1 // Copyright (c) 2010 Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // stackwalker_x86.cc: x86-specific stackwalker. 31 // 32 // See stackwalker_x86.h for documentation. 33 // 34 // Author: Mark Mentovai 35 36 #include <assert.h> 37 #include <string> 38 39 #include "common/scoped_ptr.h" 40 #include "google_breakpad/processor/call_stack.h" 41 #include "google_breakpad/processor/code_modules.h" 42 #include "google_breakpad/processor/memory_region.h" 43 #include "google_breakpad/processor/source_line_resolver_interface.h" 44 #include "google_breakpad/processor/stack_frame_cpu.h" 45 #include "processor/logging.h" 46 #include "processor/postfix_evaluator-inl.h" 47 #include "processor/stackwalker_x86.h" 48 #include "processor/windows_frame_info.h" 49 #include "processor/cfi_frame_info.h" 50 51 namespace google_breakpad { 52 53 // Max reasonable size for a single x86 frame is 128 KB. This value is used in 54 // a heuristic for recovering of the EBP chain after a scan for return address. 55 // This value is based on a stack frame size histogram built for a set of 56 // popular third party libraries which suggests that 99.5% of all frames are 57 // smaller than 128 KB. 58 static const uint32_t kMaxReasonableGapBetweenFrames = 128 * 1024; 59 60 const StackwalkerX86::CFIWalker::RegisterSet 61 StackwalkerX86::cfi_register_map_[] = { 62 // It may seem like $eip and $esp are callee-saves, because (with Unix or 63 // cdecl calling conventions) the callee is responsible for having them 64 // restored upon return. But the callee_saves flags here really means 65 // that the walker should assume they're unchanged if the CFI doesn't 66 // mention them, which is clearly wrong for $eip and $esp. 67 { "$eip", ".ra", false, 68 StackFrameX86::CONTEXT_VALID_EIP, &MDRawContextX86::eip }, 69 { "$esp", ".cfa", false, 70 StackFrameX86::CONTEXT_VALID_ESP, &MDRawContextX86::esp }, 71 { "$ebp", NULL, true, 72 StackFrameX86::CONTEXT_VALID_EBP, &MDRawContextX86::ebp }, 73 { "$eax", NULL, false, 74 StackFrameX86::CONTEXT_VALID_EAX, &MDRawContextX86::eax }, 75 { "$ebx", NULL, true, 76 StackFrameX86::CONTEXT_VALID_EBX, &MDRawContextX86::ebx }, 77 { "$ecx", NULL, false, 78 StackFrameX86::CONTEXT_VALID_ECX, &MDRawContextX86::ecx }, 79 { "$edx", NULL, false, 80 StackFrameX86::CONTEXT_VALID_EDX, &MDRawContextX86::edx }, 81 { "$esi", NULL, true, 82 StackFrameX86::CONTEXT_VALID_ESI, &MDRawContextX86::esi }, 83 { "$edi", NULL, true, 84 StackFrameX86::CONTEXT_VALID_EDI, &MDRawContextX86::edi }, 85 }; 86 87 StackwalkerX86::StackwalkerX86(const SystemInfo* system_info, 88 const MDRawContextX86* context, 89 MemoryRegion* memory, 90 const CodeModules* modules, 91 StackFrameSymbolizer* resolver_helper) 92 : Stackwalker(system_info, memory, modules, resolver_helper), 93 context_(context), 94 cfi_walker_(cfi_register_map_, 95 (sizeof(cfi_register_map_) / sizeof(cfi_register_map_[0]))) { 96 if (memory_ && memory_->GetBase() + memory_->GetSize() - 1 > 0xffffffff) { 97 // The x86 is a 32-bit CPU, the limits of the supplied stack are invalid. 98 // Mark memory_ = NULL, which will cause stackwalking to fail. 99 BPLOG(ERROR) << "Memory out of range for stackwalking: " << 100 HexString(memory_->GetBase()) << "+" << 101 HexString(memory_->GetSize()); 102 memory_ = NULL; 103 } 104 } 105 106 StackFrameX86::~StackFrameX86() { 107 if (windows_frame_info) 108 delete windows_frame_info; 109 windows_frame_info = NULL; 110 if (cfi_frame_info) 111 delete cfi_frame_info; 112 cfi_frame_info = NULL; 113 } 114 115 uint64_t StackFrameX86::ReturnAddress() const { 116 assert(context_validity & StackFrameX86::CONTEXT_VALID_EIP); 117 return context.eip; 118 } 119 120 StackFrame* StackwalkerX86::GetContextFrame() { 121 if (!context_) { 122 BPLOG(ERROR) << "Can't get context frame without context"; 123 return NULL; 124 } 125 126 StackFrameX86* frame = new StackFrameX86(); 127 128 // The instruction pointer is stored directly in a register, so pull it 129 // straight out of the CPU context structure. 