Home | History | Annotate | Download | only in recovery
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <errno.h>
     18 #include <malloc.h>
     19 #include <stdio.h>
     20 #include <string.h>
     21 
     22 #include <algorithm>
     23 #include <memory>
     24 
     25 #include <openssl/ecdsa.h>
     26 #include <openssl/obj_mac.h>
     27 
     28 #include "asn1_decoder.h"
     29 #include "common.h"
     30 #include "print_sha1.h"
     31 #include "ui.h"
     32 #include "verifier.h"
     33 
     34 extern RecoveryUI* ui;
     35 
     36 static constexpr size_t MiB = 1024 * 1024;
     37 
     38 /*
     39  * Simple version of PKCS#7 SignedData extraction. This extracts the
     40  * signature OCTET STRING to be used for signature verification.
     41  *
     42  * For full details, see http://www.ietf.org/rfc/rfc3852.txt
     43  *
     44  * The PKCS#7 structure looks like:
     45  *
     46  *   SEQUENCE (ContentInfo)
     47  *     OID (ContentType)
     48  *     [0] (content)
     49  *       SEQUENCE (SignedData)
     50  *         INTEGER (version CMSVersion)
     51  *         SET (DigestAlgorithmIdentifiers)
     52  *         SEQUENCE (EncapsulatedContentInfo)
     53  *         [0] (CertificateSet OPTIONAL)
     54  *         [1] (RevocationInfoChoices OPTIONAL)
     55  *         SET (SignerInfos)
     56  *           SEQUENCE (SignerInfo)
     57  *             INTEGER (CMSVersion)
     58  *             SEQUENCE (SignerIdentifier)
     59  *             SEQUENCE (DigestAlgorithmIdentifier)
     60  *             SEQUENCE (SignatureAlgorithmIdentifier)
     61  *             OCTET STRING (SignatureValue)
     62  */
     63 static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
     64         size_t* sig_der_length) {
     65     asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
     66     if (ctx == NULL) {
     67         return false;
     68     }
     69 
     70     asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
     71     if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
     72         asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
     73         if (signed_data_app != NULL) {
     74             asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
     75             if (signed_data_seq != NULL
     76                     && asn1_sequence_next(signed_data_seq)
     77                     && asn1_sequence_next(signed_data_seq)
     78                     && asn1_sequence_next(signed_data_seq)
     79                     && asn1_constructed_skip_all(signed_data_seq)) {
     80                 asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
     81                 if (sig_set != NULL) {
     82                     asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
     83                     if (sig_seq != NULL
     84                             && asn1_sequence_next(sig_seq)
     85                             && asn1_sequence_next(sig_seq)
     86                             && asn1_sequence_next(sig_seq)
     87                             && asn1_sequence_next(sig_seq)) {
     88                         uint8_t* sig_der_ptr;
     89                         if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
     90                             *sig_der = (uint8_t*) malloc(*sig_der_length);
     91                             if (*sig_der != NULL) {
     92                                 memcpy(*sig_der, sig_der_ptr, *sig_der_length);
     93                             }
     94                         }
     95                         asn1_context_free(sig_seq);
     96                     }
     97                     asn1_context_free(sig_set);
     98                 }
     99                 asn1_context_free(signed_data_seq);
    100             }
    101             asn1_context_free(signed_data_app);
    102         }
    103         asn1_context_free(pkcs7_seq);
    104     }
    105     asn1_context_free(ctx);
    106 
    107     return *sig_der != NULL;
    108 }
    109 
    110 // Look for an RSA signature embedded in the .ZIP file comment given
    111 // the path to the zip.  Verify it matches one of the given public
    112 // keys.
    113 //
    114 // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
    115 // or no key matches the signature).
    116 
    117 int verify_file(unsigned char* addr, size_t length,
    118                 const std::vector<Certificate>& keys) {
    119     ui->SetProgress(0.0);
    120 
    121     // An archive with a whole-file signature will end in six bytes:
    122     //
    123     //   (2-byte signature start) $ff $ff (2-byte comment size)
    124     //
    125     // (As far as the ZIP format is concerned, these are part of the
    126     // archive comment.)  We start by reading this footer, this tells
    127     // us how far back from the end we have to start reading to find
    128     // the whole comment.
