Home | History | Annotate | Download | only in processor
      1 // Copyright (c) 2010 Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // stackwalker_x86.cc: x86-specific stackwalker.
     31 //
     32 // See stackwalker_x86.h for documentation.
     33 //
     34 // Author: Mark Mentovai
     35 
     36 #include <assert.h>
     37 #include <string>
     38 
     39 #include "common/scoped_ptr.h"
     40 #include "google_breakpad/processor/call_stack.h"
     41 #include "google_breakpad/processor/code_modules.h"
     42 #include "google_breakpad/processor/memory_region.h"
     43 #include "google_breakpad/processor/source_line_resolver_interface.h"
     44 #include "google_breakpad/processor/stack_frame_cpu.h"
     45 #include "processor/logging.h"
     46 #include "processor/postfix_evaluator-inl.h"
     47 #include "processor/stackwalker_x86.h"
     48 #include "processor/windows_frame_info.h"
     49 #include "processor/cfi_frame_info.h"
     50 
     51 namespace google_breakpad {
     52 
     53 // Max reasonable size for a single x86 frame is 128 KB.  This value is used in
     54 // a heuristic for recovering of the EBP chain after a scan for return address.
     55 // This value is based on a stack frame size histogram built for a set of
     56 // popular third party libraries which suggests that 99.5% of all frames are
     57 // smaller than 128 KB.
     58 static const uint32_t kMaxReasonableGapBetweenFrames = 128 * 1024;
     59 
     60 const StackwalkerX86::CFIWalker::RegisterSet
     61 StackwalkerX86::cfi_register_map_[] = {
     62   // It may seem like $eip and $esp are callee-saves, because (with Unix or
     63   // cdecl calling conventions) the callee is responsible for having them
     64   // restored upon return. But the callee_saves flags here really means
     65   // that the walker should assume they're unchanged if the CFI doesn't
     66   // mention them, which is clearly wrong for $eip and $esp.
     67   { "$eip", ".ra",  false,
     68     StackFrameX86::CONTEXT_VALID_EIP, &MDRawContextX86::eip },
     69   { "$esp", ".cfa", false,
     70     StackFrameX86::CONTEXT_VALID_ESP, &MDRawContextX86::esp },
     71   { "$ebp", NULL,   true,
     72     StackFrameX86::CONTEXT_VALID_EBP, &MDRawContextX86::ebp },
     73   { "$eax", NULL,   false,
     74     StackFrameX86::CONTEXT_VALID_EAX, &MDRawContextX86::eax },
     75   { "$ebx", NULL,   true,
     76     StackFrameX86::CONTEXT_VALID_EBX, &MDRawContextX86::ebx },
     77   { "$ecx", NULL,   false,
     78     StackFrameX86::CONTEXT_VALID_ECX, &MDRawContextX86::ecx },
     79   { "$edx", NULL,   false,
     80     StackFrameX86::CONTEXT_VALID_EDX, &MDRawContextX86::edx },
     81   { "$esi", NULL,   true,
     82     StackFrameX86::CONTEXT_VALID_ESI, &MDRawContextX86::esi },
     83   { "$edi", NULL,   true,
     84     StackFrameX86::CONTEXT_VALID_EDI, &MDRawContextX86::edi },
     85 };
     86 
     87 StackwalkerX86::StackwalkerX86(const SystemInfo* system_info,
     88                                const MDRawContextX86* context,
     89                                MemoryRegion* memory,
     90                                const CodeModules* modules,
     91                                StackFrameSymbolizer* resolver_helper)
     92     : Stackwalker(system_info, memory, modules, resolver_helper),
     93       context_(context),
     94       cfi_walker_(cfi_register_map_,
     95                   (sizeof(cfi_register_map_) / sizeof(cfi_register_map_[0]))) {
     96   if (memory_ && memory_->GetBase() + memory_->GetSize() - 1 > 0xffffffff) {
     97     // The x86 is a 32-bit CPU, the limits of the supplied stack are invalid.
     98     // Mark memory_ = NULL, which will cause stackwalking to fail.
