Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include "gtest/gtest.h"
     36 
     37 // Verifies that the command line flag variables can be accessed
     38 // in code once <gtest/gtest.h> has been #included.
     39 // Do not move it after other #includes.
     40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     42       || testing::GTEST_FLAG(break_on_failure)
     43       || testing::GTEST_FLAG(catch_exceptions)
     44       || testing::GTEST_FLAG(color) != "unknown"
     45       || testing::GTEST_FLAG(filter) != "unknown"
     46       || testing::GTEST_FLAG(list_tests)
     47       || testing::GTEST_FLAG(output) != "unknown"
     48       || testing::GTEST_FLAG(print_time)
     49       || testing::GTEST_FLAG(random_seed)
     50       || testing::GTEST_FLAG(repeat) > 0
     51       || testing::GTEST_FLAG(show_internal_stack_frames)
     52       || testing::GTEST_FLAG(shuffle)
     53       || testing::GTEST_FLAG(stack_trace_depth) > 0
     54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
     55       || testing::GTEST_FLAG(throw_on_failure);
     56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     57 }
     58 
     59 #include <limits.h>  // For INT_MAX.
     60 #include <stdlib.h>
     61 #include <string.h>
     62 #include <time.h>
     63 
     64 #include <map>
     65 #include <vector>
     66 #include <ostream>
     67 
     68 #include "gtest/gtest-spi.h"
     69 
     70 // Indicates that this translation unit is part of Google Test's
     71 // implementation.  It must come before gtest-internal-inl.h is
     72 // included, or there will be a compiler error.  This trick is to
     73 // prevent a user from accidentally including gtest-internal-inl.h in
     74 // his code.
     75 #define GTEST_IMPLEMENTATION_ 1
     76 #include "src/gtest-internal-inl.h"
     77 #undef GTEST_IMPLEMENTATION_
     78 
     79 namespace testing {
     80 namespace internal {
     81 
     82 // Provides access to otherwise private parts of the TestEventListeners class
     83 // that are needed to test it.
     84 class TestEventListenersAccessor {
     85  public:
     86   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
     87     return listeners->repeater();
     88   }
     89 
     90   static void SetDefaultResultPrinter(TestEventListeners* listeners,
     91                                       TestEventListener* listener) {
     92     listeners->SetDefaultResultPrinter(listener);
     93   }
     94   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
     95                                      TestEventListener* listener) {
     96     listeners->SetDefaultXmlGenerator(listener);
     97   }
     98 
     99   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
    100     return listeners.EventForwardingEnabled();
    101   }
    102 
    103   static void SuppressEventForwarding(TestEventListeners* listeners) {
    104     listeners->SuppressEventForwarding();
    105   }
    106 };
    107 
    108 }  // namespace internal
    109 }  // namespace testing
    110 
    111 using testing::AssertionFailure;
    112 using testing::AssertionResult;
    113 using testing::AssertionSuccess;
    114 using testing::DoubleLE;
    115 using testing::EmptyTestEventListener;
    116 using testing::FloatLE;
    117 using testing::GTEST_FLAG(also_run_disabled_tests);
    118 using testing::GTEST_FLAG(break_on_failure);
    119 using testing::GTEST_FLAG(catch_exceptions);
    120 using testing::GTEST_FLAG(color);
    121 using testing::GTEST_FLAG(death_test_use_fork);
    122 using testing::GTEST_FLAG(filter);
    123 using testing::GTEST_FLAG(list_tests);
    124 using testing::GTEST_FLAG(output);
    125 using testing::GTEST_FLAG(print_time);
    126 using testing::GTEST_FLAG(random_seed);
    127 using testing::GTEST_FLAG(repeat);
    128 using testing::GTEST_FLAG(show_internal_stack_frames);
    129 using testing::GTEST_FLAG(shuffle);
    130 using testing::GTEST_FLAG(stack_trace_depth);
    131 using testing::GTEST_FLAG(stream_result_to);
    132 using testing::GTEST_FLAG(throw_on_failure);
    133 using testing::IsNotSubstring;
    134 using testing::IsSubstring;
    135 using testing::Message;
    136 using testing::ScopedFakeTestPartResultReporter;
    137 using testing::StaticAssertTypeEq;
    138 using testing::Test;
    139 using testing::TestCase;
    140 using testing::TestEventListeners;
    141 using testing::TestPartResult;
    142 using testing::TestPartResultArray;
    143 using testing::TestProperty;
    144 using testing::TestResult;
    145 using testing::TimeInMillis;
    146 using testing::UnitTest;
    147 using testing::kMaxStackTraceDepth;
    148 using testing::internal::AddReference;
    149 using testing::internal::AlwaysFalse;
    150 using testing::internal::AlwaysTrue;
    151 using testing::internal::AppendUserMessage;
    152 using testing::internal::ArrayAwareFind;
    153 using testing::internal::ArrayEq;
    154 using testing::internal::CodePointToUtf8;
    155 using testing::internal::CompileAssertTypesEqual;
    156 using testing::internal::CopyArray;
    157 using testing::internal::CountIf;
    158 using testing::internal::EqFailure;
    159 using testing::internal::FloatingPoint;
    160 using testing::internal::ForEach;
    161 using testing::internal::FormatEpochTimeInMillisAsIso8601;
    162 using testing::internal::FormatTimeInMillisAsSeconds;
    163 using testing::internal::GTestFlagSaver;
    164 using testing::internal::GetCurrentOsStackTraceExceptTop;
    165 using testing::internal::GetElementOr;
    166 using testing::internal::GetNextRandomSeed;
    167 using testing::internal::GetRandomSeedFromFlag;
    168 using testing::internal::GetTestTypeId;
    169 using testing::internal::GetTimeInMillis;
    170 using testing::internal::GetTypeId;
    171 using testing::internal::GetUnitTestImpl;
    172 using testing::internal::ImplicitlyConvertible;
    173 using testing::internal::Int32;
    174 using testing::internal::Int32FromEnvOrDie;
    175 using testing::internal::IsAProtocolMessage;
    176 using testing::internal::IsContainer;
    177 using testing::internal::IsContainerTest;
    178 using testing::internal::IsNotContainer;
    179 using testing::internal::NativeArray;
    180 using testing::internal::ParseInt32Flag;
    181 using testing::internal::RemoveConst;
    182 using testing::internal::RemoveReference;
    183 using testing::internal::ShouldRunTestOnShard;
    184 using testing::internal::ShouldShard;
    185 using testing::internal::ShouldUseColor;
    186 using testing::internal::Shuffle;
    187 using testing::internal::ShuffleRange;
    188 using testing::internal::SkipPrefix;
    189 using testing::internal::StreamableToString;
    190 using testing::internal::String;
    191 using testing::internal::TestEventListenersAccessor;
    192 using testing::internal::TestResultAccessor;
    193 using testing::internal::UInt32;
    194 using testing::internal::WideStringToUtf8;
    195 using testing::internal::kCopy;
    196 using testing::internal::kMaxRandomSeed;
    197 using testing::internal::kReference;
    198 using testing::internal::kTestTypeIdInGoogleTest;
    199 using testing::internal::scoped_ptr;
    200 
    201 #if GTEST_HAS_STREAM_REDIRECTION
    202 using testing::internal::CaptureStdout;
    203 using testing::internal::GetCapturedStdout;
    204 #endif
    205 
    206 #if GTEST_IS_THREADSAFE
    207 using testing::internal::ThreadWithParam;
    208 #endif
    209 
    210 class TestingVector : public std::vector<int> {
    211 };
    212 
    213 ::std::ostream& operator<<(::std::ostream& os,
    214                            const TestingVector& vector) {
    215   os << "{ ";
    216   for (size_t i = 0; i < vector.size(); i++) {
    217     os << vector[i] << " ";
    218   }
    219   os << "}";
    220   return os;
    221 }
    222 
    223 // This line tests that we can define tests in an unnamed namespace.
    224 namespace {
    225 
    226 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    227   const int seed = GetRandomSeedFromFlag(0);
    228   EXPECT_LE(1, seed);
    229   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    230 }
    231 
    232 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    233   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    234   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    235   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    236   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    237             GetRandomSeedFromFlag(kMaxRandomSeed));
    238 }
    239 
    240 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    241   const int seed1 = GetRandomSeedFromFlag(-1);
    242   EXPECT_LE(1, seed1);
    243   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    244 
    245   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    246   EXPECT_LE(1, seed2);
    247   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    248 }
    249 
    250 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    251   EXPECT_EQ(2, GetNextRandomSeed(1));
    252   EXPECT_EQ(3, GetNextRandomSeed(2));
    253   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    254             GetNextRandomSeed(kMaxRandomSeed - 1));
    255   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    256 
    257   // We deliberately don't test GetNextRandomSeed() with invalid
    258   // inputs, as that requires death tests, which are expensive.  This
    259   // is fine as GetNextRandomSeed() is internal and has a
    260   // straightforward definition.
    261 }
    262 
    263 static void ClearCurrentTestPartResults() {
    264   TestResultAccessor::ClearTestPartResults(
    265       GetUnitTestImpl()->current_test_result());
    266 }
    267 
    268 // Tests GetTypeId.
    269 
    270 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    271   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    272   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    273 }
    274 
    275 class SubClassOfTest : public Test {};
    276 class AnotherSubClassOfTest : public Test {};
    277 
    278 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    279   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    280   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    281   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    282   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    283   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    284   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    285 }
    286 
    287 // Verifies that GetTestTypeId() returns the same value, no matter it
    288 // is called from inside Google Test or outside of it.
    289 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    290   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    291 }
    292 
    293 // Tests FormatTimeInMillisAsSeconds().
    294 
    295 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    296   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
    297 }
    298 
    299 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    300   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
    301   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
    302   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
    303   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
    304   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
    305 }
    306 
    307 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    308   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    309   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    310   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    311   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    312   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
    313 }
    314 
    315 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
    316 // for particular dates below was verified in Python using
    317 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
    318 
    319 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
    320 // have to set up a particular timezone to obtain predictable results.
    321 class FormatEpochTimeInMillisAsIso8601Test : public Test {
    322  public:
    323   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
    324   // 32 bits, even when 64-bit integer types are available.  We have to
    325   // force the constants to have a 64-bit type here.
    326   static const TimeInMillis kMillisPerSec = 1000;
    327 
    328  private:
    329   virtual void SetUp() {
    330     saved_tz_ = NULL;
    331 #if _MSC_VER
    332 # pragma warning(push)          // Saves the current warning state.
    333 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    334                                 // (function or variable may be unsafe
    335                                 // for getenv, function is deprecated for
    336                                 // strdup).
    337     if (getenv("TZ"))
    338       saved_tz_ = strdup(getenv("TZ"));
    339 # pragma warning(pop)           // Restores the warning state again.
    340 #else
    341     if (getenv("TZ"))
    342       saved_tz_ = strdup(getenv("TZ"));
    343 #endif
    344 
    345     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
    346     // cannot use the local time zone because the function's output depends
    347     // on the time zone.
    348     SetTimeZone("UTC+00");
    349   }
    350 
    351   virtual void TearDown() {
    352     SetTimeZone(saved_tz_);
    353     free(const_cast<char*>(saved_tz_));
    354     saved_tz_ = NULL;
    355   }
    356 
    357   static void SetTimeZone(const char* time_zone) {
    358     // tzset() distinguishes between the TZ variable being present and empty
    359     // and not being present, so we have to consider the case of time_zone
    360     // being NULL.
    361 #if _MSC_VER
    362     // ...Unless it's MSVC, whose standard library's _putenv doesn't
    363     // distinguish between an empty and a missing variable.
    364     const std::string env_var =
    365         std::string("TZ=") + (time_zone ? time_zone : "");
    366     _putenv(env_var.c_str());
    367 # pragma warning(push)          // Saves the current warning state.