130 frame->context = *context_; 131 frame->context_validity = StackFrameX86::CONTEXT_VALID_ALL; 132 frame->trust = StackFrame::FRAME_TRUST_CONTEXT; 133 frame->instruction = frame->context.eip; 134 135 return frame; 136 } 137 138 StackFrameX86* StackwalkerX86::GetCallerByWindowsFrameInfo( 139 const vector<StackFrame*> &frames, 140 WindowsFrameInfo* last_frame_info, 141 bool stack_scan_allowed) { 142 StackFrame::FrameTrust trust = StackFrame::FRAME_TRUST_NONE; 143 144 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back()); 145 146 // Save the stack walking info we found, in case we need it later to 147 // find the callee of the frame we're constructing now. 148 last_frame->windows_frame_info = last_frame_info; 149 150 // This function only covers the full STACK WIN case. If 151 // last_frame_info is VALID_PARAMETER_SIZE-only, then we should 152 // assume the traditional frame format or use some other strategy. 153 if (last_frame_info->valid != WindowsFrameInfo::VALID_ALL) 154 return NULL; 155 156 // This stackwalker sets each frame's %esp to its value immediately prior 157 // to the CALL into the callee. This means that %esp points to the last 158 // callee argument pushed onto the stack, which may not be where %esp points 159 // after the callee returns. Specifically, the value is correct for the 160 // cdecl calling convention, but not other conventions. The cdecl 161 // convention requires a caller to pop its callee's arguments from the 162 // stack after the callee returns. This is usually accomplished by adding 163 // the known size of the arguments to %esp. Other calling conventions, 164 // including stdcall, thiscall, and fastcall, require the callee to pop any 165 // parameters stored on the stack before returning. This is usually 166 // accomplished by using the RET n instruction, which pops n bytes off 167 // the stack after popping the return address. 168 // 169 // Because each frame's %esp will point to a location on the stack after 170 // callee arguments have been PUSHed, when locating things in a stack frame 171 // relative to %esp, the size of the arguments to the callee need to be 172 // taken into account. This seems a little bit unclean, but it's better 173 // than the alternative, which would need to take these same things into 174 // account, but only for cdecl functions. With this implementation, we get 175 // to be agnostic about each function's calling convention. Furthermore, 176 // this is how Windows debugging tools work, so it means that the %esp 177 // values produced by this stackwalker directly correspond to the %esp 178 // values you'll see there. 179 // 180 // If the last frame has no callee (because it's the context frame), just 181 // set the callee parameter size to 0: the stack pointer can't point to 182 // callee arguments because there's no callee. This is correct as long 183 // as the context wasn't captured while arguments were being pushed for 184 // a function call. Note that there may be functions whose parameter sizes 185 // are unknown, 0 is also used in that case. When that happens, it should 186 // be possible to walk to the next frame without reference to %esp. 187 188 uint32_t last_frame_callee_parameter_size = 0; 189 int frames_already_walked = frames.size(); 190 if (frames_already_walked >= 2) { 191 const StackFrameX86* last_frame_callee 192 = static_cast<StackFrameX86*>(frames[frames_already_walked - 2]); 193 WindowsFrameInfo* last_frame_callee_info 194 = last_frame_callee->windows_frame_info; 195 if (last_frame_callee_info && 196 (last_frame_callee_info->valid 197 & WindowsFrameInfo::VALID_PARAMETER_SIZE)) { 198 last_frame_callee_parameter_size = 199 last_frame_callee_info->parameter_size; 200 } 201 } 202 203 // Set up the dictionary for the PostfixEvaluator. %ebp and %esp are used 204 // in each program string, and their previous values are known, so set them 205 // here. 206 PostfixEvaluator<uint32_t>::DictionaryType dictionary; 207 // Provide the current register values. 208 dictionary["$ebp"] = last_frame->context.ebp; 209 dictionary["$esp"] = last_frame->context.esp; 210 // Provide constants from the debug info for last_frame and its callee. 211 // .cbCalleeParams is a Breakpad extension that allows us to use the 212 // PostfixEvaluator engine when certain types of debugging information 213 // are present without having to write the constants into the program 214 // string as literals. 