Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "semi_space-inl.h"
     18 
     19 #include <climits>
     20 #include <functional>
     21 #include <numeric>
     22 #include <sstream>
     23 #include <vector>
     24 
     25 #include "base/logging.h"
     26 #include "base/macros.h"
     27 #include "base/mutex-inl.h"
     28 #include "base/timing_logger.h"
     29 #include "gc/accounting/heap_bitmap-inl.h"
     30 #include "gc/accounting/mod_union_table.h"
     31 #include "gc/accounting/remembered_set.h"
     32 #include "gc/accounting/space_bitmap-inl.h"
     33 #include "gc/heap.h"
     34 #include "gc/reference_processor.h"
     35 #include "gc/space/bump_pointer_space.h"
     36 #include "gc/space/bump_pointer_space-inl.h"
     37 #include "gc/space/image_space.h"
     38 #include "gc/space/large_object_space.h"
     39 #include "gc/space/space-inl.h"
     40 #include "indirect_reference_table.h"
     41 #include "intern_table.h"
     42 #include "jni_internal.h"
     43 #include "mark_sweep-inl.h"
     44 #include "monitor.h"
     45 #include "mirror/reference-inl.h"
     46 #include "mirror/object-inl.h"
     47 #include "runtime.h"
     48 #include "thread-inl.h"
     49 #include "thread_list.h"
     50 
     51 using ::art::mirror::Object;
     52 
     53 namespace art {
     54 namespace gc {
     55 namespace collector {
     56 
     57 static constexpr bool kProtectFromSpace = true;
     58 static constexpr bool kStoreStackTraces = false;
     59 static constexpr size_t kBytesPromotedThreshold = 4 * MB;
     60 static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
     61 
     62 void SemiSpace::BindBitmaps() {
     63   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
     64   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
     65   // Mark all of the spaces we never collect as immune.
     66   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
     67     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
     68         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
     69       immune_spaces_.AddSpace(space);
     70     } else if (space->GetLiveBitmap() != nullptr) {
     71       // TODO: We can probably also add this space to the immune region.
     72       if (space == to_space_ || collect_from_space_only_) {
     73         if (collect_from_space_only_) {
     74           // Bind the bitmaps of the main free list space and the non-moving space we are doing a
     75           // bump pointer space only collection.
     76           CHECK(space == GetHeap()->GetPrimaryFreeListSpace() ||
     77                 space == GetHeap()->GetNonMovingSpace());
     78         }
     79         CHECK(space->IsContinuousMemMapAllocSpace());
     80         space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
     81       }
     82     }
     83   }
     84   if (collect_from_space_only_) {
     85     // We won't collect the large object space if a bump pointer space only collection.
     86     is_large_object_space_immune_ = true;
     87   }
     88 }
     89 
     90 SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
     91     : GarbageCollector(heap,
     92                        name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
     93       mark_stack_(nullptr),
     94       is_large_object_space_immune_(false),
     95       to_space_(nullptr),
     96       to_space_live_bitmap_(nullptr),
     97       from_space_(nullptr),
     98       mark_bitmap_(nullptr),
     99       self_(nullptr),
    100       generational_(generational),
    101       last_gc_to_space_end_(nullptr),
    102       bytes_promoted_(0),
    103       bytes_promoted_since_last_whole_heap_collection_(0),
    104       large_object_bytes_allocated_at_last_whole_heap_collection_(0),
    105       collect_from_space_only_(generational),
    106       promo_dest_space_(nullptr),
    107       fallback_space_(nullptr),
    108       bytes_moved_(0U),
    109       objects_moved_(0U),
    110       saved_bytes_(0U),
    111       collector_name_(name_),
    112       swap_semi_spaces_(true) {
    113 }
    114 
    115 void SemiSpace::RunPhases() {
    116   Thread* self = Thread::Current();
    117   InitializePhase();
    118   // Semi-space collector is special since it is sometimes called with the mutators suspended
    119   // during the zygote creation and collector transitions. If we already exclusively hold the
    120   // mutator lock, then we can't lock it again since it will cause a deadlock.