    368 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    369                                 // (function is deprecated).
    370     tzset();
    371 # pragma warning(pop)           // Restores the warning state again.
    372 #else
    373     if (time_zone) {
    374       setenv(("TZ"), time_zone, 1);
    375     } else {
    376       unsetenv("TZ");
    377     }
    378     tzset();
    379 #endif
    380   }
    381 
    382   const char* saved_tz_;
    383 };
    384 
    385 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
    386 
    387 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
    388   EXPECT_EQ("2011-10-31T18:52:42",
    389             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
    390 }
    391 
    392 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
    393   EXPECT_EQ(
    394       "2011-10-31T18:52:42",
    395       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
    396 }
    397 
    398 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
    399   EXPECT_EQ("2011-09-03T05:07:02",
    400             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
    401 }
    402 
    403 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
    404   EXPECT_EQ("2011-09-28T17:08:22",
    405             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
    406 }
    407 
    408 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
    409   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
    410 }
    411 
    412 #if GTEST_CAN_COMPARE_NULL
    413 
    414 # ifdef __BORLANDC__
    415 // Silences warnings: "Condition is always true", "Unreachable code"
    416 #  pragma option push -w-ccc -w-rch
    417 # endif
    418 
    419 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    420 // pointer literal.
    421 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    422   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    423   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    424   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    425   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    426 
    427 # ifndef __BORLANDC__
    428 
    429   // Some compilers may fail to detect some null pointer literals;
    430   // as long as users of the framework don't use such literals, this
    431   // is harmless.
    432   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
    433 
    434 # endif
    435 }
    436 
    437 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    438 // pointer literal.
    439 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    440   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    441   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    442   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    443   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    444 }
    445 
    446 # ifdef __BORLANDC__
    447 // Restores warnings after previous "#pragma option push" suppressed them.
    448 #  pragma option pop
    449 # endif
    450 
    451 #endif  // GTEST_CAN_COMPARE_NULL
    452 //
    453 // Tests CodePointToUtf8().
    454 
    455 // Tests that the NUL character L'\0' is encoded correctly.
    456 TEST(CodePointToUtf8Test, CanEncodeNul) {
    457   char buffer[32];
    458   EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer));
    459 }
    460 
    461 // Tests that ASCII characters are encoded correctly.
    462 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    463   char buffer[32];
    464   EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer));
    465   EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer));
    466   EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer));
    467   EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer));
    468 }
    469 
    470 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    471 // as 110xxxxx 10xxxxxx.
    472 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    473   char buffer[32];
    474   // 000 1101 0011 => 110-00011 10-010011
    475   EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
    476 
    477   // 101 0111 0110 => 110-10101 10-110110
    478   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
    479   // in wide strings and wide chars. In order to accomodate them, we have to
    480   // introduce such character constants as integers.
    481   EXPECT_STREQ("\xD5\xB6",
    482                CodePointToUtf8(static_cast<wchar_t>(0x576), buffer));
    483 }
    484 
    485 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    486 // as 1110xxxx 10xxxxxx 10xxxxxx.
    487 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    488   char buffer[32];
    489   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    490   EXPECT_STREQ("\xE0\xA3\x93",
    491                CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer));
    492 
    493   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    494   EXPECT_STREQ("\xEC\x9D\x8D",
    495                CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer));
    496 }
    497 
    498 #if !GTEST_WIDE_STRING_USES_UTF16_
    499 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    500 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    501 // 16-bit wide. This code may not compile on those systems.
    502 
    503 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    504 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    505 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    506   char buffer[32];
    507   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    508   EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
    509 
    510   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    511   EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
    512 
    513   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    514   EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer));
    515 }
    516 
    517 // Tests that encoding an invalid code-point generates the expected result.
    518 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    519   char buffer[32];
    520   EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
    521                CodePointToUtf8(L'\x1234ABCD', buffer));
    522 }
    523 
    524 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    525 
    526 // Tests WideStringToUtf8().
    527 
    528 // Tests that the NUL character L'\0' is encoded correctly.
    529 TEST(WideStringToUtf8Test, CanEncodeNul) {
    530   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    531   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    532 }
    533 
    534 // Tests that ASCII strings are encoded correctly.
    535 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    536   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    537   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    538   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    539   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    540 }
    541 
    542 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    543 // as 110xxxxx 10xxxxxx.
    544 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    545   // 000 1101 0011 => 110-00011 10-010011
    546   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    547   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    548 
    549   // 101 0111 0110 => 110-10101 10-110110
    550   const wchar_t s[] = { 0x576, '\0' };
    551   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
    552   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
    553 }
    554 
    555 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    556 // as 1110xxxx 10xxxxxx 10xxxxxx.
    557 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    558   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    559   const wchar_t s1[] = { 0x8D3, '\0' };
    560   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
    561   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
    562 
    563   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    564   const wchar_t s2[] = { 0xC74D, '\0' };
    565   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
    566   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
    567 }
    568 
    569 // Tests that the conversion stops when the function encounters \0 character.
    570 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    571   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    572 }
    573 
    574 // Tests that the conversion stops when the function reaches the limit
    575 // specified by the 'length' parameter.
    576 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    577   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    578 }
    579 
    580 #if !GTEST_WIDE_STRING_USES_UTF16_
    581 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    582 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    583 // on the systems using UTF-16 encoding.
    584 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    585   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    586   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    587   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    588 
    589   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    590   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    591   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    592 }
    593 
    594 // Tests that encoding an invalid code-point generates the expected result.
    595 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    596   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    597                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    598 }
    599 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    600 // Tests that surrogate pairs are encoded correctly on the systems using
    601 // UTF-16 encoding in the wide strings.
    602 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    603   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
    604   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
    605 }
    606 
    607 // Tests that encoding an invalid UTF-16 surrogate pair
    608 // generates the expected result.
    609 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    610   // Leading surrogate is at the end of the string.
    611   const wchar_t s1[] = { 0xD800, '\0' };
    612   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
    613   // Leading surrogate is not followed by the trailing surrogate.
    614   const wchar_t s2[] = { 0xD800, 'M', '\0' };
    615   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
    616   // Trailing surrogate appearas without a leading surrogate.
    617   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
    618   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
    619 }
    620 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    621 
    622 // Tests that codepoint concatenation works correctly.
    623 #if !GTEST_WIDE_STRING_USES_UTF16_
    624 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    625   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
    626   EXPECT_STREQ(
    627       "\xF4\x88\x98\xB4"
    628           "\xEC\x9D\x8D"
    629           "\n"
    630           "\xD5\xB6"
    631           "\xE0\xA3\x93"
    632           "\xF4\x88\x98\xB4",
    633       WideStringToUtf8(s, -1).c_str());
    634 }
    635 #else
    636 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    637   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
    638   EXPECT_STREQ(
    639       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    640       WideStringToUtf8(s, -1).c_str());
    641 }
    642 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    643 
    644 // Tests the Random class.
    645 
    646 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    647   testing::internal::Random random(42);
    648   EXPECT_DEATH_IF_SUPPORTED(
    649       random.Generate(0),
    650       "Cannot generate a number in the range \\[0, 0\\)");
    651   EXPECT_DEATH_IF_SUPPORTED(
    652       random.Generate(testing::internal::Random::kMaxRange + 1),
    653       "Generation of a number in \\[0, 2147483649\\) was requested, "
    654       "but this can only generate numbers in \\[0, 2147483648\\)");
    655 }
    656 
    657 TEST(RandomTest, GeneratesNumbersWithinRange) {
    658   const UInt32 kRange = 10000;
    659   testing::internal::Random random(12345);
    660   for (int i = 0; i < 10; i++) {
    661     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    662   }
    663 
    664   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    665   for (int i = 0; i < 10; i++) {
    666     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    667   }
    668 }
    669 
    670 TEST(RandomTest, RepeatsWhenReseeded) {
    671   const int kSeed = 123;
    672   const int kArraySize = 10;
    673   const UInt32 kRange = 10000;
    674   UInt32 values[kArraySize];
    675 
    676   testing::internal::Random random(kSeed);
    677   for (int i = 0; i < kArraySize; i++) {
    678     values[i] = random.Generate(kRange);
    679   }
    680 
    681   random.Reseed(kSeed);
    682   for (int i = 0; i < kArraySize; i++) {
    683     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    684   }
    685 }
    686 
    687 // Tests STL container utilities.
    688 
    689 // Tests CountIf().
    690 
    691 static bool IsPositive(int n) { return n > 0; }
    692 
    693 TEST(ContainerUtilityTest, CountIf) {
    694   std::vector<int> v;
    695   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
    696 
    697   v.push_back(-1);
    698   v.push_back(0);
    699   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
    700 
    701   v.push_back(2);
    702   v.push_back(-10);
    703   v.push_back(10);
    704   EXPECT_EQ(2, CountIf(v, IsPositive));
    705 }
    706 
    707 // Tests ForEach().
    708 
    709 static int g_sum = 0;
    710 static void Accumulate(int n) { g_sum += n; }
    711 
    712 TEST(ContainerUtilityTest, ForEach) {
    713   std::vector<int> v;
    714   g_sum = 0;
    715   ForEach(v, Accumulate);
    716   EXPECT_EQ(0, g_sum);  // Works for an empty container;
    717 
    718   g_sum = 0;
    719   v.push_back(1);
    720   ForEach(v, Accumulate);
    721   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
    722 
    723   g_sum = 0;
    724   v.push_back(20);
    725   v.push_back(300);
    726   ForEach(v, Accumulate);
    727   EXPECT_EQ(321, g_sum);
    728 }
    729 
    730 // Tests GetElementOr().
    731 TEST(ContainerUtilityTest, GetElementOr) {
    732   std::vector<char> a;
    733   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
    734 
    735   a.push_back('a');
    736   a.push_back('b');
    737   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
    738   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
    739   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
    740   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
    741 }
    742 
    743 TEST(ContainerUtilityDeathTest, ShuffleRange) {
    744   std::vector<int> a;
    745   a.push_back(0);
    746   a.push_back(1);
    747   a.push_back(2);
    748   testing::internal::Random random(1);
    749 
    750   EXPECT_DEATH_IF_SUPPORTED(
    751       ShuffleRange(&random, -1, 1, &a),
    752       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    753   EXPECT_DEATH_IF_SUPPORTED(
    754       ShuffleRange(&random, 4, 4, &a),
    755       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    756   EXPECT_DEATH_IF_SUPPORTED(
    757       ShuffleRange(&random, 3, 2, &a),
    758       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    759   EXPECT_DEATH_IF_SUPPORTED(
    760       ShuffleRange(&random, 3, 4, &a),
    761       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    762 }
    763 
    764 class VectorShuffleTest : public Test {
    765  protected:
    766   static const int kVectorSize = 20;
    767 
    768   VectorShuffleTest() : random_(1) {
    769     for (int i = 0; i < kVectorSize; i++) {
    770       vector_.push_back(i);
    771     }
    772   }
    773 
    774   static bool VectorIsCorrupt(const TestingVector& vector) {
    775     if (kVectorSize != static_cast<int>(vector.size())) {
    776       return true;
    777     }
    778 
    779     bool found_in_vector[kVectorSize] = { false };
    780     for (size_t i = 0; i < vector.size(); i++) {
    781       const int e = vector[i];
    782       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    783         return true;
    784       }
    785       found_in_vector[e] = true;
    786     }
    787 
    788     // Vector size is correct, elements' range is correct, no
    789     // duplicate elements.  Therefore no corruption has occurred.