215 dictionary[".cbCalleeParams"] = last_frame_callee_parameter_size; 216 dictionary[".cbSavedRegs"] = last_frame_info->saved_register_size; 217 dictionary[".cbLocals"] = last_frame_info->local_size; 218 219 uint32_t raSearchStart = last_frame->context.esp + 220 last_frame_callee_parameter_size + 221 last_frame_info->local_size + 222 last_frame_info->saved_register_size; 223 224 uint32_t raSearchStartOld = raSearchStart; 225 uint32_t found = 0; // dummy value 226 // Scan up to three words above the calculated search value, in case 227 // the stack was aligned to a quadword boundary. 228 // 229 // TODO(ivan.penkov): Consider cleaning up the scan for return address that 230 // follows. The purpose of this scan is to adjust the .raSearchStart 231 // calculation (which is based on register %esp) in the cases where register 232 // %esp may have been aligned (up to a quadword). There are two problems 233 // with this approach: 234 // 1) In practice, 64 byte boundary alignment is seen which clearly can not 235 // be handled by a three word scan. 236 // 2) A search for a return address is "guesswork" by definition because 237 // the results will be different depending on what is left on the stack 238 // from previous executions. 239 // So, basically, the results from this scan should be ignored if other means 240 // for calculation of the value of .raSearchStart are available. 241 if (ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3) && 242 last_frame->trust == StackFrame::FRAME_TRUST_CONTEXT && 243 last_frame->windows_frame_info != NULL && 244 last_frame_info->type_ == WindowsFrameInfo::STACK_INFO_FPO && 245 raSearchStartOld == raSearchStart && 246 found == last_frame->context.eip) { 247 // The context frame represents an FPO-optimized Windows system call. 248 // On the top of the stack we have a pointer to the current instruction. 249 // This means that the callee has returned but the return address is still 250 // on the top of the stack which is very atypical situaltion. 251 // Skip one slot from the stack and do another scan in order to get the 252 // actual return address. 253 raSearchStart += 4; 254 ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3); 255 } 256 257 dictionary[".cbParams"] = last_frame_info->parameter_size; 258 259 // Decide what type of program string to use. The program string is in 260 // postfix notation and will be passed to PostfixEvaluator::Evaluate. 261 // Given the dictionary and the program string, it is possible to compute 262 // the return address and the values of other registers in the calling 263 // function. Because of bugs described below, the stack may need to be 264 // scanned for these values. The results of program string evaluation 265 // will be used to determine whether to scan for better values. 266 string program_string; 267 bool recover_ebp = true; 268 269 trust = StackFrame::FRAME_TRUST_CFI; 270 if (!last_frame_info->program_string.empty()) { 271 // The FPO data has its own program string, which will tell us how to 272 // get to the caller frame, and may even fill in the values of 273 // nonvolatile registers and provide pointers to local variables and 274 // parameters. In some cases, particularly with program strings that use 275 // .raSearchStart, the stack may need to be scanned afterward. 276 program_string = last_frame_info->program_string; 277 } else if (last_frame_info->allocates_base_pointer) { 278 // The function corresponding to the last frame doesn't use the frame 279 // pointer for conventional purposes, but it does allocate a new 280 // frame pointer and use it for its own purposes. Its callee's 281 // information is still accessed relative to %esp, and the previous 282 // value of %ebp can be recovered from a location in its stack frame, 283 // within the saved-register area. 284 // 285 // Functions that fall into this category use the %ebp register for 286 // a purpose other than the frame pointer. They restore the caller's 287 // %ebp before returning. These functions create their stack frame 288 // after a CALL by decrementing the stack pointer in an amount 289 // sufficient to store local variables, and then PUSHing saved 290 // registers onto the stack. Arguments to a callee function, if any, 291 // are PUSHed after that. Walking up to the caller, therefore, 292 // can be done solely with calculations relative to the stack pointer 293 // (%esp). The return address is recovered from the memory location 294 // above the known sizes of the callee's parameters, saved registers, 295 // and locals. The caller's stack pointer (the value of %esp when 296 // the caller executed CALL) is the location immediately above the 297 // saved return address. The saved value of %ebp to be restored for 298 // the caller is at a known location in the saved-register area of 299 // the stack frame. 