     99     BPLOG(ERROR) << "Memory out of range for stackwalking: " <<
    100                     HexString(memory_->GetBase()) << "+" <<
    101                     HexString(memory_->GetSize());
    102     memory_ = NULL;
    103   }
    104 }
    105 
    106 StackFrameX86::~StackFrameX86() {
    107   if (windows_frame_info)
    108     delete windows_frame_info;
    109   windows_frame_info = NULL;
    110   if (cfi_frame_info)
    111     delete cfi_frame_info;
    112   cfi_frame_info = NULL;
    113 }
    114 
    115 uint64_t StackFrameX86::ReturnAddress() const {
    116   assert(context_validity & StackFrameX86::CONTEXT_VALID_EIP);
    117   return context.eip;
    118 }
    119 
    120 StackFrame* StackwalkerX86::GetContextFrame() {
    121   if (!context_) {
    122     BPLOG(ERROR) << "Can't get context frame without context";
    123     return NULL;
    124   }
    125 
    126   StackFrameX86* frame = new StackFrameX86();
    127 
    128   // The instruction pointer is stored directly in a register, so pull it
    129   // straight out of the CPU context structure.
    130   frame->context = *context_;
    131   frame->context_validity = StackFrameX86::CONTEXT_VALID_ALL;
    132   frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
    133   frame->instruction = frame->context.eip;
    134 
    135   return frame;
    136 }
    137 
    138 StackFrameX86* StackwalkerX86::GetCallerByWindowsFrameInfo(
    139     const vector<StackFrame*> &frames,
    140     WindowsFrameInfo* last_frame_info,
    141     bool stack_scan_allowed) {
    142   StackFrame::FrameTrust trust = StackFrame::FRAME_TRUST_NONE;
    143 
    144   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
    145 
    146   // Save the stack walking info we found, in case we need it later to
    147   // find the callee of the frame we're constructing now.
    148   last_frame->windows_frame_info = last_frame_info;
    149 
    150   // This function only covers the full STACK WIN case. If
    151   // last_frame_info is VALID_PARAMETER_SIZE-only, then we should
    152   // assume the traditional frame format or use some other strategy.
    153   if (last_frame_info->valid != WindowsFrameInfo::VALID_ALL)
    154     return NULL;
    155 
    156   // This stackwalker sets each frame's %esp to its value immediately prior
    157   // to the CALL into the callee.  This means that %esp points to the last
    158   // callee argument pushed onto the stack, which may not be where %esp points
    159   // after the callee returns.  Specifically, the value is correct for the
    160   // cdecl calling convention, but not other conventions.  The cdecl
    161   // convention requires a caller to pop its callee's arguments from the
    162   // stack after the callee returns.  This is usually accomplished by adding
    163   // the known size of the arguments to %esp.  Other calling conventions,
    164   // including stdcall, thiscall, and fastcall, require the callee to pop any
    165   // parameters stored on the stack before returning.  This is usually
    166   // accomplished by using the RET n instruction, which pops n bytes off
    167   // the stack after popping the return address.
    168   //
    169   // Because each frame's %esp will point to a location on the stack after
    170   // callee arguments have been PUSHed, when locating things in a stack frame
    171   // relative to %esp, the size of the arguments to the callee need to be
    172   // taken into account.  This seems a little bit unclean, but it's better
    173   // than the alternative, which would need to take these same things into
    174   // account, but only for cdecl functions.  With this implementation, we get
    175   // to be agnostic about each function's calling convention.  Furthermore,
    176   // this is how Windows debugging tools work, so it means that the %esp
    177   // values produced by this stackwalker directly correspond to the %esp
    178   // values you'll see there.
    179   //
    180   // If the last frame has no callee (because it's the context frame), just
    181   // set the callee parameter size to 0: the stack pointer can't point to
    182   // callee arguments because there's no callee.  This is correct as long
    183   // as the context wasn't captured while arguments were being pushed for
    184   // a function call.  Note that there may be functions whose parameter sizes
    185   // are unknown, 0 is also used in that case.  When that happens, it should
    186   // be possible to walk to the next frame without reference to %esp.
