Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mark_sweep.h"
     18 
     19 #include <atomic>
     20 #include <functional>
     21 #include <numeric>
     22 #include <climits>
     23 #include <vector>
     24 
     25 #include "base/bounded_fifo.h"
     26 #include "base/logging.h"
     27 #include "base/macros.h"
     28 #include "base/mutex-inl.h"
     29 #include "base/systrace.h"
     30 #include "base/time_utils.h"
     31 #include "base/timing_logger.h"
     32 #include "gc/accounting/card_table-inl.h"
     33 #include "gc/accounting/heap_bitmap-inl.h"
     34 #include "gc/accounting/mod_union_table.h"
     35 #include "gc/accounting/space_bitmap-inl.h"
     36 #include "gc/heap.h"
     37 #include "gc/reference_processor.h"
     38 #include "gc/space/large_object_space.h"
     39 #include "gc/space/space-inl.h"
     40 #include "mark_sweep-inl.h"
     41 #include "mirror/object-inl.h"
     42 #include "runtime.h"
     43 #include "scoped_thread_state_change.h"
     44 #include "thread-inl.h"
     45 #include "thread_list.h"
     46 
     47 namespace art {
     48 namespace gc {
     49 namespace collector {
     50 
     51 // Performance options.
     52 static constexpr bool kUseRecursiveMark = false;
     53 static constexpr bool kUseMarkStackPrefetch = true;
     54 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
     55 static constexpr bool kPreCleanCards = true;
     56 
     57 // Parallelism options.
     58 static constexpr bool kParallelCardScan = true;
     59 static constexpr bool kParallelRecursiveMark = true;
     60 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
     61 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
     62 // having this can add overhead in ProcessReferences since we may end up doing many calls of
     63 // ProcessMarkStack with very small mark stacks.
     64 static constexpr size_t kMinimumParallelMarkStackSize = 128;
     65 static constexpr bool kParallelProcessMarkStack = true;
     66 
     67 // Profiling and information flags.
     68 static constexpr bool kProfileLargeObjects = false;
     69 static constexpr bool kMeasureOverhead = false;
     70 static constexpr bool kCountTasks = false;
     71 static constexpr bool kCountMarkedObjects = false;
     72 
     73 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
     74 static constexpr bool kCheckLocks = kDebugLocking;
     75 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
     76 
     77 // If true, revoke the rosalloc thread-local buffers at the
     78 // checkpoint, as opposed to during the pause.
     79 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
     80 
     81 void MarkSweep::BindBitmaps() {
     82   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
     83   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
     84   // Mark all of the spaces we never collect as immune.
     85   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
     86     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
     87       immune_spaces_.AddSpace(space);
     88     }
     89   }
     90 }
     91 
     92 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
     93     : GarbageCollector(heap,
     94                        name_prefix +
     95                        (is_concurrent ? "concurrent mark sweep": "mark sweep")),
     96       current_space_bitmap_(nullptr),
     97       mark_bitmap_(nullptr),
     98       mark_stack_(nullptr),
     99       gc_barrier_(new Barrier(0)),
    100       mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
    101       is_concurrent_(is_concurrent),
    102       live_stack_freeze_size_(0) {
    103   std::string error_msg;
    104   MemMap* mem_map = MemMap::MapAnonymous(
    105       "mark sweep sweep array free buffer", nullptr,
    106       RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
    107       PROT_READ | PROT_WRITE, false, false, &error_msg);
    108   CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
    109   sweep_array_free_buffer_mem_map_.reset(mem_map);
    110 }
    111 
    112 void MarkSweep::InitializePhase() {
    113   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    114   mark_stack_ = heap_->GetMarkStack();
    115   DCHECK(mark_stack_ != nullptr);
    116   immune_spaces_.Reset();
    117   no_reference_class_count_.StoreRelaxed(0);
    118   normal_count_.StoreRelaxed(0);
    119   class_count_.StoreRelaxed(0);
    120   object_array_count_.StoreRelaxed(0);
    121   other_count_.StoreRelaxed(0);
    122   reference_count_.StoreRelaxed(0);
    123   large_object_test_.StoreRelaxed(0);
    124   large_object_mark_.StoreRelaxed(0);
    125   overhead_time_ .StoreRelaxed(0);
    126   work_chunks_created_.StoreRelaxed(0);
    127   work_chunks_deleted_.StoreRelaxed(0);
    128   mark_null_count_.StoreRelaxed(0);
    129   mark_immune_count_.StoreRelaxed(0);
    130   mark_fastpath_count_.StoreRelaxed(0);
    131   mark_slowpath_count_.StoreRelaxed(0);
    132   {
    133     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
    134     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    135     mark_bitmap_ = heap_->GetMarkBitmap();
    136   }
    137   if (!GetCurrentIteration()->GetClearSoftReferences()) {
    138     // Always clear soft references if a non-sticky collection.
    139     GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
    140   }
    141 }
    142 
    143 void MarkSweep::RunPhases() {
    144   Thread* self = Thread::Current();
    145   InitializePhase();
    146   Locks::mutator_lock_->AssertNotHeld(self);
    147   if (IsConcurrent()) {
    148     GetHeap()->PreGcVerification(this);
    149     {
    150       ReaderMutexLock mu(self, *Locks::mutator_lock_);
    151       MarkingPhase();
    152     }
    153     ScopedPause pause(this);
    154     GetHeap()->PrePauseRosAllocVerification(this);
    155     PausePhase();
    156     RevokeAllThreadLocalBuffers();
    157   } else {
    158     ScopedPause pause(this);
    159     GetHeap()->PreGcVerificationPaused(this);
    160     MarkingPhase();
    161     GetHeap()->PrePauseRosAllocVerification(this);
    162     PausePhase();
    163     RevokeAllThreadLocalBuffers();
    164   }
    165   {
    166     // Sweeping always done concurrently, even for non concurrent mark sweep.
    167     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    168     ReclaimPhase();
    169   }
    170   GetHeap()->PostGcVerification(this);
    171   FinishPhase();
    172 }
    173 
    174 void MarkSweep::ProcessReferences(Thread* self) {
    175   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    176   GetHeap()->GetReferenceProcessor()->ProcessReferences(
    177       true,
    178       GetTimings(),
    179       GetCurrentIteration()->GetClearSoftReferences(),
    180       this);
    181 }
    182 
    183 void MarkSweep::PausePhase() {
    184   TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
    185   Thread* self = Thread::Current();
    186   Locks::mutator_lock_->AssertExclusiveHeld(self);
    187   if (IsConcurrent()) {
    188     // Handle the dirty objects if we are a concurrent GC.
    189     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    190     // Re-mark root set.
