Home | History | Annotate | Download | only in doc
      1 namespace Eigen {
      2 
      3 /** \eigenManualPage QuickRefPage Quick reference guide
      4 
      5 \eigenAutoToc
      6 
      7 <hr>
      8 
      9 <a href="#" class="top">top</a>
     10 \section QuickRef_Headers Modules and Header files
     11 
     12 The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once.
     13 
     14 <table class="manual">
     15 <tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
     16 <tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
     17 <tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr>
     18 <tr><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr>
     19 <tr><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr>
     20 <tr class="alt"><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr>
     21 <tr><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decomposition with least-squares solver (JacobiSVD)</td></tr>
     22 <tr class="alt"><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr>
     23 <tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr>
     24 <tr class="alt"><td>\link Sparse_modules Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr>
     25 <tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
     26 <tr class="alt"><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr>
     27 </table>
     28 
     29 <a href="#" class="top">top</a>
     30 \section QuickRef_Types Array, matrix and vector types
     31 
     32 
     33 \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
     34 \code
     35 typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
     36 typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType;
     37 \endcode
     38 
     39 \li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.).
     40 \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
     41 \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
     42 
     43 All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
     44 \code
     45 Matrix<double, 6, Dynamic>                  // Dynamic number of columns (heap allocation)
     46 Matrix<double, Dynamic, 2>                  // Dynamic number of rows (heap allocation)
     47 Matrix<double, Dynamic, Dynamic, RowMajor>  // Fully dynamic, row major (heap allocation)
     48 Matrix<double, 13, 3>                       // Fully fixed (usually allocated on stack)
     49 \endcode
     50 
     51 In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples:
     52 <table class="example">
     53 <tr><th>Matrices</th><th>Arrays</th></tr>
     54 <tr><td>\code
     55 Matrix<float,Dynamic,Dynamic>   <=>   MatrixXf
     56 Matrix<double,Dynamic,1>        <=>   VectorXd
     57 Matrix<int,1,Dynamic>           <=>   RowVectorXi
     58 Matrix<float,3,3>               <=>   Matrix3f
     59 Matrix<float,4,1>               <=>   Vector4f
     60 \endcode</td><td>\code
     61 Array<float,Dynamic,Dynamic>    <=>   ArrayXXf
     62 Array<double,Dynamic,1>         <=>   ArrayXd
     63 Array<int,1,Dynamic>            <=>   RowArrayXi
     64 Array<float,3,3>                <=>   Array33f
     65 Array<float,4,1>                <=>   Array4f
     66 \endcode</td></tr>
     67 </table>
     68 
     69 Conversion between the matrix and array worlds:
     70 \code
     71 Array44f a1, a1;
     72 Matrix4f m1, m2;
     73 m1 = a1 * a2;                     // coeffwise product, implicit conversion from array to matrix.
     74 a1 = m1 * m2;                     // matrix product, implicit conversion from matrix to array.
     75 a2 = a1 + m1.array();             // mixing array and matrix is forbidden
     76 m2 = a1.matrix() + m1;            // and explicit conversion is required.