    790     return false;
    791   }
    792 
    793   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    794     return !VectorIsCorrupt(vector);
    795   }
    796 
    797   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    798     for (int i = begin; i < end; i++) {
    799       if (i != vector[i]) {
    800         return true;
    801       }
    802     }
    803     return false;
    804   }
    805 
    806   static bool RangeIsUnshuffled(
    807       const TestingVector& vector, int begin, int end) {
    808     return !RangeIsShuffled(vector, begin, end);
    809   }
    810 
    811   static bool VectorIsShuffled(const TestingVector& vector) {
    812     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
    813   }
    814 
    815   static bool VectorIsUnshuffled(const TestingVector& vector) {
    816     return !VectorIsShuffled(vector);
    817   }
    818 
    819   testing::internal::Random random_;
    820   TestingVector vector_;
    821 };  // class VectorShuffleTest
    822 
    823 const int VectorShuffleTest::kVectorSize;
    824 
    825 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    826   // Tests an empty range at the beginning...
    827   ShuffleRange(&random_, 0, 0, &vector_);
    828   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    829   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    830 
    831   // ...in the middle...
    832   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
    833   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    834   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    835 
    836   // ...at the end...
    837   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
    838   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    839   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    840 
    841   // ...and past the end.
    842   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
    843   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    844   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    845 }
    846 
    847 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    848   // Tests a size one range at the beginning...
    849   ShuffleRange(&random_, 0, 1, &vector_);
    850   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    851   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    852 
    853   // ...in the middle...
    854   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
    855   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    856   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    857 
    858   // ...and at the end.
    859   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
    860   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    861   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    862 }
    863 
    864 // Because we use our own random number generator and a fixed seed,
    865 // we can guarantee that the following "random" tests will succeed.
    866 
    867 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    868   Shuffle(&random_, &vector_);
    869   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    870   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    871 
    872   // Tests the first and last elements in particular to ensure that
    873   // there are no off-by-one problems in our shuffle algorithm.
    874   EXPECT_NE(0, vector_[0]);
    875   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
    876 }
    877 
    878 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
    879   const int kRangeSize = kVectorSize/2;
    880 
    881   ShuffleRange(&random_, 0, kRangeSize, &vector_);
    882 
    883   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    884   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
    885   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
    886 }
    887 
    888 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
    889   const int kRangeSize = kVectorSize / 2;
    890   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
    891 
    892   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    893   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    894   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
    895 }
    896 
    897 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
    898   int kRangeSize = kVectorSize/3;
    899   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
    900 
    901   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    902   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    903   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
    904   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
    905 }
    906 
    907 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
    908   TestingVector vector2;
    909   for (int i = 0; i < kVectorSize; i++) {
    910     vector2.push_back(i);
    911   }
    912 
    913   random_.Reseed(1234);
    914   Shuffle(&random_, &vector_);
    915   random_.Reseed(1234);
    916   Shuffle(&random_, &vector2);
    917 
    918   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    919   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
    920 
    921   for (int i = 0; i < kVectorSize; i++) {
    922     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
    923   }
    924 }
    925 
    926 // Tests the size of the AssertHelper class.
    927 
    928 TEST(AssertHelperTest, AssertHelperIsSmall) {
    929   // To avoid breaking clients that use lots of assertions in one
    930   // function, we cannot grow the size of AssertHelper.
    931   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
    932 }
    933 
    934 // Tests the String class.
    935 
    936 // Tests String's constructors.
    937 TEST(StringTest, Constructors) {
    938   // Default ctor.
    939   String s1;
    940   // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
    941   // pointers with NULL isn't supported on all platforms.
    942   EXPECT_EQ(0U, s1.length());
    943   EXPECT_TRUE(NULL == s1.c_str());
    944 
    945   // Implicitly constructs from a C-string.
    946   String s2 = "Hi";
    947   EXPECT_EQ(2U, s2.length());
    948   EXPECT_STREQ("Hi", s2.c_str());
    949 
    950   // Constructs from a C-string and a length.
    951   String s3("hello", 3);
    952   EXPECT_EQ(3U, s3.length());
    953   EXPECT_STREQ("hel", s3.c_str());
    954 
    955   // The empty String should be created when String is constructed with
    956   // a NULL pointer and length 0.
    957   EXPECT_EQ(0U, String(NULL, 0).length());
    958   EXPECT_FALSE(String(NULL, 0).c_str() == NULL);
    959 
    960   // Constructs a String that contains '\0'.
    961   String s4("a\0bcd", 4);
    962   EXPECT_EQ(4U, s4.length());
    963   EXPECT_EQ('a', s4.c_str()[0]);
    964   EXPECT_EQ('\0', s4.c_str()[1]);
    965   EXPECT_EQ('b', s4.c_str()[2]);
    966   EXPECT_EQ('c', s4.c_str()[3]);
    967 
    968   // Copy ctor where the source is NULL.
    969   const String null_str;
    970   String s5 = null_str;
    971   EXPECT_TRUE(s5.c_str() == NULL);
    972 
    973   // Copy ctor where the source isn't NULL.
    974   String s6 = s3;
    975   EXPECT_EQ(3U, s6.length());
    976   EXPECT_STREQ("hel", s6.c_str());
    977 
    978   // Copy ctor where the source contains '\0'.
    979   String s7 = s4;
    980   EXPECT_EQ(4U, s7.length());
    981   EXPECT_EQ('a', s7.c_str()[0]);
    982   EXPECT_EQ('\0', s7.c_str()[1]);
    983   EXPECT_EQ('b', s7.c_str()[2]);
    984   EXPECT_EQ('c', s7.c_str()[3]);
    985 }
    986 
    987 TEST(StringTest, ConvertsFromStdString) {
    988   // An empty std::string.
    989   const std::string src1("");
    990   const String dest1 = src1;
    991   EXPECT_EQ(0U, dest1.length());
    992   EXPECT_STREQ("", dest1.c_str());
    993 
    994   // A normal std::string.
    995   const std::string src2("Hi");
    996   const String dest2 = src2;
    997   EXPECT_EQ(2U, dest2.length());
    998   EXPECT_STREQ("Hi", dest2.c_str());
    999 
   1000   // An std::string with an embedded NUL character.
   1001   const char src3[] = "a\0b";
   1002   const String dest3 = std::string(src3, sizeof(src3));
   1003   EXPECT_EQ(sizeof(src3), dest3.length());
   1004   EXPECT_EQ('a', dest3.c_str()[0]);
   1005   EXPECT_EQ('\0', dest3.c_str()[1]);
   1006   EXPECT_EQ('b', dest3.c_str()[2]);
   1007 }
   1008 
   1009 TEST(StringTest, ConvertsToStdString) {
   1010   // An empty String.
   1011   const String src1("");
   1012   const std::string dest1 = src1;
   1013   EXPECT_EQ("", dest1);
   1014 
   1015   // A normal String.
   1016   const String src2("Hi");
   1017   const std::string dest2 = src2;
   1018   EXPECT_EQ("Hi", dest2);
   1019 
   1020   // A String containing a '\0'.
   1021   const String src3("x\0y", 3);
   1022   const std::string dest3 = src3;
   1023   EXPECT_EQ(std::string("x\0y", 3), dest3);
   1024 }
   1025 
   1026 #if GTEST_HAS_GLOBAL_STRING
   1027 
   1028 TEST(StringTest, ConvertsFromGlobalString) {
   1029   // An empty ::string.
   1030   const ::string src1("");
   1031   const String dest1 = src1;
   1032   EXPECT_EQ(0U, dest1.length());
   1033   EXPECT_STREQ("", dest1.c_str());
   1034 
   1035   // A normal ::string.
   1036   const ::string src2("Hi");
   1037   const String dest2 = src2;
   1038   EXPECT_EQ(2U, dest2.length());
   1039   EXPECT_STREQ("Hi", dest2.c_str());
   1040 
   1041   // An ::string with an embedded NUL character.
   1042   const char src3[] = "x\0y";
   1043   const String dest3 = ::string(src3, sizeof(src3));
   1044   EXPECT_EQ(sizeof(src3), dest3.length());
   1045   EXPECT_EQ('x', dest3.c_str()[0]);
   1046   EXPECT_EQ('\0', dest3.c_str()[1]);
   1047   EXPECT_EQ('y', dest3.c_str()[2]);
   1048 }
   1049 
   1050 TEST(StringTest, ConvertsToGlobalString) {
   1051   // An empty String.
   1052   const String src1("");
   1053   const ::string dest1 = src1;
   1054   EXPECT_EQ("", dest1);
   1055 
   1056   // A normal String.
   1057   const String src2("Hi");
   1058   const ::string dest2 = src2;
   1059   EXPECT_EQ("Hi", dest2);
   1060 
   1061   const String src3("x\0y", 3);
   1062   const ::string dest3 = src3;
   1063   EXPECT_EQ(::string("x\0y", 3), dest3);
   1064 }
   1065 
   1066 #endif  // GTEST_HAS_GLOBAL_STRING
   1067 
   1068 // Tests String::ShowCStringQuoted().
   1069 TEST(StringTest, ShowCStringQuoted) {
   1070   EXPECT_STREQ("(null)",
   1071                String::ShowCStringQuoted(NULL).c_str());
   1072   EXPECT_STREQ("\"\"",
   1073                String::ShowCStringQuoted("").c_str());
   1074   EXPECT_STREQ("\"foo\"",
   1075                String::ShowCStringQuoted("foo").c_str());
   1076 }
   1077 
   1078 // Tests String::empty().
   1079 TEST(StringTest, Empty) {
   1080   EXPECT_TRUE(String("").empty());
   1081   EXPECT_FALSE(String().empty());
   1082   EXPECT_FALSE(String(NULL).empty());
   1083   EXPECT_FALSE(String("a").empty());
   1084   EXPECT_FALSE(String("\0", 1).empty());
   1085 }
   1086 
   1087 // Tests String::Compare().
   1088 TEST(StringTest, Compare) {
   1089   // NULL vs NULL.
   1090   EXPECT_EQ(0, String().Compare(String()));
   1091 
   1092   // NULL vs non-NULL.
   1093   EXPECT_EQ(-1, String().Compare(String("")));
   1094 
   1095   // Non-NULL vs NULL.
   1096   EXPECT_EQ(1, String("").Compare(String()));
   1097 
   1098   // The following covers non-NULL vs non-NULL.
   1099 
   1100   // "" vs "".
   1101   EXPECT_EQ(0, String("").Compare(String("")));
   1102 
   1103   // "" vs non-"".
   1104   EXPECT_EQ(-1, String("").Compare(String("\0", 1)));
   1105   EXPECT_EQ(-1, String("").Compare(" "));
   1106 
   1107   // Non-"" vs "".
   1108   EXPECT_EQ(1, String("a").Compare(String("")));
   1109 
   1110   // The following covers non-"" vs non-"".
   1111 
   1112   // Same length and equal.
   1113   EXPECT_EQ(0, String("a").Compare(String("a")));
   1114 
   1115   // Same length and different.
   1116   EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3)));
   1117   EXPECT_EQ(1, String("b").Compare(String("a")));
   1118 
   1119   // Different lengths.
   1120   EXPECT_EQ(-1, String("a").Compare(String("ab")));
   1121   EXPECT_EQ(-1, String("a").Compare(String("a\0", 2)));
   1122   EXPECT_EQ(1, String("abc").Compare(String("aacd")));
   1123 }
   1124 
   1125 // Tests String::operator==().
   1126 TEST(StringTest, Equals) {
   1127   const String null(NULL);
   1128   EXPECT_TRUE(null == NULL);  // NOLINT
   1129   EXPECT_FALSE(null == "");  // NOLINT
   1130   EXPECT_FALSE(null == "bar");  // NOLINT
   1131 
   1132   const String empty("");
   1133   EXPECT_FALSE(empty == NULL);  // NOLINT
   1134   EXPECT_TRUE(empty == "");  // NOLINT
   1135   EXPECT_FALSE(empty == "bar");  // NOLINT
   1136 
   1137   const String foo("foo");
   1138   EXPECT_FALSE(foo == NULL);  // NOLINT
   1139   EXPECT_FALSE(foo == "");  // NOLINT
   1140   EXPECT_FALSE(foo == "bar");  // NOLINT
   1141   EXPECT_TRUE(foo == "foo");  // NOLINT
   1142 
   1143   const String bar("x\0y", 3);
   1144   EXPECT_NE(bar, "x");
   1145 }
   1146 
   1147 // Tests String::operator!=().