    121   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    122     GetHeap()->PreGcVerificationPaused(this);
    123     GetHeap()->PrePauseRosAllocVerification(this);
    124     MarkingPhase();
    125     ReclaimPhase();
    126     GetHeap()->PostGcVerificationPaused(this);
    127   } else {
    128     Locks::mutator_lock_->AssertNotHeld(self);
    129     {
    130       ScopedPause pause(this);
    131       GetHeap()->PreGcVerificationPaused(this);
    132       GetHeap()->PrePauseRosAllocVerification(this);
    133       MarkingPhase();
    134     }
    135     {
    136       ReaderMutexLock mu(self, *Locks::mutator_lock_);
    137       ReclaimPhase();
    138     }
    139     GetHeap()->PostGcVerification(this);
    140   }
    141   FinishPhase();
    142 }
    143 
    144 void SemiSpace::InitializePhase() {
    145   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    146   mark_stack_ = heap_->GetMarkStack();
    147   DCHECK(mark_stack_ != nullptr);
    148   immune_spaces_.Reset();
    149   is_large_object_space_immune_ = false;
    150   saved_bytes_ = 0;
    151   bytes_moved_ = 0;
    152   objects_moved_ = 0;
    153   self_ = Thread::Current();
    154   CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
    155   // Set the initial bitmap.
    156   to_space_live_bitmap_ = to_space_->GetLiveBitmap();
    157   {
    158     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
    159     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    160     mark_bitmap_ = heap_->GetMarkBitmap();
    161   }
    162   if (generational_) {
    163     promo_dest_space_ = GetHeap()->GetPrimaryFreeListSpace();
    164   }
    165   fallback_space_ = GetHeap()->GetNonMovingSpace();
    166 }
    167 
    168 void SemiSpace::ProcessReferences(Thread* self) {
    169   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    170   GetHeap()->GetReferenceProcessor()->ProcessReferences(
    171       false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
    172 }
    173 
    174 void SemiSpace::MarkingPhase() {
    175   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    176   CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
    177   if (kStoreStackTraces) {
    178     Locks::mutator_lock_->AssertExclusiveHeld(self_);
    179     // Store the stack traces into the runtime fault string in case we Get a heap corruption
    180     // related crash later.
    181     ThreadState old_state = self_->SetStateUnsafe(kRunnable);
    182     std::ostringstream oss;
    183     Runtime* runtime = Runtime::Current();
    184     runtime->GetThreadList()->DumpForSigQuit(oss);
    185     runtime->GetThreadList()->DumpNativeStacks(oss);
    186     runtime->SetFaultMessage(oss.str());
    187     CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
    188   }
    189   // Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
    190   // to prevent fragmentation.
    191   RevokeAllThreadLocalBuffers();
    192   if (generational_) {
    193     if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
    194         GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
    195         GetCurrentIteration()->GetClearSoftReferences()) {
    196       // If an explicit, native allocation-triggered, or last attempt
    197       // collection, collect the whole heap.
    198       collect_from_space_only_ = false;
    199     }
    200     if (!collect_from_space_only_) {
    201       VLOG(heap) << "Whole heap collection";
    202       name_ = collector_name_ + " whole";
    203     } else {
    204       VLOG(heap) << "Bump pointer space only collection";
    205       name_ = collector_name_ + " bps";
    206     }
    207   }
    208 
    209   if (!collect_from_space_only_) {
    210     // If non-generational, always clear soft references.
    211     // If generational, clear soft references if a whole heap collection.
    212     GetCurrentIteration()->SetClearSoftReferences(true);
    213   }
    214   Locks::mutator_lock_->AssertExclusiveHeld(self_);
    215   if (generational_) {
    216     // If last_gc_to_space_end_ is out of the bounds of the from-space
    217     // (the to-space from last GC), then point it to the beginning of
    218     // the from-space. For example, the very first GC or the
    219     // pre-zygote compaction.
    220     if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
    221       last_gc_to_space_end_ = from_space_->Begin();
    222     }
    223     // Reset this before the marking starts below.
    224     bytes_promoted_ = 0;
    225   }
    226   // Assume the cleared space is already empty.
