1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "linker_phdr.h" 30 31 #include <errno.h> 32 #include <string.h> 33 #include <sys/mman.h> 34 #include <sys/types.h> 35 #include <sys/stat.h> 36 #include <unistd.h> 37 38 #include "linker.h" 39 #include "linker_debug.h" 40 #include "linker_utils.h" 41 42 #include "private/bionic_prctl.h" 43 44 static int GetTargetElfMachine() { 45 #if defined(__arm__) 46 return EM_ARM; 47 #elif defined(__aarch64__) 48 return EM_AARCH64; 49 #elif defined(__i386__) 50 return EM_386; 51 #elif defined(__mips__) 52 return EM_MIPS; 53 #elif defined(__x86_64__) 54 return EM_X86_64; 55 #endif 56 } 57 58 /** 59 TECHNICAL NOTE ON ELF LOADING. 60 61 An ELF file's program header table contains one or more PT_LOAD 62 segments, which corresponds to portions of the file that need to 63 be mapped into the process' address space. 64 65 Each loadable segment has the following important properties: 66 67 p_offset -> segment file offset 68 p_filesz -> segment file size 69 p_memsz -> segment memory size (always >= p_filesz) 70 p_vaddr -> segment's virtual address 71 p_flags -> segment flags (e.g. readable, writable, executable) 72 73 We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now. 74 75 The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz) 76 ranges of virtual addresses. A few rules apply: 77 78 - the virtual address ranges should not overlap. 79 80 - if a segment's p_filesz is smaller than its p_memsz, the extra bytes 81 between them should always be initialized to 0. 82 83 - ranges do not necessarily start or end at page boundaries. Two distinct 84 segments can have their start and end on the same page. In this case, the 85 page inherits the mapping flags of the latter segment. 86 87 Finally, the real load addrs of each segment is not p_vaddr. Instead the 88 loader decides where to load the first segment, then will load all others 89 relative to the first one to respect the initial range layout. 90 91 For example, consider the following list: 92 93 [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ], 94 [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ], 95 96 This corresponds to two segments that cover these virtual address ranges: 97 98 0x30000...0x34000 99 0x40000...0x48000 100 101 If the loader decides to load the first segment at address 0xa0000000 102 then the segments' load address ranges will be: 103 104 0xa0030000...0xa0034000 105 0xa0040000...0xa0048000 106 107 In other words, all segments must be loaded at an address that has the same 108 constant offset from their p_vaddr value. This offset is computed as the 109 difference between the first segment's load address, and its p_vaddr value. 110 111 However, in practice, segments do _not_ start at page boundaries. Since we 112 can only memory-map at page boundaries, this means that the bias is 113 computed as: 114 115 load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr) 116 117 (NOTE: The value must be used as a 32-bit unsigned integer, to deal with 118 possible wrap around UINT32_MAX for possible large p_vaddr values). 119 120 And that the phdr0_load_address must start at a page boundary, with 121 the segment's real content starting at: 122 123 phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr) 124 125 Note that ELF requires the following condition to make the mmap()-ing work: 126 127 PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset) 128 129 The load_bias must be added to any p_vaddr value read from the ELF file to 130 determine the corresponding memory address. 131 132 **/ 133 134 #define MAYBE_MAP_FLAG(x, from, to) (((x) & (from)) ? (to) : 0) 135 #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \ 136 MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \ 137 MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE)) 138 139 ElfReader::ElfReader() 140 : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0), 141 phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr), 142 strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr), 143 mapped_by_caller_(false) { 144 } 145 146 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) { 147 CHECK(!did_read_); 148 CHECK(!did_load_); 149 name_ = name; 150 fd_ = fd; 151 file_offset_ = file_offset; 152 file_size_ = file_size; 153 154 if (ReadElfHeader() && 155 VerifyElfHeader() && 156 ReadProgramHeaders() && 157 ReadSectionHeaders() && 158 ReadDynamicSection()) { 