   1148 TEST(StringTest, NotEquals) {
   1149   const String null(NULL);
   1150   EXPECT_FALSE(null != NULL);  // NOLINT
   1151   EXPECT_TRUE(null != "");  // NOLINT
   1152   EXPECT_TRUE(null != "bar");  // NOLINT
   1153 
   1154   const String empty("");
   1155   EXPECT_TRUE(empty != NULL);  // NOLINT
   1156   EXPECT_FALSE(empty != "");  // NOLINT
   1157   EXPECT_TRUE(empty != "bar");  // NOLINT
   1158 
   1159   const String foo("foo");
   1160   EXPECT_TRUE(foo != NULL);  // NOLINT
   1161   EXPECT_TRUE(foo != "");  // NOLINT
   1162   EXPECT_TRUE(foo != "bar");  // NOLINT
   1163   EXPECT_FALSE(foo != "foo");  // NOLINT
   1164 
   1165   const String bar("x\0y", 3);
   1166   EXPECT_NE(bar, "x");
   1167 }
   1168 
   1169 // Tests String::length().
   1170 TEST(StringTest, Length) {
   1171   EXPECT_EQ(0U, String().length());
   1172   EXPECT_EQ(0U, String("").length());
   1173   EXPECT_EQ(2U, String("ab").length());
   1174   EXPECT_EQ(3U, String("a\0b", 3).length());
   1175 }
   1176 
   1177 // Tests String::EndsWith().
   1178 TEST(StringTest, EndsWith) {
   1179   EXPECT_TRUE(String("foobar").EndsWith("bar"));
   1180   EXPECT_TRUE(String("foobar").EndsWith(""));
   1181   EXPECT_TRUE(String("").EndsWith(""));
   1182 
   1183   EXPECT_FALSE(String("foobar").EndsWith("foo"));
   1184   EXPECT_FALSE(String("").EndsWith("foo"));
   1185 }
   1186 
   1187 // Tests String::EndsWithCaseInsensitive().
   1188 TEST(StringTest, EndsWithCaseInsensitive) {
   1189   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
   1190   EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
   1191   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
   1192   EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
   1193 
   1194   EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
   1195   EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
   1196   EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
   1197 }
   1198 
   1199 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1200 // appear in macro parameters after wide char literals.  Provide an alias
   1201 // for NULL as a workaround.
   1202 static const wchar_t* const kNull = NULL;
   1203 
   1204 // Tests String::CaseInsensitiveWideCStringEquals
   1205 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1206   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1207   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1208   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1209   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1210   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1211   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1212   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1213   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1214 }
   1215 
   1216 // Tests that NULL can be assigned to a String.
   1217 TEST(StringTest, CanBeAssignedNULL) {
   1218   const String src(NULL);
   1219   String dest;
   1220 
   1221   dest = src;
   1222   EXPECT_STREQ(NULL, dest.c_str());
   1223 }
   1224 
   1225 // Tests that the empty string "" can be assigned to a String.
   1226 TEST(StringTest, CanBeAssignedEmpty) {
   1227   const String src("");
   1228   String dest;
   1229 
   1230   dest = src;
   1231   EXPECT_STREQ("", dest.c_str());
   1232 }
   1233 
   1234 // Tests that a non-empty string can be assigned to a String.
   1235 TEST(StringTest, CanBeAssignedNonEmpty) {
   1236   const String src("hello");
   1237   String dest;
   1238   dest = src;
   1239   EXPECT_EQ(5U, dest.length());
   1240   EXPECT_STREQ("hello", dest.c_str());
   1241 
   1242   const String src2("x\0y", 3);
   1243   String dest2;
   1244   dest2 = src2;
   1245   EXPECT_EQ(3U, dest2.length());
   1246   EXPECT_EQ('x', dest2.c_str()[0]);
   1247   EXPECT_EQ('\0', dest2.c_str()[1]);
   1248   EXPECT_EQ('y', dest2.c_str()[2]);
   1249 }
   1250 
   1251 // Tests that a String can be assigned to itself.
   1252 TEST(StringTest, CanBeAssignedSelf) {
   1253   String dest("hello");
   1254 
   1255   // Use explicit function call notation here to suppress self-assign warning.
   1256   dest.operator=(dest);
   1257   EXPECT_STREQ("hello", dest.c_str());
   1258 }
   1259 
   1260 // Sun Studio < 12 incorrectly rejects this code due to an overloading
   1261 // ambiguity.
   1262 #if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
   1263 // Tests streaming a String.
   1264 TEST(StringTest, Streams) {
   1265   EXPECT_EQ(StreamableToString(String()), "(null)");
   1266   EXPECT_EQ(StreamableToString(String("")), "");
   1267   EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b");
   1268 }
   1269 #endif
   1270 
   1271 // Tests that String::Format() works.
   1272 TEST(StringTest, FormatWorks) {
   1273   // Normal case: the format spec is valid, the arguments match the
   1274   // spec, and the result is < 4095 characters.
   1275   EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str());
   1276 
   1277   // Edge case: the result is 4095 characters.
   1278   char buffer[4096];
   1279   const size_t kSize = sizeof(buffer);
   1280   memset(buffer, 'a', kSize - 1);
   1281   buffer[kSize - 1] = '\0';
   1282   EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str());
   1283 
   1284   // The result needs to be 4096 characters, exceeding Format()'s limit.
   1285   EXPECT_STREQ("<formatting error or buffer exceeded>",
   1286                String::Format("x%s", buffer).c_str());
   1287 
   1288 #if GTEST_OS_LINUX
   1289   // On Linux, invalid format spec should lead to an error message.
   1290   // In other environment (e.g. MSVC on Windows), String::Format() may
   1291   // simply ignore a bad format spec, so this assertion is run on
   1292   // Linux only.
   1293   EXPECT_STREQ("<formatting error or buffer exceeded>",
   1294                String::Format("%").c_str());
   1295 #endif
   1296 }
   1297 
   1298 #if GTEST_OS_WINDOWS
   1299 
   1300 // Tests String::ShowWideCString().
   1301 TEST(StringTest, ShowWideCString) {
   1302   EXPECT_STREQ("(null)",
   1303                String::ShowWideCString(NULL).c_str());
   1304   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1305   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1306 }
   1307 
   1308 // Tests String::ShowWideCStringQuoted().
   1309 TEST(StringTest, ShowWideCStringQuoted) {
   1310   EXPECT_STREQ("(null)",
   1311                String::ShowWideCStringQuoted(NULL).c_str());
   1312   EXPECT_STREQ("L\"\"",
   1313                String::ShowWideCStringQuoted(L"").c_str());
   1314   EXPECT_STREQ("L\"foo\"",
   1315                String::ShowWideCStringQuoted(L"foo").c_str());
   1316 }
   1317 
   1318 # if GTEST_OS_WINDOWS_MOBILE
   1319 TEST(StringTest, AnsiAndUtf16Null) {
   1320   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1321   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1322 }
   1323 
   1324 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1325   const char* ansi = String::Utf16ToAnsi(L"str");
   1326   EXPECT_STREQ("str", ansi);
   1327   delete [] ansi;
   1328   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1329   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1330   delete [] utf16;
   1331 }
   1332 
   1333 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1334   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1335   EXPECT_STREQ(".:\\ \"*?", ansi);
   1336   delete [] ansi;
   1337   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1338   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1339   delete [] utf16;
   1340 }
   1341 # endif  // GTEST_OS_WINDOWS_MOBILE
   1342 
   1343 #endif  // GTEST_OS_WINDOWS
   1344 
   1345 // Tests TestProperty construction.
   1346 TEST(TestPropertyTest, StringValue) {
   1347   TestProperty property("key", "1");
   1348   EXPECT_STREQ("key", property.key());
   1349   EXPECT_STREQ("1", property.value());
   1350 }
   1351 
   1352 // Tests TestProperty replacing a value.
   1353 TEST(TestPropertyTest, ReplaceStringValue) {
   1354   TestProperty property("key", "1");
   1355   EXPECT_STREQ("1", property.value());
   1356   property.SetValue("2");
   1357   EXPECT_STREQ("2", property.value());
   1358 }
   1359 
   1360 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1361 // functions (i.e. their definitions cannot be inlined at the call
   1362 // sites), or C++Builder won't compile the code.
   1363 static void AddFatalFailure() {
   1364   FAIL() << "Expected fatal failure.";
   1365 }
   1366 
   1367 static void AddNonfatalFailure() {
   1368   ADD_FAILURE() << "Expected non-fatal failure.";
   1369 }
   1370 
   1371 class ScopedFakeTestPartResultReporterTest : public Test {
   1372  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1373   enum FailureMode {
   1374     FATAL_FAILURE,
   1375     NONFATAL_FAILURE
   1376   };
   1377   static void AddFailure(FailureMode failure) {
   1378     if (failure == FATAL_FAILURE) {
   1379       AddFatalFailure();
   1380     } else {
   1381       AddNonfatalFailure();
   1382     }
   1383   }
   1384 };
   1385 
   1386 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1387 // failures.
   1388 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1389   TestPartResultArray results;
   1390   {
   1391     ScopedFakeTestPartResultReporter reporter(
   1392         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1393         &results);
   1394     AddFailure(NONFATAL_FAILURE);
   1395     AddFailure(FATAL_FAILURE);
   1396   }
   1397 
   1398   EXPECT_EQ(2, results.size());
   1399   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1400   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1401 }
   1402 
   1403 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1404   TestPartResultArray results;
   1405   {
   1406     // Tests, that the deprecated constructor still works.
   1407     ScopedFakeTestPartResultReporter reporter(&results);
   1408     AddFailure(NONFATAL_FAILURE);
   1409   }
   1410   EXPECT_EQ(1, results.size());
   1411 }
   1412 
   1413 #if GTEST_IS_THREADSAFE
   1414 
   1415 class ScopedFakeTestPartResultReporterWithThreadsTest
   1416   : public ScopedFakeTestPartResultReporterTest {
   1417  protected:
   1418   static void AddFailureInOtherThread(FailureMode failure) {
   1419     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
   1420     thread.Join();
   1421   }
   1422 };
   1423 
   1424 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1425        InterceptsTestFailuresInAllThreads) {
   1426   TestPartResultArray results;
   1427   {
   1428     ScopedFakeTestPartResultReporter reporter(
   1429         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1430     AddFailure(NONFATAL_FAILURE);
   1431     AddFailure(FATAL_FAILURE);
   1432     AddFailureInOtherThread(NONFATAL_FAILURE);
   1433     AddFailureInOtherThread(FATAL_FAILURE);
   1434   }
   1435 
   1436   EXPECT_EQ(4, results.size());
   1437   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1438   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1439   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1440   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1441 }
   1442 
   1443 #endif  // GTEST_IS_THREADSAFE
   1444 
   1445 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1446 // work even if the failure is generated in a called function rather than
   1447 // the current context.
   1448 
   1449 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1450 
   1451 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1452   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1453 }
   1454 
   1455 #if GTEST_HAS_GLOBAL_STRING
   1456 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
   1457   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
   1458 }
   1459 #endif
   1460 
   1461 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
   1462   EXPECT_FATAL_FAILURE(AddFatalFailure(),
   1463                        ::std::string("Expected fatal failure."));
   1464 }
   1465 
   1466 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1467   // We have another test below to verify that the macro catches fatal
   1468   // failures generated on another thread.