300 // 301 // For this type of frame, MSVC 14 (from Visual Studio 8/2005) in 302 // link-time code generation mode (/LTCG and /GL) can generate erroneous 303 // debugging data. The reported size of saved registers can be 0, 304 // which is clearly an error because these frames must, at the very 305 // least, save %ebp. For this reason, in addition to those given above 306 // about the use of .raSearchStart, the stack may need to be scanned 307 // for a better return address and a better frame pointer after the 308 // program string is evaluated. 309 // 310 // %eip_new = *(%esp_old + callee_params + saved_regs + locals) 311 // %ebp_new = *(%esp_old + callee_params + saved_regs - 8) 312 // %esp_new = %esp_old + callee_params + saved_regs + locals + 4 313 program_string = "$eip .raSearchStart ^ = " 314 "$ebp $esp .cbCalleeParams + .cbSavedRegs + 8 - ^ = " 315 "$esp .raSearchStart 4 + ="; 316 } else { 317 // The function corresponding to the last frame doesn't use %ebp at 318 // all. The callee frame is located relative to %esp. 319 // 320 // The called procedure's instruction pointer and stack pointer are 321 // recovered in the same way as the case above, except that no 322 // frame pointer (%ebp) is used at all, so it is not saved anywhere 323 // in the callee's stack frame and does not need to be recovered. 324 // Because %ebp wasn't used in the callee, whatever value it has 325 // is the value that it had in the caller, so it can be carried 326 // straight through without bringing its validity into question. 327 // 328 // Because of the use of .raSearchStart, the stack will possibly be 329 // examined to locate a better return address after program string 330 // evaluation. The stack will not be examined to locate a saved 331 // %ebp value, because these frames do not save (or use) %ebp. 332 // 333 // %eip_new = *(%esp_old + callee_params + saved_regs + locals) 334 // %esp_new = %esp_old + callee_params + saved_regs + locals + 4 335 // %ebp_new = %ebp_old 336 program_string = "$eip .raSearchStart ^ = " 337 "$esp .raSearchStart 4 + ="; 338 recover_ebp = false; 339 } 340 341 // Check for alignment operators in the program string. If alignment 342 // operators are found, then current %ebp must be valid and it is the only 343 // reliable data point that can be used for getting to the previous frame. 344 // E.g. the .raSearchStart calculation (above) is based on %esp and since 345 // %esp was aligned in the current frame (which is a lossy operation) the 346 // calculated value of .raSearchStart cannot be correct and should not be 347 // used. Instead .raSearchStart must be calculated based on %ebp. 348 // The code that follows assumes that .raSearchStart is supposed to point 349 // at the saved return address (ebp + 4). 350 // For some more details on this topic, take a look at the following thread: 351 // https://groups.google.com/forum/#!topic/google-breakpad-dev/ZP1FA9B1JjM 352 if ((StackFrameX86::CONTEXT_VALID_EBP & last_frame->context_validity) != 0 && 353 program_string.find('@') != string::npos) { 354 raSearchStart = last_frame->context.ebp + 4; 355 } 356 357 // The difference between raSearch and raSearchStart is unknown, 358 // but making them the same seems to work well in practice. 359 dictionary[".raSearchStart"] = raSearchStart; 360 dictionary[".raSearch"] = raSearchStart; 361 362 // Now crank it out, making sure that the program string set at least the 363 // two required variables. 