     77 ArrayWrapper<Matrix4f> m1a(m1);   // m1a is an alias for m1.array(), they share the same coefficients
     78 MatrixWrapper<Array44f> a1m(a1);
     79 \endcode
     80 
     81 In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object:
     82 \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only
     83 \li <a name="arrayonly"></a>\arrayworld array objects only
     84 
     85 \subsection QuickRef_Basics Basic matrix manipulation
     86 
     87 <table class="manual">
     88 <tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr>
     89 <tr><td>Constructors</td>
     90 <td>\code
     91 Vector4d  v4;
     92 Vector2f  v1(x, y);
     93 Array3i   v2(x, y, z);
     94 Vector4d  v3(x, y, z, w);
     95 
     96 VectorXf  v5; // empty object
     97 ArrayXf   v6(size);
     98 \endcode</td><td>\code
     99 Matrix4f  m1;
    100 
    101 
    102 
    103 
    104 MatrixXf  m5; // empty object
    105 MatrixXf  m6(nb_rows, nb_columns);
    106 \endcode</td><td class="note">
    107 By default, the coefficients \n are left uninitialized</td></tr>
    108 <tr class="alt"><td>Comma initializer</td>
    109 <td>\code
    110 Vector3f  v1;     v1 << x, y, z;
    111 ArrayXf   v2(4);  v2 << 1, 2, 3, 4;
    112 
    113 \endcode</td><td>\code
    114 Matrix3f  m1;   m1 << 1, 2, 3,
    115                       4, 5, 6,
    116                       7, 8, 9;
    117 \endcode</td><td></td></tr>
    118 
    119 <tr><td>Comma initializer (bis)</td>
    120 <td colspan="2">
    121 \include Tutorial_commainit_02.cpp
    122 </td>
    123 <td>
    124 output:
    125 \verbinclude Tutorial_commainit_02.out
    126 </td>
    127 </tr>
    128 
    129 <tr class="alt"><td>Runtime info</td>
    130 <td>\code
    131 vector.size();
    132 
    133 vector.innerStride();
    134 vector.data();
    135 \endcode</td><td>\code
    136 matrix.rows();          matrix.cols();
    137 matrix.innerSize();     matrix.outerSize();
    138 matrix.innerStride();   matrix.outerStride();
    139 matrix.data();
    140 \endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr>
    141 <tr><td>Compile-time info</td>
    142 <td colspan="2">\code
    143 ObjectType::Scalar              ObjectType::RowsAtCompileTime
    144 ObjectType::RealScalar          ObjectType::ColsAtCompileTime
    145 ObjectType::Index               ObjectType::SizeAtCompileTime
    146 \endcode</td><td></td></tr>
    147 <tr class="alt"><td>Resizing</td>
    148 <td>\code
    149 vector.resize(size);
    150 
    151 
    152 vector.resizeLike(other_vector);
    153 vector.conservativeResize(size);
    154 \endcode</td><td>\code
    155 matrix.resize(nb_rows, nb_cols);
    156 matrix.resize(Eigen::NoChange, nb_cols);
    157 matrix.resize(nb_rows, Eigen::NoChange);
    158 matrix.resizeLike(other_matrix);
    159 matrix.conservativeResize(nb_rows, nb_cols);
    160 \endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr>
    161 
    162 <tr><td>Coeff access with \n range checking</td>
    163 <td>\code
    164 vector(i)     vector.x()
    165 vector[i]     vector.y()
    166               vector.z()
    167               vector.w()
    168 \endcode</td><td>\code
    169 matrix(i,j)
    170 \endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>
    171 
    172 <tr class="alt"><td>Coeff access without \n range checking</td>
    173 <td>\code
    174 vector.coeff(i)
    175 vector.coeffRef(i)
    176 \endcode</td><td>\code
    177 matrix.coeff(i,j)
    178 matrix.coeffRef(i,j)
    179 \endcode</td><td></td></tr>
    180 
    181 <tr><td>Assignment/copy</td>
    182 <td colspan="2">\code
    183 object = expression;
    184 object_of_float = expression_of_double.cast<float>();
    185 \endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>
    186 
    187 </table>
    188 
    189 \subsection QuickRef_PredefMat Predefined Matrices
    190 
    191 <table class="manual">
    192 <tr>