   1469   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1470                                       "Expected fatal failure.");
   1471 }
   1472 
   1473 #ifdef __BORLANDC__
   1474 // Silences warnings: "Condition is always true"
   1475 # pragma option push -w-ccc
   1476 #endif
   1477 
   1478 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1479 // function even when the statement in it contains ASSERT_*.
   1480 
   1481 int NonVoidFunction() {
   1482   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1483   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1484   return 0;
   1485 }
   1486 
   1487 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1488   NonVoidFunction();
   1489 }
   1490 
   1491 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1492 // current function even though 'statement' generates a fatal failure.
   1493 
   1494 void DoesNotAbortHelper(bool* aborted) {
   1495   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1496   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1497 
   1498   *aborted = false;
   1499 }
   1500 
   1501 #ifdef __BORLANDC__
   1502 // Restores warnings after previous "#pragma option push" suppressed them.
   1503 # pragma option pop
   1504 #endif
   1505 
   1506 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1507   bool aborted = true;
   1508   DoesNotAbortHelper(&aborted);
   1509   EXPECT_FALSE(aborted);
   1510 }
   1511 
   1512 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1513 // statement that contains a macro which expands to code containing an
   1514 // unprotected comma.
   1515 
   1516 static int global_var = 0;
   1517 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1518 
   1519 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1520 #ifndef __BORLANDC__
   1521   // ICE's in C++Builder.
   1522   EXPECT_FATAL_FAILURE({
   1523     GTEST_USE_UNPROTECTED_COMMA_;
   1524     AddFatalFailure();
   1525   }, "");
   1526 #endif
   1527 
   1528   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1529     GTEST_USE_UNPROTECTED_COMMA_;
   1530     AddFatalFailure();
   1531   }, "");
   1532 }
   1533 
   1534 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1535 
   1536 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1537 
   1538 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1539   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1540                           "Expected non-fatal failure.");
   1541 }
   1542 
   1543 #if GTEST_HAS_GLOBAL_STRING
   1544 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
   1545   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1546                           ::string("Expected non-fatal failure."));
   1547 }
   1548 #endif
   1549 
   1550 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
   1551   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1552                           ::std::string("Expected non-fatal failure."));
   1553 }
   1554 
   1555 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1556   // We have another test below to verify that the macro catches
   1557   // non-fatal failures generated on another thread.
   1558   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1559                                          "Expected non-fatal failure.");
   1560 }
   1561 
   1562 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1563 // statement that contains a macro which expands to code containing an
   1564 // unprotected comma.
   1565 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1566   EXPECT_NONFATAL_FAILURE({
   1567     GTEST_USE_UNPROTECTED_COMMA_;
   1568     AddNonfatalFailure();
   1569   }, "");
   1570 
   1571   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1572     GTEST_USE_UNPROTECTED_COMMA_;
   1573     AddNonfatalFailure();
   1574   }, "");
   1575 }
   1576 
   1577 #if GTEST_IS_THREADSAFE
   1578 
   1579 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1580     ExpectFailureWithThreadsTest;
   1581 
   1582 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1583   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1584                                       "Expected fatal failure.");
   1585 }
   1586 
   1587 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1588   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1589       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1590 }
   1591 
   1592 #endif  // GTEST_IS_THREADSAFE
   1593 
   1594 // Tests the TestProperty class.
   1595 
   1596 TEST(TestPropertyTest, ConstructorWorks) {
   1597   const TestProperty property("key", "value");
   1598   EXPECT_STREQ("key", property.key());
   1599   EXPECT_STREQ("value", property.value());
   1600 }
   1601 
   1602 TEST(TestPropertyTest, SetValue) {
   1603   TestProperty property("key", "value_1");
   1604   EXPECT_STREQ("key", property.key());
   1605   property.SetValue("value_2");
   1606   EXPECT_STREQ("key", property.key());
   1607   EXPECT_STREQ("value_2", property.value());
   1608 }
   1609 
   1610 // Tests the TestResult class
   1611 
   1612 // The test fixture for testing TestResult.
   1613 class TestResultTest : public Test {
   1614  protected:
   1615   typedef std::vector<TestPartResult> TPRVector;
   1616 
   1617   // We make use of 2 TestPartResult objects,
   1618   TestPartResult * pr1, * pr2;
   1619 
   1620   // ... and 3 TestResult objects.
   1621   TestResult * r0, * r1, * r2;
   1622 
   1623   virtual void SetUp() {
   1624     // pr1 is for success.
   1625     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1626                              "foo/bar.cc",
   1627                              10,
   1628                              "Success!");
   1629 
   1630     // pr2 is for fatal failure.
   1631     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1632                              "foo/bar.cc",
   1633                              -1,  // This line number means "unknown"
   1634                              "Failure!");
   1635 
   1636     // Creates the TestResult objects.
   1637     r0 = new TestResult();
   1638     r1 = new TestResult();
   1639     r2 = new TestResult();
   1640 
   1641     // In order to test TestResult, we need to modify its internal
   1642     // state, in particular the TestPartResult vector it holds.
   1643     // test_part_results() returns a const reference to this vector.
   1644     // We cast it to a non-const object s.t. it can be modified (yes,
   1645     // this is a hack).
   1646     TPRVector* results1 = const_cast<TPRVector*>(
   1647         &TestResultAccessor::test_part_results(*r1));
   1648     TPRVector* results2 = const_cast<TPRVector*>(
   1649         &TestResultAccessor::test_part_results(*r2));
   1650 
   1651     // r0 is an empty TestResult.
   1652 
   1653     // r1 contains a single SUCCESS TestPartResult.
   1654     results1->push_back(*pr1);
   1655 
   1656     // r2 contains a SUCCESS, and a FAILURE.
   1657     results2->push_back(*pr1);
   1658     results2->push_back(*pr2);
   1659   }
   1660 
   1661   virtual void TearDown() {
   1662     delete pr1;
   1663     delete pr2;
   1664 
   1665     delete r0;
   1666     delete r1;
   1667     delete r2;
   1668   }
   1669 
   1670   // Helper that compares two two TestPartResults.
   1671   static void CompareTestPartResult(const TestPartResult& expected,
   1672                                     const TestPartResult& actual) {
   1673     EXPECT_EQ(expected.type(), actual.type());
   1674     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1675     EXPECT_EQ(expected.line_number(), actual.line_number());
   1676     EXPECT_STREQ(expected.summary(), actual.summary());
   1677     EXPECT_STREQ(expected.message(), actual.message());
   1678     EXPECT_EQ(expected.passed(), actual.passed());
   1679     EXPECT_EQ(expected.failed(), actual.failed());
   1680     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1681     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1682   }
   1683 };
   1684 
   1685 // Tests TestResult::total_part_count().
   1686 TEST_F(TestResultTest, total_part_count) {
   1687   ASSERT_EQ(0, r0->total_part_count());
   1688   ASSERT_EQ(1, r1->total_part_count());
   1689   ASSERT_EQ(2, r2->total_part_count());
   1690 }
   1691 
   1692 // Tests TestResult::Passed().
   1693 TEST_F(TestResultTest, Passed) {
   1694   ASSERT_TRUE(r0->Passed());
   1695   ASSERT_TRUE(r1->Passed());
   1696   ASSERT_FALSE(r2->Passed());
   1697 }
   1698 
   1699 // Tests TestResult::Failed().
   1700 TEST_F(TestResultTest, Failed) {
   1701   ASSERT_FALSE(r0->Failed());
   1702   ASSERT_FALSE(r1->Failed());
   1703   ASSERT_TRUE(r2->Failed());
   1704 }
   1705 
   1706 // Tests TestResult::GetTestPartResult().
   1707 
   1708 typedef TestResultTest TestResultDeathTest;
   1709 
   1710 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1711   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1712   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1713   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
   1714   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
   1715 }
   1716 
   1717 // Tests TestResult has no properties when none are added.
   1718 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1719   TestResult test_result;
   1720   ASSERT_EQ(0, test_result.test_property_count());
   1721 }
   1722 
   1723 // Tests TestResult has the expected property when added.
   1724 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1725   TestResult test_result;
   1726   TestProperty property("key_1", "1");
   1727   TestResultAccessor::RecordProperty(&test_result, property);
   1728   ASSERT_EQ(1, test_result.test_property_count());
   1729   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1730   EXPECT_STREQ("key_1", actual_property.key());
   1731   EXPECT_STREQ("1", actual_property.value());
   1732 }
   1733 
   1734 // Tests TestResult has multiple properties when added.
   1735 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1736   TestResult test_result;
   1737   TestProperty property_1("key_1", "1");
   1738   TestProperty property_2("key_2", "2");
   1739   TestResultAccessor::RecordProperty(&test_result, property_1);
   1740   TestResultAccessor::RecordProperty(&test_result, property_2);
   1741   ASSERT_EQ(2, test_result.test_property_count());
   1742   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1743   EXPECT_STREQ("key_1", actual_property_1.key());
   1744   EXPECT_STREQ("1", actual_property_1.value());
   1745 
   1746   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1747   EXPECT_STREQ("key_2", actual_property_2.key());
   1748   EXPECT_STREQ("2", actual_property_2.value());
   1749 }
   1750 
   1751 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1752 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1753   TestResult test_result;
   1754   TestProperty property_1_1("key_1", "1");
   1755   TestProperty property_2_1("key_2", "2");
   1756   TestProperty property_1_2("key_1", "12");
   1757   TestProperty property_2_2("key_2", "22");
   1758   TestResultAccessor::RecordProperty(&test_result, property_1_1);
   1759   TestResultAccessor::RecordProperty(&test_result, property_2_1);
   1760   TestResultAccessor::RecordProperty(&test_result, property_1_2);
   1761   TestResultAccessor::RecordProperty(&test_result, property_2_2);
   1762 
   1763   ASSERT_EQ(2, test_result.test_property_count());
   1764   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1765   EXPECT_STREQ("key_1", actual_property_1.key());
   1766   EXPECT_STREQ("12", actual_property_1.value());
   1767 
   1768   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1769   EXPECT_STREQ("key_2", actual_property_2.key());
   1770   EXPECT_STREQ("22", actual_property_2.value());
   1771 }
   1772 
   1773 // Tests TestResult::GetTestProperty().
   1774 TEST(TestResultPropertyDeathTest, GetTestProperty) {
   1775   TestResult test_result;
   1776   TestProperty property_1("key_1", "1");
   1777   TestProperty property_2("key_2", "2");
   1778   TestProperty property_3("key_3", "3");
   1779   TestResultAccessor::RecordProperty(&test_result, property_1);
   1780   TestResultAccessor::RecordProperty(&test_result, property_2);
   1781   TestResultAccessor::RecordProperty(&test_result, property_3);
   1782 
   1783   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1784   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1785   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1786 
   1787   EXPECT_STREQ("key_1", fetched_property_1.key());
   1788   EXPECT_STREQ("1", fetched_property_1.value());
   1789 
   1790   EXPECT_STREQ("key_2", fetched_property_2.key());
   1791   EXPECT_STREQ("2", fetched_property_2.value());
   1792 
   1793   EXPECT_STREQ("key_3", fetched_property_3.key());
   1794   EXPECT_STREQ("3", fetched_property_3.value());
   1795 
   1796   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
   1797   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
   1798 }
   1799 
   1800 // When a property using a reserved key is supplied to this function, it tests
   1801 // that a non-fatal failure is added, a fatal failure is not added, and that the
   1802 // property is not recorded.
   1803 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
   1804   TestResult test_result;
   1805   TestProperty property(key, "1");
   1806   EXPECT_NONFATAL_FAILURE(
   1807       TestResultAccessor::RecordProperty(&test_result, property),
   1808       "Reserved key");
   1809   ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded";
   1810 }
   1811 
   1812 // Attempting to recording a property with the Reserved literal "name"
   1813 // should add a non-fatal failure and the property should not be recorded.