    129 
    130 #define FOOTER_SIZE 6
    131 
    132     if (length < FOOTER_SIZE) {
    133         LOGE("not big enough to contain footer\n");
    134         return VERIFY_FAILURE;
    135     }
    136 
    137     unsigned char* footer = addr + length - FOOTER_SIZE;
    138 
    139     if (footer[2] != 0xff || footer[3] != 0xff) {
    140         LOGE("footer is wrong\n");
    141         return VERIFY_FAILURE;
    142     }
    143 
    144     size_t comment_size = footer[4] + (footer[5] << 8);
    145     size_t signature_start = footer[0] + (footer[1] << 8);
    146     LOGI("comment is %zu bytes; signature %zu bytes from end\n",
    147          comment_size, signature_start);
    148 
    149     if (signature_start <= FOOTER_SIZE) {
    150         LOGE("Signature start is in the footer");
    151         return VERIFY_FAILURE;
    152     }
    153 
    154 #define EOCD_HEADER_SIZE 22
    155 
    156     // The end-of-central-directory record is 22 bytes plus any
    157     // comment length.
    158     size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
    159 
    160     if (length < eocd_size) {
    161         LOGE("not big enough to contain EOCD\n");
    162         return VERIFY_FAILURE;
    163     }
    164 
    165     // Determine how much of the file is covered by the signature.
    166     // This is everything except the signature data and length, which
    167     // includes all of the EOCD except for the comment length field (2
    168     // bytes) and the comment data.
    169     size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
    170 
    171     unsigned char* eocd = addr + length - eocd_size;
    172 
    173     // If this is really is the EOCD record, it will begin with the
    174     // magic number $50 $4b $05 $06.
    175     if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
    176         eocd[2] != 0x05 || eocd[3] != 0x06) {
    177         LOGE("signature length doesn't match EOCD marker\n");
    178         return VERIFY_FAILURE;
    179     }
    180 
    181     for (size_t i = 4; i < eocd_size-3; ++i) {
    182         if (eocd[i  ] == 0x50 && eocd[i+1] == 0x4b &&
    183             eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
    184             // if the sequence $50 $4b $05 $06 appears anywhere after
    185             // the real one, minzip will find the later (wrong) one,
    186             // which could be exploitable.  Fail verification if
    187             // this sequence occurs anywhere after the real one.
    188             LOGE("EOCD marker occurs after start of EOCD\n");
    189             return VERIFY_FAILURE;
    190         }
    191     }
    192 
    193     bool need_sha1 = false;
    194     bool need_sha256 = false;
    195     for (const auto& key : keys) {
    196         switch (key.hash_len) {
    197             case SHA_DIGEST_LENGTH: need_sha1 = true; break;
    198             case SHA256_DIGEST_LENGTH: need_sha256 = true; break;
    199         }
    200     }
    201 
    202     SHA_CTX sha1_ctx;
    203     SHA256_CTX sha256_ctx;
    204     SHA1_Init(&sha1_ctx);
    205     SHA256_Init(&sha256_ctx);
    206 
    207     double frac = -1.0;
    208     size_t so_far = 0;
    209     while (so_far < signed_len) {
    210         // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a
    211         // 1196MiB full OTA and 60% for an 89MiB incremental OTA.
    212         // http://b/28135231.
    213         size_t size = std::min(signed_len - so_far, 16 * MiB);
    214 
    215         if (need_sha1) SHA1_Update(&sha1_ctx, addr + so_far, size);
    216         if (need_sha256) SHA256_Update(&sha256_ctx, addr + so_far, size);
    217         so_far += size;
    218 
    219         double f = so_far / (double)signed_len;
    220         if (f > frac + 0.02 || size == so_far) {
    221             ui->SetProgress(f);
    222             frac = f;
    223         }
    224     }
    225 
    226     uint8_t sha1[SHA_DIGEST_LENGTH];
    227     SHA1_Final(sha1, &sha1_ctx);
    228     uint8_t sha256[SHA256_DIGEST_LENGTH];
    229     SHA256_Final(sha256, &sha256_ctx);
    230 
    231     uint8_t* sig_der = nullptr;
    232     size_t sig_der_length = 0;
    233 
    234     uint8_t* signature = eocd + eocd_size - signature_start;
    235     size_t signature_size = signature_start - FOOTER_SIZE;
    236 
    237     LOGI("signature (offset: 0x%zx, length: %zu): %s\n",
    238             length - signature_start, signature_size,
    239             print_hex(signature, signature_size).c_str());
    240 
    241     if (!read_pkcs7(signature, signature_size, &sig_der, &sig_der_length)) {
    242         LOGE("Could not find signature DER block\n");
    243         return VERIFY_FAILURE;
    244     }
    245 
    246     /*
    247      * Check to make sure at least one of the keys matches the signature. Since
    248      * any key can match, we need to try each before determining a verification
    249      * failure has happened.
