Home | History | Annotate | Download | only in engines
      1 package org.bouncycastle.crypto.engines;
      2 
      3 import org.bouncycastle.crypto.BlockCipher;
      4 import org.bouncycastle.crypto.CipherParameters;
      5 import org.bouncycastle.crypto.DataLengthException;
      6 import org.bouncycastle.crypto.OutputLengthException;
      7 import org.bouncycastle.crypto.params.KeyParameter;
      8 import org.bouncycastle.crypto.params.RC2Parameters;
      9 
     10 /**
     11  * an implementation of RC2 as described in RFC 2268
     12  *      "A Description of the RC2(r) Encryption Algorithm" R. Rivest.
     13  */
     14 public class RC2Engine
     15     implements BlockCipher
     16 {
     17     //
     18     // the values we use for key expansion (based on the digits of PI)
     19     //
     20     private static byte[] piTable =
     21     {
     22         (byte)0xd9, (byte)0x78, (byte)0xf9, (byte)0xc4, (byte)0x19, (byte)0xdd, (byte)0xb5, (byte)0xed,
     23         (byte)0x28, (byte)0xe9, (byte)0xfd, (byte)0x79, (byte)0x4a, (byte)0xa0, (byte)0xd8, (byte)0x9d,
     24         (byte)0xc6, (byte)0x7e, (byte)0x37, (byte)0x83, (byte)0x2b, (byte)0x76, (byte)0x53, (byte)0x8e,
     25         (byte)0x62, (byte)0x4c, (byte)0x64, (byte)0x88, (byte)0x44, (byte)0x8b, (byte)0xfb, (byte)0xa2,
     26         (byte)0x17, (byte)0x9a, (byte)0x59, (byte)0xf5, (byte)0x87, (byte)0xb3, (byte)0x4f, (byte)0x13,
     27         (byte)0x61, (byte)0x45, (byte)0x6d, (byte)0x8d, (byte)0x9, (byte)0x81, (byte)0x7d, (byte)0x32,
     28         (byte)0xbd, (byte)0x8f, (byte)0x40, (byte)0xeb, (byte)0x86, (byte)0xb7, (byte)0x7b, (byte)0xb,
     29         (byte)0xf0, (byte)0x95, (byte)0x21, (byte)0x22, (byte)0x5c, (byte)0x6b, (byte)0x4e, (byte)0x82,
     30         (byte)0x54, (byte)0xd6, (byte)0x65, (byte)0x93, (byte)0xce, (byte)0x60, (byte)0xb2, (byte)0x1c,
     31         (byte)0x73, (byte)0x56, (byte)0xc0, (byte)0x14, (byte)0xa7, (byte)0x8c, (byte)0xf1, (byte)0xdc,
     32         (byte)0x12, (byte)0x75, (byte)0xca, (byte)0x1f, (byte)0x3b, (byte)0xbe, (byte)0xe4, (byte)0xd1,
     33         (byte)0x42, (byte)0x3d, (byte)0xd4, (byte)0x30, (byte)0xa3, (byte)0x3c, (byte)0xb6, (byte)0x26,
     34         (byte)0x6f, (byte)0xbf, (byte)0xe, (byte)0xda, (byte)0x46, (byte)0x69, (byte)0x7, (byte)0x57,
     35         (byte)0x27, (byte)0xf2, (byte)0x1d, (byte)0x9b, (byte)0xbc, (byte)0x94, (byte)0x43, (byte)0x3,
     36         (byte)0xf8, (byte)0x11, (byte)0xc7, (byte)0xf6, (byte)0x90, (byte)0xef, (byte)0x3e, (byte)0xe7,
     37         (byte)0x6, (byte)0xc3, (byte)0xd5, (byte)0x2f, (byte)0xc8, (byte)0x66, (byte)0x1e, (byte)0xd7,
     38         (byte)0x8, (byte)0xe8, (byte)0xea, (byte)0xde, (byte)0x80, (byte)0x52, (byte)0xee, (byte)0xf7,
     39         (byte)0x84, (byte)0xaa, (byte)0x72, (byte)0xac, (byte)0x35, (byte)0x4d, (byte)0x6a, (byte)0x2a,
     40         (byte)0x96, (byte)0x1a, (byte)0xd2, (byte)0x71, (byte)0x5a, (byte)0x15, (byte)0x49, (byte)0x74,
     41         (byte)0x4b, (byte)0x9f, (byte)0xd0, (byte)0x5e, (byte)0x4, (byte)0x18, (byte)0xa4, (byte)0xec,
     42         (byte)0xc2, (byte)0xe0, (byte)0x41, (byte)0x6e, (byte)0xf, (byte)0x51, (byte)0xcb, (byte)0xcc,
     43         (byte)0x24, (byte)0x91, (byte)0xaf, (byte)0x50, (byte)0xa1, (byte)0xf4, (byte)0x70, (byte)0x39,
