Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: strandmark (at) google.com (Petter Strandmark)
     30 
     31 #ifndef CERES_INTERNAL_CXSPARSE_H_
     32 #define CERES_INTERNAL_CXSPARSE_H_
     33 
     34 // This include must come before any #ifndef check on Ceres compile options.
     35 #include "ceres/internal/port.h"
     36 
     37 #ifndef CERES_NO_CXSPARSE
     38 
     39 #include <vector>
     40 #include "cs.h"
     41 
     42 namespace ceres {
     43 namespace internal {
     44 
     45 class CompressedRowSparseMatrix;
     46 class TripletSparseMatrix;
     47 
     48 // This object provides access to solving linear systems using Cholesky
     49 // factorization with a known symbolic factorization. This features does not
     50 // explicity exist in CXSparse. The methods in the class are nonstatic because
     51 // the class manages internal scratch space.
     52 class CXSparse {
     53  public:
     54   CXSparse();
     55   ~CXSparse();
     56 
     57   // Solves a symmetric linear system A * x = b using Cholesky factorization.
     58   //  A                      - The system matrix.
     59   //  symbolic_factorization - The symbolic factorization of A. This is obtained
     60   //                           from AnalyzeCholesky.
     61   //  b                      - The right hand size of the linear equation. This
     62   //                           array will also recieve the solution.
     63   // Returns false if Cholesky factorization of A fails.
     64   bool SolveCholesky(cs_di* A, cs_dis* symbolic_factorization, double* b);
     65 
     66   // Creates a sparse matrix from a compressed-column form. No memory is
     67   // allocated or copied; the structure A is filled out with info from the
     68   // argument.
     69   cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
     70 
     71   // Creates a new matrix from a triplet form. Deallocate the returned matrix
     72   // with Free. May return NULL if the compression or allocation fails.
     73   cs_di* CreateSparseMatrix(TripletSparseMatrix* A);
     74 
     75   // B = A'
     76   //
     77   // The returned matrix should be deallocated with Free when not used
     78   // anymore.
     79   cs_di* TransposeMatrix(cs_di* A);
     80 
     81   // C = A * B
     82   //
     83   // The returned matrix should be deallocated with Free when not used
     84   // anymore.
     85   cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B);
     86 
     87   // Computes a symbolic factorization of A that can be used in SolveCholesky.
     88   //
     89   // The returned matrix should be deallocated with Free when not used anymore.
     90   cs_dis* AnalyzeCholesky(cs_di* A);
     91 
     92   // Computes a symbolic factorization of A that can be used in
     93   // SolveCholesky, but does not compute a fill-reducing ordering.
     94   //
     95   // The returned matrix should be deallocated with Free when not used anymore.
     96   cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A);
     97 
     98   // Computes a symbolic factorization of A that can be used in
     99   // SolveCholesky. The difference from AnalyzeCholesky is that this
    100   // function first detects the block sparsity of the matrix using
    101   // information about the row and column blocks and uses this block
    102   // sparse matrix to find a fill-reducing ordering. This ordering is
    103   // then used to find a symbolic factorization. This can result in a
    104   // significant performance improvement AnalyzeCholesky on block
    105   // sparse matrices.
    106   //
    107   // The returned matrix should be deallocated with Free when not used
    108   // anymore.
    109   cs_dis* BlockAnalyzeCholesky(cs_di* A,
    110                                const vector<int>& row_blocks,
    111                                const vector<int>& col_blocks);
    112 
    113   // Compute an fill-reducing approximate minimum degree ordering of
    114   // the matrix A. ordering should be non-NULL and should point to
    115   // enough memory to hold the ordering for the rows of A.
    116   void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering);
    117 
    118   void Free(cs_di* sparse_matrix);
    119   void Free(cs_dis* symbolic_factorization);
    120 
    121  private:
    122   // Cached scratch space
    123   CS_ENTRY* scratch_;
    124   int scratch_size_;
    125 };
    126 
    127 }  // namespace internal
    128 }  // namespace ceres
    129 
    130 #else  // CERES_NO_CXSPARSE
    131 
    132 typedef void cs_dis;
    133 
    134 class CXSparse {
    135  public:
    136   void Free(void*) {};
    137 
    138 };
    139 #endif  // CERES_NO_CXSPARSE
    140 
    141 #endif  // CERES_INTERNAL_CXSPARSE_H_
    142