Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // For generalized bi-partite Jacobian matrices that arise in
     32 // Structure from Motion related problems, it is sometimes useful to
     33 // have access to the two parts of the matrix as linear operators
     34 // themselves. This class provides that functionality.
     35 
     36 #ifndef CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_
     37 #define CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_
     38 
     39 #include <algorithm>
     40 #include <cstring>
     41 #include <vector>
     42 
     43 #include "ceres/block_structure.h"
     44 #include "ceres/internal/eigen.h"
     45 #include "ceres/linear_solver.h"
     46 #include "ceres/small_blas.h"
     47 #include "glog/logging.h"
     48 
     49 namespace ceres {
     50 namespace internal {
     51 
     52 // Given generalized bi-partite matrix A = [E F], with the same block
     53 // structure as required by the Schur complement based solver, found
     54 // in explicit_schur_complement_solver.h, provide access to the
     55 // matrices E and F and their outer products E'E and F'F with
     56 // themselves.
     57 //
     58 // Lack of BlockStructure object will result in a crash and if the
     59 // block structure of the matrix does not satisfy the requirements of
     60 // the Schur complement solver it will result in unpredictable and
     61 // wrong output.
     62 class PartitionedMatrixViewBase {
     63  public:
     64   virtual ~PartitionedMatrixViewBase() {}
     65 
     66   // y += E'x
     67   virtual void LeftMultiplyE(const double* x, double* y) const = 0;
     68 
     69   // y += F'x
     70   virtual void LeftMultiplyF(const double* x, double* y) const = 0;
     71 
     72   // y += Ex
     73   virtual void RightMultiplyE(const double* x, double* y) const = 0;
     74 
     75   // y += Fx
     76   virtual void RightMultiplyF(const double* x, double* y) const = 0;
     77 
     78   // Create and return the block diagonal of the matrix E'E.
     79   virtual BlockSparseMatrix* CreateBlockDiagonalEtE() const = 0;
     80 
     81   // Create and return the block diagonal of the matrix F'F. Caller
     82   // owns the result.
     83   virtual BlockSparseMatrix* CreateBlockDiagonalFtF() const = 0;
     84 
     85   // Compute the block diagonal of the matrix E'E and store it in
     86   // block_diagonal. The matrix block_diagonal is expected to have a
     87   // BlockStructure (preferably created using
     88   // CreateBlockDiagonalMatrixEtE) which is has the same structure as
     89   // the block diagonal of E'E.
     90   virtual void UpdateBlockDiagonalEtE(
     91       BlockSparseMatrix* block_diagonal) const = 0;
     92 
     93   // Compute the block diagonal of the matrix F'F and store it in
     94   // block_diagonal. The matrix block_diagonal is expected to have a
     95   // BlockStructure (preferably created using
     96   // CreateBlockDiagonalMatrixFtF) which is has the same structure as
     97   // the block diagonal of F'F.
     98   virtual void UpdateBlockDiagonalFtF(
     99       BlockSparseMatrix* block_diagonal) const = 0;
    100 
    101   virtual int num_col_blocks_e() const = 0;
    102   virtual int num_col_blocks_f() const = 0;
    103   virtual int num_cols_e()       const = 0;
    104   virtual int num_cols_f()       const = 0;
    105   virtual int num_rows()         const = 0;
    106   virtual int num_cols()         const = 0;
    107 
    108   static PartitionedMatrixViewBase* Create(const LinearSolver::Options& options,
    109                                            const BlockSparseMatrix& matrix);
    110 };
    111 
    112 template <int kRowBlockSize = Eigen::Dynamic,
    113           int kEBlockSize = Eigen::Dynamic,
    114           int kFBlockSize = Eigen::Dynamic >
    115 class PartitionedMatrixView : public PartitionedMatrixViewBase {
    116  public:
    117   // matrix = [E F], where the matrix E contains the first
    118   // num_col_blocks_a column blocks.
    119   PartitionedMatrixView(const BlockSparseMatrix& matrix, int num_col_blocks_e);
    120 
    121   virtual ~PartitionedMatrixView();
    122   virtual void LeftMultiplyE(const double* x, double* y) const;
    123   virtual void LeftMultiplyF(const double* x, double* y) const;
    124   virtual void RightMultiplyE(const double* x, double* y) const;
    125   virtual void RightMultiplyF(const double* x, double* y) const;
    126   virtual BlockSparseMatrix* CreateBlockDiagonalEtE() const;
    127   virtual BlockSparseMatrix* CreateBlockDiagonalFtF() const;
    128   virtual void UpdateBlockDiagonalEtE(BlockSparseMatrix* block_diagonal) const;
    129   virtual void UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const;
    130   virtual int num_col_blocks_e() const { return num_col_blocks_e_;  }
    131   virtual int num_col_blocks_f() const { return num_col_blocks_f_;  }
    132   virtual int num_cols_e()       const { return num_cols_e_;        }
    133   virtual int num_cols_f()       const { return num_cols_f_;        }
    134   virtual int num_rows()         const { return matrix_.num_rows(); }
    135   virtual int num_cols()         const { return matrix_.num_cols(); }
    136 
    137  private:
    138   BlockSparseMatrix* CreateBlockDiagonalMatrixLayout(int start_col_block,
    139                                                      int end_col_block) const;
    140 
    141   const BlockSparseMatrix& matrix_;
    142   int num_row_blocks_e_;
    143   int num_col_blocks_e_;
    144   int num_col_blocks_f_;
    145   int num_cols_e_;
    146   int num_cols_f_;
    147 };
    148 
    149 }  // namespace internal
    150 }  // namespace ceres
    151 
    152 #endif  // CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_
    153