1 #!/usr/bin/env perl 2 # 3 # ==================================================================== 4 # Written by Andy Polyakov <appro (at] fy.chalmers.se> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 # 10 # July 2004 11 # 12 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in 13 # "hand-coded assembler"] doesn't stand for the whole improvement 14 # coefficient. It turned out that eliminating RC4_CHAR from config 15 # line results in ~40% improvement (yes, even for C implementation). 16 # Presumably it has everything to do with AMD cache architecture and 17 # RAW or whatever penalties. Once again! The module *requires* config 18 # line *without* RC4_CHAR! As for coding "secret," I bet on partial 19 # register arithmetics. For example instead of 'inc %r8; and $255,%r8' 20 # I simply 'inc %r8b'. Even though optimization manual discourages 21 # to operate on partial registers, it turned out to be the best bet. 22 # At least for AMD... How IA32E would perform remains to be seen... 23 24 # November 2004 25 # 26 # As was shown by Marc Bevand reordering of couple of load operations 27 # results in even higher performance gain of 3.3x:-) At least on 28 # Opteron... For reference, 1x in this case is RC4_CHAR C-code 29 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. 30 # Latter means that if you want to *estimate* what to expect from 31 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. 32 33 # November 2004 34 # 35 # Intel P4 EM64T core was found to run the AMD64 code really slow... 36 # The only way to achieve comparable performance on P4 was to keep 37 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to 38 # compose blended code, which would perform even within 30% marginal 39 # on either AMD and Intel platforms, I implement both cases. See 40 # rc4_skey.c for further details... 41 42 # April 2005 43 # 44 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing 45 # those with add/sub results in 50% performance improvement of folded 46 # loop... 47 48 # May 2005 49 # 50 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T 51 # performance by >30% [unlike P4 32-bit case that is]. But this is 52 # provided that loads are reordered even more aggressively! Both code 53 # pathes, AMD64 and EM64T, reorder loads in essentially same manner 54 # as my IA-64 implementation. On Opteron this resulted in modest 5% 55 # improvement [I had to test it], while final Intel P4 performance 56 # achieves respectful 432MBps on 2.8GHz processor now. For reference. 57 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than 58 # RC4_INT code-path. While if executed on Opteron, it's only 25% 59 # slower than the RC4_INT one [meaning that if CPU -arch detection 60 # is not implemented, then this final RC4_CHAR code-path should be 61 # preferred, as it provides better *all-round* performance]. 62 63 # March 2007 64 # 65 # Intel Core2 was observed to perform poorly on both code paths:-( It 66 # apparently suffers from some kind of partial register stall, which 67 # occurs in 64-bit mode only [as virtually identical 32-bit loop was 68 # observed to outperform 64-bit one by almost 50%]. Adding two movzb to 69 # cloop1 boosts its performance by 80%! This loop appears to be optimal 70 # fit for Core2 and therefore the code was modified to skip cloop8 on 71 # this CPU. 72 73 # May 2010 74 # 75 # Intel Westmere was observed to perform suboptimally. Adding yet 76 # another movzb to cloop1 improved performance by almost 50%! Core2 77 # performance is improved too, but nominally... 