    191     ReMarkRoots();
    192     // Scan dirty objects, this is only required if we are not doing concurrent GC.
    193     RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
    194   }
    195   {
    196     TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
    197     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    198     heap_->SwapStacks();
    199     live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
    200     // Need to revoke all the thread local allocation stacks since we just swapped the allocation
    201     // stacks and don't want anybody to allocate into the live stack.
    202     RevokeAllThreadLocalAllocationStacks(self);
    203   }
    204   heap_->PreSweepingGcVerification(this);
    205   // Disallow new system weaks to prevent a race which occurs when someone adds a new system
    206   // weak before we sweep them. Since this new system weak may not be marked, the GC may
    207   // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
    208   // reference to a string that is about to be swept.
    209   Runtime::Current()->DisallowNewSystemWeaks();
    210   // Enable the reference processing slow path, needs to be done with mutators paused since there
    211   // is no lock in the GetReferent fast path.
    212   GetHeap()->GetReferenceProcessor()->EnableSlowPath();
    213 }
    214 
    215 void MarkSweep::PreCleanCards() {
    216   // Don't do this for non concurrent GCs since they don't have any dirty cards.
    217   if (kPreCleanCards && IsConcurrent()) {
    218     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    219     Thread* self = Thread::Current();
    220     CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
    221     // Process dirty cards and add dirty cards to mod union tables, also ages cards.
    222     heap_->ProcessCards(GetTimings(), false, true, false);
    223     // The checkpoint root marking is required to avoid a race condition which occurs if the
    224     // following happens during a reference write:
    225     // 1. mutator dirties the card (write barrier)
    226     // 2. GC ages the card (the above ProcessCards call)
    227     // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
    228     // 4. mutator writes the value (corresponding to the write barrier in 1.)
    229     // This causes the GC to age the card but not necessarily mark the reference which the mutator
    230     // wrote into the object stored in the card.
    231     // Having the checkpoint fixes this issue since it ensures that the card mark and the
    232     // reference write are visible to the GC before the card is scanned (this is due to locks being
    233     // acquired / released in the checkpoint code).
    234     // The other roots are also marked to help reduce the pause.
    235     MarkRootsCheckpoint(self, false);
    236     MarkNonThreadRoots();
    237     MarkConcurrentRoots(
    238         static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
    239     // Process the newly aged cards.
    240     RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
    241     // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
    242     // in the next GC.
    243   }
    244 }
    245 
    246 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
    247   if (kUseThreadLocalAllocationStack) {
    248     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    249     Locks::mutator_lock_->AssertExclusiveHeld(self);
    250     heap_->RevokeAllThreadLocalAllocationStacks(self);
    251   }
    252 }
    253 
    254 void MarkSweep::MarkingPhase() {
    255   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    256   Thread* self = Thread::Current();
    257   BindBitmaps();
    258   FindDefaultSpaceBitmap();
    259   // Process dirty cards and add dirty cards to mod union tables.
    260   // If the GC type is non sticky, then we just clear the cards instead of ageing them.
    261   heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
    262   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    263   MarkRoots(self);
    264   MarkReachableObjects();
    265   // Pre-clean dirtied cards to reduce pauses.
    266   PreCleanCards();
    267 }
    268 
    269 class ScanObjectVisitor {
    270  public:
    271   explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
    272       : mark_sweep_(mark_sweep) {}
    273 
    274   void operator()(mirror::Object* obj) const
    275       ALWAYS_INLINE
    276       REQUIRES(Locks::heap_bitmap_lock_)
    277       SHARED_REQUIRES(Locks::mutator_lock_) {
    278     if (kCheckLocks) {
    279       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
    280       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    281     }
    282     mark_sweep_->ScanObject(obj);
    283   }
    284 
    285  private:
    286   MarkSweep* const mark_sweep_;
    287 };
    288 
    289 void MarkSweep::UpdateAndMarkModUnion() {
    290   for (const auto& space : immune_spaces_.GetSpaces()) {
    291     const char* name = space->IsZygoteSpace()
    292         ? "UpdateAndMarkZygoteModUnionTable"
    293         : "UpdateAndMarkImageModUnionTable";
    294     DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space;
    295     TimingLogger::ScopedTiming t(name, GetTimings());
    296     accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
    297     if (mod_union_table != nullptr) {
    298       mod_union_table->UpdateAndMarkReferences(this);
    299     } else {
    300       // No mod-union table, scan all the live bits. This can only occur for app images.
    301       space->GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    302                                                reinterpret_cast<uintptr_t>(space->End()),
    303                                                ScanObjectVisitor(this));
    304     }
    305   }
    306 }
    307 
    308 void MarkSweep::MarkReachableObjects() {
    309   UpdateAndMarkModUnion();
    310   // Recursively mark all the non-image bits set in the mark bitmap.
    311   RecursiveMark();
    312 }
    313 
    314 void MarkSweep::ReclaimPhase() {
    315   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    316   Thread* const self = Thread::Current();
    317   // Process the references concurrently.
    318   ProcessReferences(self);
    319   SweepSystemWeaks(self);
    320   Runtime* const runtime = Runtime::Current();
    321   runtime->AllowNewSystemWeaks();
    322   // Clean up class loaders after system weaks are swept since that is how we know if class
    323   // unloading occurred.
    324   runtime->GetClassLinker()->CleanupClassLoaders();
    325   {
    326     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    327     GetHeap()->RecordFreeRevoke();
    328     // Reclaim unmarked objects.
    329     Sweep(false);
    330     // Swap the live and mark bitmaps for each space which we modified space. This is an
    331     // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
    332     // bitmaps.
    333     SwapBitmaps();
    334     // Unbind the live and mark bitmaps.
    335     GetHeap()->UnBindBitmaps();
    336   }
    337 }
    338 
    339 void MarkSweep::FindDefaultSpaceBitmap() {
    340   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    341   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    342     accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
    343     // We want to have the main space instead of non moving if possible.
    344     if (bitmap != nullptr &&
    345         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
    346       current_space_bitmap_ = bitmap;
    347       // If we are not the non moving space exit the loop early since this will be good enough.
    348       if (space != heap_->GetNonMovingSpace()) {
    349         break;
    350       }
    351     }
    352   }
    353   CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
    354       << heap_->DumpSpaces();
    355 }
    356 
    357 void MarkSweep::ExpandMarkStack() {
    358   ResizeMarkStack(mark_stack_->Capacity() * 2);
    359 }
    360 
    361 void MarkSweep::ResizeMarkStack(size_t new_size) {
    362   // Rare case, no need to have Thread::Current be a parameter.
    363   if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
    364     // Someone else acquired the lock and expanded the mark stack before us.
