Home | History | Annotate | Download | only in sensors
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /* this implements a sensors hardware library for the Android emulator.
     18  * the following code should be built as a shared library that will be
     19  * placed into /system/lib/hw/sensors.goldfish.so
     20  *
     21  * it will be loaded by the code in hardware/libhardware/hardware.c
     22  * which is itself called from com_android_server_SensorService.cpp
     23  */
     24 
     25 
     26 /* we connect with the emulator through the "sensors" qemud service
     27  */
     28 #define  SENSORS_SERVICE_NAME "sensors"
     29 
     30 #define LOG_TAG "QemuSensors"
     31 
     32 #include <unistd.h>
     33 #include <fcntl.h>
     34 #include <errno.h>
     35 #include <string.h>
     36 #include <cutils/log.h>
     37 #include <cutils/sockets.h>
     38 #include <hardware/sensors.h>
     39 
     40 #if 0
     41 #define  D(...)  ALOGD(__VA_ARGS__)
     42 #else
     43 #define  D(...)  ((void)0)
     44 #endif
     45 
     46 #define  E(...)  ALOGE(__VA_ARGS__)
     47 
     48 #include <hardware/qemud.h>
     49 
     50 /** SENSOR IDS AND NAMES
     51  **/
     52 
     53 #define MAX_NUM_SENSORS 8
     54 
     55 #define SUPPORTED_SENSORS  ((1<<MAX_NUM_SENSORS)-1)
     56 
     57 #define  ID_BASE           SENSORS_HANDLE_BASE
     58 #define  ID_ACCELERATION   (ID_BASE+0)
     59 #define  ID_MAGNETIC_FIELD (ID_BASE+1)
     60 #define  ID_ORIENTATION    (ID_BASE+2)
     61 #define  ID_TEMPERATURE    (ID_BASE+3)
     62 #define  ID_PROXIMITY      (ID_BASE+4)
     63 #define  ID_LIGHT          (ID_BASE+5)
     64 #define  ID_PRESSURE       (ID_BASE+6)
     65 #define  ID_HUMIDITY       (ID_BASE+7)
     66 
     67 #define  SENSORS_ACCELERATION    (1 << ID_ACCELERATION)
     68 #define  SENSORS_MAGNETIC_FIELD  (1 << ID_MAGNETIC_FIELD)
     69 #define  SENSORS_ORIENTATION     (1 << ID_ORIENTATION)
     70 #define  SENSORS_TEMPERATURE     (1 << ID_TEMPERATURE)
     71 #define  SENSORS_PROXIMITY       (1 << ID_PROXIMITY)
     72 #define  SENSORS_LIGHT           (1 << ID_LIGHT)
     73 #define  SENSORS_PRESSURE        (1 << ID_PRESSURE)
     74 #define  SENSORS_HUMIDITY        (1 << ID_HUMIDITY)
     75 
     76 #define  ID_CHECK(x)  ((unsigned)((x) - ID_BASE) < MAX_NUM_SENSORS)
     77 
     78 #define  SENSORS_LIST  \
     79     SENSOR_(ACCELERATION,"acceleration") \
     80     SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
     81     SENSOR_(ORIENTATION,"orientation") \
     82     SENSOR_(TEMPERATURE,"temperature") \
     83     SENSOR_(PROXIMITY,"proximity") \
     84     SENSOR_(LIGHT, "light") \
     85     SENSOR_(PRESSURE, "pressure") \
     86     SENSOR_(HUMIDITY, "humidity")
     87 
     88 static const struct {
     89     const char*  name;
     90     int          id; } _sensorIds[MAX_NUM_SENSORS] =
     91 {
     92 #define SENSOR_(x,y)  { y, ID_##x },
     93     SENSORS_LIST
     94 #undef  SENSOR_
     95 };
     96 
     97 static const char*
     98 _sensorIdToName( int  id )
     99 {
    100     int  nn;
    101     for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
    102         if (id == _sensorIds[nn].id)
    103             return _sensorIds[nn].name;
    104     return "<UNKNOWN>";
    105 }
    106 
    107 static int
    108 _sensorIdFromName( const char*  name )
    109 {
    110     int  nn;
    111 
    112     if (name == NULL)
    113         return -1;
    114 
    115     for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
    116         if (!strcmp(name, _sensorIds[nn].name))
    117             return _sensorIds[nn].id;
    118 
    119     return -1;
    120 }
    121 
    122 /* return the current time in nanoseconds */
    123 static int64_t now_ns(void) {
    124     struct timespec  ts;
    125     clock_gettime(CLOCK_MONOTONIC, &ts);
    126     return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
    127 }
    128 
    129 /** SENSORS POLL DEVICE
    130  **
    131  ** This one is used to read sensor data from the hardware.