    187 
    188   uint32_t last_frame_callee_parameter_size = 0;
    189   int frames_already_walked = frames.size();
    190   if (frames_already_walked >= 2) {
    191     const StackFrameX86* last_frame_callee
    192         = static_cast<StackFrameX86*>(frames[frames_already_walked - 2]);
    193     WindowsFrameInfo* last_frame_callee_info
    194         = last_frame_callee->windows_frame_info;
    195     if (last_frame_callee_info &&
    196         (last_frame_callee_info->valid
    197          & WindowsFrameInfo::VALID_PARAMETER_SIZE)) {
    198       last_frame_callee_parameter_size =
    199           last_frame_callee_info->parameter_size;
    200     }
    201   }
    202 
    203   // Set up the dictionary for the PostfixEvaluator.  %ebp and %esp are used
    204   // in each program string, and their previous values are known, so set them
    205   // here.
    206   PostfixEvaluator<uint32_t>::DictionaryType dictionary;
    207   // Provide the current register values.
    208   dictionary["$ebp"] = last_frame->context.ebp;
    209   dictionary["$esp"] = last_frame->context.esp;
    210   // Provide constants from the debug info for last_frame and its callee.
    211   // .cbCalleeParams is a Breakpad extension that allows us to use the
    212   // PostfixEvaluator engine when certain types of debugging information
    213   // are present without having to write the constants into the program
    214   // string as literals.
    215   dictionary[".cbCalleeParams"] = last_frame_callee_parameter_size;
    216   dictionary[".cbSavedRegs"] = last_frame_info->saved_register_size;
    217   dictionary[".cbLocals"] = last_frame_info->local_size;
    218 
    219   uint32_t raSearchStart = last_frame->context.esp +
    220                            last_frame_callee_parameter_size +
    221                            last_frame_info->local_size +
    222                            last_frame_info->saved_register_size;
    223 
    224   uint32_t raSearchStartOld = raSearchStart;
    225   uint32_t found = 0;  // dummy value
    226   // Scan up to three words above the calculated search value, in case
    227   // the stack was aligned to a quadword boundary.
    228   //
    229   // TODO(ivan.penkov): Consider cleaning up the scan for return address that
    230   // follows.  The purpose of this scan is to adjust the .raSearchStart
    231   // calculation (which is based on register %esp) in the cases where register
    232   // %esp may have been aligned (up to a quadword).  There are two problems
    233   // with this approach:
    234   //  1) In practice, 64 byte boundary alignment is seen which clearly can not
    235   //     be handled by a three word scan.
    236   //  2) A search for a return address is "guesswork" by definition because
    237   //     the results will be different depending on what is left on the stack
    238   //     from previous executions.
    239   // So, basically, the results from this scan should be ignored if other means
    240   // for calculation of the value of .raSearchStart are available.
    241   if (ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3) &&
    242       last_frame->trust == StackFrame::FRAME_TRUST_CONTEXT &&
    243       last_frame->windows_frame_info != NULL &&
    244       last_frame_info->type_ == WindowsFrameInfo::STACK_INFO_FPO &&
    245       raSearchStartOld == raSearchStart &&
    246       found == last_frame->context.eip) {
    247     // The context frame represents an FPO-optimized Windows system call.
    248     // On the top of the stack we have a pointer to the current instruction.
    249     // This means that the callee has returned but the return address is still
    250     // on the top of the stack which is very atypical situaltion.
    251     // Skip one slot from the stack and do another scan in order to get the
    252     // actual return address.
    253     raSearchStart += 4;
    254     ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3);
    255   }
    256 
    257   dictionary[".cbParams"] = last_frame_info->parameter_size;
    258 
    259   // Decide what type of program string to use. The program string is in
    260   // postfix notation and will be passed to PostfixEvaluator::Evaluate.
