Home | History | Annotate | Download | only in src
      1 /* e_j1f.c -- float version of e_j1.c.
      2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian (at) cygnus.com.
      3  */
      4 
      5 /*
      6  * ====================================================
      7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      8  *
      9  * Developed at SunPro, a Sun Microsystems, Inc. business.
     10  * Permission to use, copy, modify, and distribute this
     11  * software is freely granted, provided that this notice
     12  * is preserved.
     13  * ====================================================
     14  */
     15 
     16 #include <sys/cdefs.h>
     17 __FBSDID("$FreeBSD: head/lib/msun/src/e_j1f.c 283032 2015-05-17 16:27:06Z kargl $");
     18 
     19 /*
     20  * See e_j1.c for complete comments.
     21  */
     22 
     23 #include "math.h"
     24 #include "math_private.h"
     25 
     26 static __inline float ponef(float), qonef(float);
     27 
     28 static const volatile float vone = 1, vzero = 0;
     29 
     30 static const float
     31 huge    = 1e30,
     32 one	= 1.0,
     33 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
     34 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
     35 	/* R0/S0 on [0,2] */
     36 r00  = -6.2500000000e-02, /* 0xbd800000 */
     37 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
     38 r02  = -1.5995563444e-05, /* 0xb7862e36 */
     39 r03  =  4.9672799207e-08, /* 0x335557d2 */
     40 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
     41 s02  =  1.8594678841e-04, /* 0x3942fab6 */
     42 s03  =  1.1771846857e-06, /* 0x359dffc2 */
     43 s04  =  5.0463624390e-09, /* 0x31ad6446 */
     44 s05  =  1.2354227016e-11; /* 0x2d59567e */
     45 
     46 static const float zero    = 0.0;
     47 
     48 float
     49 __ieee754_j1f(float x)
     50 {
     51 	float z, s,c,ss,cc,r,u,v,y;
     52 	int32_t hx,ix;
     53 
     54 	GET_FLOAT_WORD(hx,x);
     55 	ix = hx&0x7fffffff;
     56 	if(ix>=0x7f800000) return one/x;
     57 	y = fabsf(x);
     58 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
     59 		s = sinf(y);
     60 		c = cosf(y);
     61 		ss = -s-c;
     62 		cc = s-c;
     63 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
     64 		    z = cosf(y+y);
     65 		    if ((s*c)>zero) cc = z/ss;
     66 		    else 	    ss = z/cc;
     67 		}
     68 	/*
     69 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
     70 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
     71 	 */
     72 		if(ix>0x58000000) z = (invsqrtpi*cc)/sqrtf(y); /* |x|>2**49 */
     73 		else {
     74 		    u = ponef(y); v = qonef(y);
     75 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
     76 		}
     77 		if(hx<0) return -z;
     78 		else  	 return  z;
     79 	}
     80 	if(ix<0x39000000) {	/* |x|<2**-13 */
     81 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
     82 	}
     83 	z = x*x;
     84 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
     85 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
     86 	r *= x;
     87 	return(x*(float)0.5+r/s);
     88 }
     89 
     90 static const float U0[5] = {
     91  -1.9605709612e-01, /* 0xbe48c331 */
     92   5.0443872809e-02, /* 0x3d4e9e3c */
     93  -1.9125689287e-03, /* 0xbafaaf2a */
     94   2.3525259166e-05, /* 0x37c5581c */
     95  -9.1909917899e-08, /* 0xb3c56003 */
     96 };
     97 static const float V0[5] = {
     98   1.9916731864e-02, /* 0x3ca3286a */
     99   2.0255257550e-04, /* 0x3954644b */
    100   1.3560879779e-06, /* 0x35b602d4 */
    101   6.2274145840e-09, /* 0x31d5f8eb */
    102   1.6655924903e-11, /* 0x2d9281cf */
    103 };
    104 
    105 float
    106 __ieee754_y1f(float x)
    107 {
    108 	float z, s,c,ss,cc,u,v;
    109 	int32_t hx,ix;
    110 
    111 	GET_FLOAT_WORD(hx,x);
    112         ix = 0x7fffffff&hx;
    113 	if(ix>=0x7f800000) return  vone/(x+x*x);
    114 	if(ix==0) return -one/vzero;
    115 	if(hx<0) return vzero/vzero;
    116         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
    117                 s = sinf(x);
    118                 c = cosf(x);
    119                 ss = -s-c;
    120                 cc = s-c;
    121                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
    122                     z = cosf(x+x);
    123                     if ((s*c)>zero) cc = z/ss;
    124                     else            ss = z/cc;
    125                 }
    126         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
    127          * where x0 = x-3pi/4
    128          *      Better formula:
    129          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
    130          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    131          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    132          *                      = -1/sqrt(2) * (cos(x) + sin(x))
    133          * To avoid cancellation, use
    134          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    135          * to compute the worse one.