    250      */
    251     size_t i = 0;
    252     for (const auto& key : keys) {
    253         const uint8_t* hash;
    254         int hash_nid;
    255         switch (key.hash_len) {
    256             case SHA_DIGEST_LENGTH:
    257                 hash = sha1;
    258                 hash_nid = NID_sha1;
    259                 break;
    260             case SHA256_DIGEST_LENGTH:
    261                 hash = sha256;
    262                 hash_nid = NID_sha256;
    263                 break;
    264             default:
    265                 continue;
    266         }
    267 
    268         // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
    269         // the signing tool appends after the signature itself.
    270         if (key.key_type == Certificate::KEY_TYPE_RSA) {
    271             if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der,
    272                             sig_der_length, key.rsa.get())) {
    273                 LOGI("failed to verify against RSA key %zu\n", i);
    274                 continue;
    275             }
    276 
    277             LOGI("whole-file signature verified against RSA key %zu\n", i);
    278             free(sig_der);
    279             return VERIFY_SUCCESS;
    280         } else if (key.key_type == Certificate::KEY_TYPE_EC
    281                 && key.hash_len == SHA256_DIGEST_LENGTH) {
    282             if (!ECDSA_verify(0, hash, key.hash_len, sig_der,
    283                               sig_der_length, key.ec.get())) {
    284                 LOGI("failed to verify against EC key %zu\n", i);
    285                 continue;
    286             }
    287 
    288             LOGI("whole-file signature verified against EC key %zu\n", i);
    289             free(sig_der);
    290             return VERIFY_SUCCESS;
    291         } else {
    292             LOGI("Unknown key type %d\n", key.key_type);
    293         }
    294         i++;
    295     }
    296 
    297     if (need_sha1) {
    298         LOGI("SHA-1 digest: %s\n", print_hex(sha1, SHA_DIGEST_LENGTH).c_str());
    299     }
    300     if (need_sha256) {
    301         LOGI("SHA-256 digest: %s\n", print_hex(sha256, SHA256_DIGEST_LENGTH).c_str());
    302     }
    303     free(sig_der);
    304     LOGE("failed to verify whole-file signature\n");
    305     return VERIFY_FAILURE;
    306 }
    307 
    308 std::unique_ptr<RSA, RSADeleter> parse_rsa_key(FILE* file, uint32_t exponent) {
    309     // Read key length in words and n0inv. n0inv is a precomputed montgomery
    310     // parameter derived from the modulus and can be used to speed up
    311     // verification. n0inv is 32 bits wide here, assuming the verification logic
    312     // uses 32 bit arithmetic. However, BoringSSL may use a word size of 64 bits
    313     // internally, in which case we don't have a valid n0inv. Thus, we just
    314     // ignore the montgomery parameters and have BoringSSL recompute them
    315     // internally. If/When the speedup from using the montgomery parameters
    316     // becomes relevant, we can add more sophisticated code here to obtain a
    317     // 64-bit n0inv and initialize the montgomery parameters in the key object.
    318     uint32_t key_len_words = 0;
    319     uint32_t n0inv = 0;
    320     if (fscanf(file, " %i , 0x%x", &key_len_words, &n0inv) != 2) {
    321         return nullptr;
    322     }
    323 
    324     if (key_len_words > 8192 / 32) {
    325         LOGE("key length (%d) too large\n", key_len_words);
    326         return nullptr;
    327     }
    328 
    329     // Read the modulus.
    330     std::unique_ptr<uint32_t[]> modulus(new uint32_t[key_len_words]);
    331     if (fscanf(file, " , { %u", &modulus[0]) != 1) {
    332         return nullptr;
    333     }
    334     for (uint32_t i = 1; i < key_len_words; ++i) {
    335         if (fscanf(file, " , %u", &modulus[i]) != 1) {
    336             return nullptr;
    337         }
    338     }
    339 
    340     // Cconvert from little-endian array of little-endian words to big-endian
    341     // byte array suitable as input for BN_bin2bn.