   1814 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
   1815   ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
   1816 }
   1817 
   1818 // Attempting to recording a property with the Reserved literal "status"
   1819 // should add a non-fatal failure and the property should not be recorded.
   1820 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
   1821   ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
   1822 }
   1823 
   1824 // Attempting to recording a property with the Reserved literal "time"
   1825 // should add a non-fatal failure and the property should not be recorded.
   1826 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
   1827   ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
   1828 }
   1829 
   1830 // Attempting to recording a property with the Reserved literal "classname"
   1831 // should add a non-fatal failure and the property should not be recorded.
   1832 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
   1833   ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
   1834 }
   1835 
   1836 // Tests that GTestFlagSaver works on Windows and Mac.
   1837 
   1838 class GTestFlagSaverTest : public Test {
   1839  protected:
   1840   // Saves the Google Test flags such that we can restore them later, and
   1841   // then sets them to their default values.  This will be called
   1842   // before the first test in this test case is run.
   1843   static void SetUpTestCase() {
   1844     saver_ = new GTestFlagSaver;
   1845 
   1846     GTEST_FLAG(also_run_disabled_tests) = false;
   1847     GTEST_FLAG(break_on_failure) = false;
   1848     GTEST_FLAG(catch_exceptions) = false;
   1849     GTEST_FLAG(death_test_use_fork) = false;
   1850     GTEST_FLAG(color) = "auto";
   1851     GTEST_FLAG(filter) = "";
   1852     GTEST_FLAG(list_tests) = false;
   1853     GTEST_FLAG(output) = "";
   1854     GTEST_FLAG(print_time) = true;
   1855     GTEST_FLAG(random_seed) = 0;
   1856     GTEST_FLAG(repeat) = 1;
   1857     GTEST_FLAG(shuffle) = false;
   1858     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   1859     GTEST_FLAG(stream_result_to) = "";
   1860     GTEST_FLAG(throw_on_failure) = false;
   1861   }
   1862 
   1863   // Restores the Google Test flags that the tests have modified.  This will
   1864   // be called after the last test in this test case is run.
   1865   static void TearDownTestCase() {
   1866     delete saver_;
   1867     saver_ = NULL;
   1868   }
   1869 
   1870   // Verifies that the Google Test flags have their default values, and then
   1871   // modifies each of them.
   1872   void VerifyAndModifyFlags() {
   1873     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   1874     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   1875     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   1876     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   1877     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   1878     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   1879     EXPECT_FALSE(GTEST_FLAG(list_tests));
   1880     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   1881     EXPECT_TRUE(GTEST_FLAG(print_time));
   1882     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   1883     EXPECT_EQ(1, GTEST_FLAG(repeat));
   1884     EXPECT_FALSE(GTEST_FLAG(shuffle));
   1885     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
   1886     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
   1887     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   1888 
   1889     GTEST_FLAG(also_run_disabled_tests) = true;
   1890     GTEST_FLAG(break_on_failure) = true;
   1891     GTEST_FLAG(catch_exceptions) = true;
   1892     GTEST_FLAG(color) = "no";
   1893     GTEST_FLAG(death_test_use_fork) = true;
   1894     GTEST_FLAG(filter) = "abc";
   1895     GTEST_FLAG(list_tests) = true;
   1896     GTEST_FLAG(output) = "xml:foo.xml";
   1897     GTEST_FLAG(print_time) = false;
   1898     GTEST_FLAG(random_seed) = 1;
   1899     GTEST_FLAG(repeat) = 100;
   1900     GTEST_FLAG(shuffle) = true;
   1901     GTEST_FLAG(stack_trace_depth) = 1;
   1902     GTEST_FLAG(stream_result_to) = "localhost:1234";
   1903     GTEST_FLAG(throw_on_failure) = true;
   1904   }
   1905 
   1906  private:
   1907   // For saving Google Test flags during this test case.
   1908   static GTestFlagSaver* saver_;
   1909 };
   1910 
   1911 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   1912 
   1913 // Google Test doesn't guarantee the order of tests.  The following two
   1914 // tests are designed to work regardless of their order.
   1915 
   1916 // Modifies the Google Test flags in the test body.
   1917 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   1918   VerifyAndModifyFlags();
   1919 }
   1920 
   1921 // Verifies that the Google Test flags in the body of the previous test were
   1922 // restored to their original values.
   1923 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   1924   VerifyAndModifyFlags();
   1925 }
   1926 
   1927 // Sets an environment variable with the given name to the given
   1928 // value.  If the value argument is "", unsets the environment
   1929 // variable.  The caller must ensure that both arguments are not NULL.
   1930 static void SetEnv(const char* name, const char* value) {
   1931 #if GTEST_OS_WINDOWS_MOBILE
   1932   // Environment variables are not supported on Windows CE.
   1933   return;
   1934 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
   1935   // C++Builder's putenv only stores a pointer to its parameter; we have to
   1936   // ensure that the string remains valid as long as it might be needed.
   1937   // We use an std::map to do so.
   1938   static std::map<String, String*> added_env;
   1939 
   1940   // Because putenv stores a pointer to the string buffer, we can't delete the
   1941   // previous string (if present) until after it's replaced.
   1942   String *prev_env = NULL;
   1943   if (added_env.find(name) != added_env.end()) {
   1944     prev_env = added_env[name];
   1945   }
   1946   added_env[name] = new String((Message() << name << "=" << value).GetString());
   1947 
   1948   // The standard signature of putenv accepts a 'char*' argument. Other
   1949   // implementations, like C++Builder's, accept a 'const char*'.
   1950   // We cast away the 'const' since that would work for both variants.
   1951   putenv(const_cast<char*>(added_env[name]->c_str()));
   1952   delete prev_env;
   1953 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   1954   _putenv((Message() << name << "=" << value).GetString().c_str());
   1955 #else
   1956   if (*value == '\0') {
   1957     unsetenv(name);
   1958   } else {
   1959     setenv(name, value, 1);
   1960   }
   1961 #endif  // GTEST_OS_WINDOWS_MOBILE
   1962 }
   1963 
   1964 #if !GTEST_OS_WINDOWS_MOBILE
   1965 // Environment variables are not supported on Windows CE.
   1966 
   1967 using testing::internal::Int32FromGTestEnv;
   1968 
   1969 // Tests Int32FromGTestEnv().
   1970 
   1971 // Tests that Int32FromGTestEnv() returns the default value when the
   1972 // environment variable is not set.
   1973 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   1974   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   1975   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   1976 }
   1977 
   1978 // Tests that Int32FromGTestEnv() returns the default value when the
   1979 // environment variable overflows as an Int32.
   1980 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   1981   printf("(expecting 2 warnings)\n");
   1982 
   1983   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   1984   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   1985 
   1986   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   1987   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   1988 }
   1989 
   1990 // Tests that Int32FromGTestEnv() returns the default value when the
   1991 // environment variable does not represent a valid decimal integer.
   1992 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   1993   printf("(expecting 2 warnings)\n");
   1994 
   1995   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   1996   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   1997 
   1998   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   1999   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   2000 }
   2001 
   2002 // Tests that Int32FromGTestEnv() parses and returns the value of the
   2003 // environment variable when it represents a valid decimal integer in
   2004 // the range of an Int32.
   2005 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   2006   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   2007   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   2008 
   2009   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   2010   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   2011 }
   2012 #endif  // !GTEST_OS_WINDOWS_MOBILE
   2013 
   2014 // Tests ParseInt32Flag().
   2015 
   2016 // Tests that ParseInt32Flag() returns false and doesn't change the
   2017 // output value when the flag has wrong format
   2018 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   2019   Int32 value = 123;
   2020   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   2021   EXPECT_EQ(123, value);
   2022 
   2023   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   2024   EXPECT_EQ(123, value);
   2025 }
   2026 
   2027 // Tests that ParseInt32Flag() returns false and doesn't change the
   2028 // output value when the flag overflows as an Int32.
   2029 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   2030   printf("(expecting 2 warnings)\n");
   2031 
   2032   Int32 value = 123;
   2033   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   2034   EXPECT_EQ(123, value);
   2035 
   2036   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   2037   EXPECT_EQ(123, value);
   2038 }
   2039 
   2040 // Tests that ParseInt32Flag() returns false and doesn't change the
   2041 // output value when the flag does not represent a valid decimal
   2042 // integer.
   2043 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   2044   printf("(expecting 2 warnings)\n");
   2045 
   2046   Int32 value = 123;
   2047   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   2048   EXPECT_EQ(123, value);
   2049 
   2050   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   2051   EXPECT_EQ(123, value);
   2052 }
   2053 
   2054 // Tests that ParseInt32Flag() parses the value of the flag and
   2055 // returns true when the flag represents a valid decimal integer in
   2056 // the range of an Int32.
   2057 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   2058   Int32 value = 123;
   2059   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   2060   EXPECT_EQ(456, value);
   2061 
   2062   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   2063                              "abc", &value));
   2064   EXPECT_EQ(-789, value);
   2065 }
   2066 
   2067 // Tests that Int32FromEnvOrDie() parses the value of the var or
   2068 // returns the correct default.
   2069 // Environment variables are not supported on Windows CE.
   2070 #if !GTEST_OS_WINDOWS_MOBILE
   2071 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   2072   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   2073   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   2074   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   2075   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   2076   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   2077 }
   2078 #endif  // !GTEST_OS_WINDOWS_MOBILE
   2079 
   2080 // Tests that Int32FromEnvOrDie() aborts with an error message
   2081 // if the variable is not an Int32.
   2082 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   2083   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   2084   EXPECT_DEATH_IF_SUPPORTED(
   2085       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   2086       ".*");
   2087 }
   2088 
   2089 // Tests that Int32FromEnvOrDie() aborts with an error message
   2090 // if the variable cannot be represnted by an Int32.
   2091 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   2092   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   2093   EXPECT_DEATH_IF_SUPPORTED(
   2094       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   2095       ".*");
   2096 }
   2097 
   2098 // Tests that ShouldRunTestOnShard() selects all tests
   2099 // where there is 1 shard.
   2100 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   2101   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   2102   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   2103   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   2104   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   2105   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   2106 }
   2107 
   2108 class ShouldShardTest : public testing::Test {
   2109  protected:
   2110   virtual void SetUp() {
   2111     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   2112     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   2113   }
   2114 
   2115   virtual void TearDown() {
   2116     SetEnv(index_var_, "");
   2117     SetEnv(total_var_, "");
   2118   }
   2119 
   2120   const char* index_var_;
   2121   const char* total_var_;
   2122 };
   2123 
   2124 // Tests that sharding is disabled if neither of the environment variables
   2125 // are set.
   2126 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   2127   SetEnv(index_var_, "");
   2128   SetEnv(total_var_, "");
   2129 
   2130   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   2131   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2132 }
   2133 
   2134 // Tests that sharding is not enabled if total_shards  == 1.
   2135 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   2136   SetEnv(index_var_, "0");
   2137   SetEnv(total_var_, "1");
   2138   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   2139   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2140 }
   2141 
   2142 // Tests that sharding is enabled if total_shards > 1 and
   2143 // we are not in a death test subprocess.
   2144 // Environment variables are not supported on Windows CE.
   2145 #if !GTEST_OS_WINDOWS_MOBILE
   2146 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   2147   SetEnv(index_var_, "4");
   2148   SetEnv(total_var_, "22");
   2149   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2150   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2151 
   2152   SetEnv(index_var_, "8");
   2153   SetEnv(total_var_, "9");
   2154   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2155   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2156 
   2157   SetEnv(index_var_, "0");
   2158   SetEnv(total_var_, "9");
   2159   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2160   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2161 }
   2162 #endif  // !GTEST_OS_WINDOWS_MOBILE
   2163 
   2164 // Tests that we exit in error if the sharding values are not valid.