78 79 # May 2011 80 # 81 # The only code path that was not modified is P4-specific one. Non-P4 82 # Intel code path optimization is heavily based on submission by Maxim 83 # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used 84 # some of the ideas even in attempt to optmize the original RC4_INT 85 # code path... Current performance in cycles per processed byte (less 86 # is better) and improvement coefficients relative to previous 87 # version of this module are: 88 # 89 # Opteron 5.3/+0%(*) 90 # P4 6.5 91 # Core2 6.2/+15%(**) 92 # Westmere 4.2/+60% 93 # Sandy Bridge 4.2/+120% 94 # Atom 9.3/+80% 95 # 96 # (*) But corresponding loop has less instructions, which should have 97 # positive effect on upcoming Bulldozer, which has one less ALU. 98 # For reference, Intel code runs at 6.8 cpb rate on Opteron. 99 # (**) Note that Core2 result is ~15% lower than corresponding result 100 # for 32-bit code, meaning that it's possible to improve it, 101 # but more than likely at the cost of the others (see rc4-586.pl 102 # to get the idea)... 103 104 $flavour = shift; 105 $output = shift; 106 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 107 108 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 109 110 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 111 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 112 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or 113 die "can't locate x86_64-xlate.pl"; 114 115 open OUT,"| \"$^X\" $xlate $flavour $output"; 116 *STDOUT=*OUT; 117 118 $dat="%rdi"; # arg1 119 $len="%rsi"; # arg2 120 $inp="%rdx"; # arg3 121 $out="%rcx"; # arg4 122 123 { 124 $code=<<___; 125 .text 126 .extern OPENSSL_ia32cap_P 127 128 .globl asm_RC4 129 .type asm_RC4,\@function,4 130 .align 16 131 asm_RC4: 132 or $len,$len 133 jne .Lentry 134 ret 135 .Lentry: 136 push %rbx 137 push %r12 138 push %r13 139 .Lprologue: 140 mov $len,%r11 141 mov $inp,%r12 142 mov $out,%r13 143 ___ 144 my $len="%r11"; # reassign input arguments 145 my $inp="%r12"; 146 my $out="%r13"; 147 148 my @XX=("%r10","%rsi"); 149 my @TX=("%rax","%rbx"); 150 my $YY="%rcx"; 151 my $TY="%rdx"; 152 153 $code.=<<___; 154 xor $XX[0],$XX[0] 155 xor $YY,$YY 156 157 lea 8($dat),$dat 158 mov -8($dat),$XX[0]#b 159 mov -4($dat),$YY#b 160 cmpl \$-1,256($dat) 161 je .LRC4_CHAR 162 mov OPENSSL_ia32cap_P(%rip),%r8d 163 xor $TX[1],$TX[1] 164 inc $XX[0]#b 165 sub $XX[0],$TX[1] 166 sub $inp,$out 167 movl ($dat,$XX[0],4),$TX[0]#d 168 test \$-16,$len 169 jz .Lloop1 170 bt \$30,%r8d # Intel CPU? 171 jc .Lintel 172 and \$7,$TX[1] 173 lea 1($XX[0]),$XX[1] 174 jz .Loop8 175 sub $TX[1],$len 176 .Loop8_warmup: 177 add $TX[0]#b,$YY#b 178 movl ($dat,$YY,4),$TY#d 179 movl $TX[0]#d,($dat,$YY,4) 180 movl $TY#d,($dat,$XX[0],4) 181 add $TY#b,$TX[0]#b 182 inc $XX[0]#b 183 movl ($dat,$TX[0],4),$TY#d 184 movl ($dat,$XX[0],4),$TX[0]#d 185 xorb ($inp),$TY#b 186 movb $TY#b,($out,$inp) 187 lea 1($inp),$inp 188 dec $TX[1] 189 jnz .Loop8_warmup 190 191 lea 1($XX[0]),$XX[1] 192 jmp .Loop8 193 .align 16 194 .Loop8: 195 ___ 196 for ($i=0;$i<8;$i++) { 197 $code.=<<___ if ($i==7); 198 add \$8,$XX[1]#b 199 ___ 200 $code.