    132  ** We implement this by simply reading the data from the
    133  ** emulator through the QEMUD channel.
    134  **/
    135 
    136 typedef struct SensorDevice {
    137     struct sensors_poll_device_1  device;
    138     sensors_event_t               sensors[MAX_NUM_SENSORS];
    139     uint32_t                      pendingSensors;
    140     int64_t                       timeStart;
    141     int64_t                       timeOffset;
    142     uint32_t                      active_sensors;
    143     int                           fd;
    144     pthread_mutex_t               lock;
    145 } SensorDevice;
    146 
    147 /* Grab the file descriptor to the emulator's sensors service pipe.
    148  * This function returns a file descriptor on success, or -errno on
    149  * failure, and assumes the SensorDevice instance's lock is held.
    150  *
    151  * This is needed because set_delay(), poll() and activate() can be called
    152  * from different threads, and poll() is blocking.
    153  *
    154  * Note that the emulator's sensors service creates a new client for each
    155  * connection through qemud_channel_open(), where each client has its own
    156  * delay and set of activated sensors. This precludes calling
    157  * qemud_channel_open() on each request, because a typical emulated system
    158  * will do something like:
    159  *
    160  * 1) On a first thread, de-activate() all sensors first, then call poll(),
    161  *    which results in the thread blocking.
    162  *
    163  * 2) On a second thread, slightly later, call set_delay() then activate()
    164  *    to enable the acceleration sensor.
    165  *
    166  * The system expects this to unblock the first thread which will receive
    167  * new sensor events after the activate() call in 2).
    168  *
    169  * This cannot work if both threads don't use the same connection.
    170  *
    171  * TODO(digit): This protocol is brittle, implement another control channel
    172  *              for set_delay()/activate()/batch() when supporting HAL 1.3
    173  */
    174 static int sensor_device_get_fd_locked(SensorDevice* dev) {
    175     /* Create connection to service on first call */
    176     if (dev->fd < 0) {
    177         dev->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
    178         if (dev->fd < 0) {
    179             int ret = -errno;
    180             E("%s: Could not open connection to service: %s", __FUNCTION__,
    181                 strerror(-ret));
    182             return ret;
    183         }
    184     }
    185     return dev->fd;
    186 }
    187 
    188 /* Send a command to the sensors virtual device. |dev| is a device instance and
    189  * |cmd| is a zero-terminated command string. Return 0 on success, or -errno
    190  * on failure. */
    191 static int sensor_device_send_command_locked(SensorDevice* dev,
    192                                              const char* cmd) {
    193     int fd = sensor_device_get_fd_locked(dev);
    194     if (fd < 0) {
    195         return fd;
    196     }
    197 
    198     int ret = 0;
    199     if (qemud_channel_send(fd, cmd, strlen(cmd)) < 0) {
    200         ret = -errno;
    201         E("%s(fd=%d): ERROR: %s", __FUNCTION__, fd, strerror(errno));
    202     }
    203     return ret;
    204 }
    205 
    206 /* Pick up one pending sensor event. On success, this returns the sensor
    207  * id, and sets |*event| accordingly. On failure, i.e. if there are no
    208  * pending events, return -EINVAL.
    209  *
    210  * Note: The device's lock must be acquired.