    261   // Given the dictionary and the program string, it is possible to compute
    262   // the return address and the values of other registers in the calling
    263   // function. Because of bugs described below, the stack may need to be
    264   // scanned for these values. The results of program string evaluation
    265   // will be used to determine whether to scan for better values.
    266   string program_string;
    267   bool recover_ebp = true;
    268 
    269   trust = StackFrame::FRAME_TRUST_CFI;
    270   if (!last_frame_info->program_string.empty()) {
    271     // The FPO data has its own program string, which will tell us how to
    272     // get to the caller frame, and may even fill in the values of
    273     // nonvolatile registers and provide pointers to local variables and
    274     // parameters.  In some cases, particularly with program strings that use
    275     // .raSearchStart, the stack may need to be scanned afterward.
    276     program_string = last_frame_info->program_string;
    277   } else if (last_frame_info->allocates_base_pointer) {
    278     // The function corresponding to the last frame doesn't use the frame
    279     // pointer for conventional purposes, but it does allocate a new
    280     // frame pointer and use it for its own purposes.  Its callee's
    281     // information is still accessed relative to %esp, and the previous
    282     // value of %ebp can be recovered from a location in its stack frame,
    283     // within the saved-register area.
    284     //
    285     // Functions that fall into this category use the %ebp register for
    286     // a purpose other than the frame pointer.  They restore the caller's
    287     // %ebp before returning.  These functions create their stack frame
    288     // after a CALL by decrementing the stack pointer in an amount
    289     // sufficient to store local variables, and then PUSHing saved
    290     // registers onto the stack.  Arguments to a callee function, if any,
    291     // are PUSHed after that.  Walking up to the caller, therefore,
    292     // can be done solely with calculations relative to the stack pointer
    293     // (%esp).  The return address is recovered from the memory location
    294     // above the known sizes of the callee's parameters, saved registers,
    295     // and locals.  The caller's stack pointer (the value of %esp when
    296     // the caller executed CALL) is the location immediately above the
    297     // saved return address.  The saved value of %ebp to be restored for
    298     // the caller is at a known location in the saved-register area of
    299     // the stack frame.
    300     //
    301     // For this type of frame, MSVC 14 (from Visual Studio 8/2005) in
    302     // link-time code generation mode (/LTCG and /GL) can generate erroneous
    303     // debugging data.  The reported size of saved registers can be 0,
    304     // which is clearly an error because these frames must, at the very
    305     // least, save %ebp.  For this reason, in addition to those given above
    306     // about the use of .raSearchStart, the stack may need to be scanned
    307     // for a better return address and a better frame pointer after the
    308     // program string is evaluated.
    309     //
    310     // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
    311     // %ebp_new = *(%esp_old + callee_params + saved_regs - 8)
    312     // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
    313     program_string = "$eip .raSearchStart ^ = "
    314         "$ebp $esp .cbCalleeParams + .cbSavedRegs + 8 - ^ = "
    315         "$esp .raSearchStart 4 + =";
    316   } else {
    317     // The function corresponding to the last frame doesn't use %ebp at
    318     // all.  The callee frame is located relative to %esp.
    319     //
    320     // The called procedure's instruction pointer and stack pointer are
    321     // recovered in the same way as the case above, except that no
    322     // frame pointer (%ebp) is used at all, so it is not saved anywhere
    323     // in the callee's stack frame and does not need to be recovered.
    324     // Because %ebp wasn't used in the callee, whatever value it has
    325     // is the value that it had in the caller, so it can be carried
    326     // straight through without bringing its validity into question.
    327     //
    328     // Because of the use of .raSearchStart, the stack will possibly be
    329     // examined to locate a better return address after program string
    330     // evaluation.  The stack will not be examined to locate a saved
    331     // %ebp value, because these frames do not save (or use) %ebp.
    332     //
    333     // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
    334     // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
    335     // %ebp_new = %ebp_old
    336     program_string = "$eip .raSearchStart ^ = "
    337         "$esp .raSearchStart 4 + =";
    338     recover_ebp = false;
    339   }
    340 
    341   // Check for alignment operators in the program string.  If alignment
    342   // operators are found, then current %ebp must be valid and it is the only
    343   // reliable data point that can be used for getting to the previous frame.