    227   BindBitmaps();
    228   // Process dirty cards and add dirty cards to mod-union tables.
    229   heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_, false, true);
    230   // Clear the whole card table since we cannot get any additional dirty cards during the
    231   // paused GC. This saves memory but only works for pause the world collectors.
    232   t.NewTiming("ClearCardTable");
    233   heap_->GetCardTable()->ClearCardTable();
    234   // Need to do this before the checkpoint since we don't want any threads to add references to
    235   // the live stack during the recursive mark.
    236   if (kUseThreadLocalAllocationStack) {
    237     TimingLogger::ScopedTiming t2("RevokeAllThreadLocalAllocationStacks", GetTimings());
    238     heap_->RevokeAllThreadLocalAllocationStacks(self_);
    239   }
    240   heap_->SwapStacks();
    241   {
    242     WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
    243     MarkRoots();
    244     // Recursively mark remaining objects.
    245     MarkReachableObjects();
    246   }
    247   ProcessReferences(self_);
    248   {
    249     ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
    250     SweepSystemWeaks();
    251   }
    252   Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
    253   // Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
    254   // before they are properly counted.
    255   RevokeAllThreadLocalBuffers();
    256   GetHeap()->RecordFreeRevoke();  // this is for the non-moving rosalloc space used by GSS.
    257   // Record freed memory.
    258   const int64_t from_bytes = from_space_->GetBytesAllocated();
    259   const int64_t to_bytes = bytes_moved_;
    260   const uint64_t from_objects = from_space_->GetObjectsAllocated();
    261   const uint64_t to_objects = objects_moved_;
    262   CHECK_LE(to_objects, from_objects);
    263   // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
    264   // space.
    265   RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
    266   // Clear and protect the from space.
    267   from_space_->Clear();
    268   if (kProtectFromSpace && !from_space_->IsRosAllocSpace()) {
    269     // Protect with PROT_NONE.
    270     VLOG(heap) << "Protecting from_space_ : " << *from_space_;
    271     from_space_->GetMemMap()->Protect(PROT_NONE);
    272   } else {
    273     // If RosAllocSpace, we'll leave it as PROT_READ here so the
    274     // rosaloc verification can read the metadata magic number and
    275     // protect it with PROT_NONE later in FinishPhase().
    276     VLOG(heap) << "Protecting from_space_ with PROT_READ : " << *from_space_;
    277     from_space_->GetMemMap()->Protect(PROT_READ);
    278   }
    279   heap_->PreSweepingGcVerification(this);
    280   if (swap_semi_spaces_) {
    281     heap_->SwapSemiSpaces();
    282   }
    283 }
    284 
    285 class SemiSpaceScanObjectVisitor {
    286  public:
    287   explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
    288   void operator()(Object* obj) const REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    289     DCHECK(obj != nullptr);
    290     semi_space_->ScanObject(obj);
    291   }
    292  private:
    293   SemiSpace* const semi_space_;
    294 };
    295 
    296 // Used to verify that there's no references to the from-space.
    297 class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
    298  public:
    299   explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
    300       from_space_(from_space) {}
    301 
    302   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
    303       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
    304     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
    305     if (from_space_->HasAddress(ref)) {
    306       Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
    307       LOG(FATAL) << ref << " found in from space";
    308     }
    309   }
    310 
    311   // TODO: Remove NO_THREAD_SAFETY_ANALYSIS when clang better understands visitors.
    312   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    313       NO_THREAD_SAFETY_ANALYSIS {
    314     if (!root->IsNull()) {
    315       VisitRoot(root);
    316     }
    317   }
    318 
    319   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    320       NO_THREAD_SAFETY_ANALYSIS {
    321     if (kIsDebugBuild) {
    322       Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
    323       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    324     }
    325     CHECK(!from_space_->HasAddress(root->AsMirrorPtr()));
    326   }
    327 
    328  private:
    329   space::ContinuousMemMapAllocSpace* const from_space_;
    330 };
    331 
    332 void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
    333   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
    334   SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
    335   obj->VisitReferences(visitor, VoidFunctor());
    336 }
    337 
    338 class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
    339  public:
    340   explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
    341   void operator()(Object* obj) const
    342       SHARED_REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
    343     DCHECK(obj != nullptr);
    344     semi_space_->VerifyNoFromSpaceReferences(obj);
    345   }
    346 
    347  private:
    348   SemiSpace* const semi_space_;
    349 };
    350 
    351 void SemiSpace::MarkReachableObjects() {
    352   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    353   {
    354     TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
    355     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
    356     heap_->MarkAllocStackAsLive(live_stack);
    357     live_stack->Reset();
    358   }
    359   for (auto& space : heap_->GetContinuousSpaces()) {
    360     // If the space is immune then we need to mark the references to other spaces.