    211  */
    212 static int sensor_device_pick_pending_event_locked(SensorDevice* d,
    213                                                    sensors_event_t*  event)
    214 {
    215     uint32_t mask = SUPPORTED_SENSORS & d->pendingSensors;
    216     if (mask) {
    217         uint32_t i = 31 - __builtin_clz(mask);
    218         d->pendingSensors &= ~(1U << i);
    219         *event = d->sensors[i];
    220         event->sensor = i;
    221         event->version = sizeof(*event);
    222 
    223         D("%s: %d [%f, %f, %f]", __FUNCTION__,
    224                 i,
    225                 event->data[0],
    226                 event->data[1],
    227                 event->data[2]);
    228         return i;
    229     }
    230     E("No sensor to return!!! pendingSensors=0x%08x", d->pendingSensors);
    231     // we may end-up in a busy loop, slow things down, just in case.
    232     usleep(100000);
    233     return -EINVAL;
    234 }
    235 
    236 /* Block until new sensor events are reported by the emulator, or if a
    237  * 'wake' command is received through the service. On succes, return 0
    238  * and updates the |pendingEvents| and |sensors| fields of |dev|.
    239  * On failure, return -errno.
    240  *
    241  * Note: The device lock must be acquired when calling this function, and
    242  *       will still be held on return. However, the function releases the
    243  *       lock temporarily during the blocking wait.
    244  */
    245 static int sensor_device_poll_event_locked(SensorDevice* dev)
    246 {
    247     D("%s: dev=%p", __FUNCTION__, dev);
    248 
    249     int fd = sensor_device_get_fd_locked(dev);
    250     if (fd < 0) {
    251         E("%s: Could not get pipe channel: %s", __FUNCTION__, strerror(-fd));
    252         return fd;
    253     }
    254 
    255     // Accumulate pending events into |events| and |new_sensors| mask
    256     // until a 'sync' or 'wake' command is received. This also simplifies the
    257     // code a bit.
    258     uint32_t new_sensors = 0U;
    259     sensors_event_t* events = dev->sensors;
    260 
    261     int64_t event_time = -1;
    262     int ret = 0;
    263 
    264     for (;;) {
    265         /* Release the lock since we're going to block on recv() */
    266         pthread_mutex_unlock(&dev->lock);
    267 
    268         /* read the next event */
    269         char buff[256];
    270         int len = qemud_channel_recv(fd, buff, sizeof(buff) - 1U);
    271         /* re-acquire the lock to modify the device state. */
    272         pthread_mutex_lock(&dev->lock);
    273 
    274         if (len < 0) {
    275             ret = -errno;
    276             E("%s(fd=%d): Could not receive event data len=%d, errno=%d: %s",
    277               __FUNCTION__, fd, len, errno, strerror(errno));
    278             break;
    279         }
    280         buff[len] = 0;
    281         D("%s(fd=%d): received [%s]", __FUNCTION__, fd, buff);
    282 
    283 
    284         /* "wake" is sent from the emulator to exit this loop. */
    285         /* TODO(digit): Is it still needed? */
    286         if (!strcmp((const char*)buff, "wake")) {
    287             ret = 0x7FFFFFFF;
    288             break;
    289         }
    290 
    291         float params[3];
    292 
    293         /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
    294         if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2)
    295                 == 3) {
    296             new_sensors |= SENSORS_ACCELERATION;
    297             events[ID_ACCELERATION].acceleration.x = params[0];
    298             events[ID_ACCELERATION].acceleration.y = params[1];
    299             events[ID_ACCELERATION].acceleration.z = params[2];
    300             events[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
    301             continue;
    302         }
    303 
    304         /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation
    305          * changes */
    306         if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2)
    307                 == 3) {
    308             new_sensors |= SENSORS_ORIENTATION;
    309             events[ID_ORIENTATION].orientation.azimuth = params[0];
    310             events[ID_ORIENTATION].orientation.pitch   = params[1];
    311             events[ID_ORIENTATION].orientation.roll    = params[2];
    312             events[ID_ORIENTATION].orientation.status  =
    313                     SENSOR_STATUS_ACCURACY_HIGH;
    314             events[ID_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
    315             continue;
    316         }
    317 