159 did_read_ = true; 160 } 161 162 return did_read_; 163 } 164 165 bool ElfReader::Load(const android_dlextinfo* extinfo) { 166 CHECK(did_read_); 167 CHECK(!did_load_); 168 if (ReserveAddressSpace(extinfo) && 169 LoadSegments() && 170 FindPhdr()) { 171 did_load_ = true; 172 } 173 174 return did_load_; 175 } 176 177 const char* ElfReader::get_string(ElfW(Word) index) const { 178 CHECK(strtab_ != nullptr); 179 CHECK(index < strtab_size_); 180 181 return strtab_ + index; 182 } 183 184 bool ElfReader::ReadElfHeader() { 185 ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_)); 186 if (rc < 0) { 187 DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno)); 188 return false; 189 } 190 191 if (rc != sizeof(header_)) { 192 DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(), 193 static_cast<size_t>(rc)); 194 return false; 195 } 196 return true; 197 } 198 199 bool ElfReader::VerifyElfHeader() { 200 if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) { 201 DL_ERR("\"%s\" has bad ELF magic", name_.c_str()); 202 return false; 203 } 204 205 // Try to give a clear diagnostic for ELF class mismatches, since they're 206 // an easy mistake to make during the 32-bit/64-bit transition period. 207 int elf_class = header_.e_ident[EI_CLASS]; 208 #if defined(__LP64__) 209 if (elf_class != ELFCLASS64) { 210 if (elf_class == ELFCLASS32) { 211 DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str()); 212 } else { 213 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class); 214 } 215 return false; 216 } 217 #else 218 if (elf_class != ELFCLASS32) { 219 if (elf_class == ELFCLASS64) { 220 DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str()); 221 } else { 222 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class); 223 } 224 return false; 225 } 226 #endif 227 228 if (header_.e_ident[EI_DATA] != ELFDATA2LSB) { 229 DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]); 230 return false; 231 } 232 233 if (header_.e_type != ET_DYN) { 234 DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type); 235 return false; 236 } 237 238 if (header_.e_version != EV_CURRENT) { 239 DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version); 240 return false; 241 } 242 243 if (header_.e_machine != GetTargetElfMachine()) { 244 DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine); 245 return false; 246 } 247 248 return true; 249 } 250 251 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size) { 252 off64_t range_start; 253 off64_t range_end; 254 255 return safe_add(&range_start, file_offset_, offset) && 256 safe_add(&range_end, range_start, size) && 257 range_start < file_size_ && 258 range_end <= file_size_; 259 } 260 261 // Loads the program header table from an ELF file into a read-only private 262 // anonymous mmap-ed block. 263 bool ElfReader::ReadProgramHeaders() { 264 phdr_num_ = header_.e_phnum; 265 266 // Like the kernel, we only accept program header tables that 267 // are smaller than 64KiB. 268 if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) { 269 DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_); 270 return false; 271 } 272 273 // Boundary checks 274 size_t size = phdr_num_ * sizeof(ElfW(Phdr)); 275 if (!CheckFileRange(header_.e_phoff, size)) { 276 DL_ERR("\"%s\" has invalid phdr offset/size", name_.c_str()); 277 return false; 278 } 279 280 if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) { 281 DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno)); 282 return false; 283 } 284 285 phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data()); 286 return true; 287 } 288 289 bool ElfReader::ReadSectionHeaders() { 290 shdr_num_ = header_.e_shnum; 291 292 if (shdr_num_ == 0) { 293 DL_ERR("\"%s\" has no section headers", name_.c_str()); 294 return false; 295 } 296 297 size_t size = shdr_num_ * sizeof(ElfW(Shdr)); 298 if (!CheckFileRange(header_.e_shoff, size)) { 299 DL_ERR("\"%s\" has invalid shdr offset/size", name_.c_str()); 300 return false; 301 } 302 303 if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) { 304 DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno)); 305 return false; 306 } 307 308 shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data()); 309 return true; 310 } 311 312 bool ElfReader::ReadDynamicSection() { 313 // 1. Find .dynamic section (in section headers) 314 const ElfW(Shdr)* dynamic_shdr = nullptr; 315 for (size_t i = 0; i < shdr_num_; ++i) { 