    193   <th>Fixed-size matrix or vector</th>
    194   <th>Dynamic-size matrix</th>
    195   <th>Dynamic-size vector</th>
    196 </tr>
    197 <tr style="border-bottom-style: none;">
    198   <td>
    199 \code
    200 typedef {Matrix3f|Array33f} FixedXD;
    201 FixedXD x;
    202 
    203 x = FixedXD::Zero();
    204 x = FixedXD::Ones();
    205 x = FixedXD::Constant(value);
    206 x = FixedXD::Random();
    207 x = FixedXD::LinSpaced(size, low, high);
    208 
    209 x.setZero();
    210 x.setOnes();
    211 x.setConstant(value);
    212 x.setRandom();
    213 x.setLinSpaced(size, low, high);
    214 \endcode
    215   </td>
    216   <td>
    217 \code
    218 typedef {MatrixXf|ArrayXXf} Dynamic2D;
    219 Dynamic2D x;
    220 
    221 x = Dynamic2D::Zero(rows, cols);
    222 x = Dynamic2D::Ones(rows, cols);
    223 x = Dynamic2D::Constant(rows, cols, value);
    224 x = Dynamic2D::Random(rows, cols);
    225 N/A
    226 
    227 x.setZero(rows, cols);
    228 x.setOnes(rows, cols);
    229 x.setConstant(rows, cols, value);
    230 x.setRandom(rows, cols);
    231 N/A
    232 \endcode
    233   </td>
    234   <td>
    235 \code
    236 typedef {VectorXf|ArrayXf} Dynamic1D;
    237 Dynamic1D x;
    238 
    239 x = Dynamic1D::Zero(size);
    240 x = Dynamic1D::Ones(size);
    241 x = Dynamic1D::Constant(size, value);
    242 x = Dynamic1D::Random(size);
    243 x = Dynamic1D::LinSpaced(size, low, high);
    244 
    245 x.setZero(size);
    246 x.setOnes(size);
    247 x.setConstant(size, value);
    248 x.setRandom(size);
    249 x.setLinSpaced(size, low, high);
    250 \endcode
    251   </td>
    252 </tr>
    253 
    254 <tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr>
    255 <tr style="border-bottom-style: none;">
    256   <td>
    257 \code
    258 x = FixedXD::Identity();
    259 x.setIdentity();
    260 
    261 Vector3f::UnitX() // 1 0 0
    262 Vector3f::UnitY() // 0 1 0
    263 Vector3f::UnitZ() // 0 0 1
    264 \endcode
    265   </td>
    266   <td>
    267 \code
    268 x = Dynamic2D::Identity(rows, cols);
    269 x.setIdentity(rows, cols);
    270 
    271 
    272 
    273 N/A
    274 \endcode
    275   </td>
    276   <td>\code
    277 N/A
    278 
    279 
    280 VectorXf::Unit(size,i)
    281 VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
    282                     == Vector4f::UnitY()
    283 \endcode
    284   </td>
    285 </tr>
    286 </table>
    287 
    288 
    289 
    290 \subsection QuickRef_Map Mapping external arrays
    291 
    292 <table class="manual">
    293 <tr>
    294 <td>Contiguous \n memory</td>
    295 <td>\code
    296 float data[] = {1,2,3,4};
    297 Map<Vector3f> v1(data);       // uses v1 as a Vector3f object
    298 Map<ArrayXf>  v2(data,3);     // uses v2 as a ArrayXf object
    299 Map<Array22f> m1(data);       // uses m1 as a Array22f object
    300 Map<MatrixXf> m2(data,2,2);   // uses m2 as a MatrixXf object
    301 \endcode</td>
    302 </tr>
    303 <tr>
    304 <td>Typical usage \n of strides</td>
    305 <td>\code
    306 float data[] = {1,2,3,4,5,6,7,8,9};
    307 Map<VectorXf,0,InnerStride<2> >  v1(data,3);                      // = [1,3,5]
    308 Map<VectorXf,0,InnerStride<> >   v2(data,3,InnerStride<>(3));     // = [1,4,7]
    309 Map<MatrixXf,0,OuterStride<3> >  m2(data,2,3);                    // both lines     |1,4,7|
    310 Map<MatrixXf,0,OuterStride<> >   m1(data,2,3,OuterStride<>(3));   // are equal to:  |2,5,8|
    311 \endcode</td>
    312 </tr>
    313 </table>
    314 
    315 
    316 <a href="#" class="top">top</a>
    317 \section QuickRef_ArithmeticOperators Arithmetic Operators
    318 
    319 <table class="manual">
    320 <tr><td>
    321 add \n subtract</td><td>\code
    322 mat3 = mat1 + mat2;           mat3 += mat1;
    323 mat3 = mat1 - mat2;           mat3 -= mat1;\endcode
    324 </td></tr>
    325 <tr class="alt"><td>
    326 scalar product</td><td>\code
