 346 /*------------------------------------------------------------*/ 347 /*--- malloc() et al replacements ---*/ 348 /*------------------------------------------------------------*/ 349 350 void* h_replace_malloc ( ThreadId tid, SizeT n ) 351 { 352 return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), 353 /*is_zeroed*/False ); 354 } 355 356 void* h_replace___builtin_new ( ThreadId tid, SizeT n ) 357 { 358 return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), 359 /*is_zeroed*/False ); 360 } 361 362 void* h_replace___builtin_vec_new ( ThreadId tid, SizeT n ) 363 { 364 return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), 365 /*is_zeroed*/False ); 366 } 367 368 void* h_replace_memalign ( ThreadId tid, SizeT align, SizeT n ) 369 { 370 return alloc_and_new_mem_heap ( tid, n, align, 371 /*is_zeroed*/False ); 372 } 373 374 void* h_replace_calloc ( ThreadId tid, SizeT nmemb, SizeT size1 ) 375 { 376 return alloc_and_new_mem_heap ( tid, nmemb*size1, VG_(clo_alignment), 377 /*is_zeroed*/True ); 378 } 379 380 void h_replace_free ( ThreadId tid, void* p ) 381 { 382 // Should arguably check here if p.vseg matches the segID of the 383 // pointed-to block... unfortunately, by this stage, we don't know what 384 // p.vseg is, because we don't know the address of p (the p here is a 385 // copy, and we've lost the address of its source). To do so would 386 // require passing &p in, which would require rewriting part of 387 // vg_replace_malloc.c... argh. 388 // 389 // However, Memcheck does free checking, and will catch almost all 390 // violations this checking would have caught. (Would only miss if we 391 // unluckily passed an unrelated pointer to the very start of a heap 392 // block that was unrelated to that block. This is very unlikely!) So 393 // we haven't lost much. 394 395 handle_free_heap(tid, p); 396 } 397 398 void h_replace___builtin_delete ( ThreadId tid, void* p ) 399 { 400 handle_free_heap(tid, p); 401 } 402 403 void h_replace___builtin_vec_delete ( ThreadId tid, void* p ) 404 { 405 handle_free_heap(tid, p); 406 } 407 408 void* h_replace_realloc ( ThreadId tid, void* p_old, SizeT new_size ) 409 { 410 Seg* seg; 411 412 /* First try and find the block. */ 413 seg = find_Seg_by_addr( (Addr)p_old ); 414 if (!seg) 415 return NULL; 416 417 tl_assert(seg->addr == (Addr)p_old); 418 419 if (new_size <= seg->szB) { 420 /* new size is smaller: allocate, copy from old to new */ 421 Addr p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); 422 VG_(memcpy)((void*)p_new, p_old, new_size); 423 424 /* Free old memory */ 425 die_and_free_mem_heap( tid, seg ); 426 427 /* This has to be after die_and_free_mem_heap, otherwise the 428 former succeeds in shorting out the new block, not the 429 old, in the case when both are on the same list. */ 430 add_new_segment ( tid, p_new, new_size ); 431 432 return (void*)p_new; 433 } else { 434 /* new size is bigger: allocate, copy from old to new */ 435 Addr p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); 436 VG_(memcpy)((void*)p_new, p_old, seg->szB); 437 438 /* Free old memory */ 439 die_and_free_mem_heap( tid, seg ); 440 441 /* This has to be after die_and_free_mem_heap, otherwise the 442 former succeeds in shorting out the new block, not the old, 443 in the case when both are on the same list. NB jrs 444 2008-Sept-11: not sure if this comment is valid/correct any 445 more -- I suspect not. */ 446 add_new_segment ( tid, p_new, new_size ); 447 448 return (void*)p_new; 449 } 450 } 451 452 SizeT h_replace_malloc_usable_size ( ThreadId tid, void* p ) 453 { 454 Seg* seg = find_Seg_by_addr( (Addr)p ); 455 456 // There may be slop, but pretend there isn't because only the asked-for 457 // area will have been shadowed properly. 458 return ( seg ? seg->szB : 0 ); 459 } 460 461 462 /*--------------------------------------------------------------------*/ 463 /*--- Instrumentation ---*/ 464 /*--------------------------------------------------------------------*/ 465 466 /* The h_ instrumenter that follows is complex, since it deals with 467 shadow value computation. 468 469 It also needs to generate instrumentation for the sg_ side of 470 things. That's relatively straightforward. However, rather than 471 confuse the code herein any further, we simply delegate the problem 472 to sg_main.c, by using the four functions 473 sg_instrument_{init,fini,IRStmt,final_jump}. These four completely 474 abstractify the sg_ instrumentation. See comments in sg_main.c's 475 instrumentation section for further details. */ 476 477 478 /* Carries info about a particular tmp. The tmp's number is not 479 recorded, as this is implied by (equal to) its index in the tmpMap 480 in PCEnv. The tmp's type is also not recorded, as this is present 481 in PCEnv.sb->tyenv. 