    136          */
    137                 if(ix>0x58000000) z = (invsqrtpi*ss)/sqrtf(x); /* |x|>2**49 */
    138                 else {
    139                     u = ponef(x); v = qonef(x);
    140                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
    141                 }
    142                 return z;
    143         }
    144         if(ix<=0x33000000) {    /* x < 2**-25 */
    145             return(-tpi/x);
    146         }
    147         z = x*x;
    148         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
    149         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
    150         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
    151 }
    152 
    153 /* For x >= 8, the asymptotic expansions of pone is
    154  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
    155  * We approximate pone by
    156  * 	pone(x) = 1 + (R/S)
    157  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    158  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    159  * and
    160  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
    161  */
    162 
    163 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    164   0.0000000000e+00, /* 0x00000000 */
    165   1.1718750000e-01, /* 0x3df00000 */
    166   1.3239480972e+01, /* 0x4153d4ea */
    167   4.1205184937e+02, /* 0x43ce06a3 */
    168   3.8747453613e+03, /* 0x45722bed */
    169   7.9144794922e+03, /* 0x45f753d6 */
    170 };
    171 static const float ps8[5] = {
    172   1.1420736694e+02, /* 0x42e46a2c */
    173   3.6509309082e+03, /* 0x45642ee5 */
    174   3.6956207031e+04, /* 0x47105c35 */
    175   9.7602796875e+04, /* 0x47bea166 */
    176   3.0804271484e+04, /* 0x46f0a88b */
    177 };
    178 
    179 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    180   1.3199052094e-11, /* 0x2d68333f */
    181   1.1718749255e-01, /* 0x3defffff */
    182   6.8027510643e+00, /* 0x40d9b023 */
    183   1.0830818176e+02, /* 0x42d89dca */
    184   5.1763616943e+02, /* 0x440168b7 */
    185   5.2871520996e+02, /* 0x44042dc6 */
    186 };
    187 static const float ps5[5] = {
    188   5.9280597687e+01, /* 0x426d1f55 */
    189   9.9140142822e+02, /* 0x4477d9b1 */
    190   5.3532670898e+03, /* 0x45a74a23 */
    191   7.8446904297e+03, /* 0x45f52586 */
    192   1.5040468750e+03, /* 0x44bc0180 */
    193 };
    194 
    195 static const float pr3[6] = {
    196   3.0250391081e-09, /* 0x314fe10d */
    197   1.1718686670e-01, /* 0x3defffab */
    198   3.9329774380e+00, /* 0x407bb5e7 */
    199   3.5119403839e+01, /* 0x420c7a45 */
    200   9.1055007935e+01, /* 0x42b61c2a */
    201   4.8559066772e+01, /* 0x42423c7c */
    202 };
    203 static const float ps3[5] = {
    204   3.4791309357e+01, /* 0x420b2a4d */
    205   3.3676245117e+02, /* 0x43a86198 */
    206   1.0468714600e+03, /* 0x4482dbe3 */
    207   8.9081134033e+02, /* 0x445eb3ed */
    208   1.0378793335e+02, /* 0x42cf936c */
    209 };
    210 
    211 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    212   1.0771083225e-07, /* 0x33e74ea8 */
    213   1.1717621982e-01, /* 0x3deffa16 */
    214   2.3685150146e+00, /* 0x401795c0 */
    215   1.2242610931e+01, /* 0x4143e1bc */
    216   1.7693971634e+01, /* 0x418d8d41 */
    217   5.0735230446e+00, /* 0x40a25a4d */
    218 };
    219 static const float ps2[5] = {
    220   2.1436485291e+01, /* 0x41ab7dec */
    221   1.2529022980e+02, /* 0x42fa9499 */
    222   2.3227647400e+02, /* 0x436846c7 */
    223   1.1767937469e+02, /* 0x42eb5bd7 */
    224   8.3646392822e+00, /* 0x4105d590 */
    225 };
    226 
    227 static __inline float
    228 ponef(float x)
    229 {
    230 	const float *p,*q;
    231 	float z,r,s;
    232         int32_t ix;
    233 	GET_FLOAT_WORD(ix,x);
    234 	ix &= 0x7fffffff;
    235         if(ix>=0x41000000)     {p = pr8; q= ps8;}
    236         else if(ix>=0x409173eb){p = pr5; q= ps5;}
    237         else if(ix>=0x4036d917){p = pr3; q= ps3;}