    365     return;
    366   }
    367   std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
    368   CHECK_LE(mark_stack_->Size(), new_size);
    369   mark_stack_->Resize(new_size);
    370   for (auto& obj : temp) {
    371     mark_stack_->PushBack(obj.AsMirrorPtr());
    372   }
    373 }
    374 
    375 mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
    376   MarkObject(obj, nullptr, MemberOffset(0));
    377   return obj;
    378 }
    379 
    380 inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
    381   DCHECK(obj != nullptr);
    382   if (MarkObjectParallel(obj)) {
    383     MutexLock mu(Thread::Current(), mark_stack_lock_);
    384     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    385       ExpandMarkStack();
    386     }
    387     // The object must be pushed on to the mark stack.
    388     mark_stack_->PushBack(obj);
    389   }
    390 }
    391 
    392 bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) {
    393   return IsMarked(ref->AsMirrorPtr());
    394 }
    395 
    396 class MarkSweepMarkObjectSlowPath {
    397  public:
    398   explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep,
    399                                        mirror::Object* holder = nullptr,
    400                                        MemberOffset offset = MemberOffset(0))
    401       : mark_sweep_(mark_sweep), holder_(holder), offset_(offset) {}
    402 
    403   void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
    404     if (kProfileLargeObjects) {
    405       // TODO: Differentiate between marking and testing somehow.
    406       ++mark_sweep_->large_object_test_;
    407       ++mark_sweep_->large_object_mark_;
    408     }
    409     space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
    410     if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
    411                  (kIsDebugBuild && large_object_space != nullptr &&
    412                      !large_object_space->Contains(obj)))) {
    413       LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
    414       if (holder_ != nullptr) {
    415         size_t holder_size = holder_->SizeOf();
    416         ArtField* field = holder_->FindFieldByOffset(offset_);
    417         LOG(INTERNAL_FATAL) << "Field info: "
    418                             << " holder=" << holder_
    419                             << " holder is "
    420                             << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
    421                                 ? "alive" : "dead")
    422                             << " holder_size=" << holder_size
    423                             << " holder_type=" << PrettyTypeOf(holder_)
    424                             << " offset=" << offset_.Uint32Value()
    425                             << " field=" << (field != nullptr ? field->GetName() : "nullptr")
    426                             << " field_type="
    427                             << (field != nullptr ? field->GetTypeDescriptor() : "")
    428                             << " first_ref_field_offset="
    429                             << (holder_->IsClass()
    430                                 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
    431                                     sizeof(void*))
    432                                 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
    433                             << " num_of_ref_fields="
    434                             << (holder_->IsClass()
    435                                 ? holder_->AsClass()->NumReferenceStaticFields()
    436                                 : holder_->GetClass()->NumReferenceInstanceFields())
    437                             << "\n";
    438         // Print the memory content of the holder.
    439         for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
    440           uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
    441           LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
    442                               << std::hex << p[i];
    443         }
    444       }
    445       PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
    446       MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
    447       {
    448         LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
    449         Thread* self = Thread::Current();
    450         if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    451           mark_sweep_->VerifyRoots();
    452         } else {
    453           const bool heap_bitmap_exclusive_locked =
    454               Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
    455           if (heap_bitmap_exclusive_locked) {
    456             Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
    457           }
    458           {
    459             ScopedThreadSuspension(self, kSuspended);
    460             ScopedSuspendAll ssa(__FUNCTION__);
    461             mark_sweep_->VerifyRoots();
    462           }
    463           if (heap_bitmap_exclusive_locked) {
    464             Locks::heap_bitmap_lock_->ExclusiveLock(self);
    465           }
    466         }
    467       }
    468       LOG(FATAL) << "Can't mark invalid object";
    469     }
    470   }
    471 
    472  private:
    473   MarkSweep* const mark_sweep_;
    474   mirror::Object* const holder_;
    475   MemberOffset offset_;
    476 };
    477 
    478 inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj,
    479                                          mirror::Object* holder,
    480                                          MemberOffset offset) {
    481   DCHECK(obj != nullptr);
    482   if (kUseBakerOrBrooksReadBarrier) {
    483     // Verify all the objects have the correct pointer installed.
    484     obj->AssertReadBarrierPointer();
    485   }
    486   if (immune_spaces_.IsInImmuneRegion(obj)) {
    487     if (kCountMarkedObjects) {
    488       ++mark_immune_count_;
    489     }
    490     DCHECK(mark_bitmap_->Test(obj));
    491   } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
    492     if (kCountMarkedObjects) {
    493       ++mark_fastpath_count_;
    494     }
    495     if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
    496       PushOnMarkStack(obj);  // This object was not previously marked.
    497     }
    498   } else {
    499     if (kCountMarkedObjects) {
    500       ++mark_slowpath_count_;
    501     }
    502     MarkSweepMarkObjectSlowPath visitor(this, holder, offset);
    503     // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
    504     // will check again.
    505     if (!mark_bitmap_->Set(obj, visitor)) {
    506       PushOnMarkStack(obj);  // Was not already marked, push.
    507     }
    508   }
    509 }
    510 
    511 inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
    512   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    513     // Lock is not needed but is here anyways to please annotalysis.
    514     MutexLock mu(Thread::Current(), mark_stack_lock_);
    515     ExpandMarkStack();
    516   }
    517   // The object must be pushed on to the mark stack.
    518   mark_stack_->PushBack(obj);
    519 }
    520 
    521 inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
    522   DCHECK(obj != nullptr);
    523   if (kUseBakerOrBrooksReadBarrier) {
    524     // Verify all the objects have the correct pointer installed.
    525     obj->AssertReadBarrierPointer();
    526   }
    527   if (immune_spaces_.IsInImmuneRegion(obj)) {
    528     DCHECK(IsMarked(obj) != nullptr);
    529     return false;
    530   }
    531   // Try to take advantage of locality of references within a space, failing this find the space
    532   // the hard way.