316 if (shdr_table_[i].sh_type == SHT_DYNAMIC) { 317 dynamic_shdr = &shdr_table_ [i]; 318 break; 319 } 320 } 321 322 if (dynamic_shdr == nullptr) { 323 DL_ERR("\"%s\" .dynamic section header was not found", name_.c_str()); 324 return false; 325 } 326 327 if (dynamic_shdr->sh_link >= shdr_num_) { 328 DL_ERR("\"%s\" .dynamic section has invalid sh_link: %d", name_.c_str(), dynamic_shdr->sh_link); 329 return false; 330 } 331 332 const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link]; 333 334 if (strtab_shdr->sh_type != SHT_STRTAB) { 335 DL_ERR("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)", 336 name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type); 337 return false; 338 } 339 340 if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) { 341 DL_ERR("\"%s\" has invalid offset/size of .dynamic section", name_.c_str()); 342 PRINT("\"%s\" has invalid offset/size of .dynamic section", name_.c_str()); 343 return false; 344 } 345 346 if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) { 347 DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno)); 348 return false; 349 } 350 351 dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data()); 352 353 if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size)) { 354 DL_ERR("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section", 355 name_.c_str()); 356 return false; 357 } 358 359 if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) { 360 DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno)); 361 return false; 362 } 363 364 strtab_ = static_cast<const char*>(strtab_fragment_.data()); 365 strtab_size_ = strtab_fragment_.size(); 366 return true; 367 } 368 369 /* Returns the size of the extent of all the possibly non-contiguous 370 * loadable segments in an ELF program header table. This corresponds 371 * to the page-aligned size in bytes that needs to be reserved in the 372 * process' address space. If there are no loadable segments, 0 is 373 * returned. 374 * 375 * If out_min_vaddr or out_max_vaddr are not null, they will be 376 * set to the minimum and maximum addresses of pages to be reserved, 377 * or 0 if there is nothing to load. 378 */ 379 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count, 380 ElfW(Addr)* out_min_vaddr, 381 ElfW(Addr)* out_max_vaddr) { 382 ElfW(Addr) min_vaddr = UINTPTR_MAX; 383 ElfW(Addr) max_vaddr = 0; 384 385 bool found_pt_load = false; 386 for (size_t i = 0; i < phdr_count; ++i) { 387 const ElfW(Phdr)* phdr = &phdr_table[i]; 388 389 if (phdr->p_type != PT_LOAD) { 390 continue; 391 } 392 found_pt_load = true; 393 394 if (phdr->p_vaddr < min_vaddr) { 395 min_vaddr = phdr->p_vaddr; 396 } 397 398 if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) { 399 max_vaddr = phdr->p_vaddr + phdr->p_memsz; 400 } 401 } 402 if (!found_pt_load) { 403 min_vaddr = 0; 404 } 405 406 min_vaddr = PAGE_START(min_vaddr); 407 max_vaddr = PAGE_END(max_vaddr); 408 409 if (out_min_vaddr != nullptr) { 410 *out_min_vaddr = min_vaddr; 411 } 412 if (out_max_vaddr != nullptr) { 413 *out_max_vaddr = max_vaddr; 414 } 415 return max_vaddr - min_vaddr; 416 } 417 418 // Reserve a virtual address range big enough to hold all loadable 419 // segments of a program header table. This is done by creating a 420 // private anonymous mmap() with PROT_NONE. 421 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) { 422 ElfW(Addr) min_vaddr; 423 load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr); 424 if (load_size_ == 0) { 425 DL_ERR("\"%s\" has no loadable segments", name_.c_str()); 426 return false; 427 } 428 429 uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr); 430 void* start; 431 size_t reserved_size = 0; 432 bool reserved_hint = true; 433 bool strict_hint = false; 434 // Assume position independent executable by default. 