Home | History | Annotate | Download | only in bn
      1 /* ====================================================================
      2  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in
     13  *    the documentation and/or other materials provided with the
     14  *    distribution.
     15  *
     16  * 3. All advertising materials mentioning features or use of this
     17  *    software must display the following acknowledgment:
     18  *    "This product includes software developed by the OpenSSL Project
     19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     20  *
     21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     22  *    endorse or promote products derived from this software without
     23  *    prior written permission. For written permission, please contact
     24  *    openssl-core (at) openssl.org.
     25  *
     26  * 5. Products derived from this software may not be called "OpenSSL"
     27  *    nor may "OpenSSL" appear in their names without prior written
     28  *    permission of the OpenSSL Project.
     29  *
     30  * 6. Redistributions of any form whatsoever must retain the following
     31  *    acknowledgment:
     32  *    "This product includes software developed by the OpenSSL Project
     33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     34  *
     35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     46  * OF THE POSSIBILITY OF SUCH DAMAGE.
     47  * ====================================================================
     48  *
     49  * This product includes cryptographic software written by Eric Young
     50  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     51  * Hudson (tjh (at) cryptsoft.com). */
     52 
     53 #include <openssl/bn.h>
     54 
     55 #include "internal.h"
     56 
     57 
     58 /* least significant word */
     59 #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
     60 
     61 /* Returns -2 for errors because both -1 and 0 are valid results. */
     62 int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
     63   int i;
     64   int ret = -2;
     65   BIGNUM *A, *B, *tmp;
     66   /* In 'tab', only odd-indexed entries are relevant:
     67    * For any odd BIGNUM n,
     68    *     tab[BN_lsw(n) & 7]
     69    * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
     70    * Note that the sign of n does not matter. */
     71   static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
     72 
     73   BN_CTX_start(ctx);
     74   A = BN_CTX_get(ctx);
     75   B = BN_CTX_get(ctx);
     76   if (B == NULL) {
     77     goto end;
     78   }
     79 
     80   if (!BN_copy(A, a) ||
     81       !BN_copy(B, b)) {
     82     goto end;
     83   }
     84 
     85   /* Kronecker symbol, imlemented according to Henri Cohen,
     86    * "A Course in Computational Algebraic Number Theory"
     87    * (algorithm 1.4.10). */
     88 
     89   /* Cohen's step 1: */
     90 
     91   if (BN_is_zero(B)) {
     92     ret = BN_abs_is_word(A, 1);
     93     goto end;
     94   }
     95 
     96   /* Cohen's step 2: */
     97 
     98   if (!BN_is_odd(A) && !BN_is_odd(B)) {
     99     ret = 0;
    100     goto end;
    101   }
    102 
    103   /* now B is non-zero */
    104   i = 0;
    105   while (!BN_is_bit_set(B, i)) {
    106     i++;
    107   }
    108   if (!BN_rshift(B, B, i)) {
    109     goto end;
    110   }
    111   if (i & 1) {
    112     /* i is odd */
    113     /* (thus B was even, thus A must be odd!)  */
    114 
    115     /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
    116     ret = tab[BN_lsw(A) & 7];
    117   } else {
    118     /* i is even */
    119     ret = 1;
    120   }
    121 
    122   if (B->neg) {
    123     B->neg = 0;
    124     if (A->neg) {
    125       ret = -ret;
    126     }
    127   }
    128 
    129   /* now B is positive and odd, so what remains to be done is to compute the
    130    * Jacobi symbol (A/B) and multiply it by 'ret' */
    131 
    132   while (1) {
    133     /* Cohen's step 3: */
    134 
    135     /* B is positive and odd */
    136     if (BN_is_zero(A)) {
    137       ret = BN_is_one(B) ? ret : 0;
    138       goto end;
    139     }
    140 
    141     /* now A is non-zero */
    142     i = 0;
    143     while (!BN_is_bit_set(A, i)) {
    144       i++;
    145     }
    146     if (!BN_rshift(A, A, i)) {
    147       goto end;
    148     }
    149     if (i & 1) {
    150       /* i is odd */
    151       /* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
    152       ret = ret * tab[BN_lsw(B) & 7];
    153     }
    154 
    155     /* Cohen's step 4: */
    156     /* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
    157     if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) {
    158       ret = -ret;
    159     }
    160 
    161     /* (A, B) := (B mod |A|, |A|) */
    162     if (!BN_nnmod(B, B, A, ctx)) {
    163       ret = -2;
    164       goto end;
    165     }
    166     tmp = A;
    167     A = B;
    168     B = tmp;
    169     tmp->neg = 0;
    170   }
    171 
    172 end:
    173   BN_CTX_end(ctx);
    174   return ret;
    175 }
    176