    533   accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
    534   if (LIKELY(object_bitmap->HasAddress(obj))) {
    535     return !object_bitmap->AtomicTestAndSet(obj);
    536   }
    537   MarkSweepMarkObjectSlowPath visitor(this);
    538   return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
    539 }
    540 
    541 void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) {
    542   MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
    543 }
    544 
    545 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
    546 inline void MarkSweep::MarkObject(mirror::Object* obj,
    547                                   mirror::Object* holder,
    548                                   MemberOffset offset) {
    549   if (obj != nullptr) {
    550     MarkObjectNonNull(obj, holder, offset);
    551   } else if (kCountMarkedObjects) {
    552     ++mark_null_count_;
    553   }
    554 }
    555 
    556 class VerifyRootMarkedVisitor : public SingleRootVisitor {
    557  public:
    558   explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
    559 
    560   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
    561       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    562     CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
    563   }
    564 
    565  private:
    566   MarkSweep* const collector_;
    567 };
    568 
    569 void MarkSweep::VisitRoots(mirror::Object*** roots,
    570                            size_t count,
    571                            const RootInfo& info ATTRIBUTE_UNUSED) {
    572   for (size_t i = 0; i < count; ++i) {
    573     MarkObjectNonNull(*roots[i]);
    574   }
    575 }
    576 
    577 void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
    578                            size_t count,
    579                            const RootInfo& info ATTRIBUTE_UNUSED) {
    580   for (size_t i = 0; i < count; ++i) {
    581     MarkObjectNonNull(roots[i]->AsMirrorPtr());
    582   }
    583 }
    584 
    585 class VerifyRootVisitor : public SingleRootVisitor {
    586  public:
    587   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
    588       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    589     // See if the root is on any space bitmap.
    590     auto* heap = Runtime::Current()->GetHeap();
    591     if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
    592       space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
    593       if (large_object_space != nullptr && !large_object_space->Contains(root)) {
    594         LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
    595       }
    596     }
    597   }
    598 };
    599 
    600 void MarkSweep::VerifyRoots() {
    601   VerifyRootVisitor visitor;
    602   Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
    603 }
    604 
    605 void MarkSweep::MarkRoots(Thread* self) {
    606   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    607   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    608     // If we exclusively hold the mutator lock, all threads must be suspended.
    609     Runtime::Current()->VisitRoots(this);
    610     RevokeAllThreadLocalAllocationStacks(self);
    611   } else {
    612     MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
    613     // At this point the live stack should no longer have any mutators which push into it.
    614     MarkNonThreadRoots();
    615     MarkConcurrentRoots(
    616         static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
    617   }
    618 }
    619 
    620 void MarkSweep::MarkNonThreadRoots() {
    621   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    622   Runtime::Current()->VisitNonThreadRoots(this);
    623 }
    624 
    625 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
    626   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    627   // Visit all runtime roots and clear dirty flags.
    628   Runtime::Current()->VisitConcurrentRoots(
    629       this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
    630 }
    631 
    632 class DelayReferenceReferentVisitor {
    633  public:
    634   explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {}
    635 
    636   void operator()(mirror::Class* klass, mirror::Reference* ref) const
    637       REQUIRES(Locks::heap_bitmap_lock_)
    638       SHARED_REQUIRES(Locks::mutator_lock_) {
    639     collector_->DelayReferenceReferent(klass, ref);
    640   }
    641 
    642  private:
    643   MarkSweep* const collector_;
    644 };
    645 
    646 template <bool kUseFinger = false>
    647 class MarkStackTask : public Task {
    648  public:
    649   MarkStackTask(ThreadPool* thread_pool,
    650                 MarkSweep* mark_sweep,
    651                 size_t mark_stack_size,
    652                 StackReference<mirror::Object>* mark_stack)
    653       : mark_sweep_(mark_sweep),
    654         thread_pool_(thread_pool),
    655         mark_stack_pos_(mark_stack_size) {
    656     // We may have to copy part of an existing mark stack when another mark stack overflows.
    657     if (mark_stack_size != 0) {
    658       DCHECK(mark_stack != nullptr);
    659       // TODO: Check performance?
    660       std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
    661     }
    662     if (kCountTasks) {
    663       ++mark_sweep_->work_chunks_created_;
    664     }
    665   }
    666 
    667   static const size_t kMaxSize = 1 * KB;
    668 
    669  protected:
    670   class MarkObjectParallelVisitor {
    671    public:
    672     ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
    673                                             MarkSweep* mark_sweep)
    674         : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
    675 
    676     ALWAYS_INLINE void operator()(mirror::Object* obj,
    677                     MemberOffset offset,
    678                     bool is_static ATTRIBUTE_UNUSED) const
    679         SHARED_REQUIRES(Locks::mutator_lock_) {
    680       Mark(obj->GetFieldObject<mirror::Object>(offset));
    681     }
    682 
    683     void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    684         SHARED_REQUIRES(Locks::mutator_lock_) {
    685       if (!root->IsNull()) {
    686         VisitRoot(root);
    687       }
    688     }
    689 
    690     void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    691         SHARED_REQUIRES(Locks::mutator_lock_) {
    692       if (kCheckLocks) {
    693         Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
    694         Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    695       }
    696       Mark(root->AsMirrorPtr());
    697     }
    698 
    699    private:
    700     ALWAYS_INLINE void Mark(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) {
    701       if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
    702         if (kUseFinger) {
    703           std::atomic_thread_fence(std::memory_order_seq_cst);
    704           if (reinterpret_cast<uintptr_t>(ref) >=
    705               static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
    706             return;
    707           }
    708         }
    709         chunk_task_->MarkStackPush(ref);
    710       }
    711     }
    712 
    713     MarkStackTask<kUseFinger>* const chunk_task_;
    714     MarkSweep* const mark_sweep_;
    715   };
    716 
    717   class ScanObjectParallelVisitor {
    718    public:
    719     ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task)
    720         : chunk_task_(chunk_task) {}
    721 
    722     // No thread safety analysis since multiple threads will use this visitor.
    723     void operator()(mirror::Object* obj) const
    724         REQUIRES(Locks::heap_bitmap_lock_)
    725         SHARED_REQUIRES(Locks::mutator_lock_) {
    726       MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
    727       MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
    728       DelayReferenceReferentVisitor ref_visitor(mark_sweep);
    729       mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
    730     }
    731 
    732    private:
    733     MarkStackTask<kUseFinger>* const chunk_task_;
    734   };
    735 
    736   virtual ~MarkStackTask() {
    737     // Make sure that we have cleared our mark stack.
    738     DCHECK_EQ(mark_stack_pos_, 0U);
    739     if (kCountTasks) {
    740       ++mark_sweep_->work_chunks_deleted_;
    741     }
    742   }
    743 
    744   MarkSweep* const mark_sweep_;
    745   ThreadPool* const thread_pool_;
    746   // Thread local mark stack for this task.
    747   StackReference<mirror::Object> mark_stack_[kMaxSize];
    748   // Mark stack position.