    342     std::reverse((uint8_t*)modulus.get(),
    343                  (uint8_t*)(modulus.get() + key_len_words));
    344 
    345     // The next sequence of values is the montgomery parameter R^2. Since we
    346     // generally don't have a valid |n0inv|, we ignore this (see comment above).
    347     uint32_t rr_value;
    348     if (fscanf(file, " } , { %u", &rr_value) != 1) {
    349         return nullptr;
    350     }
    351     for (uint32_t i = 1; i < key_len_words; ++i) {
    352         if (fscanf(file, " , %u", &rr_value) != 1) {
    353             return nullptr;
    354         }
    355     }
    356     if (fscanf(file, " } } ") != 0) {
    357         return nullptr;
    358     }
    359 
    360     // Initialize the key.
    361     std::unique_ptr<RSA, RSADeleter> key(RSA_new());
    362     if (!key) {
    363       return nullptr;
    364     }
    365 
    366     key->n = BN_bin2bn((uint8_t*)modulus.get(),
    367                        key_len_words * sizeof(uint32_t), NULL);
    368     if (!key->n) {
    369       return nullptr;
    370     }
    371 
    372     key->e = BN_new();
    373     if (!key->e || !BN_set_word(key->e, exponent)) {
    374       return nullptr;
    375     }
    376 
    377     return key;
    378 }
    379 
    380 struct BNDeleter {
    381   void operator()(BIGNUM* bn) {
    382     BN_free(bn);
    383   }
    384 };
    385 
    386 std::unique_ptr<EC_KEY, ECKEYDeleter> parse_ec_key(FILE* file) {
    387     uint32_t key_len_bytes = 0;
    388     if (fscanf(file, " %i", &key_len_bytes) != 1) {
    389         return nullptr;
    390     }
    391 
    392     std::unique_ptr<EC_GROUP, void (*)(EC_GROUP*)> group(
    393         EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_free);
    394     if (!group) {
    395         return nullptr;
    396     }
    397 
    398     // Verify that |key_len| matches the group order.
    399     if (key_len_bytes != BN_num_bytes(EC_GROUP_get0_order(group.get()))) {
    400         return nullptr;
    401     }
    402 
    403     // Read the public key coordinates. Note that the byte order in the file is
    404     // little-endian, so we convert to big-endian here.
    405     std::unique_ptr<uint8_t[]> bytes(new uint8_t[key_len_bytes]);
    406     std::unique_ptr<BIGNUM, BNDeleter> point[2];
    407     for (int i = 0; i < 2; ++i) {
    408         unsigned int byte = 0;
    409         if (fscanf(file, " , { %u", &byte) != 1) {
    410             return nullptr;
    411         }
    412         bytes[key_len_bytes - 1] = byte;
    413 
    414         for (size_t i = 1; i < key_len_bytes; ++i) {
    415             if (fscanf(file, " , %u", &byte) != 1) {
    416                 return nullptr;
    417             }
    418             bytes[key_len_bytes - i - 1] = byte;
    419         }
    420 
    421         point[i].reset(BN_bin2bn(bytes.get(), key_len_bytes, nullptr));
    422         if (!point[i]) {
    423             return nullptr;
    424         }
    425 
    426         if (fscanf(file, " }") != 0) {
    427             return nullptr;
    428         }
    429     }
    430 
    431     if (fscanf(file, " } ") != 0) {
    432         return nullptr;
    433     }
    434 
    435     // Create and initialize the key.
    436     std::unique_ptr<EC_KEY, ECKEYDeleter> key(EC_KEY_new());
    437     if (!key || !EC_KEY_set_group(key.get(), group.get()) ||
    438         !EC_KEY_set_public_key_affine_coordinates(key.get(), point[0].get(),
    439                                                   point[1].get())) {
    440         return nullptr;
    441     }
    442 
    443     return key;
    444 }
    445 
    446 // Reads a file containing one or more public keys as produced by
    447 // DumpPublicKey:  this is an RSAPublicKey struct as it would appear
    448 // as a C source literal, eg:
    449 //
    450 //  "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
    451 //
    452 // For key versions newer than the original 2048-bit e=3 keys
    453 // supported by Android, the string is preceded by a version
    454 // identifier, eg:
    455 //
    456 //  "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
    457 //
    458 // (Note that the braces and commas in this example are actual
    459 // characters the parser expects to find in the file; the ellipses
    460 // indicate more numbers omitted from this example.)