    361     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
    362     if (table != nullptr) {
    363       // TODO: Improve naming.
    364       TimingLogger::ScopedTiming t2(
    365           space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
    366                                    "UpdateAndMarkImageModUnionTable",
    367                                    GetTimings());
    368       table->UpdateAndMarkReferences(this);
    369       DCHECK(GetHeap()->FindRememberedSetFromSpace(space) == nullptr);
    370     } else if ((space->IsImageSpace() || collect_from_space_only_) &&
    371                space->GetLiveBitmap() != nullptr) {
    372       // If the space has no mod union table (the non-moving space, app image spaces, main spaces
    373       // when the bump pointer space only collection is enabled,) then we need to scan its live
    374       // bitmap or dirty cards as roots (including the objects on the live stack which have just
    375       // marked in the live bitmap above in MarkAllocStackAsLive().)
    376       accounting::RememberedSet* rem_set = GetHeap()->FindRememberedSetFromSpace(space);
    377       if (!space->IsImageSpace()) {
    378         DCHECK(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace())
    379             << "Space " << space->GetName() << " "
    380             << "generational_=" << generational_ << " "
    381             << "collect_from_space_only_=" << collect_from_space_only_;
    382         // App images currently do not have remembered sets.
    383         DCHECK_EQ(kUseRememberedSet, rem_set != nullptr);
    384       } else {
    385         DCHECK(rem_set == nullptr);
    386       }
    387       if (rem_set != nullptr) {
    388         TimingLogger::ScopedTiming t2("UpdateAndMarkRememberedSet", GetTimings());
    389         rem_set->UpdateAndMarkReferences(from_space_, this);
    390       } else {
    391         TimingLogger::ScopedTiming t2("VisitLiveBits", GetTimings());
    392         accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    393         SemiSpaceScanObjectVisitor visitor(this);
    394         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    395                                       reinterpret_cast<uintptr_t>(space->End()),
    396                                       visitor);
    397       }
    398       if (kIsDebugBuild) {
    399         // Verify that there are no from-space references that
    400         // remain in the space, that is, the remembered set (and the
    401         // card table) didn't miss any from-space references in the
    402         // space.
    403         accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    404         SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
    405         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    406                                       reinterpret_cast<uintptr_t>(space->End()),
    407                                       visitor);
    408       }
    409     }
    410   }
    411 
    412   CHECK_EQ(is_large_object_space_immune_, collect_from_space_only_);
    413   space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
    414   if (is_large_object_space_immune_ && los != nullptr) {
    415     TimingLogger::ScopedTiming t2("VisitLargeObjects", GetTimings());
    416     DCHECK(collect_from_space_only_);
    417     // Delay copying the live set to the marked set until here from
    418     // BindBitmaps() as the large objects on the allocation stack may
    419     // be newly added to the live set above in MarkAllocStackAsLive().
    420     los->CopyLiveToMarked();
    421 
    422     // When the large object space is immune, we need to scan the
    423     // large object space as roots as they contain references to their
    424     // classes (primitive array classes) that could move though they
    425     // don't contain any other references.
    426     accounting::LargeObjectBitmap* large_live_bitmap = los->GetLiveBitmap();
    427     SemiSpaceScanObjectVisitor visitor(this);
    428     large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(los->Begin()),
    429                                         reinterpret_cast<uintptr_t>(los->End()),
    430                                         visitor);
    431   }
    432   // Recursively process the mark stack.