    344   // E.g. the .raSearchStart calculation (above) is based on %esp and since
    345   // %esp was aligned in the current frame (which is a lossy operation) the
    346   // calculated value of .raSearchStart cannot be correct and should not be
    347   // used.  Instead .raSearchStart must be calculated based on %ebp.
    348   // The code that follows assumes that .raSearchStart is supposed to point
    349   // at the saved return address (ebp + 4).
    350   // For some more details on this topic, take a look at the following thread:
    351   // https://groups.google.com/forum/#!topic/google-breakpad-dev/ZP1FA9B1JjM
    352   if ((StackFrameX86::CONTEXT_VALID_EBP & last_frame->context_validity) != 0 &&
    353       program_string.find('@') != string::npos) {
    354     raSearchStart = last_frame->context.ebp + 4;
    355   }
    356 
    357   // The difference between raSearch and raSearchStart is unknown,
    358   // but making them the same seems to work well in practice.
    359   dictionary[".raSearchStart"] = raSearchStart;
    360   dictionary[".raSearch"] = raSearchStart;
    361 
    362   // Now crank it out, making sure that the program string set at least the
    363   // two required variables.
    364   PostfixEvaluator<uint32_t> evaluator =
    365       PostfixEvaluator<uint32_t>(&dictionary, memory_);
    366   PostfixEvaluator<uint32_t>::DictionaryValidityType dictionary_validity;
    367   if (!evaluator.Evaluate(program_string, &dictionary_validity) ||
    368       dictionary_validity.find("$eip") == dictionary_validity.end() ||
    369       dictionary_validity.find("$esp") == dictionary_validity.end()) {
    370     // Program string evaluation failed. It may be that %eip is not somewhere
    371     // with stack frame info, and %ebp is pointing to non-stack memory, so
    372     // our evaluation couldn't succeed. We'll scan the stack for a return
    373     // address. This can happen if the stack is in a module for which
    374     // we don't have symbols, and that module is compiled without a
    375     // frame pointer.
    376     uint32_t location_start = last_frame->context.esp;
    377     uint32_t location, eip;
    378     if (!stack_scan_allowed
    379         || !ScanForReturnAddress(location_start, &location, &eip,
    380                                  frames.size() == 1 /* is_context_frame */)) {
    381       // if we can't find an instruction pointer even with stack scanning,
    382       // give up.
    383       return NULL;
    384     }
    385 
    386     // This seems like a reasonable return address. Since program string
    387     // evaluation failed, use it and set %esp to the location above the
    388     // one where the return address was found.
    389     dictionary["$eip"] = eip;
    390     dictionary["$esp"] = location + 4;
    391     trust = StackFrame::FRAME_TRUST_SCAN;
    392   }
    393 
    394   // Since this stack frame did not use %ebp in a traditional way,
    395   // locating the return address isn't entirely deterministic. In that
    396   // case, the stack can be scanned to locate the return address.
    397   //
    398   // However, if program string evaluation resulted in both %eip and
    399   // %ebp values of 0, trust that the end of the stack has been
    400   // reached and don't scan for anything else.
    401   if (dictionary["$eip"] != 0 || dictionary["$ebp"] != 0) {
    402     int offset = 0;
    403 
    404     // This scan can only be done if a CodeModules object is available, to
    405     // check that candidate return addresses are in fact inside a module.
    406     //
    407     // TODO(mmentovai): This ignores dynamically-generated code.  One possible
    408     // solution is to check the minidump's memory map to see if the candidate
    409     // %eip value comes from a mapped executable page, although this would
    410     // require dumps that contain MINIDUMP_MEMORY_INFO, which the Breakpad
    411     // client doesn't currently write (it would need to call MiniDumpWriteDump
    412     // with the MiniDumpWithFullMemoryInfo type bit set).  Even given this
    413     // ability, older OSes (pre-XP SP2) and CPUs (pre-P4) don't enforce
    414     // an independent execute privilege on memory pages.