   2165 
   2166 typedef ShouldShardTest ShouldShardDeathTest;
   2167 
   2168 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   2169   SetEnv(index_var_, "4");
   2170   SetEnv(total_var_, "4");
   2171   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2172 
   2173   SetEnv(index_var_, "4");
   2174   SetEnv(total_var_, "-2");
   2175   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2176 
   2177   SetEnv(index_var_, "5");
   2178   SetEnv(total_var_, "");
   2179   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2180 
   2181   SetEnv(index_var_, "");
   2182   SetEnv(total_var_, "5");
   2183   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2184 }
   2185 
   2186 // Tests that ShouldRunTestOnShard is a partition when 5
   2187 // shards are used.
   2188 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   2189   // Choose an arbitrary number of tests and shards.
   2190   const int num_tests = 17;
   2191   const int num_shards = 5;
   2192 
   2193   // Check partitioning: each test should be on exactly 1 shard.
   2194   for (int test_id = 0; test_id < num_tests; test_id++) {
   2195     int prev_selected_shard_index = -1;
   2196     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   2197       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   2198         if (prev_selected_shard_index < 0) {
   2199           prev_selected_shard_index = shard_index;
   2200         } else {
   2201           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   2202             << shard_index << " are both selected to run test " << test_id;
   2203         }
   2204       }
   2205     }
   2206   }
   2207 
   2208   // Check balance: This is not required by the sharding protocol, but is a
   2209   // desirable property for performance.
   2210   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   2211     int num_tests_on_shard = 0;
   2212     for (int test_id = 0; test_id < num_tests; test_id++) {
   2213       num_tests_on_shard +=
   2214         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   2215     }
   2216     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   2217   }
   2218 }
   2219 
   2220 // For the same reason we are not explicitly testing everything in the
   2221 // Test class, there are no separate tests for the following classes
   2222 // (except for some trivial cases):
   2223 //
   2224 //   TestCase, UnitTest, UnitTestResultPrinter.
   2225 //
   2226 // Similarly, there are no separate tests for the following macros:
   2227 //
   2228 //   TEST, TEST_F, RUN_ALL_TESTS
   2229 
   2230 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   2231   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   2232   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   2233 }
   2234 
   2235 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
   2236   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
   2237   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
   2238 }
   2239 
   2240 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   2241 // of various arities.  They do not attempt to be exhaustive.  Rather,
   2242 // view them as smoke tests that can be easily reviewed and verified.
   2243 // A more complete set of tests for predicate assertions can be found
   2244 // in gtest_pred_impl_unittest.cc.
   2245 
   2246 // First, some predicates and predicate-formatters needed by the tests.
   2247 
   2248 // Returns true iff the argument is an even number.
   2249 bool IsEven(int n) {
   2250   return (n % 2) == 0;
   2251 }
   2252 
   2253 // A functor that returns true iff the argument is an even number.
   2254 struct IsEvenFunctor {
   2255   bool operator()(int n) { return IsEven(n); }
   2256 };
   2257 
   2258 // A predicate-formatter function that asserts the argument is an even
   2259 // number.
   2260 AssertionResult AssertIsEven(const char* expr, int n) {
   2261   if (IsEven(n)) {
   2262     return AssertionSuccess();
   2263   }
   2264 
   2265   Message msg;
   2266   msg << expr << " evaluates to " << n << ", which is not even.";
   2267   return AssertionFailure(msg);
   2268 }
   2269 
   2270 // A predicate function that returns AssertionResult for use in
   2271 // EXPECT/ASSERT_TRUE/FALSE.
   2272 AssertionResult ResultIsEven(int n) {
   2273   if (IsEven(n))
   2274     return AssertionSuccess() << n << " is even";
   2275   else
   2276     return AssertionFailure() << n << " is odd";
   2277 }
   2278 
   2279 // A predicate function that returns AssertionResult but gives no
   2280 // explanation why it succeeds. Needed for testing that
   2281 // EXPECT/ASSERT_FALSE handles such functions correctly.
   2282 AssertionResult ResultIsEvenNoExplanation(int n) {
   2283   if (IsEven(n))
   2284     return AssertionSuccess();
   2285   else
   2286     return AssertionFailure() << n << " is odd";
   2287 }
   2288 
   2289 // A predicate-formatter functor that asserts the argument is an even
   2290 // number.
   2291 struct AssertIsEvenFunctor {
   2292   AssertionResult operator()(const char* expr, int n) {
   2293     return AssertIsEven(expr, n);
   2294   }
   2295 };
   2296 
   2297 // Returns true iff the sum of the arguments is an even number.
   2298 bool SumIsEven2(int n1, int n2) {
   2299   return IsEven(n1 + n2);
   2300 }
   2301 
   2302 // A functor that returns true iff the sum of the arguments is an even
   2303 // number.
   2304 struct SumIsEven3Functor {
   2305   bool operator()(int n1, int n2, int n3) {
   2306     return IsEven(n1 + n2 + n3);
   2307   }
   2308 };
   2309 
   2310 // A predicate-formatter function that asserts the sum of the
   2311 // arguments is an even number.
   2312 AssertionResult AssertSumIsEven4(
   2313     const char* e1, const char* e2, const char* e3, const char* e4,
   2314     int n1, int n2, int n3, int n4) {
   2315   const int sum = n1 + n2 + n3 + n4;
   2316   if (IsEven(sum)) {
   2317     return AssertionSuccess();
   2318   }
   2319 
   2320   Message msg;
   2321   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2322       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2323       << ") evaluates to " << sum << ", which is not even.";
   2324   return AssertionFailure(msg);
   2325 }
   2326 
   2327 // A predicate-formatter functor that asserts the sum of the arguments
   2328 // is an even number.
   2329 struct AssertSumIsEven5Functor {
   2330   AssertionResult operator()(
   2331       const char* e1, const char* e2, const char* e3, const char* e4,
   2332       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2333     const int sum = n1 + n2 + n3 + n4 + n5;
   2334     if (IsEven(sum)) {
   2335       return AssertionSuccess();
   2336     }
   2337 
   2338     Message msg;
   2339     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2340         << " ("
   2341         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2342         << ") evaluates to " << sum << ", which is not even.";
   2343     return AssertionFailure(msg);
   2344   }
   2345 };
   2346 
   2347 
   2348 // Tests unary predicate assertions.
   2349 
   2350 // Tests unary predicate assertions that don't use a custom formatter.
   2351 TEST(Pred1Test, WithoutFormat) {
   2352   // Success cases.
   2353   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2354   ASSERT_PRED1(IsEven, 4);
   2355 
   2356   // Failure cases.
   2357   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2358     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2359   }, "This failure is expected.");
   2360   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2361                        "evaluates to false");
   2362 }
   2363 
   2364 // Tests unary predicate assertions that use a custom formatter.
   2365 TEST(Pred1Test, WithFormat) {
   2366   // Success cases.
   2367   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2368   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2369     << "This failure is UNEXPECTED!";
   2370 
   2371   // Failure cases.
   2372   const int n = 5;
   2373   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2374                           "n evaluates to 5, which is not even.");
   2375   EXPECT_FATAL_FAILURE({  // NOLINT
   2376     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2377   }, "This failure is expected.");
   2378 }
   2379 
   2380 // Tests that unary predicate assertions evaluates their arguments
   2381 // exactly once.
   2382 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2383   // A success case.
   2384   static int n = 0;
   2385   EXPECT_PRED1(IsEven, n++);
   2386   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2387 
   2388   // A failure case.
   2389   EXPECT_FATAL_FAILURE({  // NOLINT
   2390     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2391         << "This failure is expected.";
   2392   }, "This failure is expected.");
   2393   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2394 }
   2395 
   2396 
   2397 // Tests predicate assertions whose arity is >= 2.
   2398 
   2399 // Tests predicate assertions that don't use a custom formatter.
   2400 TEST(PredTest, WithoutFormat) {
   2401   // Success cases.
   2402   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2403   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2404 
   2405   // Failure cases.
   2406   const int n1 = 1;
   2407   const int n2 = 2;
   2408   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2409     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2410   }, "This failure is expected.");
   2411   EXPECT_FATAL_FAILURE({  // NOLINT
   2412     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2413   }, "evaluates to false");
   2414 }
   2415 
   2416 // Tests predicate assertions that use a custom formatter.
   2417 TEST(PredTest, WithFormat) {
   2418   // Success cases.
   2419   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2420     "This failure is UNEXPECTED!";
   2421   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2422 
   2423   // Failure cases.
   2424   const int n1 = 1;
   2425   const int n2 = 2;
   2426   const int n3 = 4;
   2427   const int n4 = 6;
   2428   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2429     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2430   }, "evaluates to 13, which is not even.");
   2431   EXPECT_FATAL_FAILURE({  // NOLINT
   2432     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2433         << "This failure is expected.";
   2434   }, "This failure is expected.");
   2435 }
   2436 
   2437 // Tests that predicate assertions evaluates their arguments
   2438 // exactly once.
   2439 TEST(PredTest, SingleEvaluationOnFailure) {
   2440   // A success case.
   2441   int n1 = 0;
   2442   int n2 = 0;
   2443   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2444   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2445   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2446 
   2447   // Another success case.
   2448   n1 = n2 = 0;
   2449   int n3 = 0;
   2450   int n4 = 0;
   2451   int n5 = 0;
   2452   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2453                       n1++, n2++, n3++, n4++, n5++)
   2454                         << "This failure is UNEXPECTED!";
   2455   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2456   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2457   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2458   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2459   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2460 
   2461   // A failure case.
   2462   n1 = n2 = n3 = 0;
   2463   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2464     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2465         << "This failure is expected.";
   2466   }, "This failure is expected.");
   2467   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2468   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2469   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2470 
   2471   // Another failure case.
   2472   n1 = n2 = n3 = n4 = 0;
   2473   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2474     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2475   }, "evaluates to 1, which is not even.");
   2476   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2477   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2478   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2479   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2480 }
   2481 
   2482 
   2483 // Some helper functions for testing using overloaded/template
   2484 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2485 
   2486 bool IsPositive(double x) {
   2487   return x > 0;
   2488 }
   2489 
   2490 template <typename T>
   2491 bool IsNegative(T x) {
   2492   return x < 0;
   2493 }
   2494 
   2495 template <typename T1, typename T2>
   2496 bool GreaterThan(T1 x1, T2 x2) {
   2497   return x1 > x2;
   2498 }
   2499 
   2500 // Tests that overloaded functions can be used in *_PRED* as long as
   2501 // their types are explicitly specified.
   2502 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2503   // C++Builder requires C-style casts rather than static_cast.
   2504   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2505   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2506 }
   2507 
   2508 // Tests that template functions can be used in *_PRED* as long as
   2509 // their types are explicitly specified.
   2510 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2511   EXPECT_PRED1(IsNegative<int>, -5);
   2512   // Makes sure that we can handle templates with more than one
   2513   // parameter.
   2514   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2515 }
   2516 
   2517 
   2518 // Some helper functions for testing using overloaded/template
   2519 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2520 
   2521 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2522   return n > 0 ? AssertionSuccess() :
   2523       AssertionFailure(Message() << "Failure");
   2524 }
   2525 
   2526 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2527   return x > 0 ? AssertionSuccess() :
   2528       AssertionFailure(Message() << "Failure");
   2529 }
   2530 
   2531 template <typename T>
   2532 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2533   return x < 0 ? AssertionSuccess() :
   2534       AssertionFailure(Message() << "Failure");
   2535 }
   2536 
   2537 template <typename T1, typename T2>
   2538 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2539                              const T1& x1, const T2& x2) {
   2540   return x1 == x2 ? AssertionSuccess() :
   2541       AssertionFailure(Message() << "Failure");
   2542 }
   2543 
   2544 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2545 // without explicitly specifying their types.