     44         (byte)0x99, (byte)0x7c, (byte)0x3a, (byte)0x85, (byte)0x23, (byte)0xb8, (byte)0xb4, (byte)0x7a,
     45         (byte)0xfc, (byte)0x2, (byte)0x36, (byte)0x5b, (byte)0x25, (byte)0x55, (byte)0x97, (byte)0x31,
     46         (byte)0x2d, (byte)0x5d, (byte)0xfa, (byte)0x98, (byte)0xe3, (byte)0x8a, (byte)0x92, (byte)0xae,
     47         (byte)0x5, (byte)0xdf, (byte)0x29, (byte)0x10, (byte)0x67, (byte)0x6c, (byte)0xba, (byte)0xc9,
     48         (byte)0xd3, (byte)0x0, (byte)0xe6, (byte)0xcf, (byte)0xe1, (byte)0x9e, (byte)0xa8, (byte)0x2c,
     49         (byte)0x63, (byte)0x16, (byte)0x1, (byte)0x3f, (byte)0x58, (byte)0xe2, (byte)0x89, (byte)0xa9,
     50         (byte)0xd, (byte)0x38, (byte)0x34, (byte)0x1b, (byte)0xab, (byte)0x33, (byte)0xff, (byte)0xb0,
     51         (byte)0xbb, (byte)0x48, (byte)0xc, (byte)0x5f, (byte)0xb9, (byte)0xb1, (byte)0xcd, (byte)0x2e,
     52         (byte)0xc5, (byte)0xf3, (byte)0xdb, (byte)0x47, (byte)0xe5, (byte)0xa5, (byte)0x9c, (byte)0x77,
     53         (byte)0xa, (byte)0xa6, (byte)0x20, (byte)0x68, (byte)0xfe, (byte)0x7f, (byte)0xc1, (byte)0xad
     54     };
     55 
     56     private static final int BLOCK_SIZE = 8;
     57 
     58     private int[]   workingKey;
     59     private boolean encrypting;
     60 
     61     private int[] generateWorkingKey(
     62         byte[]      key,
     63         int         bits)
     64     {
     65         int     x;
     66         int[]   xKey = new int[128];
     67 
     68         for (int i = 0; i != key.length; i++)
     69         {
     70             xKey[i] = key[i] & 0xff;
     71         }
     72 
     73         // Phase 1: Expand input key to 128 bytes
     74         int len = key.length;
     75 
     76         if (len < 128)
     77         {
     78             int     index = 0;
     79 
     80             x = xKey[len - 1];
     81 
     82             do
     83             {
     84                 x = piTable[(x + xKey[index++]) & 255] & 0xff;
     85                 xKey[len++] = x;
     86             }
     87             while (len < 128);
     88         }
     89 
     90         // Phase 2 - reduce effective key size to "bits"
     91         len = (bits + 7) >> 3;
     92         x = piTable[xKey[128 - len] & (255 >> (7 & -bits))] & 0xff;
     93         xKey[128 - len] = x;
     94 
     95         for (int i = 128 - len - 1; i >= 0; i--)
     96         {
     97                 x = piTable[x ^ xKey[i + len]] & 0xff;
     98                 xKey[i] = x;
     99         }
    100 
    101         // Phase 3 - copy to newKey in little-endian order
    102         int[] newKey = new int[64];
    103 
    104         for (int i = 0; i != newKey.length; i++)
    105         {
    106             newKey[i] = (xKey[2 * i] + (xKey[2 * i + 1] << 8));
    107         }
    108 
    109         return newKey;
    110     }
    111 
    112     /**
    113      * initialise a RC2 cipher.
    114      *
    115      * @param encrypting whether or not we are for encryption.
    116      * @param params the parameters required to set up the cipher.
    117      * @exception IllegalArgumentException if the params argument is
    118      * inappropriate.