    749   size_t mark_stack_pos_;
    750 
    751   ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
    752       SHARED_REQUIRES(Locks::mutator_lock_) {
    753     if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
    754       // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
    755       mark_stack_pos_ /= 2;
    756       auto* task = new MarkStackTask(thread_pool_,
    757                                      mark_sweep_,
    758                                      kMaxSize - mark_stack_pos_,
    759                                      mark_stack_ + mark_stack_pos_);
    760       thread_pool_->AddTask(Thread::Current(), task);
    761     }
    762     DCHECK(obj != nullptr);
    763     DCHECK_LT(mark_stack_pos_, kMaxSize);
    764     mark_stack_[mark_stack_pos_++].Assign(obj);
    765   }
    766 
    767   virtual void Finalize() {
    768     delete this;
    769   }
    770 
    771   // Scans all of the objects
    772   virtual void Run(Thread* self ATTRIBUTE_UNUSED)
    773       REQUIRES(Locks::heap_bitmap_lock_)
    774       SHARED_REQUIRES(Locks::mutator_lock_) {
    775     ScanObjectParallelVisitor visitor(this);
    776     // TODO: Tune this.
    777     static const size_t kFifoSize = 4;
    778     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
    779     for (;;) {
    780       mirror::Object* obj = nullptr;
    781       if (kUseMarkStackPrefetch) {
    782         while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
    783           mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
    784           DCHECK(mark_stack_obj != nullptr);
    785           __builtin_prefetch(mark_stack_obj);
    786           prefetch_fifo.push_back(mark_stack_obj);
    787         }
    788         if (UNLIKELY(prefetch_fifo.empty())) {
    789           break;
    790         }
    791         obj = prefetch_fifo.front();
    792         prefetch_fifo.pop_front();
    793       } else {
    794         if (UNLIKELY(mark_stack_pos_ == 0)) {
    795           break;
    796         }
    797         obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
    798       }
    799       DCHECK(obj != nullptr);
    800       visitor(obj);
    801     }
    802   }
    803 };
    804 
    805 class CardScanTask : public MarkStackTask<false> {
    806  public:
    807   CardScanTask(ThreadPool* thread_pool,
    808                MarkSweep* mark_sweep,
    809                accounting::ContinuousSpaceBitmap* bitmap,
    810                uint8_t* begin,
    811                uint8_t* end,
    812                uint8_t minimum_age,
    813                size_t mark_stack_size,
    814                StackReference<mirror::Object>* mark_stack_obj,
    815                bool clear_card)
    816       : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
    817         bitmap_(bitmap),
    818         begin_(begin),
    819         end_(end),
    820         minimum_age_(minimum_age),
    821         clear_card_(clear_card) {}
    822 
    823  protected:
    824   accounting::ContinuousSpaceBitmap* const bitmap_;
    825   uint8_t* const begin_;
    826   uint8_t* const end_;
    827   const uint8_t minimum_age_;
    828   const bool clear_card_;
    829 
    830   virtual void Finalize() {
    831     delete this;
    832   }
    833 
    834   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    835     ScanObjectParallelVisitor visitor(this);
    836     accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
    837     size_t cards_scanned = clear_card_
    838         ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_)
    839         : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
    840     VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
    841         << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
    842     // Finish by emptying our local mark stack.
    843     MarkStackTask::Run(self);
    844   }
    845 };
    846 
    847 size_t MarkSweep::GetThreadCount(bool paused) const {
    848   // Use less threads if we are in a background state (non jank perceptible) since we want to leave
    849   // more CPU time for the foreground apps.
    850   if (heap_->GetThreadPool() == nullptr || !Runtime::Current()->InJankPerceptibleProcessState()) {
    851     return 1;
    852   }
    853   return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
    854 }
    855 
    856 void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
    857   accounting::CardTable* card_table = GetHeap()->GetCardTable();
    858   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
    859   size_t thread_count = GetThreadCount(paused);
    860   // The parallel version with only one thread is faster for card scanning, TODO: fix.
    861   if (kParallelCardScan && thread_count > 1) {
    862     Thread* self = Thread::Current();
    863     // Can't have a different split for each space since multiple spaces can have their cards being
    864     // scanned at the same time.
    865     TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
    866         GetTimings());
    867     // Try to take some of the mark stack since we can pass this off to the worker tasks.
    868     StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
    869     StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
    870     const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
    871     // Estimated number of work tasks we will create.
    872     const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
    873     DCHECK_NE(mark_stack_tasks, 0U);
    874     const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
    875                                              mark_stack_size / mark_stack_tasks + 1);
    876     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    877       if (space->GetMarkBitmap() == nullptr) {
    878         continue;
    879       }
    880       uint8_t* card_begin = space->Begin();
    881       uint8_t* card_end = space->End();
    882       // Align up the end address. For example, the image space's end
    883       // may not be card-size-aligned.
    884       card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
    885       DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
    886       DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
    887       // Calculate how many bytes of heap we will scan,
    888       const size_t address_range = card_end - card_begin;
    889       // Calculate how much address range each task gets.
    890       const size_t card_delta = RoundUp(address_range / thread_count + 1,
    891                                         accounting::CardTable::kCardSize);
    892       // If paused and the space is neither zygote nor image space, we could clear the dirty
    893       // cards to avoid accumulating them to increase card scanning load in the following GC
    894       // cycles. We need to keep dirty cards of image space and zygote space in order to track
    895       // references to the other spaces.
    896       bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
    897       // Create the worker tasks for this space.
    898       while (card_begin != card_end) {
    899         // Add a range of cards.
    900         size_t addr_remaining = card_end - card_begin;
    901         size_t card_increment = std::min(card_delta, addr_remaining);
    902         // Take from the back of the mark stack.
    903         size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
    904         size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
    905         mark_stack_end -= mark_stack_increment;
    906         mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
    907         DCHECK_EQ(mark_stack_end, mark_stack_->End());
    908         // Add the new task to the thread pool.
    909         auto* task = new CardScanTask(thread_pool,
    910                                       this,
    911                                       space->GetMarkBitmap(),
    912                                       card_begin,
    913                                       card_begin + card_increment,
    914                                       minimum_age,
    915                                       mark_stack_increment,
    916                                       mark_stack_end,
    917                                       clear_card);
    918         thread_pool->AddTask(self, task);
    919         card_begin += card_increment;
    920       }
    921     }
    922 
    923     // Note: the card scan below may dirty new cards (and scan them)
    924     // as a side effect when a Reference object is encountered and
    925     // queued during the marking. See b/11465268.
    926     thread_pool->SetMaxActiveWorkers(thread_count - 1);
    927     thread_pool->StartWorkers(self);
    928     thread_pool->Wait(self, true, true);
    929     thread_pool->StopWorkers(self);
    930   } else {
    931     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    932       if (space->GetMarkBitmap() != nullptr) {
    933         // Image spaces are handled properly since live == marked for them.