482 483 When .kind is NonShad, .shadow may give the identity of the temp 484 currently holding the associated shadow value, or it may be 485 IRTemp_INVALID if code to compute the shadow has not yet been 486 emitted. 487 488 When .kind is Shad tmp holds a shadow value, and so .shadow must be 489 IRTemp_INVALID, since it is illogical for a shadow tmp itself to be 490 shadowed. 491 */ 492 typedef 493 enum { NonShad=1, Shad=2 } 494 TempKind; 495 496 typedef 497 struct { 498 TempKind kind; 499 IRTemp shadow; 500 } 501 TempMapEnt; 502 503 504 505 /* Carries around state during Ptrcheck instrumentation. */ 506 typedef 507 struct { 508 /* MODIFIED: the superblock being constructed. IRStmts are 509 added. */ 510 IRSB* sb; 511 Bool trace; 512 513 /* MODIFIED: a table [0 .. #temps_in_sb-1] which gives the 514 current kind and possibly shadow temps for each temp in the 515 IRSB being constructed. Note that it does not contain the 516 type of each tmp. If you want to know the type, look at the 517 relevant entry in sb->tyenv. It follows that at all times 518 during the instrumentation process, the valid indices for 519 tmpMap and sb->tyenv are identical, being 0 .. N-1 where N is 520 total number of NonShad and Shad temps allocated so far. 521 522 The reason for this strange split (types in one place, all 523 other info in another) is that we need the types to be 524 attached to sb so as to make it possible to do 525 "typeOfIRExpr(mce->bb->tyenv, ...)" at various places in the 526 instrumentation process. 527 528 Note that only integer temps of the guest word size are 529 shadowed, since it is impossible (or meaningless) to hold a 530 pointer in any other type of temp. */ 531 XArray* /* of TempMapEnt */ qmpMap; 532 533 /* READONLY: the host word type. Needed for constructing 534 arguments of type 'HWord' to be passed to helper functions. 535 Ity_I32 or Ity_I64 only. */ 536 IRType hWordTy; 537 538 /* READONLY: the guest word type, Ity_I32 or Ity_I64 only. */ 539 IRType gWordTy; 540 541 /* READONLY: the guest state size, so we can generate shadow 542 offsets correctly. */ 543 Int guest_state_sizeB; 544 } 545 PCEnv; 546 547 /* SHADOW TMP MANAGEMENT. Shadow tmps are allocated lazily (on 548 demand), as they are encountered. This is for two reasons. 549 550 (1) (less important reason): Many original tmps are unused due to 551 initial IR optimisation, and we do not want to spaces in tables 552 tracking them. 553 554 Shadow IRTemps are therefore allocated on demand. pce.tmpMap is a 555 table indexed [0 .. n_types-1], which gives the current shadow for 556 each original tmp, or INVALID_IRTEMP if none is so far assigned. 557 It is necessary to support making multiple assignments to a shadow 558 -- specifically, after testing a shadow for definedness, it needs 559 to be made defined. But IR's SSA property disallows this. 560 561 (2) (more important reason): Therefore, when a shadow needs to get 562 a new value, a new temporary is created, the value is assigned to 563 that, and the tmpMap is updated to reflect the new binding. 564 565 A corollary is that if the tmpMap maps a given tmp to 566 IRTemp_INVALID and we are hoping to read that shadow tmp, it means 567 there's a read-before-write error in the original tmps. The IR 568 sanity checker should catch all such anomalies, however. 569 */ 570 571 /* Create a new IRTemp of type 'ty' and kind 'kind', and add it to 572 both the table in pce->sb and to our auxiliary mapping. Note that 573 newTemp may cause pce->tmpMap to resize, hence previous results 574 from VG_(indexXA)(pce->tmpMap) are invalidated. */ 575 static IRTemp newTemp ( PCEnv* pce, IRType ty, TempKind kind ) 576 { 577 Word newIx; 578 TempMapEnt ent; 579 IRTemp tmp = newIRTemp(pce->sb->tyenv, ty); 580 ent.kind = kind; 581 ent.shadow = IRTemp_INVALID; 582 newIx = VG_(addToXA)( pce->qmpMap, &ent ); 583 tl_assert(newIx == (Word)tmp); 584 return tmp; 585 } 586 587 /*------------------------------------------------------------*/ 588 /*--- Constructing IR fragments ---*/ 589 /*------------------------------------------------------------*/ 590 591 /* add stmt to a bb */ 592 