    119      */
    120     public void init(
    121         boolean           encrypting,
    122         CipherParameters  params)
    123     {
    124         this.encrypting = encrypting;
    125 
    126         if (params instanceof RC2Parameters)
    127         {
    128             RC2Parameters   param = (RC2Parameters)params;
    129 
    130             workingKey = generateWorkingKey(param.getKey(),
    131                                             param.getEffectiveKeyBits());
    132         }
    133         else if (params instanceof KeyParameter)
    134         {
    135             byte[]    key = ((KeyParameter)params).getKey();
    136 
    137             workingKey = generateWorkingKey(key, key.length * 8);
    138         }
    139         else
    140         {
    141             throw new IllegalArgumentException("invalid parameter passed to RC2 init - " + params.getClass().getName());
    142         }
    143 
    144     }
    145 
    146     public void reset()
    147     {
    148     }
    149 
    150     public String getAlgorithmName()
    151     {
    152         return "RC2";
    153     }
    154 
    155     public int getBlockSize()
    156     {
    157         return BLOCK_SIZE;
    158     }
    159 
    160     public final int processBlock(
    161         byte[] in,
    162         int inOff,
    163         byte[] out,
    164         int outOff)
    165     {
    166         if (workingKey == null)
    167         {
    168             throw new IllegalStateException("RC2 engine not initialised");
    169         }
    170 
    171         if ((inOff + BLOCK_SIZE) > in.length)
    172         {
    173             throw new DataLengthException("input buffer too short");
    174         }
    175 
    176         if ((outOff + BLOCK_SIZE) > out.length)
    177         {
    178             throw new OutputLengthException("output buffer too short");
    179         }
    180 
    181         if (encrypting)
    182         {
    183             encryptBlock(in, inOff, out, outOff);
    184         }
    185         else
    186         {
    187             decryptBlock(in, inOff, out, outOff);
    188         }
    189 
    190         return BLOCK_SIZE;
    191     }
    192 
    193     /**
    194      * return the result rotating the 16 bit number in x left by y
    195      */
    196     private int rotateWordLeft(
    197         int x,
    198         int y)
    199     {
    200         x &= 0xffff;
    201         return (x << y) | (x >> (16 - y));
    202     }
    203 
    204     private void encryptBlock(
    205         byte[]  in,
    206         int     inOff,
    207         byte[]  out,
    208         int     outOff)
    209     {
    210         int x76, x54, x32, x10;
    211 
    212         x76 = ((in[inOff + 7] & 0xff) << 8) + (in[inOff + 6] & 0xff);
    213         x54 = ((in[inOff + 5] & 0xff) << 8) + (in[inOff + 4] & 0xff);
    214         x32 = ((in[inOff + 3] & 0xff) << 8) + (in[inOff + 2] & 0xff);
    215         x10 = ((in[inOff + 1] & 0xff) << 8) + (in[inOff + 0] & 0xff);
    216 
    217         for (int i = 0; i <= 16; i += 4)
    218         {
    219                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    220                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    221                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    222                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    223         }
    224 
    225         x10 += workingKey[x76 & 63];
    226         x32 += workingKey[x10 & 63];
    227         x54 += workingKey[x32 & 63];
    228         x76 += workingKey[x54 & 63];
    229 
    230         for (int i = 20; i <= 40; i += 4)
    231         {
    232                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    233                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    234                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    235                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    236         }
    237 
    238         x10 += workingKey[x76 & 63];
    239         x32 += workingKey[x10 & 63];
    240         x54 += workingKey[x32 & 63];
    241         x76 += workingKey[x54 & 63];
    242 
    243         for (int i = 44; i < 64; i += 4)
    244         {
    245                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    246                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    247                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    248                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    249         }
    250 
    251         out[outOff + 0] = (byte)x10;
    252         out[outOff + 1] = (byte)(x10 >> 8);
    253         out[outOff + 2] = (byte)x32;
    254         out[outOff + 3] = (byte)(x32 >> 8);
    255         out[outOff + 4] = (byte)x54;
    256         out[outOff + 5] = (byte)(x54 >> 8);
    257         out[outOff + 6] = (byte)x76;
    258         out[outOff + 7] = (byte)(x76 >> 8);
    259     }
    260 
    261     private void decryptBlock(
    262         byte[]  in,
    263         int     inOff,
    264         byte[]  out,
    265         int     outOff)
    266     {
    267         int x76, x54, x32, x10;
    268 
    269         x76 = ((in[inOff + 7] & 0xff) << 8) + (in[inOff + 6] & 0xff);
    270         x54 = ((in[inOff + 5] & 0xff) << 8) + (in[inOff + 4] & 0xff);
    271         x32 = ((in[inOff + 3] & 0xff) << 8) + (in[inOff + 2] & 0xff);
    272         x10 = ((in[inOff + 1] & 0xff) << 8) + (in[inOff + 0] & 0xff);
    273 
    274         for (int i = 60; i >= 44; i -= 4)
    275         {
    276             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    277             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    278             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    279             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    280         }
    281 
    282         x76 -= workingKey[x54 & 63];
    283         x54 -= workingKey[x32 & 63];
    284         x32 -= workingKey[x10 & 63];
    285         x10 -= workingKey[x76 & 63];
    286 
    287         for (int i = 40; i >= 20; i -= 4)
    288         {
    289             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    290             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    291             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    292             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    293         }
    294 
    295         x76 -= workingKey[x54 & 63];
    296         x54 -= workingKey[x32 & 63];
    297         x32 -= workingKey[x10 & 63];
    298         x10 -= workingKey[x76 & 63];
    299 
    300         for (int i = 16; i >= 0; i -= 4)
    301         {
    302             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    303             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    304             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    305             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    306         }
    307 
    308         out[outOff + 0] = (byte)x10;
    309         out[outOff + 1] = (byte)(x10 >> 8);
    310         out[outOff + 2] = (byte)x32;
    311         out[outOff + 3] = (byte)(x32 >> 8);
    312         out[outOff + 4] = (byte)x54;
    313         out[outOff + 5] = (byte)(x54 >> 8);
    314         out[outOff + 6] = (byte)x76;
    315         out[outOff + 7] = (byte)(x76 >> 8);
    316     }
    317 }
    318