    934         const char* name = nullptr;
    935         switch (space->GetGcRetentionPolicy()) {
    936         case space::kGcRetentionPolicyNeverCollect:
    937           name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
    938           break;
    939         case space::kGcRetentionPolicyFullCollect:
    940           name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
    941           break;
    942         case space::kGcRetentionPolicyAlwaysCollect:
    943           name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
    944           break;
    945         default:
    946           LOG(FATAL) << "Unreachable";
    947           UNREACHABLE();
    948         }
    949         TimingLogger::ScopedTiming t(name, GetTimings());
    950         ScanObjectVisitor visitor(this);
    951         bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
    952         if (clear_card) {
    953           card_table->Scan<true>(space->GetMarkBitmap(),
    954                                  space->Begin(),
    955                                  space->End(),
    956                                  visitor,
    957                                  minimum_age);
    958         } else {
    959           card_table->Scan<false>(space->GetMarkBitmap(),
    960                                   space->Begin(),
    961                                   space->End(),
    962                                   visitor,
    963                                   minimum_age);
    964         }
    965       }
    966     }
    967   }
    968 }
    969 
    970 class RecursiveMarkTask : public MarkStackTask<false> {
    971  public:
    972   RecursiveMarkTask(ThreadPool* thread_pool,
    973                     MarkSweep* mark_sweep,
    974                     accounting::ContinuousSpaceBitmap* bitmap,
    975                     uintptr_t begin,
    976                     uintptr_t end)
    977       : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr),
    978         bitmap_(bitmap),
    979         begin_(begin),
    980         end_(end) {}
    981 
    982  protected:
    983   accounting::ContinuousSpaceBitmap* const bitmap_;
    984   const uintptr_t begin_;
    985   const uintptr_t end_;
    986 
    987   virtual void Finalize() {
    988     delete this;
    989   }
    990 
    991   // Scans all of the objects
    992   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    993     ScanObjectParallelVisitor visitor(this);
    994     bitmap_->VisitMarkedRange(begin_, end_, visitor);
    995     // Finish by emptying our local mark stack.
    996     MarkStackTask::Run(self);
    997   }
    998 };
    999 
   1000 // Populates the mark stack based on the set of marked objects and
   1001 // recursively marks until the mark stack is emptied.
   1002 void MarkSweep::RecursiveMark() {
   1003   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1004   // RecursiveMark will build the lists of known instances of the Reference classes. See
   1005   // DelayReferenceReferent for details.
   1006   if (kUseRecursiveMark) {
   1007     const bool partial = GetGcType() == kGcTypePartial;
   1008     ScanObjectVisitor scan_visitor(this);
   1009     auto* self = Thread::Current();
   1010     ThreadPool* thread_pool = heap_->GetThreadPool();
   1011     size_t thread_count = GetThreadCount(false);
   1012     const bool parallel = kParallelRecursiveMark && thread_count > 1;
   1013     mark_stack_->Reset();
   1014     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1015       if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
   1016           (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
   1017         current_space_bitmap_ = space->GetMarkBitmap();
   1018         if (current_space_bitmap_ == nullptr) {
   1019           continue;
   1020         }
   1021         if (parallel) {
   1022           // We will use the mark stack the future.
   1023           // CHECK(mark_stack_->IsEmpty());
   1024           // This function does not handle heap end increasing, so we must use the space end.
   1025           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
   1026           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
   1027           atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
   1028 
   1029           // Create a few worker tasks.
   1030           const size_t n = thread_count * 2;
   1031           while (begin != end) {
   1032             uintptr_t start = begin;
   1033             uintptr_t delta = (end - begin) / n;
   1034             delta = RoundUp(delta, KB);
   1035             if (delta < 16 * KB) delta = end - begin;
   1036             begin += delta;
   1037             auto* task = new RecursiveMarkTask(thread_pool,
   1038                                                this,
   1039                                                current_space_bitmap_,
   1040                                                start,
   1041                                                begin);
   1042             thread_pool->AddTask(self, task);
   1043           }
   1044           thread_pool->SetMaxActiveWorkers(thread_count - 1);
   1045           thread_pool->StartWorkers(self);
   1046           thread_pool->Wait(self, true, true);
   1047           thread_pool->StopWorkers(self);
   1048         } else {
   1049           // This function does not handle heap end increasing, so we must use the space end.
   1050           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
   1051           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
   1052           current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
   1053         }
   1054       }
   1055     }
   1056   }
   1057   ProcessMarkStack(false);
   1058 }
   1059 
   1060 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
   1061   ScanGrayObjects(paused, minimum_age);
   1062   ProcessMarkStack(paused);
   1063 }
   1064 
   1065 void MarkSweep::ReMarkRoots() {
   1066   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1067   Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
   1068   Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
   1069       kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
   1070   if (kVerifyRootsMarked) {
   1071     TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
   1072     VerifyRootMarkedVisitor visitor(this);
   1073     Runtime::Current()->VisitRoots(&visitor);
   1074   }
   1075 }
   1076 
   1077 void MarkSweep::SweepSystemWeaks(Thread* self) {
   1078   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1079   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1080   Runtime::Current()->SweepSystemWeaks(this);
   1081 }
   1082 
   1083 class VerifySystemWeakVisitor : public IsMarkedVisitor {
   1084  public:
   1085   explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
   1086 
   1087   virtual mirror::Object* IsMarked(mirror::Object* obj)
   1088       OVERRIDE
   1089       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1090     mark_sweep_->VerifyIsLive(obj);
   1091     return obj;
   1092   }
   1093 
   1094   MarkSweep* const mark_sweep_;
   1095 };
   1096 
   1097 void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
   1098   if (!heap_->GetLiveBitmap()->Test(obj)) {
   1099     // TODO: Consider live stack? Has this code bitrotted?
   1100     CHECK(!heap_->allocation_stack_->Contains(obj))
   1101         << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
   1102   }
   1103 }
   1104 
   1105 void MarkSweep::VerifySystemWeaks() {
   1106   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1107   // Verify system weaks, uses a special object visitor which returns the input object.
   1108   VerifySystemWeakVisitor visitor(this);
   1109   Runtime::Current()->SweepSystemWeaks(&visitor);
   1110 }
   1111 
   1112 class CheckpointMarkThreadRoots : public Closure, public RootVisitor {
   1113  public:
   1114   CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
   1115                             bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
   1116       : mark_sweep_(mark_sweep),
   1117         revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
   1118             revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
   1119   }
   1120 
   1121   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
   1122       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
   1123       REQUIRES(Locks::heap_bitmap_lock_) {
   1124     for (size_t i = 0; i < count; ++i) {
   1125       mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
   1126     }
   1127   }
   1128 
   1129   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
   1130                   size_t count,
   1131                   const RootInfo& info ATTRIBUTE_UNUSED)
   1132       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
   1133       REQUIRES(Locks::heap_bitmap_lock_) {
   1134     for (size_t i = 0; i < count; ++i) {
   1135       mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
   1136     }
   1137   }
   1138 
   1139   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   1140     ScopedTrace trace("Marking thread roots");
   1141     // Note: self is not necessarily equal to thread since thread may be suspended.