435 void* mmap_hint = nullptr; 436 437 if (extinfo != nullptr) { 438 if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) { 439 reserved_size = extinfo->reserved_size; 440 reserved_hint = false; 441 } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) { 442 reserved_size = extinfo->reserved_size; 443 } 444 445 if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) { 446 mmap_hint = addr; 447 } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) { 448 mmap_hint = extinfo->reserved_addr; 449 strict_hint = true; 450 } 451 } 452 453 if (load_size_ > reserved_size) { 454 if (!reserved_hint) { 455 DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"", 456 reserved_size - load_size_, load_size_, name_.c_str()); 457 return false; 458 } 459 int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS; 460 start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0); 461 if (start == MAP_FAILED) { 462 DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str()); 463 return false; 464 } 465 if (strict_hint && (start != mmap_hint)) { 466 munmap(start, load_size_); 467 DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"", 468 load_size_, mmap_hint, name_.c_str()); 469 return false; 470 } 471 } else { 472 start = extinfo->reserved_addr; 473 mapped_by_caller_ = true; 474 } 475 476 load_start_ = start; 477 load_bias_ = reinterpret_cast<uint8_t*>(start) - addr; 478 return true; 479 } 480 481 bool ElfReader::LoadSegments() { 482 for (size_t i = 0; i < phdr_num_; ++i) { 483 const ElfW(Phdr)* phdr = &phdr_table_[i]; 484 485 if (phdr->p_type != PT_LOAD) { 486 continue; 487 } 488 489 // Segment addresses in memory. 490 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; 491 ElfW(Addr) seg_end = seg_start + phdr->p_memsz; 492 493 ElfW(Addr) seg_page_start = PAGE_START(seg_start); 494 ElfW(Addr) seg_page_end = PAGE_END(seg_end); 495 496 ElfW(Addr) seg_file_end = seg_start + phdr->p_filesz; 497 498 // File offsets. 499 ElfW(Addr) file_start = phdr->p_offset; 500 ElfW(Addr) file_end = file_start + phdr->p_filesz; 501 502 ElfW(Addr) file_page_start = PAGE_START(file_start); 503 ElfW(Addr) file_length = file_end - file_page_start; 504 505 if (file_size_ <= 0) { 506 DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_); 507 return false; 508 } 509 510 if (file_end > static_cast<size_t>(file_size_)) { 511 DL_ERR("invalid ELF file \"%s\" load segment[%zd]:" 512 " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")", 513 name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset), 514 reinterpret_cast<void*>(phdr->p_filesz), 515 reinterpret_cast<void*>(file_end), file_size_); 516 return false; 517 } 518 519 if (file_length != 0) { 520 void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start), 521 file_length, 522 PFLAGS_TO_PROT(phdr->p_flags), 523 MAP_FIXED|MAP_PRIVATE, 524 fd_, 525 file_offset_ + file_page_start); 526 if (seg_addr == MAP_FAILED) { 527 DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno)); 528 return false; 529 } 530 } 531 532 // if the segment is writable, and does not end on a page boundary, 533 // zero-fill it until the page limit. 534 if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) { 535 memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end)); 536 } 537 538 seg_file_end = PAGE_END(seg_file_end); 539 540 // seg_file_end is now the first page address after the file 541 // content. If seg_end is larger, we need to zero anything 542 // between them. This is done by using a private anonymous 543 // map for all extra pages. 544 if (seg_page_end > seg_file_end) { 545 size_t zeromap_size = seg_page_end - seg_file_end; 546 void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end), 547 zeromap_size, 548 PFLAGS_TO_PROT(phdr->p_flags), 549 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, 550 -1, 551 0); 552 if (zeromap == MAP_FAILED) { 553 DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno)); 554 return false; 555 } 556 557 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss"); 558 } 559 } 560 return true; 561 } 562 563 /* Used internally. Used to set the protection bits of all loaded segments 564 * with optional extra flags (i.e. really PROT_WRITE). Used by 565 * phdr_table_protect_segments and phdr_table_unprotect_segments. 566 */ 567 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, 568 ElfW(Addr) load_bias, int extra_prot_flags) { 569 const ElfW(Phdr)* phdr = phdr_table; 570 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 571 572 for (; phdr < phdr_limit; phdr++) { 573 if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) { 574 continue; 575 } 576 577 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 578 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 579 580 int prot = PFLAGS_TO_PROT(phdr->p_flags); 581 if ((extra_prot_flags & PROT_WRITE) != 0) { 582 // make sure we're never simultaneously writable / executable 583 prot &= ~PROT_EXEC; 584 } 585 586 int ret = mprotect(reinterpret_cast<void*>(seg_page_start), 587 seg_page_end - seg_page_start, 588 prot | extra_prot_flags); 589 if (ret < 0) { 590 return -1; 591 } 592 } 593 return 0; 594 } 595 596 /* Restore the original protection modes for all loadable segments. 