Home | History | Annotate | Download | only in runner
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package runner
      6 
      7 import (
      8 	"crypto/aes"
      9 	"crypto/cipher"
     10 	"crypto/des"
     11 	"crypto/hmac"
     12 	"crypto/md5"
     13 	"crypto/rc4"
     14 	"crypto/sha1"
     15 	"crypto/sha256"
     16 	"crypto/sha512"
     17 	"crypto/x509"
     18 	"hash"
     19 )
     20 
     21 // a keyAgreement implements the client and server side of a TLS key agreement
     22 // protocol by generating and processing key exchange messages.
     23 type keyAgreement interface {
     24 	// On the server side, the first two methods are called in order.
     25 
     26 	// In the case that the key agreement protocol doesn't use a
     27 	// ServerKeyExchange message, generateServerKeyExchange can return nil,
     28 	// nil.
     29 	generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
     30 	processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
     31 
     32 	// On the client side, the next two methods are called in order.
     33 
     34 	// This method may not be called if the server doesn't send a
     35 	// ServerKeyExchange message.
     36 	processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
     37 	generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
     38 }
     39 
     40 const (
     41 	// suiteECDH indicates that the cipher suite involves elliptic curve
     42 	// Diffie-Hellman. This means that it should only be selected when the
     43 	// client indicates that it supports ECC with a curve and point format
     44 	// that we're happy with.
     45 	suiteECDHE = 1 << iota
     46 	// suiteECDSA indicates that the cipher suite involves an ECDSA
     47 	// signature and therefore may only be selected when the server's
     48 	// certificate is ECDSA. If this is not set then the cipher suite is
     49 	// RSA based.
     50 	suiteECDSA
     51 	// suiteTLS12 indicates that the cipher suite should only be advertised
     52 	// and accepted when using TLS 1.2.
     53 	suiteTLS12
     54 	// suiteSHA384 indicates that the cipher suite uses SHA384 as the
     55 	// handshake hash.
     56 	suiteSHA384
     57 	// suiteNoDTLS indicates that the cipher suite cannot be used
     58 	// in DTLS.
     59 	suiteNoDTLS
     60 	// suitePSK indicates that the cipher suite authenticates with
     61 	// a pre-shared key rather than a server private key.
     62 	suitePSK
     63 )
     64 
     65 type tlsAead struct {
     66 	cipher.AEAD
     67 	explicitNonce bool
     68 }
     69 
     70 // A cipherSuite is a specific combination of key agreement, cipher and MAC
     71 // function. All cipher suites currently assume RSA key agreement.
     72 type cipherSuite struct {
     73 	id uint16
     74 	// the lengths, in bytes, of the key material needed for each component.
     75 	keyLen int
     76 	macLen int
     77 	ivLen  int
     78 	ka     func(version uint16) keyAgreement
     79 	// flags is a bitmask of the suite* values, above.
     80 	flags  int
     81 	cipher func(key, iv []byte, isRead bool) interface{}
     82 	mac    func(version uint16, macKey []byte) macFunction
     83 	aead   func(key, fixedNonce []byte) *tlsAead
     84 }
     85 
     86 var cipherSuites = []*cipherSuite{
     87 	// Ciphersuite order is chosen so that ECDHE comes before plain RSA
     88 	// and RC4 comes before AES (because of the Lucky13 attack).