=<<___; 201 add $TX[0]#b,$YY#b 202 movl ($dat,$YY,4),$TY#d 203 movl $TX[0]#d,($dat,$YY,4) 204 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d 205 ror \$8,%r8 # ror is redundant when $i=0 206 movl $TY#d,4*$i($dat,$XX[0],4) 207 add $TX[0]#b,$TY#b 208 movb ($dat,$TY,4),%r8b 209 ___ 210 push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers 211 } 212 $code.=<<___; 213 add \$8,$XX[0]#b 214 ror \$8,%r8 215 sub \$8,$len 216 217 xor ($inp),%r8 218 mov %r8,($out,$inp) 219 lea 8($inp),$inp 220 221 test \$-8,$len 222 jnz .Loop8 223 cmp \$0,$len 224 jne .Lloop1 225 jmp .Lexit 226 227 .align 16 228 .Lintel: 229 test \$-32,$len 230 jz .Lloop1 231 and \$15,$TX[1] 232 jz .Loop16_is_hot 233 sub $TX[1],$len 234 .Loop16_warmup: 235 add $TX[0]#b,$YY#b 236 movl ($dat,$YY,4),$TY#d 237 movl $TX[0]#d,($dat,$YY,4) 238 movl $TY#d,($dat,$XX[0],4) 239 add $TY#b,$TX[0]#b 240 inc $XX[0]#b 241 movl ($dat,$TX[0],4),$TY#d 242 movl ($dat,$XX[0],4),$TX[0]#d 243 xorb ($inp),$TY#b 244 movb $TY#b,($out,$inp) 245 lea 1($inp),$inp 246 dec $TX[1] 247 jnz .Loop16_warmup 248 249 mov $YY,$TX[1] 250 xor $YY,$YY 251 mov $TX[1]#b,$YY#b 252 253 .Loop16_is_hot: 254 lea ($dat,$XX[0],4),$XX[1] 255 ___ 256 sub RC4_loop { 257 my $i=shift; 258 my $j=$i<0?0:$i; 259 my $xmm="%xmm".($j&1); 260 261 $code.=" add \$16,$XX[0]#b\n" if ($i==15); 262 $code.=" movdqu ($inp),%xmm2\n" if ($i==15); 263 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); 264 $code.=" movl ($dat,$YY,4),$TY#d\n"; 265 $code.=" pxor %xmm0,%xmm2\n" if ($i==0); 266 $code.=" psllq \$8,%xmm1\n" if ($i==0); 267 $code.=" pxor $xmm,$xmm\n" if ($i<=1); 268 $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; 269 $code.=" add $TY#b,$TX[0]#b\n"; 270 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); 271 $code.=" movz $TX[0]#b,$TX[0]#d\n"; 272 $code.=" movl $TY#d,4*$j($XX[1])\n"; 273 $code.=" pxor %xmm1,%xmm2\n" if ($i==0); 274 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); 275 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); 276 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; 277 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); 278 $code.=" lea 16($inp),$inp\n" if ($i==0); 279 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); 280 } 281 RC4_loop(-1); 282 $code.=<<___; 283 jmp .Loop16_enter 284 .align 16 285 .Loop16: 286 ___ 287 288 for ($i=0;$i<16;$i++) { 289 $code.=".Loop16_enter:\n" if ($i==1); 290 RC4_loop($i); 291 push(@TX,shift(@TX)); # "rotate" registers 292 } 293 $code.=<<___; 294 mov $YY,$TX[1] 295 xor $YY,$YY # keyword to partial register 296 sub \$16,$len 297 mov $TX[1]#b,$YY#b 298 test \$-16,$len 299 jnz .Loop16 300 301 psllq \$8,%xmm1 302 pxor %xmm0,%xmm2 303 pxor %xmm1,%xmm2 304 movdqu %xmm2,($out,$inp) 305 lea 16($inp),$inp 306 307 cmp \$0,$len 308 jne .Lloop1 309 jmp .Lexit 310 311 .align 16 312 .Lloop1: 313 add $TX[0]#b,$YY#b 314 movl ($dat,$YY,4),$TY#d 315 movl $TX[0]#d,($dat,$YY,4) 316 movl $TY#d,($dat,$XX[0],4) 317 add $TY#b,$TX[0]#b 318 inc $XX[0]#b 319 movl ($dat,$TX[0],4),$TY#d 320 movl ($dat,$XX[0],4),$TX[0]#d 321 xorb ($inp),$TY#b 322 movb $TY#b,($out,$inp) 323 lea 1($inp),$inp 324 dec $len 325 jnz .Lloop1 326 jmp .Lexit 327 328 .align 16 329 .LRC4_CHAR: 330 add \$1,$XX[0]#b 331 movzb ($dat,$XX[0]),$TX[0]#d 332 test \$-8,$len 333 jz .Lcloop1 334 jmp .Lcloop8 335 .align 16 336 .Lcloop8: 337 mov ($inp),%r8d 338 mov 4($inp),%r9d 339 ___ 340 # unroll 2x4-wise, because 64-bit rotates kill Intel P4... 341 for ($i=0;$i<4;$i++) { 342 $code.