    433   ProcessMarkStack();
    434 }
    435 
    436 void SemiSpace::ReclaimPhase() {
    437   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    438   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
    439   // Reclaim unmarked objects.
    440   Sweep(false);
    441   // Swap the live and mark bitmaps for each space which we modified space. This is an
    442   // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
    443   // bitmaps.
    444   SwapBitmaps();
    445   // Unbind the live and mark bitmaps.
    446   GetHeap()->UnBindBitmaps();
    447   if (saved_bytes_ > 0) {
    448     VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
    449   }
    450   if (generational_) {
    451     // Record the end (top) of the to space so we can distinguish
    452     // between objects that were allocated since the last GC and the
    453     // older objects.
    454     last_gc_to_space_end_ = to_space_->End();
    455   }
    456 }
    457 
    458 void SemiSpace::ResizeMarkStack(size_t new_size) {
    459   std::vector<StackReference<Object>> temp(mark_stack_->Begin(), mark_stack_->End());
    460   CHECK_LE(mark_stack_->Size(), new_size);
    461   mark_stack_->Resize(new_size);
    462   for (auto& obj : temp) {
    463     mark_stack_->PushBack(obj.AsMirrorPtr());
    464   }
    465 }
    466 
    467 inline void SemiSpace::MarkStackPush(Object* obj) {
    468   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    469     ResizeMarkStack(mark_stack_->Capacity() * 2);
    470   }
    471   // The object must be pushed on to the mark stack.
    472   mark_stack_->PushBack(obj);
    473 }
    474 
    475 static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
    476   if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
    477     // We will dirty the current page and somewhere in the middle of the next page. This means
    478     // that the next object copied will also dirty that page.
    479     // TODO: Worth considering the last object copied? We may end up dirtying one page which is
    480     // not necessary per GC.
    481     memcpy(dest, src, size);
    482     return 0;
    483   }
    484   size_t saved_bytes = 0;
    485   uint8_t* byte_dest = reinterpret_cast<uint8_t*>(dest);
    486   if (kIsDebugBuild) {
    487     for (size_t i = 0; i < size; ++i) {
    488       CHECK_EQ(byte_dest[i], 0U);
    489     }
    490   }
    491   // Process the start of the page. The page must already be dirty, don't bother with checking.
    492   const uint8_t* byte_src = reinterpret_cast<const uint8_t*>(src);
    493   const uint8_t* limit = byte_src + size;
    494   size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
    495   // Copy the bytes until the start of the next page.
    496   memcpy(dest, src, page_remain);
    497   byte_src += page_remain;
    498   byte_dest += page_remain;
    499   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
    500   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
    501   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
    502   while (byte_src + kPageSize < limit) {
    503     bool all_zero = true;
    504     uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
    505     const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
    506     for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
    507       // Assumes the destination of the copy is all zeros.
    508       if (word_src[i] != 0) {
    509         all_zero = false;
    510         word_dest[i] = word_src[i];
    511       }
    512     }
    513     if (all_zero) {
    514       // Avoided copying into the page since it was all zeros.
    515       saved_bytes += kPageSize;
    516     }
    517     byte_src += kPageSize;
    518     byte_dest += kPageSize;
    519   }
    520   // Handle the part of the page at the end.
    521   memcpy(byte_dest, byte_src, limit - byte_src);
    522   return saved_bytes;
    523 }
    524 
    525 mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
    526   const size_t object_size = obj->SizeOf();
    527   size_t bytes_allocated, dummy;
    528   mirror::Object* forward_address = nullptr;
    529   if (generational_ && reinterpret_cast<uint8_t*>(obj) < last_gc_to_space_end_) {
    530     // If it's allocated before the last GC (older), move
    531     // (pseudo-promote) it to the main free list space (as sort
    532     // of an old generation.)
    533     forward_address = promo_dest_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
    534                                                            nullptr, &dummy);
    535     if (UNLIKELY(forward_address == nullptr)) {
    536       // If out of space, fall back to the to-space.
    537       forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
    538                                                      &dummy);
    539       // No logic for marking the bitmap, so it must be null.