    318         /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic
    319          * field */
    320         if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2)
    321                 == 3) {
    322             new_sensors |= SENSORS_MAGNETIC_FIELD;
    323             events[ID_MAGNETIC_FIELD].magnetic.x = params[0];
    324             events[ID_MAGNETIC_FIELD].magnetic.y = params[1];
    325             events[ID_MAGNETIC_FIELD].magnetic.z = params[2];
    326             events[ID_MAGNETIC_FIELD].magnetic.status =
    327                     SENSOR_STATUS_ACCURACY_HIGH;
    328             events[ID_MAGNETIC_FIELD].type = SENSOR_TYPE_MAGNETIC_FIELD;
    329             continue;
    330         }
    331 
    332         /* "temperature:<celsius>" */
    333         if (sscanf(buff, "temperature:%g", params+0) == 1) {
    334             new_sensors |= SENSORS_TEMPERATURE;
    335             events[ID_TEMPERATURE].temperature = params[0];
    336             events[ID_TEMPERATURE].type = SENSOR_TYPE_TEMPERATURE;
    337             continue;
    338         }
    339 
    340         /* "proximity:<value>" */
    341         if (sscanf(buff, "proximity:%g", params+0) == 1) {
    342             new_sensors |= SENSORS_PROXIMITY;
    343             events[ID_PROXIMITY].distance = params[0];
    344             events[ID_PROXIMITY].type = SENSOR_TYPE_PROXIMITY;
    345             continue;
    346         }
    347         /* "light:<lux>" */
    348         if (sscanf(buff, "light:%g", params+0) == 1) {
    349             new_sensors |= SENSORS_LIGHT;
    350             events[ID_LIGHT].light = params[0];
    351             events[ID_LIGHT].type = SENSOR_TYPE_LIGHT;
    352             continue;
    353         }
    354 
    355         /* "pressure:<hpa>" */
    356         if (sscanf(buff, "pressure:%g", params+0) == 1) {
    357             new_sensors |= SENSORS_PRESSURE;
    358             events[ID_PRESSURE].pressure = params[0];
    359             events[ID_PRESSURE].type = SENSOR_TYPE_PRESSURE;
    360             continue;
    361         }
    362 
    363         /* "humidity:<percent>" */
    364         if (sscanf(buff, "humidity:%g", params+0) == 1) {
    365             new_sensors |= SENSORS_HUMIDITY;
    366             events[ID_HUMIDITY].relative_humidity = params[0];
    367             events[ID_HUMIDITY].type = SENSOR_TYPE_RELATIVE_HUMIDITY;
    368             continue;
    369         }
    370 
    371         /* "sync:<time>" is sent after a series of sensor events.
    372          * where 'time' is expressed in micro-seconds and corresponds
    373          * to the VM time when the real poll occured.
    374          */
    375         if (sscanf(buff, "sync:%lld", &event_time) == 1) {
    376             if (new_sensors) {
    377                 goto out;
    378             }
    379             D("huh ? sync without any sensor data ?");
    380             continue;
    381         }
    382         D("huh ? unsupported command");
    383     }
    384 out:
    385     if (new_sensors) {
    386         /* update the time of each new sensor event. */
    387         dev->pendingSensors |= new_sensors;
    388         int64_t t = (event_time < 0) ? 0 : event_time * 1000LL;
    389 
    390         /* use the time at the first sync: as the base for later
    391          * time values */
    392         if (dev->timeStart == 0) {
    393             dev->timeStart  = now_ns();
    394             dev->timeOffset = dev->timeStart - t;
    395         }
    396         t += dev->timeOffset;
    397 
    398         while (new_sensors) {
    399             uint32_t i = 31 - __builtin_clz(new_sensors);
    400             new_sensors &= ~(1U << i);
    401             dev->sensors[i].timestamp = t;
    402         }
    403     }
    404     return ret;
    405 }
    406 
    407 /** SENSORS POLL DEVICE FUNCTIONS **/
    408 
    409 static int sensor_device_close(struct hw_device_t* dev0)
    410 {
    411     SensorDevice* dev = (void*)dev0;
    412     // Assume that there are no other threads blocked on poll()
    413     if (dev->fd >= 0) {
    414         close(dev->fd);
    415         dev->fd = -1;
    416     }
    417     pthread_mutex_destroy(&dev->lock);
    418     free(dev);
    419     return 0;
    420 }
    421 
    422 /* Return an array of sensor data. This function blocks until there is sensor
    423  * related events to report. On success, it will write the events into the
    424  * |data| array, which contains |count| items. The function returns the number
    425  * of events written into the array, which shall never be greater than |count|.