     89 	{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
     90 	{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
     91 	{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256_OLD, 32, 0, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadCHACHA20POLY1305Old},
     92 	{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256_OLD, 32, 0, 0, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadCHACHA20POLY1305Old},
     93 	{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
     94 	{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
     95 	{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
     96 	{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
     97 	{TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteNoDTLS, cipherRC4, macSHA1, nil},
     98 	{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteNoDTLS, cipherRC4, macSHA1, nil},
     99 	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil},
    100 	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, cipherAES, macSHA256, nil},
    101 	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
    102 	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
    103 	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, 32, 48, 16, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil},
    104 	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, 32, 48, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil},
    105 	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
    106 	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
    107 	{TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, dheRSAKA, suiteTLS12, nil, nil, aeadAESGCM},
    108 	{TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, dheRSAKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
    109 	{TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, dheRSAKA, suiteTLS12, cipherAES, macSHA256, nil},
    110 	{TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, 32, 32, 16, dheRSAKA, suiteTLS12, cipherAES, macSHA256, nil},
    111 	{TLS_DHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, dheRSAKA, 0, cipherAES, macSHA1, nil},
    112 	{TLS_DHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, dheRSAKA, 0, cipherAES, macSHA1, nil},
    113 	{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
    114 	{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
    115 	{TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteNoDTLS, cipherRC4, macSHA1, nil},
    116 	{TLS_RSA_WITH_RC4_128_MD5, 16, 16, 0, rsaKA, suiteNoDTLS, cipherRC4, macMD5, nil},
    117 	{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
    118 	{TLS_RSA_WITH_AES_256_CBC_SHA256, 32, 32, 16, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
    119 	{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
    120 	{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
    121 	{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
    122 	{TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, dheRSAKA, 0, cipher3DES, macSHA1, nil},
    123 	{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
    124 	{TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, 32, 0, 12, ecdhePSKKA, suiteECDHE | suitePSK | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
    125 	{TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil},
    126 	{TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil},
    127 	{TLS_PSK_WITH_RC4_128_SHA, 16, 20, 0, pskKA, suiteNoDTLS | suitePSK, cipherRC4, macSHA1, nil},
    128 	{TLS_PSK_WITH_AES_128_CBC_SHA, 16, 20, 16, pskKA, suitePSK, cipherAES, macSHA1, nil},
    129 	{TLS_PSK_WITH_AES_256_CBC_SHA, 32, 20, 16, pskKA, suitePSK, cipherAES, macSHA1, nil},
    130 	{TLS_RSA_WITH_NULL_SHA, 0, 20, 0, rsaKA, suiteNoDTLS, cipherNull, macSHA1, nil},
    131 }
    132 
    133 type nullCipher struct{}
    134 
    135 func cipherNull(key, iv []byte, isRead bool) interface{} {
    136 	return nullCipher{}
    137 }
    138 
    139 func cipherRC4(key, iv []byte, isRead bool) interface{} {
    140 	cipher, _ := rc4.NewCipher(key)
    141 	return cipher
    142 }
    143 
    144 func cipher3DES(key, iv []byte, isRead bool) interface{} {
    145 	block, _ := des.NewTripleDESCipher(key)
    146 	if isRead {
    147 		return cipher.NewCBCDecrypter(block, iv)
    148 	}
    149 	return cipher.NewCBCEncrypter(block, iv)
    150 }
    151 
    152 func cipherAES(key, iv []byte, isRead bool) interface{} {
    153 	block, _ := aes.NewCipher(key)
    154 	if isRead {
    155 		return cipher.NewCBCDecrypter(block, iv)
    156 	}
    157 	return cipher.NewCBCEncrypter(block, iv)
    158 }
    159 
    160 // macSHA1 returns a macFunction for the given protocol version.