    327 mat3 = mat1 * s1;             mat3 *= s1;           mat3 = s1 * mat1;
    328 mat3 = mat1 / s1;             mat3 /= s1;\endcode
    329 </td></tr>
    330 <tr><td>
    331 matrix/vector \n products \matrixworld</td><td>\code
    332 col2 = mat1 * col1;
    333 row2 = row1 * mat1;           row1 *= mat1;
    334 mat3 = mat1 * mat2;           mat3 *= mat1; \endcode
    335 </td></tr>
    336 <tr class="alt"><td>
    337 transposition \n adjoint \matrixworld</td><td>\code
    338 mat1 = mat2.transpose();      mat1.transposeInPlace();
    339 mat1 = mat2.adjoint();        mat1.adjointInPlace();
    340 \endcode
    341 </td></tr>
    342 <tr><td>
    343 \link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code
    344 scalar = vec1.dot(vec2);
    345 scalar = col1.adjoint() * col2;
    346 scalar = (col1.adjoint() * col2).value();\endcode
    347 </td></tr>
    348 <tr class="alt"><td>
    349 outer product \matrixworld</td><td>\code
    350 mat = col1 * col2.transpose();\endcode
    351 </td></tr>
    352 
    353 <tr><td>
    354 \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
    355 scalar = vec1.norm();         scalar = vec1.squaredNorm()
    356 vec2 = vec1.normalized();     vec1.normalize(); // inplace \endcode
    357 </td></tr>
    358 
    359 <tr class="alt"><td>
    360 \link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code
    361 #include <Eigen/Geometry>
    362 vec3 = vec1.cross(vec2);\endcode</td></tr>
    363 </table>
    364 
    365 <a href="#" class="top">top</a>
    366 \section QuickRef_Coeffwise Coefficient-wise \& Array operators
    367 Coefficient-wise operators for matrices and vectors:
    368 <table class="manual">
    369 <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr>
    370 <tr><td>\code
    371 mat1.cwiseMin(mat2)
    372 mat1.cwiseMax(mat2)
    373 mat1.cwiseAbs2()
    374 mat1.cwiseAbs()
    375 mat1.cwiseSqrt()
    376 mat1.cwiseProduct(mat2)
    377 mat1.cwiseQuotient(mat2)\endcode
    378 </td><td>\code
    379 mat1.array().min(mat2.array())
    380 mat1.array().max(mat2.array())
    381 mat1.array().abs2()
    382 mat1.array().abs()
    383 mat1.array().sqrt()
    384 mat1.array() * mat2.array()
    385 mat1.array() / mat2.array()
    386 \endcode</td></tr>
    387 </table>
    388 
    389 It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with std::ptr_fun:
    390 \code mat1.unaryExpr(std::ptr_fun(foo))\endcode
    391 
    392 Array operators:\arrayworld
    393 
    394 <table class="manual">
    395 <tr><td>Arithmetic operators</td><td>\code
    396 array1 * array2     array1 / array2     array1 *= array2    array1 /= array2
    397 array1 + scalar     array1 - scalar     array1 += scalar    array1 -= scalar
    398 \endcode</td></tr>
    399 <tr><td>Comparisons</td><td>\code
    400 array1 < array2     array1 > array2     array1 < scalar     array1 > scalar
    401 array1 <= array2    array1 >= array2    array1 <= scalar    array1 >= scalar
    402 array1 == array2    array1 != array2    array1 == scalar    array1 != scalar
    403 \endcode</td></tr>
    404 <tr><td>Trigo, power, and \n misc functions \n and the STL variants</td><td>\code
    405 array1.min(array2)            
    406 array1.max(array2)            
    407 array1.abs2()
    408 array1.abs()                  abs(array1)
    409 array1.sqrt()                 sqrt(array1)
    410 array1.log()                  log(array1)
    411 array1.exp()                  exp(array1)
    412 array1.pow(exponent)          pow(array1,exponent)
    413 array1.square()
    414 array1.cube()
    415 array1.inverse()
    416 array1.sin()                  sin(array1)
    417 array1.cos()                  cos(array1)
    418 array1.tan()                  tan(array1)
    419 array1.asin()                 asin(array1)
    420 array1.acos()                 acos(array1)
    421 \endcode
    422 </td></tr>
    423 </table>
    424 
    425 <a href="#" class="top">top</a>