    426  * On error, return -errno code.
    427  *
    428  * Note that according to the sensor HAL [1], it shall never return 0!
    429  *
    430  * [1] http://source.android.com/devices/sensors/hal-interface.html
    431  */
    432 static int sensor_device_poll(struct sensors_poll_device_t *dev0,
    433                               sensors_event_t* data, int count)
    434 {
    435     SensorDevice* dev = (void*)dev0;
    436     D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
    437 
    438     if (count <= 0) {
    439         return -EINVAL;
    440     }
    441 
    442     int result = 0;
    443     pthread_mutex_lock(&dev->lock);
    444     if (!dev->pendingSensors) {
    445         /* Block until there are pending events. Note that this releases
    446          * the lock during the blocking call, then re-acquires it before
    447          * returning. */
    448         int ret = sensor_device_poll_event_locked(dev);
    449         if (ret < 0) {
    450             result = ret;
    451             goto out;
    452         }
    453         if (!dev->pendingSensors) {
    454             /* 'wake' event received before any sensor data. */
    455             result = -EIO;
    456             goto out;
    457         }
    458     }
    459     /* Now read as many pending events as needed. */
    460     int i;
    461     for (i = 0; i < count; i++)  {
    462         if (!dev->pendingSensors) {
    463             break;
    464         }
    465         int ret = sensor_device_pick_pending_event_locked(dev, data);
    466         if (ret < 0) {
    467             if (!result) {
    468                 result = ret;
    469             }
    470             break;
    471         }
    472         data++;
    473         result++;
    474     }
    475 out:
    476     pthread_mutex_unlock(&dev->lock);
    477     D("%s: result=%d", __FUNCTION__, result);
    478     return result;
    479 }
    480 
    481 static int sensor_device_activate(struct sensors_poll_device_t *dev0,
    482                                   int handle,
    483                                   int enabled)
    484 {
    485     SensorDevice* dev = (void*)dev0;
    486 
    487     D("%s: handle=%s (%d) enabled=%d", __FUNCTION__,
    488         _sensorIdToName(handle), handle, enabled);
    489 
    490     /* Sanity check */
    491     if (!ID_CHECK(handle)) {
    492         E("%s: bad handle ID", __FUNCTION__);
    493         return -EINVAL;
    494     }
    495 
    496     /* Exit early if sensor is already enabled/disabled. */
    497     uint32_t mask = (1U << handle);
    498     uint32_t sensors = enabled ? mask : 0;
    499 
    500     pthread_mutex_lock(&dev->lock);
    501 
    502     uint32_t active = dev->active_sensors;
    503     uint32_t new_sensors = (active & ~mask) | (sensors & mask);
    504     uint32_t changed = active ^ new_sensors;
    505 
    506     int ret = 0;
    507     if (changed) {
    508         /* Send command to the emulator. */
    509         char command[64];
    510         snprintf(command,
    511                  sizeof command,
    512                  "set:%s:%d",
    513                  _sensorIdToName(handle),
    514                  enabled != 0);
    515 
    516         ret = sensor_device_send_command_locked(dev, command);
    517         if (ret < 0) {
    518             E("%s: when sending command errno=%d: %s", __FUNCTION__, -ret,
    519               strerror(-ret));
    520         } else {
    521             dev->active_sensors = new_sensors;
    522         }
    523     }
    524     pthread_mutex_unlock(&dev->lock);
    525     return ret;
    526 }
    527 
    528 static int sensor_device_set_delay(struct sensors_poll_device_t *dev0,
    529                                    int handle __unused,
    530                                    int64_t ns)
    531 {
    532     SensorDevice* dev = (void*)dev0;
    533 
    534     int ms = (int)(ns / 1000000);
    535     D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
    536 
    537     char command[64];
    538     snprintf(command, sizeof command, "set-delay:%d", ms);
    539 
    540     pthread_mutex_lock(&dev->lock);
    541     int ret = sensor_device_send_command_locked(dev, command);
    542     pthread_mutex_unlock(&dev->lock);
    543     if (ret < 0) {
    544         E("%s: Could not send command: %s", __FUNCTION__, strerror(-ret));
    545     }
    546     return ret;
    547 }
    548 
    549 /** MODULE REGISTRATION SUPPORT
    550  **
    551  ** This is required so that hardware/libhardware/hardware.c
    552  ** will dlopen() this library appropriately.