=<<___; 343 add $TX[0]#b,$YY#b 344 lea 1($XX[0]),$XX[1] 345 movzb ($dat,$YY),$TY#d 346 movzb $XX[1]#b,$XX[1]#d 347 movzb ($dat,$XX[1]),$TX[1]#d 348 movb $TX[0]#b,($dat,$YY) 349 cmp $XX[1],$YY 350 movb $TY#b,($dat,$XX[0]) 351 jne .Lcmov$i # Intel cmov is sloooow... 352 mov $TX[0],$TX[1] 353 .Lcmov$i: 354 add $TX[0]#b,$TY#b 355 xor ($dat,$TY),%r8b 356 ror \$8,%r8d 357 ___ 358 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 359 } 360 for ($i=4;$i<8;$i++) { 361 $code.=<<___; 362 add $TX[0]#b,$YY#b 363 lea 1($XX[0]),$XX[1] 364 movzb ($dat,$YY),$TY#d 365 movzb $XX[1]#b,$XX[1]#d 366 movzb ($dat,$XX[1]),$TX[1]#d 367 movb $TX[0]#b,($dat,$YY) 368 cmp $XX[1],$YY 369 movb $TY#b,($dat,$XX[0]) 370 jne .Lcmov$i # Intel cmov is sloooow... 371 mov $TX[0],$TX[1] 372 .Lcmov$i: 373 add $TX[0]#b,$TY#b 374 xor ($dat,$TY),%r9b 375 ror \$8,%r9d 376 ___ 377 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 378 } 379 $code.=<<___; 380 lea -8($len),$len 381 mov %r8d,($out) 382 lea 8($inp),$inp 383 mov %r9d,4($out) 384 lea 8($out),$out 385 386 test \$-8,$len 387 jnz .Lcloop8 388 cmp \$0,$len 389 jne .Lcloop1 390 jmp .Lexit 391 ___ 392 $code.=<<___; 393 .align 16 394 .Lcloop1: 395 add $TX[0]#b,$YY#b 396 movzb $YY#b,$YY#d 397 movzb ($dat,$YY),$TY#d 398 movb $TX[0]#b,($dat,$YY) 399 movb $TY#b,($dat,$XX[0]) 400 add $TX[0]#b,$TY#b 401 add \$1,$XX[0]#b 402 movzb $TY#b,$TY#d 403 movzb $XX[0]#b,$XX[0]#d 404 movzb ($dat,$TY),$TY#d 405 movzb ($dat,$XX[0]),$TX[0]#d 406 xorb ($inp),$TY#b 407 lea 1($inp),$inp 408 movb $TY#b,($out) 409 lea 1($out),$out 410 sub \$1,$len 411 jnz .Lcloop1 412 jmp .Lexit 413 414 .align 16 415 .Lexit: 416 sub \$1,$XX[0]#b 417 movl $XX[0]#d,-8($dat) 418 movl $YY#d,-4($dat) 419 420 mov (%rsp),%r13 421 mov 8(%rsp),%r12 422 mov 16(%rsp),%rbx 423 add \$24,%rsp 424 .Lepilogue: 425 ret 426 .size asm_RC4,.-asm_RC4 427 ___ 428 } 429 430 $idx="%r8"; 431 $ido="%r9"; 432 433 $code.=<<___; 434 .globl asm_RC4_set_key 435 .type asm_RC4_set_key,\@function,3 436 .align 16 437 asm_RC4_set_key: 438 lea 8($dat),$dat 439 lea ($inp,$len),$inp 440 neg $len 441 mov $len,%rcx 442 xor %eax,%eax 443 xor $ido,$ido 444 xor %r10,%r10 445 xor %r11,%r11 446 447 mov OPENSSL_ia32cap_P(%rip),$idx#d 448 bt \$20,$idx#d # RC4_CHAR? 449 jc .Lc1stloop 450 jmp .Lw1stloop 451 452 .align 16 453 .Lw1stloop: 454 mov %eax,($dat,%rax,4) 455 add \$1,%al 456 jnc .Lw1stloop 457 458 xor $ido,$ido 459 xor $idx,$idx 460 .align 16 461 .Lw2ndloop: 462 mov ($dat,$ido,4),%r10d 463 add ($inp,$len,1),$idx#b 464 add %r10b,$idx#b 465 add \$1,$len 466 mov ($dat,$idx,4),%r11d 467 cmovz %rcx,$len 468 mov %r10d,($dat,$idx,4) 469 mov %r11d,($dat,$ido,4) 470 add \$1,$ido#b 471 jnc .Lw2ndloop 472 jmp .Lexit_key 473 474 .align 16 475 .Lc1stloop: 476 mov %al,($dat,%rax) 477 add \$1,%al 478 jnc .Lc1stloop 479 480 xor $ido,$ido 481 xor $idx,$idx 482 .align 16 483 .Lc2ndloop: 484 mov ($dat,$ido),%r10b 485 add ($inp,$len),$idx#b 486 add %r10b,$idx#b 487 add \$1,$len 488 mov ($dat,$idx),%r11b 489 jnz .Lcnowrap 490 mov %rcx,$len 491 .Lcnowrap: 492 mov %r10b,($dat,$idx) 493 mov %r11b,($dat,$ido) 494 add \$1,$ido#b 495 jnc .Lc2ndloop 496 movl \$-1,256($dat) 497 498 .align 16 499 .Lexit_key: 500 xor %eax,%eax 501 mov %eax,-8($dat) 502 mov %eax,-4($dat) 503 ret 504 .size asm_RC4_set_key,.-asm_RC4_set_key 505 ___ 506 507 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 508 # CONTEXT *context,DISPATCHER_CONTEXT *disp) 509 if ($win64) { 510 $rec="%rcx"; 511 $frame="%rdx"; 512 $context="%r8"; 513 $disp="%r9"; 514 515 $code.