    415 
    416     uint32_t eip = dictionary["$eip"];
    417     if (modules_ && !modules_->GetModuleForAddress(eip)) {
    418       // The instruction pointer at .raSearchStart was invalid, so start
    419       // looking one 32-bit word above that location.
    420       uint32_t location_start = dictionary[".raSearchStart"] + 4;
    421       uint32_t location;
    422       if (stack_scan_allowed
    423           && ScanForReturnAddress(location_start, &location, &eip,
    424                                   frames.size() == 1 /* is_context_frame */)) {
    425         // This is a better return address that what program string
    426         // evaluation found.  Use it, and set %esp to the location above the
    427         // one where the return address was found.
    428         dictionary["$eip"] = eip;
    429         dictionary["$esp"] = location + 4;
    430         offset = location - location_start;
    431         trust = StackFrame::FRAME_TRUST_CFI_SCAN;
    432       }
    433     }
    434 
    435     if (recover_ebp) {
    436       // When trying to recover the previous value of the frame pointer (%ebp),
    437       // start looking at the lowest possible address in the saved-register
    438       // area, and look at the entire saved register area, increased by the
    439       // size of |offset| to account for additional data that may be on the
    440       // stack.  The scan is performed from the highest possible address to
    441       // the lowest, because the expectation is that the function's prolog
    442       // would have saved %ebp early.
    443       uint32_t ebp = dictionary["$ebp"];
    444 
    445       // When a scan for return address is used, it is possible to skip one or
    446       // more frames (when return address is not in a known module).  One
    447       // indication for skipped frames is when the value of %ebp is lower than
    448       // the location of the return address on the stack
    449       bool has_skipped_frames =
    450         (trust != StackFrame::FRAME_TRUST_CFI && ebp <= raSearchStart + offset);
    451 
    452       uint32_t value;  // throwaway variable to check pointer validity
    453       if (has_skipped_frames || !memory_->GetMemoryAtAddress(ebp, &value)) {
    454         int fp_search_bytes = last_frame_info->saved_register_size + offset;
    455         uint32_t location_end = last_frame->context.esp +
    456                                  last_frame_callee_parameter_size;
    457 
    458         for (uint32_t location = location_end + fp_search_bytes;
    459              location >= location_end;
    460              location -= 4) {
    461           if (!memory_->GetMemoryAtAddress(location, &ebp))
    462             break;
    463 
    464           if (memory_->GetMemoryAtAddress(ebp, &value)) {
    465             // The candidate value is a pointer to the same memory region
    466             // (the stack).  Prefer it as a recovered %ebp result.
    467             dictionary["$ebp"] = ebp;
    468             break;
    469           }
    470         }
    471       }
    472     }
    473   }
    474 
    475   // Create a new stack frame (ownership will be transferred to the caller)
    476   // and fill it in.
    477   StackFrameX86* frame = new StackFrameX86();
    478 
    479   frame->trust = trust;
    480   frame->context = last_frame->context;
    481   frame->context.eip = dictionary["$eip"];
    482   frame->context.esp = dictionary["$esp"];
    483   frame->context.ebp = dictionary["$ebp"];
    484   frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
    485                                 StackFrameX86::CONTEXT_VALID_ESP |
    486                                 StackFrameX86::CONTEXT_VALID_EBP;
    487 
    488   // These are nonvolatile (callee-save) registers, and the program string
    489   // may have filled them in.