    426 \section QuickRef_Reductions Reductions
    427 
    428 Eigen provides several reduction methods such as:
    429 \link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
    430 \link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink,
    431 \link MatrixBase::trace() trace() \endlink \matrixworld,
    432 \link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld,
    433 \link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink.
    434 All reduction operations can be done matrix-wise,
    435 \link DenseBase::colwise() column-wise \endlink or
    436 \link DenseBase::rowwise() row-wise \endlink. Usage example:
    437 <table class="manual">
    438 <tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code
    439       5 3 1
    440 mat = 2 7 8
    441       9 4 6 \endcode
    442 </td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr>
    443 <tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr>
    444 <tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code
    445 1
    446 2
    447 4
    448 \endcode</td></tr>
    449 </table>
    450 
    451 Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink:
    452 \code
    453 int i, j;
    454 s = vector.minCoeff(&i);        // s == vector[i]
    455 s = matrix.maxCoeff(&i, &j);    // s == matrix(i,j)
    456 \endcode
    457 Typical use cases of all() and any():
    458 \code
    459 if((array1 > 0).all()) ...      // if all coefficients of array1 are greater than 0 ...
    460 if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
    461 \endcode
    462 
    463 
    464 <a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices
    465 
    466 Read-write access to a \link DenseBase::col(Index) column \endlink
    467 or a \link DenseBase::row(Index) row \endlink of a matrix (or array):
    468 \code
    469 mat1.row(i) = mat2.col(j);
    470 mat1.col(j1).swap(mat1.col(j2));
    471 \endcode
    472 
    473 Read-write access to sub-vectors:
    474 <table class="manual">
    475 <tr>
    476 <th>Default versions</th>
    477 <th>Optimized versions when the size \n is known at compile time</th></tr>
    478 <th></th>
    479 
    480 <tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr>
    481 <tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr>
    482 <tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td>
    483     <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr>
    484 <tr class="alt"><td colspan="3">
    485 
    486 Read-write access to sub-matrices:</td></tr>
    487 <tr>
    488   <td>\code mat1.block(i,j,rows,cols)\endcode
    489       \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td>
    490   <td>\code mat1.block<rows,cols>(i,j)\endcode
    491       \link DenseBase::block(Index,Index) (more) \endlink</td>
    492   <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
    493 <tr><td>\code
    494  mat1.topLeftCorner(rows,cols)
    495  mat1.topRightCorner(rows,cols)
    496  mat1.bottomLeftCorner(rows,cols)
    497  mat1.bottomRightCorner(rows,cols)\endcode
    498  <td>\code
    499  mat1.topLeftCorner<rows,cols>()
    500  mat1.topRightCorner<rows,cols>()
    501  mat1.bottomLeftCorner<rows,cols>()
    502  mat1.bottomRightCorner<rows,cols>()\endcode
    503  <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
    504  <tr><td>\code
    505  mat1.topRows(rows)
    506  mat1.bottomRows(rows)
    507  mat1.leftCols(cols)
    508  mat1.rightCols(cols)\endcode
    509  <td>\code
    510  mat1.topRows<rows>()
    511  mat1.bottomRows<rows>()
    512  mat1.leftCols<cols>()
    513  mat1.rightCols<cols>()\endcode
    514  <td>specialized versions of block() \n when the block fit two corners</td></tr>
    515 </table>
    516 
    517 
    518 
    519 <a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations
    520 
    521 \subsection QuickRef_Reverse Reverse
    522 Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()).