static /*inline*/ void stmt ( HChar cat, PCEnv* pce, IRStmt* st ) { 593 if (pce->trace) { 594 VG_(printf)(" %c: ", cat); 595 ppIRStmt(st); 596 VG_(printf)("\n"); 597 } 598 addStmtToIRSB(pce->sb, st); 599 } 600 601 static IRTemp for_sg__newIRTemp_cb ( IRType ty, void* opaque ) 602 { 603 PCEnv* pce = (PCEnv*)opaque; 604 return newTemp( pce, ty, NonShad ); 605 } 606 607 608 IRSB* h_instrument ( VgCallbackClosure* closure, 609 IRSB* sbIn, 610 const VexGuestLayout* layout, 611 const VexGuestExtents* vge, 612 const VexArchInfo* archinfo_host, 613 IRType gWordTy, IRType hWordTy ) 614 { 615 Bool verboze = 0||False; 616 Int i /*, j*/; 617 PCEnv pce; 618 struct _SGEnv* sgenv; 619 620 if (gWordTy != hWordTy) { 621 /* We don't currently support this case. */ 622 VG_(tool_panic)("host/guest word size mismatch"); 623 } 624 625 /* Check we're not completely nuts */ 626 tl_assert(sizeof(UWord) == sizeof(void*)); 627 tl_assert(sizeof(Word) == sizeof(void*)); 628 tl_assert(sizeof(Addr) == sizeof(void*)); 629 tl_assert(sizeof(ULong) == 8); 630 tl_assert(sizeof(Long) == 8); 631 tl_assert(sizeof(Addr) == sizeof(void*)); 632 tl_assert(sizeof(UInt) == 4); 633 tl_assert(sizeof(Int) == 4); 634 635 /* Set up the running environment. Both .sb and .tmpMap are 636 modified as we go along. Note that tmps are added to both 637 .sb->tyenv and .tmpMap together, so the valid index-set for 638 those two arrays should always be identical. */ 639 VG_(memset)(&pce, 0, sizeof(pce)); 640 pce.sb = deepCopyIRSBExceptStmts(sbIn); 641 pce.trace = verboze; 642 pce.hWordTy = hWordTy; 643 pce.gWordTy = gWordTy; 644 pce.guest_state_sizeB = layout->total_sizeB; 645 646 pce.qmpMap = VG_(newXA)( VG_(malloc), "pc.h_instrument.1", VG_(free), 647 sizeof(TempMapEnt)); 648 for (i = 0; i < sbIn->tyenv->types_used; i++) { 649 TempMapEnt ent; 650 ent.kind = NonShad; 651 ent.shadow = IRTemp_INVALID; 652 VG_(addToXA)( pce.qmpMap, &ent ); 653 } 654 tl_assert( VG_(sizeXA)( pce.qmpMap ) == sbIn->tyenv->types_used ); 655 656 /* Also set up for the sg_ instrumenter. See comments at the top 657 of this instrumentation section for details. The two parameters 658 constitute a closure, which sg_ can use to correctly generate 659 new IRTemps as needed. */ 660 sgenv = sg_instrument_init( for_sg__newIRTemp_cb, 661 (void*)&pce ); 662 663 /* Copy verbatim any IR preamble preceding the first IMark */ 664 665 i = 0; 666 while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) { 667 IRStmt* st = sbIn->stmts[i]; 668 tl_assert(st); 669 tl_assert(isFlatIRStmt(st)); 670 stmt( 'C', &pce, sbIn->stmts[i] ); 671 i++; 672 } 673 674 /* Iterate over the remaining stmts to generate instrumentation. */ 675 676 tl_assert(sbIn->stmts_used > 0); 677 tl_assert(i >= 0); 678 tl_assert(i < sbIn->stmts_used); 679 tl_assert(sbIn->stmts[i]->tag == Ist_IMark); 680 681 for (/*use current i*/; i < sbIn->stmts_used; i++) { 682 /* generate sg_ instrumentation for this stmt */ 683 sg_instrument_IRStmt( sgenv, pce.sb, sbIn->stmts[i], 684 layout, gWordTy, hWordTy ); 685 686 stmt( 'C', &pce, sbIn->stmts[i] ); 687 } 688 689 /* generate sg_ instrumentation for the final jump */ 690 sg_instrument_final_jump( sgenv, pce.sb, sbIn->next, sbIn->jumpkind, 691 layout, gWordTy, hWordTy ); 692 693 /* and finalise .. */ 694 sg_instrument_fini( sgenv ); 695 696 /* If this fails, there's been some serious snafu with tmp management, 697 that should be investigated. */ 698 tl_assert( VG_(sizeXA)( pce.qmpMap ) == pce.sb->tyenv->types_used ); 699 VG_(deleteXA)( pce.qmpMap ); 700 701 return pce.sb; 702 } 703 704 705 /*--------------------------------------------------------------------*/ 706 /*--- Finalisation ---*/ 707 /*--------------------------------------------------------------------*/ 708 709 void h_fini ( Int exitcode ) 710 { 711 if (VG_(clo_verbosity) == 1 && !VG_(clo_xml)) { 712 VG_(message)(Vg_UserMsg, 713 "For counts of detected and suppressed errors, " 714 "rerun with: -v\n"); 715 } 716 717 if (VG_(clo_stats)) { 718 VG_(message)(Vg_DebugMsg, 719 " h_: %'10llu client allocs, %'10llu client frees\n", 720 stats__client_mallocs, stats__client_frees); 721 VG_(message)(Vg_DebugMsg, 722 " h_: %'10llu Segs allocd, %'10llu Segs recycled\n", 723 stats__segs_allocd, stats__segs_recycled); 724 } 725 } 726 727 728 /*--------------------------------------------------------------------*/ 729 /*--- end h_main.c ---*/ 730 /*--------------------------------------------------------------------*/ 731