    490   if (dictionary_validity.find("$ebx") != dictionary_validity.end()) {
    491     frame->context.ebx = dictionary["$ebx"];
    492     frame->context_validity |= StackFrameX86::CONTEXT_VALID_EBX;
    493   }
    494   if (dictionary_validity.find("$esi") != dictionary_validity.end()) {
    495     frame->context.esi = dictionary["$esi"];
    496     frame->context_validity |= StackFrameX86::CONTEXT_VALID_ESI;
    497   }
    498   if (dictionary_validity.find("$edi") != dictionary_validity.end()) {
    499     frame->context.edi = dictionary["$edi"];
    500     frame->context_validity |= StackFrameX86::CONTEXT_VALID_EDI;
    501   }
    502 
    503   return frame;
    504 }
    505 
    506 StackFrameX86* StackwalkerX86::GetCallerByCFIFrameInfo(
    507     const vector<StackFrame*> &frames,
    508     CFIFrameInfo* cfi_frame_info) {
    509   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
    510   last_frame->cfi_frame_info = cfi_frame_info;
    511 
    512   scoped_ptr<StackFrameX86> frame(new StackFrameX86());
    513   if (!cfi_walker_
    514       .FindCallerRegisters(*memory_, *cfi_frame_info,
    515                            last_frame->context, last_frame->context_validity,
    516                            &frame->context, &frame->context_validity))
    517     return NULL;
    518 
    519   // Make sure we recovered all the essentials.
    520   static const int essentials = (StackFrameX86::CONTEXT_VALID_EIP
    521                                  | StackFrameX86::CONTEXT_VALID_ESP
    522                                  | StackFrameX86::CONTEXT_VALID_EBP);
    523   if ((frame->context_validity & essentials) != essentials)
    524     return NULL;
    525 
    526   frame->trust = StackFrame::FRAME_TRUST_CFI;
    527 
    528   return frame.release();
    529 }
    530 
    531 StackFrameX86* StackwalkerX86::GetCallerByEBPAtBase(
    532     const vector<StackFrame*> &frames,
    533     bool stack_scan_allowed) {
    534   StackFrame::FrameTrust trust;
    535   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
    536   uint32_t last_esp = last_frame->context.esp;
    537   uint32_t last_ebp = last_frame->context.ebp;
    538 
    539   // Assume that the standard %ebp-using x86 calling convention is in
    540   // use.
    541   //
    542   // The typical x86 calling convention, when frame pointers are present,
    543   // is for the calling procedure to use CALL, which pushes the return
    544   // address onto the stack and sets the instruction pointer (%eip) to
    545   // the entry point of the called routine.  The called routine then
    546   // PUSHes the calling routine's frame pointer (%ebp) onto the stack
    547   // before copying the stack pointer (%esp) to the frame pointer (%ebp).
    548   // Therefore, the calling procedure's frame pointer is always available
    549   // by dereferencing the called procedure's frame pointer, and the return
    550   // address is always available at the memory location immediately above
    551   // the address pointed to by the called procedure's frame pointer.  The
    552   // calling procedure's stack pointer (%esp) is 8 higher than the value
    553   // of the called procedure's frame pointer at the time the calling
    554   // procedure made the CALL: 4 bytes for the return address pushed by the
    555   // CALL itself, and 4 bytes for the callee's PUSH of the caller's frame
    556   // pointer.
    557   //
    558   // %eip_new = *(%ebp_old + 4)
    559   // %esp_new = %ebp_old + 8
    560   // %ebp_new = *(%ebp_old)
    561 
    562   uint32_t caller_eip, caller_esp, caller_ebp;
    563 
    564   if (memory_->GetMemoryAtAddress(last_ebp + 4, &caller_eip) &&
    565       memory_->GetMemoryAtAddress(last_ebp, &caller_ebp)) {
    566     caller_esp = last_ebp + 8;
    567     trust = StackFrame::FRAME_TRUST_FP;
    568   } else {
    569     // We couldn't read the memory %ebp refers to. It may be that %ebp
    570     // is pointing to non-stack memory. We'll scan the stack for a
    571     // return address. This can happen if last_frame is executing code
    572     // for a module for which we don't have symbols, and that module
    573     // is compiled without a frame pointer.
    574     if (!stack_scan_allowed
    575         || !ScanForReturnAddress(last_esp, &caller_esp, &caller_eip,
    576                                  frames.size() == 1 /* is_context_frame */)) {
    577       // if we can't find an instruction pointer even with stack scanning,
    578       // give up.