    523 \code
    524 vec.reverse()           mat.colwise().reverse()   mat.rowwise().reverse()
    525 vec.reverseInPlace()
    526 \endcode
    527 
    528 \subsection QuickRef_Replicate Replicate
    529 Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate())
    530 \code
    531 vec.replicate(times)                                          vec.replicate<Times>
    532 mat.replicate(vertical_times, horizontal_times)               mat.replicate<VerticalTimes, HorizontalTimes>()
    533 mat.colwise().replicate(vertical_times, horizontal_times)     mat.colwise().replicate<VerticalTimes, HorizontalTimes>()
    534 mat.rowwise().replicate(vertical_times, horizontal_times)     mat.rowwise().replicate<VerticalTimes, HorizontalTimes>()
    535 \endcode
    536 
    537 
    538 <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
    539 (matrix world \matrixworld)
    540 
    541 \subsection QuickRef_Diagonal Diagonal matrices
    542 
    543 <table class="example">
    544 <tr><th>Operation</th><th>Code</th></tr>
    545 <tr><td>
    546 view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
    547 mat1 = vec1.asDiagonal();\endcode
    548 </td></tr>
    549 <tr><td>
    550 Declare a diagonal matrix</td><td>\code
    551 DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
    552 diag1.diagonal() = vector;\endcode
    553 </td></tr>
    554 <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
    555  <td>\code
    556 vec1 = mat1.diagonal();        mat1.diagonal() = vec1;      // main diagonal
    557 vec1 = mat1.diagonal(+n);      mat1.diagonal(+n) = vec1;    // n-th super diagonal
    558 vec1 = mat1.diagonal(-n);      mat1.diagonal(-n) = vec1;    // n-th sub diagonal
    559 vec1 = mat1.diagonal<1>();     mat1.diagonal<1>() = vec1;   // first super diagonal
    560 vec1 = mat1.diagonal<-2>();    mat1.diagonal<-2>() = vec1;  // second sub diagonal
    561 \endcode</td>
    562 </tr>
    563 
    564 <tr><td>Optimized products and inverse</td>
    565  <td>\code
    566 mat3  = scalar * diag1 * mat1;
    567 mat3 += scalar * mat1 * vec1.asDiagonal();
    568 mat3 = vec1.asDiagonal().inverse() * mat1
    569 mat3 = mat1 * diag1.inverse()
    570 \endcode</td>
    571 </tr>
    572 
    573 </table>
    574 
    575 \subsection QuickRef_TriangularView Triangular views
    576 
    577 TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
    578 
    579 \note The .triangularView() template member function requires the \c template keyword if it is used on an
    580 object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
    581 
    582 <table class="example">
    583 <tr><th>Operation</th><th>Code</th></tr>
    584 <tr><td>
    585 Reference to a triangular with optional \n
    586 unit or null diagonal (read/write):
    587 </td><td>\code
    588 m.triangularView<Xxx>()
    589 \endcode \n
    590 \c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower
    591 </td></tr>
    592 <tr><td>
    593 Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
    594 </td><td>\code
    595 m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode
    596 </td></tr>
    597 <tr><td>
    598 Conversion to a dense matrix setting the opposite triangular part to zero:
    599 </td><td>\code
    600 m2 = m1.triangularView<Eigen::UnitUpper>()\endcode
    601 </td></tr>
    602 <tr><td>
    603 Products:
    604 </td><td>\code
    605 m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
    606 m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
    607 </td></tr>
    608 <tr><td>
    609 Solving linear equations:\n
    610 \f$ M_2 := L_1^{-1} M_2 \f$ \n
    611 \f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n
    612 \f$ M_4 := M_4 U_1^{-1} \f$
    613 </td><td>\n \code
    614 L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
    615 L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
    616 U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode
    617 </td></tr>
    618 </table>
    619 
    620 \subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
    621 
    622 Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
    623 matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
    624 used to store other information.