364 PostfixEvaluator<uint32_t> evaluator = 365 PostfixEvaluator<uint32_t>(&dictionary, memory_); 366 PostfixEvaluator<uint32_t>::DictionaryValidityType dictionary_validity; 367 if (!evaluator.Evaluate(program_string, &dictionary_validity) || 368 dictionary_validity.find("$eip") == dictionary_validity.end() || 369 dictionary_validity.find("$esp") == dictionary_validity.end()) { 370 // Program string evaluation failed. It may be that %eip is not somewhere 371 // with stack frame info, and %ebp is pointing to non-stack memory, so 372 // our evaluation couldn't succeed. We'll scan the stack for a return 373 // address. This can happen if the stack is in a module for which 374 // we don't have symbols, and that module is compiled without a 375 // frame pointer. 376 uint32_t location_start = last_frame->context.esp; 377 uint32_t location, eip; 378 if (!stack_scan_allowed 379 || !ScanForReturnAddress(location_start, &location, &eip, 380 frames.size() == 1 /* is_context_frame */)) { 381 // if we can't find an instruction pointer even with stack scanning, 382 // give up. 383 return NULL; 384 } 385 386 // This seems like a reasonable return address. Since program string 387 // evaluation failed, use it and set %esp to the location above the 388 // one where the return address was found. 389 dictionary["$eip"] = eip; 390 dictionary["$esp"] = location + 4; 391 trust = StackFrame::FRAME_TRUST_SCAN; 392 } 393 394 // Since this stack frame did not use %ebp in a traditional way, 395 // locating the return address isn't entirely deterministic. In that 396 // case, the stack can be scanned to locate the return address. 397 // 398 // However, if program string evaluation resulted in both %eip and 399 // %ebp values of 0, trust that the end of the stack has been 400 // reached and don't scan for anything else. 401 if (dictionary["$eip"] != 0 || dictionary["$ebp"] != 0) { 402 int offset = 0; 403 404 // This scan can only be done if a CodeModules object is available, to 405 // check that candidate return addresses are in fact inside a module. 406 // 407 // TODO(mmentovai): This ignores dynamically-generated code. One possible 408 // solution is to check the minidump's memory map to see if the candidate 409 // %eip value comes from a mapped executable page, although this would 410 // require dumps that contain MINIDUMP_MEMORY_INFO, which the Breakpad 411 // client doesn't currently write (it would need to call MiniDumpWriteDump 412 // with the MiniDumpWithFullMemoryInfo type bit set). Even given this 413 // ability, older OSes (pre-XP SP2) and CPUs (pre-P4) don't enforce 414 // an independent execute privilege on memory pages. 415 416 uint32_t eip = dictionary["$eip"]; 417 if (modules_ && !modules_->GetModuleForAddress(eip)) { 418 // The instruction pointer at .raSearchStart was invalid, so start 419 // looking one 32-bit word above that location. 420 uint32_t location_start = dictionary[".raSearchStart"] + 4; 421 uint32_t location; 422 if (stack_scan_allowed 423 && ScanForReturnAddress(location_start, &location, &eip, 424 frames.size() == 1 /* is_context_frame */)) { 425 // This is a better return address that what program string 426 // evaluation found. Use it, and set %esp to the location above the 427 // one where the return address was found. 428 dictionary["$eip"] = eip; 429 dictionary["$esp"] = location + 4; 430 offset = location - location_start; 431 trust = StackFrame::FRAME_TRUST_CFI_SCAN; 432 } 433 } 434 435 if (recover_ebp) { 436 // When trying to recover the previous value of the frame pointer (%ebp), 437 // start looking at the lowest possible address in the saved-register 438 // area, and look at the entire saved register area, increased by the 439 // size of |offset| to account for additional data that may be on the 440 // stack. The scan is performed from the highest possible address to 441 // the lowest, because the expectation is that the function's prolog 442 // would have saved %ebp early. 443 uint32_t ebp = dictionary["$ebp"]; 444 445 // When a scan for return address is used, it is possible to skip one or 446 // more frames (when return address is not in a known module). One 447 // indication for skipped frames is when the value of %ebp is lower than 448 // the location of the return address on the stack 449 bool has_skipped_frames = 450 (trust != StackFrame::FRAME_TRUST_CFI && ebp <= raSearchStart + offset); 451 452 uint32_t value; // throwaway variable to check pointer validity 453 if (has_skipped_frames || !memory_->GetMemoryAtAddress(ebp, &value)) { 454 int fp_search_bytes = last_frame_info->saved_register_size + offset; 455 uint32_t location_end = last_frame->context.esp + 456 last_frame_callee_parameter_size; 457 458 for (uint32_t location = location_end + fp_search_bytes; 459 location >= location_end; 460 location -= 4) { 461 if (!memory_->GetMemoryAtAddress(location, &ebp)) 462 break; 463 464 if (memory_->GetMemoryAtAddress(ebp, &value)) { 465 // The candidate value is a pointer to the same memory region 466 // (the stack). Prefer it as a recovered %ebp result. 