    540       DCHECK(to_space_live_bitmap_ == nullptr);
    541     } else {
    542       bytes_promoted_ += bytes_allocated;
    543       // Dirty the card at the destionation as it may contain
    544       // references (including the class pointer) to the bump pointer
    545       // space.
    546       GetHeap()->WriteBarrierEveryFieldOf(forward_address);
    547       // Handle the bitmaps marking.
    548       accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space_->GetLiveBitmap();
    549       DCHECK(live_bitmap != nullptr);
    550       accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
    551       DCHECK(mark_bitmap != nullptr);
    552       DCHECK(!live_bitmap->Test(forward_address));
    553       if (collect_from_space_only_) {
    554         // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
    555         DCHECK_EQ(live_bitmap, mark_bitmap);
    556 
    557         // If a bump pointer space only collection, delay the live
    558         // bitmap marking of the promoted object until it's popped off
    559         // the mark stack (ProcessMarkStack()). The rationale: we may
    560         // be in the middle of scanning the objects in the promo
    561         // destination space for
    562         // non-moving-space-to-bump-pointer-space references by
    563         // iterating over the marked bits of the live bitmap
    564         // (MarkReachableObjects()). If we don't delay it (and instead
    565         // mark the promoted object here), the above promo destination
    566         // space scan could encounter the just-promoted object and
    567         // forward the references in the promoted object's fields even
    568         // through it is pushed onto the mark stack. If this happens,
    569         // the promoted object would be in an inconsistent state, that
    570         // is, it's on the mark stack (gray) but its fields are
    571         // already forwarded (black), which would cause a
    572         // DCHECK(!to_space_->HasAddress(obj)) failure below.
    573       } else {
    574         // Mark forward_address on the live bit map.
    575         live_bitmap->Set(forward_address);
    576         // Mark forward_address on the mark bit map.
    577         DCHECK(!mark_bitmap->Test(forward_address));
    578         mark_bitmap->Set(forward_address);
    579       }
    580     }
    581   } else {
    582     // If it's allocated after the last GC (younger), copy it to the to-space.
    583     forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
    584                                                    &dummy);
    585     if (forward_address != nullptr && to_space_live_bitmap_ != nullptr) {
    586       to_space_live_bitmap_->Set(forward_address);
    587     }
    588   }
    589   // If it's still null, attempt to use the fallback space.
    590   if (UNLIKELY(forward_address == nullptr)) {
    591     forward_address = fallback_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
    592                                                          nullptr, &dummy);
    593     CHECK(forward_address != nullptr) << "Out of memory in the to-space and fallback space.";
    594     accounting::ContinuousSpaceBitmap* bitmap = fallback_space_->GetLiveBitmap();
    595     if (bitmap != nullptr) {
    596       bitmap->Set(forward_address);
    597     }
    598   }
    599   ++objects_moved_;
    600   bytes_moved_ += bytes_allocated;
    601   // Copy over the object and add it to the mark stack since we still need to update its
    602   // references.
    603   saved_bytes_ +=
    604       CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
    605   if (kUseBakerOrBrooksReadBarrier) {
    606     obj->AssertReadBarrierPointer();
    607     if (kUseBrooksReadBarrier) {
    608       DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
    609       forward_address->SetReadBarrierPointer(forward_address);
    610     }
    611     forward_address->AssertReadBarrierPointer();
    612   }
    613   DCHECK(to_space_->HasAddress(forward_address) ||
    614          fallback_space_->HasAddress(forward_address) ||
    615          (generational_ && promo_dest_space_->HasAddress(forward_address)))
    616       << forward_address << "\n" << GetHeap()->DumpSpaces();
    617   return forward_address;
    618 }
    619 
    620 mirror::Object* SemiSpace::MarkObject(mirror::Object* root) {
    621   auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
    622   MarkObjectIfNotInToSpace(&ref);
    623   return ref.AsMirrorPtr();
    624 }
    625 
    626 void SemiSpace::MarkHeapReference(mirror::HeapReference<mirror::Object>* obj_ptr) {
    627   MarkObject(obj_ptr);
    628 }
    629 
    630 void SemiSpace::VisitRoots(mirror::Object*** roots, size_t count,
    631                            const RootInfo& info ATTRIBUTE_UNUSED) {
    632   for (size_t i = 0; i < count; ++i) {
    633     auto* root = roots[i];
    634     auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
    635     // The root can be in the to-space since we may visit the declaring class of an ArtMethod
    636     // multiple times if it is on the call stack.