    161 func macSHA1(version uint16, key []byte) macFunction {
    162 	if version == VersionSSL30 {
    163 		mac := ssl30MAC{
    164 			h:   sha1.New(),
    165 			key: make([]byte, len(key)),
    166 		}
    167 		copy(mac.key, key)
    168 		return mac
    169 	}
    170 	return tls10MAC{hmac.New(sha1.New, key)}
    171 }
    172 
    173 func macMD5(version uint16, key []byte) macFunction {
    174 	if version == VersionSSL30 {
    175 		mac := ssl30MAC{
    176 			h:   md5.New(),
    177 			key: make([]byte, len(key)),
    178 		}
    179 		copy(mac.key, key)
    180 		return mac
    181 	}
    182 	return tls10MAC{hmac.New(md5.New, key)}
    183 }
    184 
    185 func macSHA256(version uint16, key []byte) macFunction {
    186 	if version == VersionSSL30 {
    187 		mac := ssl30MAC{
    188 			h:   sha256.New(),
    189 			key: make([]byte, len(key)),
    190 		}
    191 		copy(mac.key, key)
    192 		return mac
    193 	}
    194 	return tls10MAC{hmac.New(sha256.New, key)}
    195 }
    196 
    197 func macSHA384(version uint16, key []byte) macFunction {
    198 	if version == VersionSSL30 {
    199 		mac := ssl30MAC{
    200 			h:   sha512.New384(),
    201 			key: make([]byte, len(key)),
    202 		}
    203 		copy(mac.key, key)
    204 		return mac
    205 	}
    206 	return tls10MAC{hmac.New(sha512.New384, key)}
    207 }
    208 
    209 type macFunction interface {
    210 	Size() int
    211 	MAC(digestBuf, seq, header, length, data []byte) []byte
    212 }
    213 
    214 // fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
    215 // each call.
    216 type fixedNonceAEAD struct {
    217 	// sealNonce and openNonce are buffers where the larger nonce will be
    218 	// constructed. Since a seal and open operation may be running
    219 	// concurrently, there is a separate buffer for each.
    220 	sealNonce, openNonce []byte
    221 	aead                 cipher.AEAD
    222 }
    223 
    224 func (f *fixedNonceAEAD) NonceSize() int { return 8 }
    225 func (f *fixedNonceAEAD) Overhead() int  { return f.aead.Overhead() }
    226 
    227 func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
    228 	copy(f.sealNonce[len(f.sealNonce)-8:], nonce)
    229 	return f.aead.Seal(out, f.sealNonce, plaintext, additionalData)
    230 }
    231 
    232 func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
    233 	copy(f.openNonce[len(f.openNonce)-8:], nonce)
    234 	return f.aead.Open(out, f.openNonce, plaintext, additionalData)
    235 }
    236 
    237 func aeadAESGCM(key, fixedNonce []byte) *tlsAead {
    238 	aes, err := aes.NewCipher(key)
    239 	if err != nil {
    240 		panic(err)
    241 	}
    242 	aead, err := cipher.NewGCM(aes)
    243 	if err != nil {
    244 		panic(err)
    245 	}
    246 
    247 	nonce1, nonce2 := make([]byte, 12), make([]byte, 12)
    248 	copy(nonce1, fixedNonce)
    249 	copy(nonce2, fixedNonce)
    250 
    251 	return &tlsAead{&fixedNonceAEAD{nonce1, nonce2, aead}, true}
    252 }
    253 
    254 func aeadCHACHA20POLY1305Old(key, fixedNonce []byte) *tlsAead {
    255 	aead, err := newChaCha20Poly1305Old(key)
    256 	if err != nil {
    257 		panic(err)
    258 	}
    259 	return &tlsAead{aead, false}
    260 }
    261 
    262 func xorSlice(out, in []byte) {
    263 	for i := range out {
    264 		out[i] ^= in[i]
    265 	}
    266 }
    267 
    268 // xorNonceAEAD wraps an AEAD and XORs a fixed portion of the nonce, left-padded
    269 // if necessary, each call.
    270 type xorNonceAEAD struct {
    271 	// sealNonce and openNonce are buffers where the larger nonce will be
    272 	// constructed. Since a seal and open operation may be running
    273 	// concurrently, there is a separate buffer for each.