467 dictionary["$ebp"] = ebp; 468 break; 469 } 470 } 471 } 472 } 473 } 474 475 // Create a new stack frame (ownership will be transferred to the caller) 476 // and fill it in. 477 StackFrameX86* frame = new StackFrameX86(); 478 479 frame->trust = trust; 480 frame->context = last_frame->context; 481 frame->context.eip = dictionary["$eip"]; 482 frame->context.esp = dictionary["$esp"]; 483 frame->context.ebp = dictionary["$ebp"]; 484 frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP | 485 StackFrameX86::CONTEXT_VALID_ESP | 486 StackFrameX86::CONTEXT_VALID_EBP; 487 488 // These are nonvolatile (callee-save) registers, and the program string 489 // may have filled them in. 490 if (dictionary_validity.find("$ebx") != dictionary_validity.end()) { 491 frame->context.ebx = dictionary["$ebx"]; 492 frame->context_validity |= StackFrameX86::CONTEXT_VALID_EBX; 493 } 494 if (dictionary_validity.find("$esi") != dictionary_validity.end()) { 495 frame->context.esi = dictionary["$esi"]; 496 frame->context_validity |= StackFrameX86::CONTEXT_VALID_ESI; 497 } 498 if (dictionary_validity.find("$edi") != dictionary_validity.end()) { 499 frame->context.edi = dictionary["$edi"]; 500 frame->context_validity |= StackFrameX86::CONTEXT_VALID_EDI; 501 } 502 503 return frame; 504 } 505 506 StackFrameX86* StackwalkerX86::GetCallerByCFIFrameInfo( 507 const vector<StackFrame*> &frames, 508 CFIFrameInfo* cfi_frame_info) { 509 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back()); 510 last_frame->cfi_frame_info = cfi_frame_info; 511 512 scoped_ptr<StackFrameX86> frame(new StackFrameX86()); 513 if (!cfi_walker_ 514 .FindCallerRegisters(*memory_, *cfi_frame_info, 515 last_frame->context, last_frame->context_validity, 516 &frame->context, &frame->context_validity)) 517 return NULL; 518 519 // Make sure we recovered all the essentials. 520 static const int essentials = (StackFrameX86::CONTEXT_VALID_EIP 521 | StackFrameX86::CONTEXT_VALID_ESP 522 | StackFrameX86::CONTEXT_VALID_EBP); 523 if ((frame->context_validity & essentials) != essentials) 524 return NULL; 525 526 frame->trust = StackFrame::FRAME_TRUST_CFI; 527 528 return frame.release(); 529 } 530 531 StackFrameX86* StackwalkerX86::GetCallerByEBPAtBase( 532 const vector<StackFrame*> &frames, 533 bool stack_scan_allowed) { 534 StackFrame::FrameTrust trust; 535 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back()); 536 uint32_t last_esp = last_frame->context.esp; 537 uint32_t last_ebp = last_frame->context.ebp; 538 539 // Assume that the standard %ebp-using x86 calling convention is in 540 // use. 541 // 542 // The typical x86 calling convention, when frame pointers are present, 543 // is for the calling procedure to use CALL, which pushes the return 544 // address onto the stack and sets the instruction pointer (%eip) to 545 // the entry point of the called routine. The called routine then 546 // PUSHes the calling routine's frame pointer (%ebp) onto the stack 547 // before copying the stack pointer (%esp) to the frame pointer (%ebp). 548 // Therefore, the calling procedure's frame pointer is always available 549 // by dereferencing the called procedure's frame pointer, and the return 550 // address is always available at the memory location immediately above 551 // the address pointed to by the called procedure's frame pointer. The 552 // calling procedure's stack pointer (%esp) is 8 higher than the value 553 // of the called procedure's frame pointer at the time the calling 554 // procedure made the CALL: 4 bytes for the return address pushed by the 555 // CALL itself, and 4 bytes for the callee's PUSH of the caller's frame 556 // pointer. 