    637     MarkObjectIfNotInToSpace(&ref);
    638     if (*root != ref.AsMirrorPtr()) {
    639       *root = ref.AsMirrorPtr();
    640     }
    641   }
    642 }
    643 
    644 void SemiSpace::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
    645                            const RootInfo& info ATTRIBUTE_UNUSED) {
    646   for (size_t i = 0; i < count; ++i) {
    647     MarkObjectIfNotInToSpace(roots[i]);
    648   }
    649 }
    650 
    651 // Marks all objects in the root set.
    652 void SemiSpace::MarkRoots() {
    653   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    654   Runtime::Current()->VisitRoots(this);
    655 }
    656 
    657 void SemiSpace::SweepSystemWeaks() {
    658   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    659   Runtime::Current()->SweepSystemWeaks(this);
    660 }
    661 
    662 bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
    663   return space != from_space_ && space != to_space_;
    664 }
    665 
    666 void SemiSpace::Sweep(bool swap_bitmaps) {
    667   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    668   DCHECK(mark_stack_->IsEmpty());
    669   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    670     if (space->IsContinuousMemMapAllocSpace()) {
    671       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
    672       if (!ShouldSweepSpace(alloc_space)) {
    673         continue;
    674       }
    675       TimingLogger::ScopedTiming split(
    676           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
    677       RecordFree(alloc_space->Sweep(swap_bitmaps));
    678     }
    679   }
    680   if (!is_large_object_space_immune_) {
    681     SweepLargeObjects(swap_bitmaps);
    682   }
    683 }
    684 
    685 void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
    686   DCHECK(!is_large_object_space_immune_);
    687   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
    688   if (los != nullptr) {
    689     TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
    690     RecordFreeLOS(los->Sweep(swap_bitmaps));
    691   }
    692 }
    693 
    694 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
    695 // marked, put it on the appropriate list in the heap for later processing.
    696 void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
    697   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
    698 }
    699 
    700 class SemiSpaceMarkObjectVisitor {
    701  public:
    702   explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
    703   }
    704 
    705   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
    706       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    707     // Object was already verified when we scanned it.
    708     collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
    709   }
    710 
    711   void operator()(mirror::Class* klass, mirror::Reference* ref) const
    712       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    713     collector_->DelayReferenceReferent(klass, ref);
    714   }
    715 
    716   // TODO: Remove NO_THREAD_SAFETY_ANALYSIS when clang better understands visitors.
    717   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    718       NO_THREAD_SAFETY_ANALYSIS {
    719     if (!root->IsNull()) {
    720       VisitRoot(root);
    721     }
    722   }
    723 
    724   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    725       NO_THREAD_SAFETY_ANALYSIS {
    726     if (kIsDebugBuild) {
    727       Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
    728       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    729     }
    730     // We may visit the same root multiple times, so avoid marking things in the to-space since
    731     // this is not handled by the GC.
    732     collector_->MarkObjectIfNotInToSpace(root);
    733   }
    734 
    735  private:
    736   SemiSpace* const collector_;
    737 };
    738 
    739 // Visit all of the references of an object and update.
    740 void SemiSpace::ScanObject(Object* obj) {
    741   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
    742   SemiSpaceMarkObjectVisitor visitor(this);
    743   obj->VisitReferences(visitor, visitor);
    744 }
    745 
    746 // Scan anything that's on the mark stack.
    747 void SemiSpace::ProcessMarkStack() {
    748   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    749   accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
    750   if (collect_from_space_only_) {
    751     // If a bump pointer space only collection (and the promotion is
    752     // enabled,) we delay the live-bitmap marking of promoted objects
    753     // from MarkObject() until this function.