597 * You should only call this after phdr_table_unprotect_segments and 598 * applying all relocations. 599 * 600 * Input: 601 * phdr_table -> program header table 602 * phdr_count -> number of entries in tables 603 * load_bias -> load bias 604 * Return: 605 * 0 on error, -1 on failure (error code in errno). 606 */ 607 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, 608 size_t phdr_count, ElfW(Addr) load_bias) { 609 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0); 610 } 611 612 /* Change the protection of all loaded segments in memory to writable. 613 * This is useful before performing relocations. Once completed, you 614 * will have to call phdr_table_protect_segments to restore the original 615 * protection flags on all segments. 616 * 617 * Note that some writable segments can also have their content turned 618 * to read-only by calling phdr_table_protect_gnu_relro. This is no 619 * performed here. 620 * 621 * Input: 622 * phdr_table -> program header table 623 * phdr_count -> number of entries in tables 624 * load_bias -> load bias 625 * Return: 626 * 0 on error, -1 on failure (error code in errno). 627 */ 628 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table, 629 size_t phdr_count, ElfW(Addr) load_bias) { 630 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE); 631 } 632 633 /* Used internally by phdr_table_protect_gnu_relro and 634 * phdr_table_unprotect_gnu_relro. 635 */ 636 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, 637 ElfW(Addr) load_bias, int prot_flags) { 638 const ElfW(Phdr)* phdr = phdr_table; 639 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 640 641 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 642 if (phdr->p_type != PT_GNU_RELRO) { 643 continue; 644 } 645 646 // Tricky: what happens when the relro segment does not start 647 // or end at page boundaries? We're going to be over-protective 648 // here and put every page touched by the segment as read-only. 649 650 // This seems to match Ian Lance Taylor's description of the 651 // feature at http://www.airs.com/blog/archives/189. 652 653 // Extract: 654 // Note that the current dynamic linker code will only work 655 // correctly if the PT_GNU_RELRO segment starts on a page 656 // boundary. This is because the dynamic linker rounds the 657 // p_vaddr field down to the previous page boundary. If 658 // there is anything on the page which should not be read-only, 659 // the program is likely to fail at runtime. So in effect the 660 // linker must only emit a PT_GNU_RELRO segment if it ensures 661 // that it starts on a page boundary. 662 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 663 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 664 665 int ret = mprotect(reinterpret_cast<void*>(seg_page_start), 666 seg_page_end - seg_page_start, 667 prot_flags); 668 if (ret < 0) { 669 return -1; 670 } 671 } 672 return 0; 673 } 674 675 /* Apply GNU relro protection if specified by the program header. This will 676 * turn some of the pages of a writable PT_LOAD segment to read-only, as 677 * specified by one or more PT_GNU_RELRO segments. This must be always 678 * performed after relocations. 679 * 680 * The areas typically covered are .got and .data.rel.ro, these are 681 * read-only from the program's POV, but contain absolute addresses 682 * that need to be relocated before use. 683 * 684 * Input: 685 * phdr_table -> program header table 686 * phdr_count -> number of entries in tables 687 * load_bias -> load bias 688 * Return: 689 * 0 on error, -1 on failure (error code in errno). 690 */ 691 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, 692 size_t phdr_count, ElfW(Addr) load_bias) { 693 return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ); 694 } 695 696 /* Serialize the GNU relro segments to the given file descriptor. This can be 697 * performed after relocations to allow another process to later share the 698 * relocated segment, if it was loaded at the same address. 699 * 700 * Input: 701 * phdr_table -> program header table 702 * phdr_count -> number of entries in tables 703 * load_bias -> load bias 704 * fd -> writable file descriptor to use 705 * Return: 706 * 0 on error, -1 on failure (error code in errno). 