   1142     Thread* const self = Thread::Current();
   1143     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
   1144         << thread->GetState() << " thread " << thread << " self " << self;
   1145     thread->VisitRoots(this);
   1146     if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
   1147       ScopedTrace trace2("RevokeRosAllocThreadLocalBuffers");
   1148       mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
   1149     }
   1150     // If thread is a running mutator, then act on behalf of the garbage collector.
   1151     // See the code in ThreadList::RunCheckpoint.
   1152     mark_sweep_->GetBarrier().Pass(self);
   1153   }
   1154 
   1155  private:
   1156   MarkSweep* const mark_sweep_;
   1157   const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
   1158 };
   1159 
   1160 void MarkSweep::MarkRootsCheckpoint(Thread* self,
   1161                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
   1162   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1163   CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
   1164   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1165   // Request the check point is run on all threads returning a count of the threads that must
   1166   // run through the barrier including self.
   1167   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
   1168   // Release locks then wait for all mutator threads to pass the barrier.
   1169   // If there are no threads to wait which implys that all the checkpoint functions are finished,
   1170   // then no need to release locks.
   1171   if (barrier_count == 0) {
   1172     return;
   1173   }
   1174   Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
   1175   Locks::mutator_lock_->SharedUnlock(self);
   1176   {
   1177     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1178     gc_barrier_->Increment(self, barrier_count);
   1179   }
   1180   Locks::mutator_lock_->SharedLock(self);
   1181   Locks::heap_bitmap_lock_->ExclusiveLock(self);
   1182 }
   1183 
   1184 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
   1185   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1186   Thread* self = Thread::Current();
   1187   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
   1188       sweep_array_free_buffer_mem_map_->BaseBegin());
   1189   size_t chunk_free_pos = 0;
   1190   ObjectBytePair freed;
   1191   ObjectBytePair freed_los;
   1192   // How many objects are left in the array, modified after each space is swept.
   1193   StackReference<mirror::Object>* objects = allocations->Begin();
   1194   size_t count = allocations->Size();
   1195   // Change the order to ensure that the non-moving space last swept as an optimization.
   1196   std::vector<space::ContinuousSpace*> sweep_spaces;
   1197   space::ContinuousSpace* non_moving_space = nullptr;
   1198   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
   1199     if (space->IsAllocSpace() &&
   1200         !immune_spaces_.ContainsSpace(space) &&
   1201         space->GetLiveBitmap() != nullptr) {
   1202       if (space == heap_->GetNonMovingSpace()) {
   1203         non_moving_space = space;
   1204       } else {
   1205         sweep_spaces.push_back(space);
   1206       }
   1207     }
   1208   }
   1209   // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
   1210   // the other alloc spaces as an optimization.
   1211   if (non_moving_space != nullptr) {
   1212     sweep_spaces.push_back(non_moving_space);
   1213   }
   1214   // Start by sweeping the continuous spaces.
   1215   for (space::ContinuousSpace* space : sweep_spaces) {
   1216     space::AllocSpace* alloc_space = space->AsAllocSpace();
   1217     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1218     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1219     if (swap_bitmaps) {
   1220       std::swap(live_bitmap, mark_bitmap);
   1221     }
   1222     StackReference<mirror::Object>* out = objects;
   1223     for (size_t i = 0; i < count; ++i) {
   1224       mirror::Object* const obj = objects[i].AsMirrorPtr();
   1225       if (kUseThreadLocalAllocationStack && obj == nullptr) {
   1226         continue;
   1227       }
   1228       if (space->HasAddress(obj)) {
   1229         // This object is in the space, remove it from the array and add it to the sweep buffer
   1230         // if needed.
   1231         if (!mark_bitmap->Test(obj)) {
   1232           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
   1233             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
   1234             freed.objects += chunk_free_pos;
   1235             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   1236             chunk_free_pos = 0;
   1237           }
   1238           chunk_free_buffer[chunk_free_pos++] = obj;
   1239         }
   1240       } else {
   1241         (out++)->Assign(obj);
   1242       }
   1243     }
   1244     if (chunk_free_pos > 0) {
   1245       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
   1246       freed.objects += chunk_free_pos;
   1247       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   1248       chunk_free_pos = 0;
   1249     }
   1250     // All of the references which space contained are no longer in the allocation stack, update
   1251     // the count.
   1252     count = out - objects;
   1253   }
   1254   // Handle the large object space.
   1255   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
   1256   if (large_object_space != nullptr) {
   1257     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
   1258     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
   1259     if (swap_bitmaps) {
   1260       std::swap(large_live_objects, large_mark_objects);
   1261     }
   1262     for (size_t i = 0; i < count; ++i) {
   1263       mirror::Object* const obj = objects[i].AsMirrorPtr();
   1264       // Handle large objects.
   1265       if (kUseThreadLocalAllocationStack && obj == nullptr) {
   1266         continue;
   1267       }
   1268       if (!large_mark_objects->Test(obj)) {
   1269         ++freed_los.objects;
   1270         freed_los.bytes += large_object_space->Free(self, obj);
   1271       }
   1272     }
   1273   }
   1274   {
   1275     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
   1276     RecordFree(freed);
   1277     RecordFreeLOS(freed_los);
   1278     t2.NewTiming("ResetStack");
   1279     allocations->Reset();
   1280   }
   1281   sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
   1282 }
   1283 
   1284 void MarkSweep::Sweep(bool swap_bitmaps) {
   1285   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1286   // Ensure that nobody inserted items in the live stack after we swapped the stacks.
   1287   CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
   1288   {
   1289     TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
   1290     // Mark everything allocated since the last as GC live so that we can sweep concurrently,
   1291     // knowing that new allocations won't be marked as live.
   1292     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
   1293     heap_->MarkAllocStackAsLive(live_stack);
   1294     live_stack->Reset();
   1295     DCHECK(mark_stack_->IsEmpty());
   1296   }
   1297   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1298     if (space->IsContinuousMemMapAllocSpace()) {
   1299       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   1300       TimingLogger::ScopedTiming split(
   1301           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace",
   1302           GetTimings());
   1303       RecordFree(alloc_space->Sweep(swap_bitmaps));
   1304     }
   1305   }
   1306   SweepLargeObjects(swap_bitmaps);
   1307 }
   1308 
   1309 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
   1310   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
   1311   if (los != nullptr) {
   1312     TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
   1313     RecordFreeLOS(los->Sweep(swap_bitmaps));
   1314   }
   1315 }
   1316 
   1317 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
   1318 // marked, put it on the appropriate list in the heap for later processing.