    754     live_bitmap = promo_dest_space_->GetLiveBitmap();
    755     DCHECK(live_bitmap != nullptr);
    756     accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
    757     DCHECK(mark_bitmap != nullptr);
    758     DCHECK_EQ(live_bitmap, mark_bitmap);
    759   }
    760   while (!mark_stack_->IsEmpty()) {
    761     Object* obj = mark_stack_->PopBack();
    762     if (collect_from_space_only_ && promo_dest_space_->HasAddress(obj)) {
    763       // obj has just been promoted. Mark the live bitmap for it,
    764       // which is delayed from MarkObject().
    765       DCHECK(!live_bitmap->Test(obj));
    766       live_bitmap->Set(obj);
    767     }
    768     ScanObject(obj);
    769   }
    770 }
    771 
    772 mirror::Object* SemiSpace::IsMarked(mirror::Object* obj) {
    773   // All immune objects are assumed marked.
    774   if (from_space_->HasAddress(obj)) {
    775     // Returns either the forwarding address or null.
    776     return GetForwardingAddressInFromSpace(obj);
    777   } else if (collect_from_space_only_ ||
    778              immune_spaces_.IsInImmuneRegion(obj) ||
    779              to_space_->HasAddress(obj)) {
    780     return obj;  // Already forwarded, must be marked.
    781   }
    782   return mark_bitmap_->Test(obj) ? obj : nullptr;
    783 }
    784 
    785 bool SemiSpace::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* object) {
    786   mirror::Object* obj = object->AsMirrorPtr();
    787   mirror::Object* new_obj = IsMarked(obj);
    788   if (new_obj == nullptr) {
    789     return false;
    790   }
    791   if (new_obj != obj) {
    792     // Write barrier is not necessary since it still points to the same object, just at a different
    793     // address.
    794     object->Assign(new_obj);
    795   }
    796   return true;
    797 }
    798 
    799 void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
    800   DCHECK(to_space != nullptr);
    801   to_space_ = to_space;
    802 }
    803 
    804 void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
    805   DCHECK(from_space != nullptr);
    806   from_space_ = from_space;
    807 }
    808 
    809 void SemiSpace::FinishPhase() {
    810   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    811   if (kProtectFromSpace && from_space_->IsRosAllocSpace()) {
    812     VLOG(heap) << "Protecting from_space_ with PROT_NONE : " << *from_space_;
    813     from_space_->GetMemMap()->Protect(PROT_NONE);
    814   }
    815   // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
    816   // further action is done by the heap.
    817   to_space_ = nullptr;
    818   from_space_ = nullptr;
    819   CHECK(mark_stack_->IsEmpty());
    820   mark_stack_->Reset();
    821   space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
    822   if (generational_) {
    823     // Decide whether to do a whole heap collection or a bump pointer
    824     // only space collection at the next collection by updating
    825     // collect_from_space_only_.
    826     if (collect_from_space_only_) {
    827       // Disable collect_from_space_only_ if the bytes promoted since the
    828       // last whole heap collection or the large object bytes
    829       // allocated exceeds a threshold.
    830       bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
    831       bool bytes_promoted_threshold_exceeded =
    832           bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
    833       uint64_t current_los_bytes_allocated = los != nullptr ? los->GetBytesAllocated() : 0U;
    834       uint64_t last_los_bytes_allocated =
    835           large_object_bytes_allocated_at_last_whole_heap_collection_;
    836       bool large_object_bytes_threshold_exceeded =
    837           current_los_bytes_allocated >=
    838           last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
    839       if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
    840         collect_from_space_only_ = false;
    841       }
    842     } else {
    843       // Reset the counters.
    844       bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
    845       large_object_bytes_allocated_at_last_whole_heap_collection_ =
    846           los != nullptr ? los->GetBytesAllocated() : 0U;
    847       collect_from_space_only_ = true;
    848     }
    849   }
    850   // Clear all of the spaces' mark bitmaps.
    851   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    852   heap_->ClearMarkedObjects();
    853 }
    854 
    855 void SemiSpace::RevokeAllThreadLocalBuffers() {
    856   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    857   GetHeap()->RevokeAllThreadLocalBuffers();
    858 }
    859 
    860 }  // namespace collector
    861 }  // namespace gc
    862 }  // namespace art
    863