    461 //
    462 // The file may contain multiple keys in this format, separated by
    463 // commas.  The last key must not be followed by a comma.
    464 //
    465 // A Certificate is a pair of an RSAPublicKey and a particular hash
    466 // (we support SHA-1 and SHA-256; we store the hash length to signify
    467 // which is being used).  The hash used is implied by the version number.
    468 //
    469 //       1: 2048-bit RSA key with e=3 and SHA-1 hash
    470 //       2: 2048-bit RSA key with e=65537 and SHA-1 hash
    471 //       3: 2048-bit RSA key with e=3 and SHA-256 hash
    472 //       4: 2048-bit RSA key with e=65537 and SHA-256 hash
    473 //       5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
    474 //
    475 // Returns true on success, and appends the found keys (at least one) to certs.
    476 // Otherwise returns false if the file failed to parse, or if it contains zero
    477 // keys. The contents in certs would be unspecified on failure.
    478 bool load_keys(const char* filename, std::vector<Certificate>& certs) {
    479     std::unique_ptr<FILE, decltype(&fclose)> f(fopen(filename, "r"), fclose);
    480     if (!f) {
    481         LOGE("opening %s: %s\n", filename, strerror(errno));
    482         return false;
    483     }
    484 
    485     while (true) {
    486         certs.emplace_back(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr);
    487         Certificate& cert = certs.back();
    488         uint32_t exponent = 0;
    489 
    490         char start_char;
    491         if (fscanf(f.get(), " %c", &start_char) != 1) return false;
    492         if (start_char == '{') {
    493             // a version 1 key has no version specifier.
    494             cert.key_type = Certificate::KEY_TYPE_RSA;
    495             exponent = 3;
    496             cert.hash_len = SHA_DIGEST_LENGTH;
    497         } else if (start_char == 'v') {
    498             int version;
    499             if (fscanf(f.get(), "%d {", &version) != 1) return false;
    500             switch (version) {
    501                 case 2:
    502                     cert.key_type = Certificate::KEY_TYPE_RSA;
    503                     exponent = 65537;
    504                     cert.hash_len = SHA_DIGEST_LENGTH;
    505                     break;
    506                 case 3:
    507                     cert.key_type = Certificate::KEY_TYPE_RSA;
    508                     exponent = 3;
    509                     cert.hash_len = SHA256_DIGEST_LENGTH;
    510                     break;
    511                 case 4:
    512                     cert.key_type = Certificate::KEY_TYPE_RSA;
    513                     exponent = 65537;
    514                     cert.hash_len = SHA256_DIGEST_LENGTH;
    515                     break;
    516                 case 5:
    517                     cert.key_type = Certificate::KEY_TYPE_EC;
    518                     cert.hash_len = SHA256_DIGEST_LENGTH;
    519                     break;
    520                 default:
    521                     return false;
    522             }
    523         }
    524 
    525         if (cert.key_type == Certificate::KEY_TYPE_RSA) {
    526             cert.rsa = parse_rsa_key(f.get(), exponent);
    527             if (!cert.rsa) {
    528               return false;
    529             }
    530 
    531             LOGI("read key e=%d hash=%d\n", exponent, cert.hash_len);
    532         } else if (cert.key_type == Certificate::KEY_TYPE_EC) {
    533             cert.ec = parse_ec_key(f.get());
    534             if (!cert.ec) {
    535               return false;
    536             }
    537         } else {
    538             LOGE("Unknown key type %d\n", cert.key_type);
    539             return false;
    540         }
    541 
    542         // if the line ends in a comma, this file has more keys.
    543         int ch = fgetc(f.get());
    544         if (ch == ',') {
    545             // more keys to come.
    546             continue;
    547         } else if (ch == EOF) {
    548             break;
    549         } else {
    550             LOGE("unexpected character between keys\n");
    551             return false;
    552         }
    553     }
    554 
    555     return true;
    556 }
    557