557 // 558 // %eip_new = *(%ebp_old + 4) 559 // %esp_new = %ebp_old + 8 560 // %ebp_new = *(%ebp_old) 561 562 uint32_t caller_eip, caller_esp, caller_ebp; 563 564 if (memory_->GetMemoryAtAddress(last_ebp + 4, &caller_eip) && 565 memory_->GetMemoryAtAddress(last_ebp, &caller_ebp)) { 566 caller_esp = last_ebp + 8; 567 trust = StackFrame::FRAME_TRUST_FP; 568 } else { 569 // We couldn't read the memory %ebp refers to. It may be that %ebp 570 // is pointing to non-stack memory. We'll scan the stack for a 571 // return address. This can happen if last_frame is executing code 572 // for a module for which we don't have symbols, and that module 573 // is compiled without a frame pointer. 574 if (!stack_scan_allowed 575 || !ScanForReturnAddress(last_esp, &caller_esp, &caller_eip, 576 frames.size() == 1 /* is_context_frame */)) { 577 // if we can't find an instruction pointer even with stack scanning, 578 // give up. 579 return NULL; 580 } 581 582 // ScanForReturnAddress found a reasonable return address. Advance %esp to 583 // the location immediately above the one where the return address was 584 // found. 585 caller_esp += 4; 586 // Try to restore the %ebp chain. The caller %ebp should be stored at a 587 // location immediately below the one where the return address was found. 588 // A valid caller %ebp must be greater than the address where it is stored 589 // and the gap between the two adjacent frames should be reasonable. 590 uint32_t restored_ebp_chain = caller_esp - 8; 591 if (!memory_->GetMemoryAtAddress(restored_ebp_chain, &caller_ebp) || 592 caller_ebp <= restored_ebp_chain || 593 caller_ebp - restored_ebp_chain > kMaxReasonableGapBetweenFrames) { 594 // The restored %ebp chain doesn't appear to be valid. 595 // Assume that %ebp is unchanged. 596 caller_ebp = last_ebp; 597 } 598 599 trust = StackFrame::FRAME_TRUST_SCAN; 600 } 601 602 // Create a new stack frame (ownership will be transferred to the caller) 603 // and fill it in. 604 StackFrameX86* frame = new StackFrameX86(); 605 606 frame->trust = trust; 607 frame->context = last_frame->context; 608 frame->context.eip = caller_eip; 609 frame->context.esp = caller_esp; 610 frame->context.ebp = caller_ebp; 611 frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP | 612 StackFrameX86::CONTEXT_VALID_ESP | 613 StackFrameX86::CONTEXT_VALID_EBP; 614 615 return frame; 616 } 617 618 StackFrame* StackwalkerX86::GetCallerFrame(const CallStack* stack, 619 bool stack_scan_allowed) { 620 if (!memory_ || !stack) { 621 BPLOG(ERROR) << "Can't get caller frame without memory or stack"; 622 return NULL; 623 } 624 625 const vector<StackFrame*> &frames = *stack->frames(); 626 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back()); 627 scoped_ptr<StackFrameX86> new_frame; 628 629 // If the resolver has Windows stack walking information, use that. 630 WindowsFrameInfo* windows_frame_info 631 = frame_symbolizer_->FindWindowsFrameInfo(last_frame); 632 if (windows_frame_info) 633 new_frame.reset(GetCallerByWindowsFrameInfo(frames, windows_frame_info, 634 stack_scan_allowed)); 635 636 // If the resolver has DWARF CFI information, use that. 637 if (!new_frame.get()) { 638 CFIFrameInfo* cfi_frame_info = 639 frame_symbolizer_->FindCFIFrameInfo(last_frame); 640 if (cfi_frame_info) 641 new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info)); 642 } 643 644 // Otherwise, hope that the program was using a traditional frame structure. 645 if (!new_frame.get()) 646 new_frame.reset(GetCallerByEBPAtBase(frames, stack_scan_allowed)); 647 648 // If nothing worked, tell the caller. 649 if (!new_frame.get()) 650 return NULL; 651 652 // Treat an instruction address of 0 as end-of-stack. 653 if (new_frame->context.eip == 0) 654 return NULL; 655 656 // If the new stack pointer is at a lower address than the old, then 657 // that's clearly incorrect. Treat this as end-of-stack to enforce 658 // progress and avoid infinite loops. 659 if (new_frame->context.esp <= last_frame->context.esp) 660 return NULL; 661 662 // new_frame->context.eip is the return address, which is the instruction 663 // after the CALL that caused us to arrive at the callee. Set 664 // new_frame->instruction to one less than that, so it points within the 665 // CALL instruction. See StackFrame::instruction for details, and 666 // StackFrameAMD64::ReturnAddress. 667 new_frame->instruction = new_frame->context.eip - 1; 668 669 return new_frame.release(); 670 } 671 672 } // namespace google_breakpad 673