    625 
    626 \note The .selfadjointView() template member function requires the \c template keyword if it is used on an
    627 object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
    628 
    629 <table class="example">
    630 <tr><th>Operation</th><th>Code</th></tr>
    631 <tr><td>
    632 Conversion to a dense matrix:
    633 </td><td>\code
    634 m2 = m.selfadjointView<Eigen::Lower>();\endcode
    635 </td></tr>
    636 <tr><td>
    637 Product with another general matrix or vector:
    638 </td><td>\code
    639 m3  = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
    640 m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
    641 </td></tr>
    642 <tr><td>
    643 Rank 1 and rank K update: \n
    644 \f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n
    645 \f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$
    646 </td><td>\n \code
    647 M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
    648 M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode
    649 </td></tr>
    650 <tr><td>
    651 Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$)
    652 </td><td>\code
    653 M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
    654 \endcode
    655 </td></tr>
    656 <tr><td>
    657 Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$)
    658 </td><td>\code
    659 // via a standard Cholesky factorization
    660 m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
    661 // via a Cholesky factorization with pivoting
    662 m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
    663 \endcode
    664 </td></tr>
    665 </table>
    666 
    667 */
    668 
    669 /*
    670 <table class="tutorial_code">
    671 <tr><td>
    672 \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
    673 mat1 = vec1.asDiagonal();\endcode
    674 </td></tr>
    675 <tr><td>
    676 Declare a diagonal matrix</td><td>\code
    677 DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
    678 diag1.diagonal() = vector;\endcode
    679 </td></tr>
    680 <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
    681  <td>\code
    682 vec1 = mat1.diagonal();            mat1.diagonal() = vec1;      // main diagonal
    683 vec1 = mat1.diagonal(+n);          mat1.diagonal(+n) = vec1;    // n-th super diagonal
    684 vec1 = mat1.diagonal(-n);          mat1.diagonal(-n) = vec1;    // n-th sub diagonal
    685 vec1 = mat1.diagonal<1>();         mat1.diagonal<1>() = vec1;   // first super diagonal
    686 vec1 = mat1.diagonal<-2>();        mat1.diagonal<-2>() = vec1;  // second sub diagonal
    687 \endcode</td>
    688 </tr>
    689 
    690 <tr><td>View on a triangular part of a matrix (read/write)</td>
    691  <td>\code
    692 mat2 = mat1.triangularView<Xxx>();
    693 // Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
    694 mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced
    695 \endcode</td></tr>
    696 
    697 <tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>
    698  <td>\code
    699 mat2 = mat1.selfadjointView<Xxx>();     // Xxx = Upper or Lower
    700 mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint();  // evaluated and write to the upper triangular part only
    701 \endcode</td></tr>
    702 
    703 </table>
    704 
    705 Optimized products:
    706 \code
    707 mat3 += scalar * vec1.asDiagonal() * mat1
    708 mat3 += scalar * mat1 * vec1.asDiagonal()
    709 mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2
    710 mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>()
    711 mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2
    712 mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>()
    713 mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2);
    714 mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar);
    715 \endcode
    716 
    717 Inverse products: (all are optimized)
    718 \code
    719 mat3 = vec1.asDiagonal().inverse() * mat1
    720 mat3 = mat1 * diag1.inverse()
    721 mat1.triangularView<Xxx>().solveInPlace(mat2)
    722 mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2)
    723 mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2)
    724 \endcode
    725 
    726 */
    727 }
    728