    579       return NULL;
    580     }
    581 
    582     // ScanForReturnAddress found a reasonable return address. Advance %esp to
    583     // the location immediately above the one where the return address was
    584     // found.
    585     caller_esp += 4;
    586     // Try to restore the %ebp chain.  The caller %ebp should be stored at a
    587     // location immediately below the one where the return address was found.
    588     // A valid caller %ebp must be greater than the address where it is stored
    589     // and the gap between the two adjacent frames should be reasonable.
    590     uint32_t restored_ebp_chain = caller_esp - 8;
    591     if (!memory_->GetMemoryAtAddress(restored_ebp_chain, &caller_ebp) ||
    592         caller_ebp <= restored_ebp_chain ||
    593         caller_ebp - restored_ebp_chain > kMaxReasonableGapBetweenFrames) {
    594       // The restored %ebp chain doesn't appear to be valid.
    595       // Assume that %ebp is unchanged.
    596       caller_ebp = last_ebp;
    597     }
    598 
    599     trust = StackFrame::FRAME_TRUST_SCAN;
    600   }
    601 
    602   // Create a new stack frame (ownership will be transferred to the caller)
    603   // and fill it in.
    604   StackFrameX86* frame = new StackFrameX86();
    605 
    606   frame->trust = trust;
    607   frame->context = last_frame->context;
    608   frame->context.eip = caller_eip;
    609   frame->context.esp = caller_esp;
    610   frame->context.ebp = caller_ebp;
    611   frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
    612                             StackFrameX86::CONTEXT_VALID_ESP |
    613                             StackFrameX86::CONTEXT_VALID_EBP;
    614 
    615   return frame;
    616 }
    617 
    618 StackFrame* StackwalkerX86::GetCallerFrame(const CallStack* stack,
    619                                            bool stack_scan_allowed) {
    620   if (!memory_ || !stack) {
    621     BPLOG(ERROR) << "Can't get caller frame without memory or stack";
    622     return NULL;
    623   }
    624 
    625   const vector<StackFrame*> &frames = *stack->frames();
    626   StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
    627   scoped_ptr<StackFrameX86> new_frame;
    628 
    629   // If the resolver has Windows stack walking information, use that.
    630   WindowsFrameInfo* windows_frame_info
    631       = frame_symbolizer_->FindWindowsFrameInfo(last_frame);
    632   if (windows_frame_info)
    633     new_frame.reset(GetCallerByWindowsFrameInfo(frames, windows_frame_info,
    634                                                 stack_scan_allowed));
    635 
    636   // If the resolver has DWARF CFI information, use that.
    637   if (!new_frame.get()) {
    638     CFIFrameInfo* cfi_frame_info =
    639         frame_symbolizer_->FindCFIFrameInfo(last_frame);
    640     if (cfi_frame_info)
    641       new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info));
    642   }
    643 
    644   // Otherwise, hope that the program was using a traditional frame structure.
    645   if (!new_frame.get())
    646     new_frame.reset(GetCallerByEBPAtBase(frames, stack_scan_allowed));
    647 
    648   // If nothing worked, tell the caller.
    649   if (!new_frame.get())
    650     return NULL;
    651 
    652   // Treat an instruction address of 0 as end-of-stack.
    653   if (new_frame->context.eip == 0)
    654     return NULL;
    655 
    656   // If the new stack pointer is at a lower address than the old, then
    657   // that's clearly incorrect. Treat this as end-of-stack to enforce
    658   // progress and avoid infinite loops.
    659   if (new_frame->context.esp <= last_frame->context.esp)
    660     return NULL;
    661 
    662   // new_frame->context.eip is the return address, which is the instruction
    663   // after the CALL that caused us to arrive at the callee. Set
    664   // new_frame->instruction to one less than that, so it points within the
    665   // CALL instruction. See StackFrame::instruction for details, and
    666   // StackFrameAMD64::ReturnAddress.
    667   new_frame->instruction = new_frame->context.eip - 1;
    668 
    669   return new_frame.release();
    670 }
    671 
    672 }  // namespace google_breakpad
    673