    553  **/
    554 
    555 /*
    556  * the following is the list of all supported sensors.
    557  * this table is used to build sSensorList declared below
    558  * according to which hardware sensors are reported as
    559  * available from the emulator (see get_sensors_list below)
    560  *
    561  * note: numerical values for maxRange/resolution/power for
    562  *       all sensors but light, pressure and humidity were
    563  *       taken from the reference AK8976A implementation
    564  */
    565 static const struct sensor_t sSensorListInit[] = {
    566         { .name       = "Goldfish 3-axis Accelerometer",
    567           .vendor     = "The Android Open Source Project",
    568           .version    = 1,
    569           .handle     = ID_ACCELERATION,
    570           .type       = SENSOR_TYPE_ACCELEROMETER,
    571           .maxRange   = 2.8f,
    572           .resolution = 1.0f/4032.0f,
    573           .power      = 3.0f,
    574           .reserved   = {}
    575         },
    576 
    577         { .name       = "Goldfish 3-axis Magnetic field sensor",
    578           .vendor     = "The Android Open Source Project",
    579           .version    = 1,
    580           .handle     = ID_MAGNETIC_FIELD,
    581           .type       = SENSOR_TYPE_MAGNETIC_FIELD,
    582           .maxRange   = 2000.0f,
    583           .resolution = 1.0f,
    584           .power      = 6.7f,
    585           .reserved   = {}
    586         },
    587 
    588         { .name       = "Goldfish Orientation sensor",
    589           .vendor     = "The Android Open Source Project",
    590           .version    = 1,
    591           .handle     = ID_ORIENTATION,
    592           .type       = SENSOR_TYPE_ORIENTATION,
    593           .maxRange   = 360.0f,
    594           .resolution = 1.0f,
    595           .power      = 9.7f,
    596           .reserved   = {}
    597         },
    598 
    599         { .name       = "Goldfish Temperature sensor",
    600           .vendor     = "The Android Open Source Project",
    601           .version    = 1,
    602           .handle     = ID_TEMPERATURE,
    603           .type       = SENSOR_TYPE_TEMPERATURE,
    604           .maxRange   = 80.0f,
    605           .resolution = 1.0f,
    606           .power      = 0.0f,
    607           .reserved   = {}
    608         },
    609 
    610         { .name       = "Goldfish Proximity sensor",
    611           .vendor     = "The Android Open Source Project",
    612           .version    = 1,
    613           .handle     = ID_PROXIMITY,
    614           .type       = SENSOR_TYPE_PROXIMITY,
    615           .maxRange   = 1.0f,
    616           .resolution = 1.0f,
    617           .power      = 20.0f,
    618           .reserved   = {}
    619         },
    620 
    621         { .name       = "Goldfish Light sensor",
    622           .vendor     = "The Android Open Source Project",
    623           .version    = 1,
    624           .handle     = ID_LIGHT,
    625           .type       = SENSOR_TYPE_LIGHT,
    626           .maxRange   = 40000.0f,
    627           .resolution = 1.0f,
    628           .power      = 20.0f,
    629           .reserved   = {}
    630         },
    631 
    632         { .name       = "Goldfish Pressure sensor",
    633           .vendor     = "The Android Open Source Project",
    634           .version    = 1,
    635           .handle     = ID_PRESSURE,
    636           .type       = SENSOR_TYPE_PRESSURE,
    637           .maxRange   = 800.0f,
    638           .resolution = 1.0f,
    639           .power      = 20.0f,
    640           .reserved   = {}
    641         },
    642 
    643         { .name       = "Goldfish Humidity sensor",
    644           .vendor     = "The Android Open Source Project",