707 */ 708 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table, 709 size_t phdr_count, 710 ElfW(Addr) load_bias, 711 int fd) { 712 const ElfW(Phdr)* phdr = phdr_table; 713 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 714 ssize_t file_offset = 0; 715 716 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 717 if (phdr->p_type != PT_GNU_RELRO) { 718 continue; 719 } 720 721 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 722 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 723 ssize_t size = seg_page_end - seg_page_start; 724 725 ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size)); 726 if (written != size) { 727 return -1; 728 } 729 void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ, 730 MAP_PRIVATE|MAP_FIXED, fd, file_offset); 731 if (map == MAP_FAILED) { 732 return -1; 733 } 734 file_offset += size; 735 } 736 return 0; 737 } 738 739 /* Where possible, replace the GNU relro segments with mappings of the given 740 * file descriptor. This can be performed after relocations to allow a file 741 * previously created by phdr_table_serialize_gnu_relro in another process to 742 * replace the dirty relocated pages, saving memory, if it was loaded at the 743 * same address. We have to compare the data before we map over it, since some 744 * parts of the relro segment may not be identical due to other libraries in 745 * the process being loaded at different addresses. 746 * 747 * Input: 748 * phdr_table -> program header table 749 * phdr_count -> number of entries in tables 750 * load_bias -> load bias 751 * fd -> readable file descriptor to use 752 * Return: 753 * 0 on error, -1 on failure (error code in errno). 754 */ 755 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table, 756 size_t phdr_count, 757 ElfW(Addr) load_bias, 758 int fd) { 759 // Map the file at a temporary location so we can compare its contents. 760 struct stat file_stat; 761 if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) { 762 return -1; 763 } 764 off_t file_size = file_stat.st_size; 765 void* temp_mapping = nullptr; 766 if (file_size > 0) { 767 temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0); 768 if (temp_mapping == MAP_FAILED) { 769 return -1; 770 } 771 } 772 size_t file_offset = 0; 773 774 // Iterate over the relro segments and compare/remap the pages. 775 const ElfW(Phdr)* phdr = phdr_table; 776 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 777 778 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 779 if (phdr->p_type != PT_GNU_RELRO) { 780 continue; 781 } 782 783 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 784 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 785 786 char* file_base = static_cast<char*>(temp_mapping) + file_offset; 787 char* mem_base = reinterpret_cast<char*>(seg_page_start); 788 size_t match_offset = 0; 789 size_t size = seg_page_end - seg_page_start; 790 791 if (file_size - file_offset < size) { 792 // File is too short to compare to this segment. The contents are likely 793 // different as well (it's probably for a different library version) so 794 // just don't bother checking. 795 break; 796 } 797 798 while (match_offset < size) { 799 // Skip over dissimilar pages. 800 while (match_offset < size && 801 memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) { 802 match_offset += PAGE_SIZE; 803 } 804 805 // Count similar pages. 806 size_t mismatch_offset = match_offset; 807 while (mismatch_offset < size && 808 memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) { 809 mismatch_offset += PAGE_SIZE; 810 } 811 812 // Map over similar pages. 813 if (mismatch_offset > match_offset) { 814 void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset, 815 PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset); 816 if (map == MAP_FAILED) { 817 munmap(temp_mapping, file_size); 818 return -1; 819 } 820 } 821 822 match_offset = mismatch_offset; 823 } 824 825 // Add to the base file offset in case there are multiple relro segments. 826 file_offset += size; 827 } 828 munmap(temp_mapping, file_size); 829 return 0; 830 } 831 832 833 #if defined(__arm__) 834 835 # ifndef PT_ARM_EXIDX 836 # define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */ 837 # endif 838 839 /* Return the address and size of the .ARM.exidx section in memory, 840 * if present. 841 * 842 * Input: 843 * phdr_table -> program header table 844 * phdr_count -> number of entries in tables 845 * load_bias -> load bias 846 * Output: 847 * arm_exidx -> address of table in memory (null on failure). 