Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "code_generator_utils.h"
     18 #include "nodes.h"
     19 
     20 #include "base/logging.h"
     21 
     22 namespace art {
     23 
     24 void CalculateMagicAndShiftForDivRem(int64_t divisor, bool is_long,
     25                                      int64_t* magic, int* shift) {
     26   // It does not make sense to calculate magic and shift for zero divisor.
     27   DCHECK_NE(divisor, 0);
     28 
     29   /* Implementation according to H.S.Warren's "Hacker's Delight" (Addison Wesley, 2002)
     30    * Chapter 10 and T.Grablund, P.L.Montogomery's "Division by Invariant Integers Using
     31    * Multiplication" (PLDI 1994).
     32    * The magic number M and shift S can be calculated in the following way:
     33    * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
     34    * where divisor(d) >= 2.
     35    * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
     36    * where divisor(d) <= -2.
     37    * Thus nc can be calculated like:
     38    * nc = exp + exp % d - 1, where d >= 2 and exp = 2^31 for int or 2^63 for long
     39    * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^31 for int or 2^63 for long
     40    *
     41    * So the shift p is the smallest p satisfying
     42    * 2^p > nc * (d - 2^p % d), where d >= 2
     43    * 2^p > nc * (d + 2^p % d), where d <= -2.
     44    *
     45    * The magic number M is calculated by
     46    * M = (2^p + d - 2^p % d) / d, where d >= 2
     47    * M = (2^p - d - 2^p % d) / d, where d <= -2.
     48    *
     49    * Notice that p is always bigger than or equal to 32 (resp. 64), so we just return 32 - p
     50    * (resp. 64 - p) as the shift number S.
     51    */
     52 
     53   int64_t p = is_long ? 63 : 31;
     54   const uint64_t exp = is_long ? (UINT64_C(1) << 63) : (UINT32_C(1) << 31);
     55 
     56   // Initialize the computations.
     57   uint64_t abs_d = (divisor >= 0) ? divisor : -divisor;
     58   uint64_t sign_bit = is_long ? static_cast<uint64_t>(divisor) >> 63 :
     59                                 static_cast<uint32_t>(divisor) >> 31;
     60   uint64_t tmp = exp + sign_bit;
     61   uint64_t abs_nc = tmp - 1 - (tmp % abs_d);
     62   uint64_t quotient1 = exp / abs_nc;
     63   uint64_t remainder1 = exp % abs_nc;
     64   uint64_t quotient2 = exp / abs_d;
     65   uint64_t remainder2 = exp % abs_d;
     66 
     67   /*
     68    * To avoid handling both positive and negative divisor, "Hacker's Delight"
     69    * introduces a method to handle these 2 cases together to avoid duplication.
     70    */
     71   uint64_t delta;
     72   do {
     73     p++;
     74     quotient1 = 2 * quotient1;
     75     remainder1 = 2 * remainder1;
     76     if (remainder1 >= abs_nc) {
     77       quotient1++;
     78       remainder1 = remainder1 - abs_nc;
     79     }
     80     quotient2 = 2 * quotient2;
     81     remainder2 = 2 * remainder2;
     82     if (remainder2 >= abs_d) {
     83       quotient2++;
     84       remainder2 = remainder2 - abs_d;
     85     }
     86     delta = abs_d - remainder2;
     87   } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
     88 
     89   *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
     90 
     91   if (!is_long) {
     92     *magic = static_cast<int>(*magic);
     93   }
     94 
     95   *shift = is_long ? p - 64 : p - 32;
     96 }
     97 
     98 bool IsBooleanValueOrMaterializedCondition(HInstruction* cond_input) {
     99   return !cond_input->IsCondition() || !cond_input->IsEmittedAtUseSite();
    100 }
    101 
    102 }  // namespace art
    103