    645           .version    = 1,
    646           .handle     = ID_HUMIDITY,
    647           .type       = SENSOR_TYPE_RELATIVE_HUMIDITY,
    648           .maxRange   = 100.0f,
    649           .resolution = 1.0f,
    650           .power      = 20.0f,
    651           .reserved   = {}
    652         }
    653 };
    654 
    655 static struct sensor_t  sSensorList[MAX_NUM_SENSORS];
    656 
    657 static int sensors__get_sensors_list(struct sensors_module_t* module __unused,
    658         struct sensor_t const** list)
    659 {
    660     int  fd = qemud_channel_open(SENSORS_SERVICE_NAME);
    661     char buffer[12];
    662     int  mask, nn, count;
    663     int  ret = 0;
    664 
    665     if (fd < 0) {
    666         E("%s: no qemud connection", __FUNCTION__);
    667         goto out;
    668     }
    669     ret = qemud_channel_send(fd, "list-sensors", -1);
    670     if (ret < 0) {
    671         E("%s: could not query sensor list: %s", __FUNCTION__,
    672           strerror(errno));
    673         goto out;
    674     }
    675     ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
    676     if (ret < 0) {
    677         E("%s: could not receive sensor list: %s", __FUNCTION__,
    678           strerror(errno));
    679         goto out;
    680     }
    681     buffer[ret] = 0;
    682 
    683     /* the result is a integer used as a mask for available sensors */
    684     mask  = atoi(buffer);
    685     count = 0;
    686     for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
    687         if (((1 << nn) & mask) == 0)
    688             continue;
    689 
    690         sSensorList[count++] = sSensorListInit[nn];
    691     }
    692     D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
    693     *list = sSensorList;
    694 
    695     ret = count;
    696 out:
    697     if (fd >= 0) {
    698         close(fd);
    699     }
    700     return ret;
    701 }
    702 
    703 
    704 static int
    705 open_sensors(const struct hw_module_t* module,
    706              const char*               name,
    707              struct hw_device_t*      *device)
    708 {
    709     int  status = -EINVAL;
    710 
    711     D("%s: name=%s", __FUNCTION__, name);
    712 
    713     if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
    714         SensorDevice *dev = malloc(sizeof(*dev));
    715 
    716         memset(dev, 0, sizeof(*dev));
    717 
    718         dev->device.common.tag     = HARDWARE_DEVICE_TAG;
    719         dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_0;
    720         dev->device.common.module  = (struct hw_module_t*) module;
    721         dev->device.common.close   = sensor_device_close;
    722         dev->device.poll           = sensor_device_poll;
    723         dev->device.activate       = sensor_device_activate;
    724         dev->device.setDelay       = sensor_device_set_delay;
    725 
    726         dev->fd = -1;
    727         pthread_mutex_init(&dev->lock, NULL);
    728 
    729         *device = &dev->device.common;
    730         status  = 0;
    731     }
    732     return status;
    733 }
    734 
    735 
    736 static struct hw_module_methods_t sensors_module_methods = {
    737     .open = open_sensors
    738 };
    739 
    740 struct sensors_module_t HAL_MODULE_INFO_SYM = {
    741     .common = {
    742         .tag = HARDWARE_MODULE_TAG,
    743         .version_major = 1,
    744         .version_minor = 0,
    745         .id = SENSORS_HARDWARE_MODULE_ID,
    746         .name = "Goldfish SENSORS Module",
    747         .author = "The Android Open Source Project",
    748         .methods = &sensors_module_methods,
    749     },
    750     .get_sensors_list = sensors__get_sensors_list
    751 };
    752