   1319 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
   1320   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
   1321 }
   1322 
   1323 class MarkVisitor {
   1324  public:
   1325   ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}
   1326 
   1327   ALWAYS_INLINE void operator()(mirror::Object* obj,
   1328                                 MemberOffset offset,
   1329                                 bool is_static ATTRIBUTE_UNUSED) const
   1330       REQUIRES(Locks::heap_bitmap_lock_)
   1331       SHARED_REQUIRES(Locks::mutator_lock_) {
   1332     if (kCheckLocks) {
   1333       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
   1334       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
   1335     }
   1336     mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
   1337   }
   1338 
   1339   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1340       REQUIRES(Locks::heap_bitmap_lock_)
   1341       SHARED_REQUIRES(Locks::mutator_lock_) {
   1342     if (!root->IsNull()) {
   1343       VisitRoot(root);
   1344     }
   1345   }
   1346 
   1347   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1348       REQUIRES(Locks::heap_bitmap_lock_)
   1349       SHARED_REQUIRES(Locks::mutator_lock_) {
   1350     if (kCheckLocks) {
   1351       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
   1352       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
   1353     }
   1354     mark_sweep_->MarkObject(root->AsMirrorPtr());
   1355   }
   1356 
   1357  private:
   1358   MarkSweep* const mark_sweep_;
   1359 };
   1360 
   1361 // Scans an object reference.  Determines the type of the reference
   1362 // and dispatches to a specialized scanning routine.
   1363 void MarkSweep::ScanObject(mirror::Object* obj) {
   1364   MarkVisitor mark_visitor(this);
   1365   DelayReferenceReferentVisitor ref_visitor(this);
   1366   ScanObjectVisit(obj, mark_visitor, ref_visitor);
   1367 }
   1368 
   1369 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
   1370   Thread* self = Thread::Current();
   1371   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
   1372   const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
   1373                                      static_cast<size_t>(MarkStackTask<false>::kMaxSize));
   1374   CHECK_GT(chunk_size, 0U);
   1375   // Split the current mark stack up into work tasks.
   1376   for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
   1377     const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
   1378     thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
   1379     it += delta;
   1380   }
   1381   thread_pool->SetMaxActiveWorkers(thread_count - 1);
   1382   thread_pool->StartWorkers(self);
   1383   thread_pool->Wait(self, true, true);
   1384   thread_pool->StopWorkers(self);
   1385   mark_stack_->Reset();
   1386   CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
   1387            work_chunks_deleted_.LoadSequentiallyConsistent())
   1388       << " some of the work chunks were leaked";
   1389 }
   1390 
   1391 // Scan anything that's on the mark stack.
   1392 void MarkSweep::ProcessMarkStack(bool paused) {
   1393   TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
   1394   size_t thread_count = GetThreadCount(paused);
   1395   if (kParallelProcessMarkStack && thread_count > 1 &&
   1396       mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
   1397     ProcessMarkStackParallel(thread_count);
   1398   } else {
   1399     // TODO: Tune this.
   1400     static const size_t kFifoSize = 4;
   1401     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
   1402     for (;;) {
   1403       mirror::Object* obj = nullptr;
   1404       if (kUseMarkStackPrefetch) {
   1405         while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
   1406           mirror::Object* mark_stack_obj = mark_stack_->PopBack();
   1407           DCHECK(mark_stack_obj != nullptr);
   1408           __builtin_prefetch(mark_stack_obj);
   1409           prefetch_fifo.push_back(mark_stack_obj);
   1410         }
   1411         if (prefetch_fifo.empty()) {
   1412           break;
   1413         }
   1414         obj = prefetch_fifo.front();
   1415         prefetch_fifo.pop_front();
   1416       } else {
   1417         if (mark_stack_->IsEmpty()) {
   1418           break;
   1419         }
   1420         obj = mark_stack_->PopBack();
   1421       }
   1422       DCHECK(obj != nullptr);
   1423       ScanObject(obj);
   1424     }
   1425   }
   1426 }
   1427 
   1428 inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
   1429   if (immune_spaces_.IsInImmuneRegion(object)) {
   1430     return object;
   1431   }
   1432   if (current_space_bitmap_->HasAddress(object)) {
   1433     return current_space_bitmap_->Test(object) ? object : nullptr;
   1434   }
   1435   return mark_bitmap_->Test(object) ? object : nullptr;
   1436 }
   1437 
   1438 void MarkSweep::FinishPhase() {
   1439   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1440   if (kCountScannedTypes) {
   1441     VLOG(gc)
   1442         << "MarkSweep scanned"
   1443         << " no reference objects=" << no_reference_class_count_.LoadRelaxed()
   1444         << " normal objects=" << normal_count_.LoadRelaxed()
   1445         << " classes=" << class_count_.LoadRelaxed()
   1446         << " object arrays=" << object_array_count_.LoadRelaxed()
   1447         << " references=" << reference_count_.LoadRelaxed()
   1448         << " other=" << other_count_.LoadRelaxed();
   1449   }
   1450   if (kCountTasks) {
   1451     VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
   1452   }
   1453   if (kMeasureOverhead) {
   1454     VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
   1455   }
   1456   if (kProfileLargeObjects) {
   1457     VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
   1458         << " marked " << large_object_mark_.LoadRelaxed();
   1459   }
   1460   if (kCountMarkedObjects) {
   1461     VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
   1462         << " immune=" <<  mark_immune_count_.LoadRelaxed()
   1463         << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
   1464         << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
   1465   }
   1466   CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
   1467   mark_stack_->Reset();
   1468   Thread* const self = Thread::Current();
   1469   ReaderMutexLock mu(self, *Locks::mutator_lock_);
   1470   WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   1471   heap_->ClearMarkedObjects();
   1472 }
   1473 
   1474 void MarkSweep::RevokeAllThreadLocalBuffers() {
   1475   if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
   1476     // If concurrent, rosalloc thread-local buffers are revoked at the
   1477     // thread checkpoint. Bump pointer space thread-local buffers must
   1478     // not be in use.
   1479     GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
   1480   } else {
   1481     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1482     GetHeap()->RevokeAllThreadLocalBuffers();
   1483   }
   1484 }
   1485 
   1486 }  // namespace collector
   1487 }  // namespace gc
   1488 }  // namespace art
   1489