    238 	else                   {p = pr2; q= ps2;}	/* ix>=0x40000000 */
    239         z = one/(x*x);
    240         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    241         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    242         return one+ r/s;
    243 }
    244 
    245 
    246 /* For x >= 8, the asymptotic expansions of qone is
    247  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
    248  * We approximate pone by
    249  * 	qone(x) = s*(0.375 + (R/S))
    250  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    251  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
    252  * and
    253  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
    254  */
    255 
    256 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    257   0.0000000000e+00, /* 0x00000000 */
    258  -1.0253906250e-01, /* 0xbdd20000 */
    259  -1.6271753311e+01, /* 0xc1822c8d */
    260  -7.5960174561e+02, /* 0xc43de683 */
    261  -1.1849806641e+04, /* 0xc639273a */
    262  -4.8438511719e+04, /* 0xc73d3683 */
    263 };
    264 static const float qs8[6] = {
    265   1.6139537048e+02, /* 0x43216537 */
    266   7.8253862305e+03, /* 0x45f48b17 */
    267   1.3387534375e+05, /* 0x4802bcd6 */
    268   7.1965775000e+05, /* 0x492fb29c */
    269   6.6660125000e+05, /* 0x4922be94 */
    270  -2.9449025000e+05, /* 0xc88fcb48 */
    271 };
    272 
    273 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    274  -2.0897993405e-11, /* 0xadb7d219 */
    275  -1.0253904760e-01, /* 0xbdd1fffe */
    276  -8.0564479828e+00, /* 0xc100e736 */
    277  -1.8366960144e+02, /* 0xc337ab6b */
    278  -1.3731937256e+03, /* 0xc4aba633 */
    279  -2.6124443359e+03, /* 0xc523471c */
    280 };
    281 static const float qs5[6] = {
    282   8.1276550293e+01, /* 0x42a28d98 */
    283   1.9917987061e+03, /* 0x44f8f98f */
    284   1.7468484375e+04, /* 0x468878f8 */
    285   4.9851425781e+04, /* 0x4742bb6d */
    286   2.7948074219e+04, /* 0x46da5826 */
    287  -4.7191835938e+03, /* 0xc5937978 */
    288 };
    289 
    290 static const float qr3[6] = {
    291  -5.0783124372e-09, /* 0xb1ae7d4f */
    292  -1.0253783315e-01, /* 0xbdd1ff5b */
    293  -4.6101160049e+00, /* 0xc0938612 */
    294  -5.7847221375e+01, /* 0xc267638e */
    295  -2.2824453735e+02, /* 0xc3643e9a */
    296  -2.1921012878e+02, /* 0xc35b35cb */
    297 };
    298 static const float qs3[6] = {
    299   4.7665153503e+01, /* 0x423ea91e */
    300   6.7386511230e+02, /* 0x4428775e */
    301   3.3801528320e+03, /* 0x45534272 */
    302   5.5477290039e+03, /* 0x45ad5dd5 */
    303   1.9031191406e+03, /* 0x44ede3d0 */
    304  -1.3520118713e+02, /* 0xc3073381 */
    305 };
    306 
    307 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    308  -1.7838172539e-07, /* 0xb43f8932 */
    309  -1.0251704603e-01, /* 0xbdd1f475 */
    310  -2.7522056103e+00, /* 0xc0302423 */
    311  -1.9663616180e+01, /* 0xc19d4f16 */
    312  -4.2325313568e+01, /* 0xc2294d1f */
    313  -2.1371921539e+01, /* 0xc1aaf9b2 */
    314 };
    315 static const float qs2[6] = {
    316   2.9533363342e+01, /* 0x41ec4454 */
    317   2.5298155212e+02, /* 0x437cfb47 */
    318   7.5750280762e+02, /* 0x443d602e */
    319   7.3939318848e+02, /* 0x4438d92a */
    320   1.5594900513e+02, /* 0x431bf2f2 */
    321  -4.9594988823e+00, /* 0xc09eb437 */
    322 };
    323 
    324 static __inline float
    325 qonef(float x)
    326 {
    327 	const float *p,*q;
    328 	float  s,r,z;
    329 	int32_t ix;
    330 	GET_FLOAT_WORD(ix,x);
    331 	ix &= 0x7fffffff;
    332 	if(ix>=0x41000000)     {p = qr8; q= qs8;}
    333 	else if(ix>=0x409173eb){p = qr5; q= qs5;}
    334 	else if(ix>=0x4036d917){p = qr3; q= qs3;}
    335 	else                   {p = qr2; q= qs2;}	/* ix>=0x40000000 */
    336 	z = one/(x*x);
    337 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    338 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    339 	return ((float).375 + r/s)/x;
    340 }
    341