    274 	sealNonce, openNonce []byte
    275 	aead                 cipher.AEAD
    276 }
    277 
    278 func (x *xorNonceAEAD) NonceSize() int { return 8 }
    279 func (x *xorNonceAEAD) Overhead() int  { return x.aead.Overhead() }
    280 
    281 func (x *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
    282 	xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce)
    283 	ret := x.aead.Seal(out, x.sealNonce, plaintext, additionalData)
    284 	xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce)
    285 	return ret
    286 }
    287 
    288 func (x *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
    289 	xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce)
    290 	ret, err := x.aead.Open(out, x.openNonce, plaintext, additionalData)
    291 	xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce)
    292 	return ret, err
    293 }
    294 
    295 func aeadCHACHA20POLY1305(key, fixedNonce []byte) *tlsAead {
    296 	aead, err := newChaCha20Poly1305(key)
    297 	if err != nil {
    298 		panic(err)
    299 	}
    300 
    301 	nonce1, nonce2 := make([]byte, len(fixedNonce)), make([]byte, len(fixedNonce))
    302 	copy(nonce1, fixedNonce)
    303 	copy(nonce2, fixedNonce)
    304 
    305 	return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false}
    306 }
    307 
    308 // ssl30MAC implements the SSLv3 MAC function, as defined in
    309 // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1
    310 type ssl30MAC struct {
    311 	h   hash.Hash
    312 	key []byte
    313 }
    314 
    315 func (s ssl30MAC) Size() int {
    316 	return s.h.Size()
    317 }
    318 
    319 var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36}
    320 
    321 var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
    322 
    323 func (s ssl30MAC) MAC(digestBuf, seq, header, length, data []byte) []byte {
    324 	padLength := 48
    325 	if s.h.Size() == 20 {
    326 		padLength = 40
    327 	}
    328 
    329 	s.h.Reset()
    330 	s.h.Write(s.key)
    331 	s.h.Write(ssl30Pad1[:padLength])
    332 	s.h.Write(seq)
    333 	s.h.Write(header[:1])
    334 	s.h.Write(length)
    335 	s.h.Write(data)
    336 	digestBuf = s.h.Sum(digestBuf[:0])
    337 
    338 	s.h.Reset()
    339 	s.h.Write(s.key)
    340 	s.h.Write(ssl30Pad2[:padLength])
    341 	s.h.Write(digestBuf)
    342 	return s.h.Sum(digestBuf[:0])
    343 }
    344 
    345 // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3.
    346 type tls10MAC struct {
    347 	h hash.Hash
    348 }
    349 
    350 func (s tls10MAC) Size() int {
    351 	return s.h.Size()
    352 }
    353 
    354 func (s tls10MAC) MAC(digestBuf, seq, header, length, data []byte) []byte {
    355 	s.h.Reset()
    356 	s.h.Write(seq)
    357 	s.h.Write(header)
    358 	s.h.Write(length)
    359 	s.h.Write(data)
    360 	return s.h.Sum(digestBuf[:0])
    361 }
    362 
    363 func rsaKA(version uint16) keyAgreement {
    364 	return &rsaKeyAgreement{version: version}
    365 }
    366 
    367 func ecdheECDSAKA(version uint16) keyAgreement {
    368 	return &ecdheKeyAgreement{
    369 		auth: &signedKeyAgreement{
    370 			sigType: signatureECDSA,
    371 			version: version,
    372 		},
    373 	}
    374 }
    375 
    376 func ecdheRSAKA(version uint16) keyAgreement {
    377 	return &ecdheKeyAgreement{
    378 		auth: &signedKeyAgreement{
    379 			sigType: signatureRSA,
    380 			version: version,
    381 		},
    382 	}
    383 }
    384 
    385 func dheRSAKA(version uint16) keyAgreement {
    386 	return &dheKeyAgreement{
    387 		auth: &signedKeyAgreement{
    388 			sigType: signatureRSA,
    389 			version: version,
    390 		},
    391 	}
    392 }
    393 
    394 func pskKA(version uint16) keyAgreement {
    395 	return &pskKeyAgreement{
    396 		base: &nilKeyAgreement{},
    397 	}
    398 }
    399 
    400 func ecdhePSKKA(version uint16) keyAgreement {
    401 	return &pskKeyAgreement{
    402 		base: &ecdheKeyAgreement{
    403 			auth: &nilKeyAgreementAuthentication{},
    404 		},
    405 	}
    406 }
    407 
    408 // mutualCipherSuite returns a cipherSuite given a list of supported
    409 // ciphersuites and the id requested by the peer.