848 * arm_exidx_count -> number of items in table (0 on failure). 849 * Return: 850 * 0 on error, -1 on failure (_no_ error code in errno) 851 */ 852 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count, 853 ElfW(Addr) load_bias, 854 ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) { 855 const ElfW(Phdr)* phdr = phdr_table; 856 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 857 858 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 859 if (phdr->p_type != PT_ARM_EXIDX) { 860 continue; 861 } 862 863 *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr); 864 *arm_exidx_count = phdr->p_memsz / 8; 865 return 0; 866 } 867 *arm_exidx = nullptr; 868 *arm_exidx_count = 0; 869 return -1; 870 } 871 #endif 872 873 /* Return the address and size of the ELF file's .dynamic section in memory, 874 * or null if missing. 875 * 876 * Input: 877 * phdr_table -> program header table 878 * phdr_count -> number of entries in tables 879 * load_bias -> load bias 880 * Output: 881 * dynamic -> address of table in memory (null on failure). 882 * dynamic_flags -> protection flags for section (unset on failure) 883 * Return: 884 * void 885 */ 886 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count, 887 ElfW(Addr) load_bias, ElfW(Dyn)** dynamic, 888 ElfW(Word)* dynamic_flags) { 889 *dynamic = nullptr; 890 for (size_t i = 0; i<phdr_count; ++i) { 891 const ElfW(Phdr)& phdr = phdr_table[i]; 892 if (phdr.p_type == PT_DYNAMIC) { 893 *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr); 894 if (dynamic_flags) { 895 *dynamic_flags = phdr.p_flags; 896 } 897 return; 898 } 899 } 900 } 901 902 /* Return the program interpreter string, or nullptr if missing. 903 * 904 * Input: 905 * phdr_table -> program header table 906 * phdr_count -> number of entries in tables 907 * load_bias -> load bias 908 * Return: 909 * pointer to the program interpreter string. 910 */ 911 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count, 912 ElfW(Addr) load_bias) { 913 for (size_t i = 0; i<phdr_count; ++i) { 914 const ElfW(Phdr)& phdr = phdr_table[i]; 915 if (phdr.p_type == PT_INTERP) { 916 return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr); 917 } 918 } 919 return nullptr; 920 } 921 922 // Sets loaded_phdr_ to the address of the program header table as it appears 923 // in the loaded segments in memory. This is in contrast with phdr_table_, 924 // which is temporary and will be released before the library is relocated. 925 bool ElfReader::FindPhdr() { 926 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; 927 928 // If there is a PT_PHDR, use it directly. 929 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { 930 if (phdr->p_type == PT_PHDR) { 931 return CheckPhdr(load_bias_ + phdr->p_vaddr); 932 } 933 } 934 935 // Otherwise, check the first loadable segment. If its file offset 936 // is 0, it starts with the ELF header, and we can trivially find the 937 // loaded program header from it. 938 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { 939 if (phdr->p_type == PT_LOAD) { 940 if (phdr->p_offset == 0) { 941 ElfW(Addr) elf_addr = load_bias_ + phdr->p_vaddr; 942 const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr); 943 ElfW(Addr) offset = ehdr->e_phoff; 944 return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset); 945 } 946 break; 947 } 948 } 949 950 DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str()); 951 return false; 952 } 953 954 // Ensures that our program header is actually within a loadable 955 // segment. This should help catch badly-formed ELF files that 956 // would cause the linker to crash later when trying to access it. 957 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) { 958 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; 959 ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr))); 960 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { 961 if (phdr->p_type != PT_LOAD) { 962 continue; 963 } 964 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; 965 ElfW(Addr) seg_end = phdr->p_filesz + seg_start; 966 if (seg_start <= loaded && loaded_end <= seg_end) { 967 loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded); 968 return true; 969 } 970 } 971 DL_ERR("\"%s\" loaded phdr %p not in loadable segment", 972 name_.c_str(), reinterpret_cast<void*>(loaded)); 973 return false; 974 } 975