=<<___; 516 .extern __imp_RtlVirtualUnwind 517 .type stream_se_handler,\@abi-omnipotent 518 .align 16 519 stream_se_handler: 520 push %rsi 521 push %rdi 522 push %rbx 523 push %rbp 524 push %r12 525 push %r13 526 push %r14 527 push %r15 528 pushfq 529 sub \$64,%rsp 530 531 mov 120($context),%rax # pull context->Rax 532 mov 248($context),%rbx # pull context->Rip 533 534 lea .Lprologue(%rip),%r10 535 cmp %r10,%rbx # context->Rip<prologue label 536 jb .Lin_prologue 537 538 mov 152($context),%rax # pull context->Rsp 539 540 lea .Lepilogue(%rip),%r10 541 cmp %r10,%rbx # context->Rip>=epilogue label 542 jae .Lin_prologue 543 544 lea 24(%rax),%rax 545 546 mov -8(%rax),%rbx 547 mov -16(%rax),%r12 548 mov -24(%rax),%r13 549 mov %rbx,144($context) # restore context->Rbx 550 mov %r12,216($context) # restore context->R12 551 mov %r13,224($context) # restore context->R13 552 553 .Lin_prologue: 554 mov 8(%rax),%rdi 555 mov 16(%rax),%rsi 556 mov %rax,152($context) # restore context->Rsp 557 mov %rsi,168($context) # restore context->Rsi 558 mov %rdi,176($context) # restore context->Rdi 559 560 jmp .Lcommon_seh_exit 561 .size stream_se_handler,.-stream_se_handler 562 563 .type key_se_handler,\@abi-omnipotent 564 .align 16 565 key_se_handler: 566 push %rsi 567 push %rdi 568 push %rbx 569 push %rbp 570 push %r12 571 push %r13 572 push %r14 573 push %r15 574 pushfq 575 sub \$64,%rsp 576 577 mov 152($context),%rax # pull context->Rsp 578 mov 8(%rax),%rdi 579 mov 16(%rax),%rsi 580 mov %rsi,168($context) # restore context->Rsi 581 mov %rdi,176($context) # restore context->Rdi 582 583 .Lcommon_seh_exit: 584 585 mov 40($disp),%rdi # disp->ContextRecord 586 mov $context,%rsi # context 587 mov \$154,%ecx # sizeof(CONTEXT) 588 .long 0xa548f3fc # cld; rep movsq 589 590 mov $disp,%rsi 591 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 592 mov 8(%rsi),%rdx # arg2, disp->ImageBase 593 mov 0(%rsi),%r8 # arg3, disp->ControlPc 594 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 595 mov 40(%rsi),%r10 # disp->ContextRecord 596 lea 56(%rsi),%r11 # &disp->HandlerData 597 lea 24(%rsi),%r12 # &disp->EstablisherFrame 598 mov %r10,32(%rsp) # arg5 599 mov %r11,40(%rsp) # arg6 600 mov %r12,48(%rsp) # arg7 601 mov %rcx,56(%rsp) # arg8, (NULL) 602 call *__imp_RtlVirtualUnwind(%rip) 603 604 mov \$1,%eax # ExceptionContinueSearch 605 add \$64,%rsp 606 popfq 607 pop %r15 608 pop %r14 609 pop %r13 610 pop %r12 611 pop %rbp 612 pop %rbx 613 pop %rdi 614 pop %rsi 615 ret 616 .size key_se_handler,.-key_se_handler 617 618 .section .pdata 619 .align 4 620 .rva .LSEH_begin_asm_RC4 621 .rva .LSEH_end_asm_RC4 622 .rva .LSEH_info_asm_RC4 623 624 .rva .LSEH_begin_asm_RC4_set_key 625 .rva .LSEH_end_asm_RC4_set_key 626 .rva .LSEH_info_asm_RC4_set_key 627 628 .section .xdata 629 .align 8 630 .LSEH_info_asm_RC4: 631 .byte 9,0,0,0 632 .rva stream_se_handler 633 .LSEH_info_asm_RC4_set_key: 634 .byte 9,0,0,0 635 .rva key_se_handler 636 ___ 637 } 638 639 sub reg_part { 640 my ($reg,$conv)=@_; 641 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } 642 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } 643 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } 644 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } 645 return $reg; 646 } 647 648 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; 649 $code =~ s/\`([^\`]*)\`/eval $1/gem; 650 651 print $code; 652 653 close STDOUT; 654