    410 func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
    411 	for _, id := range have {
    412 		if id == want {
    413 			for _, suite := range cipherSuites {
    414 				if suite.id == want {
    415 					return suite
    416 				}
    417 			}
    418 			return nil
    419 		}
    420 	}
    421 	return nil
    422 }
    423 
    424 // A list of the possible cipher suite ids. Taken from
    425 // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
    426 const (
    427 	TLS_RSA_WITH_NULL_SHA                         uint16 = 0x0002
    428 	TLS_RSA_WITH_RC4_128_MD5                      uint16 = 0x0004
    429 	TLS_RSA_WITH_RC4_128_SHA                      uint16 = 0x0005
    430 	TLS_RSA_WITH_3DES_EDE_CBC_SHA                 uint16 = 0x000a
    431 	TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA             uint16 = 0x0016
    432 	TLS_RSA_WITH_AES_128_CBC_SHA                  uint16 = 0x002f
    433 	TLS_DHE_RSA_WITH_AES_128_CBC_SHA              uint16 = 0x0033
    434 	TLS_RSA_WITH_AES_256_CBC_SHA                  uint16 = 0x0035
    435 	TLS_DHE_RSA_WITH_AES_256_CBC_SHA              uint16 = 0x0039
    436 	TLS_RSA_WITH_AES_128_CBC_SHA256               uint16 = 0x003c
    437 	TLS_RSA_WITH_AES_256_CBC_SHA256               uint16 = 0x003d
    438 	TLS_DHE_RSA_WITH_AES_128_CBC_SHA256           uint16 = 0x0067
    439 	TLS_DHE_RSA_WITH_AES_256_CBC_SHA256           uint16 = 0x006b
    440 	TLS_PSK_WITH_RC4_128_SHA                      uint16 = 0x008a
    441 	TLS_PSK_WITH_AES_128_CBC_SHA                  uint16 = 0x008c
    442 	TLS_PSK_WITH_AES_256_CBC_SHA                  uint16 = 0x008d
    443 	TLS_RSA_WITH_AES_128_GCM_SHA256               uint16 = 0x009c
    444 	TLS_RSA_WITH_AES_256_GCM_SHA384               uint16 = 0x009d
    445 	TLS_DHE_RSA_WITH_AES_128_GCM_SHA256           uint16 = 0x009e
    446 	TLS_DHE_RSA_WITH_AES_256_GCM_SHA384           uint16 = 0x009f
    447 	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA              uint16 = 0xc007
    448 	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA          uint16 = 0xc009
    449 	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA          uint16 = 0xc00a
    450 	TLS_ECDHE_RSA_WITH_RC4_128_SHA                uint16 = 0xc011
    451 	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA           uint16 = 0xc012
    452 	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA            uint16 = 0xc013
    453 	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA            uint16 = 0xc014
    454 	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256       uint16 = 0xc023
    455 	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384       uint16 = 0xc024
    456 	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256         uint16 = 0xc027
    457 	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384         uint16 = 0xc028
    458 	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256       uint16 = 0xc02b
    459 	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384       uint16 = 0xc02c
    460 	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256         uint16 = 0xc02f
    461 	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384         uint16 = 0xc030
    462 	TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA            uint16 = 0xc035
    463 	TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA            uint16 = 0xc036
    464 	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xcca8
    465 	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9
    466 	TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xccac
    467 	renegotiationSCSV                             uint16 = 0x00ff
    468 	fallbackSCSV                                  uint16 = 0x5600
    469 )
    470 
    471 // Additional cipher suite IDs, not IANA-assigned.
    472 const (
    473 	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256_OLD   uint16 = 0xcc13
    474 	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256_OLD uint16 = 0xcc14
    475 )
    476