   2546 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2547   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2548   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2549 }
   2550 
   2551 // Tests that template functions can be used in *_PRED_FORMAT* without
   2552 // explicitly specifying their types.
   2553 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2554   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2555   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2556 }
   2557 
   2558 
   2559 // Tests string assertions.
   2560 
   2561 // Tests ASSERT_STREQ with non-NULL arguments.
   2562 TEST(StringAssertionTest, ASSERT_STREQ) {
   2563   const char * const p1 = "good";
   2564   ASSERT_STREQ(p1, p1);
   2565 
   2566   // Let p2 have the same content as p1, but be at a different address.
   2567   const char p2[] = "good";
   2568   ASSERT_STREQ(p1, p2);
   2569 
   2570   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
   2571                        "Expected: \"bad\"");
   2572 }
   2573 
   2574 // Tests ASSERT_STREQ with NULL arguments.
   2575 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2576   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2577   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2578                        "non-null");
   2579 }
   2580 
   2581 // Tests ASSERT_STREQ with NULL arguments.
   2582 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2583   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2584                        "non-null");
   2585 }
   2586 
   2587 // Tests ASSERT_STRNE.
   2588 TEST(StringAssertionTest, ASSERT_STRNE) {
   2589   ASSERT_STRNE("hi", "Hi");
   2590   ASSERT_STRNE("Hi", NULL);
   2591   ASSERT_STRNE(NULL, "Hi");
   2592   ASSERT_STRNE("", NULL);
   2593   ASSERT_STRNE(NULL, "");
   2594   ASSERT_STRNE("", "Hi");
   2595   ASSERT_STRNE("Hi", "");
   2596   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2597                        "\"Hi\" vs \"Hi\"");
   2598 }
   2599 
   2600 // Tests ASSERT_STRCASEEQ.
   2601 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2602   ASSERT_STRCASEEQ("hi", "Hi");
   2603   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2604 
   2605   ASSERT_STRCASEEQ("", "");
   2606   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2607                        "(ignoring case)");
   2608 }
   2609 
   2610 // Tests ASSERT_STRCASENE.
   2611 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2612   ASSERT_STRCASENE("hi1", "Hi2");
   2613   ASSERT_STRCASENE("Hi", NULL);
   2614   ASSERT_STRCASENE(NULL, "Hi");
   2615   ASSERT_STRCASENE("", NULL);
   2616   ASSERT_STRCASENE(NULL, "");
   2617   ASSERT_STRCASENE("", "Hi");
   2618   ASSERT_STRCASENE("Hi", "");
   2619   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2620                        "(ignoring case)");
   2621 }
   2622 
   2623 // Tests *_STREQ on wide strings.
   2624 TEST(StringAssertionTest, STREQ_Wide) {
   2625   // NULL strings.
   2626   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2627 
   2628   // Empty strings.
   2629   ASSERT_STREQ(L"", L"");
   2630 
   2631   // Non-null vs NULL.
   2632   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2633                           "non-null");
   2634 
   2635   // Equal strings.
   2636   EXPECT_STREQ(L"Hi", L"Hi");
   2637 
   2638   // Unequal strings.
   2639   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2640                           "Abc");
   2641 
   2642   // Strings containing wide characters.
   2643   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2644                           "abc");
   2645 
   2646   // The streaming variation.
   2647   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2648     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
   2649   }, "Expected failure");
   2650 }
   2651 
   2652 // Tests *_STRNE on wide strings.
   2653 TEST(StringAssertionTest, STRNE_Wide) {
   2654   // NULL strings.
   2655   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2656     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2657   }, "");
   2658 
   2659   // Empty strings.
   2660   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2661                           "L\"\"");
   2662 
   2663   // Non-null vs NULL.
   2664   ASSERT_STRNE(L"non-null", NULL);
   2665 
   2666   // Equal strings.
   2667   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2668                           "L\"Hi\"");
   2669 
   2670   // Unequal strings.
   2671   EXPECT_STRNE(L"abc", L"Abc");
   2672 
   2673   // Strings containing wide characters.
   2674   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2675                           "abc");
   2676 
   2677   // The streaming variation.
   2678   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
   2679 }
   2680 
   2681 // Tests for ::testing::IsSubstring().
   2682 
   2683 // Tests that IsSubstring() returns the correct result when the input
   2684 // argument type is const char*.
   2685 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2686   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2687   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2688   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2689 
   2690   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2691   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2692 }
   2693 
   2694 // Tests that IsSubstring() returns the correct result when the input
   2695 // argument type is const wchar_t*.
   2696 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2697   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2698   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2699   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2700 
   2701   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2702   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2703 }
   2704 
   2705 // Tests that IsSubstring() generates the correct message when the input
   2706 // argument type is const char*.
   2707 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2708   EXPECT_STREQ("Value of: needle_expr\n"
   2709                "  Actual: \"needle\"\n"
   2710                "Expected: a substring of haystack_expr\n"
   2711                "Which is: \"haystack\"",
   2712                IsSubstring("needle_expr", "haystack_expr",
   2713                            "needle", "haystack").failure_message());
   2714 }
   2715 
   2716 // Tests that IsSubstring returns the correct result when the input
   2717 // argument type is ::std::string.
   2718 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2719   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2720   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2721 }
   2722 
   2723 #if GTEST_HAS_STD_WSTRING
   2724 // Tests that IsSubstring returns the correct result when the input
   2725 // argument type is ::std::wstring.
   2726 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2727   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2728   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2729 }
   2730 
   2731 // Tests that IsSubstring() generates the correct message when the input
   2732 // argument type is ::std::wstring.
   2733 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2734   EXPECT_STREQ("Value of: needle_expr\n"
   2735                "  Actual: L\"needle\"\n"
   2736                "Expected: a substring of haystack_expr\n"
   2737                "Which is: L\"haystack\"",
   2738                IsSubstring(
   2739                    "needle_expr", "haystack_expr",
   2740                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2741 }
   2742 
   2743 #endif  // GTEST_HAS_STD_WSTRING
   2744 
   2745 // Tests for ::testing::IsNotSubstring().
   2746 
   2747 // Tests that IsNotSubstring() returns the correct result when the input
   2748 // argument type is const char*.
   2749 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2750   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2751   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2752 }
   2753 
   2754 // Tests that IsNotSubstring() returns the correct result when the input
   2755 // argument type is const wchar_t*.
   2756 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2757   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2758   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2759 }
   2760 
   2761 // Tests that IsNotSubstring() generates the correct message when the input
   2762 // argument type is const wchar_t*.
   2763 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2764   EXPECT_STREQ("Value of: needle_expr\n"
   2765                "  Actual: L\"needle\"\n"
   2766                "Expected: not a substring of haystack_expr\n"
   2767                "Which is: L\"two needles\"",
   2768                IsNotSubstring(
   2769                    "needle_expr", "haystack_expr",
   2770                    L"needle", L"two needles").failure_message());
   2771 }
   2772 
   2773 // Tests that IsNotSubstring returns the correct result when the input
   2774 // argument type is ::std::string.
   2775 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2776   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2777   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2778 }
   2779 
   2780 // Tests that IsNotSubstring() generates the correct message when the input
   2781 // argument type is ::std::string.
   2782 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2783   EXPECT_STREQ("Value of: needle_expr\n"
   2784                "  Actual: \"needle\"\n"
   2785                "Expected: not a substring of haystack_expr\n"
   2786                "Which is: \"two needles\"",
   2787                IsNotSubstring(
   2788                    "needle_expr", "haystack_expr",
   2789                    ::std::string("needle"), "two needles").failure_message());
   2790 }
   2791 
   2792 #if GTEST_HAS_STD_WSTRING
   2793 
   2794 // Tests that IsNotSubstring returns the correct result when the input
   2795 // argument type is ::std::wstring.
   2796 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2797   EXPECT_FALSE(
   2798       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2799   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2800 }
   2801 
   2802 #endif  // GTEST_HAS_STD_WSTRING
   2803 
   2804 // Tests floating-point assertions.
   2805 
   2806 template <typename RawType>
   2807 class FloatingPointTest : public Test {
   2808  protected:
   2809   // Pre-calculated numbers to be used by the tests.
   2810   struct TestValues {
   2811     RawType close_to_positive_zero;
   2812     RawType close_to_negative_zero;
   2813     RawType further_from_negative_zero;
   2814 
   2815     RawType close_to_one;
   2816     RawType further_from_one;
   2817 
   2818     RawType infinity;
   2819     RawType close_to_infinity;
   2820     RawType further_from_infinity;
   2821 
   2822     RawType nan1;
   2823     RawType nan2;
   2824   };
   2825 
   2826   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2827   typedef typename Floating::Bits Bits;
   2828 
   2829   virtual void SetUp() {
   2830     const size_t max_ulps = Floating::kMaxUlps;
   2831 
   2832     // The bits that represent 0.0.
   2833     const Bits zero_bits = Floating(0).bits();
   2834 
   2835     // Makes some numbers close to 0.0.
   2836     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2837         zero_bits + max_ulps/2);
   2838     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2839         zero_bits + max_ulps - max_ulps/2);
   2840     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2841         zero_bits + max_ulps + 1 - max_ulps/2);
   2842 
   2843     // The bits that represent 1.0.
   2844     const Bits one_bits = Floating(1).bits();
   2845 
   2846     // Makes some numbers close to 1.0.
   2847     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2848     values_.further_from_one = Floating::ReinterpretBits(
   2849         one_bits + max_ulps + 1);
   2850 
   2851     // +infinity.
   2852     values_.infinity = Floating::Infinity();
   2853 
   2854     // The bits that represent +infinity.
   2855     const Bits infinity_bits = Floating(values_.infinity).bits();
   2856 
   2857     // Makes some numbers close to infinity.
   2858     values_.close_to_infinity = Floating::ReinterpretBits(
   2859         infinity_bits - max_ulps);
   2860     values_.further_from_infinity = Floating::ReinterpretBits(
   2861         infinity_bits - max_ulps - 1);
   2862 
   2863     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   2864     // our NaN's are quiet; trying to process a signaling NaN would raise an
   2865     // exception if our environment enables floating point exceptions.
   2866     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2867         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   2868     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2869         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   2870   }
   2871 
   2872   void TestSize() {
   2873     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   2874   }
   2875 
   2876   static TestValues values_;
   2877 };
   2878 
   2879 template <typename RawType>
   2880 typename FloatingPointTest<RawType>::TestValues
   2881     FloatingPointTest<RawType>::values_;
   2882 
   2883 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   2884 typedef FloatingPointTest<float> FloatTest;
   2885 
   2886 // Tests that the size of Float::Bits matches the size of float.
   2887 TEST_F(FloatTest, Size) {
   2888   TestSize();
   2889 }
   2890 
   2891 // Tests comparing with +0 and -0.
   2892 TEST_F(FloatTest, Zeros) {
   2893   EXPECT_FLOAT_EQ(0.0, -0.0);
   2894   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   2895                           "1.0");
   2896   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   2897                        "1.5");
   2898 }
   2899 
   2900 // Tests comparing numbers close to 0.
   2901 //
   2902 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   2903 // overflow occurs when comparing numbers whose absolute value is very
   2904 // small.
   2905 TEST_F(FloatTest, AlmostZeros) {
   2906   // In C++Builder, names within local classes (such as used by
   2907   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2908   // scoping class.  Use a static local alias as a workaround.
   2909   // We use the assignment syntax since some compilers, like Sun Studio,
   2910   // don't allow initializing references using construction syntax
   2911   // (parentheses).
   2912   static const FloatTest::TestValues& v = this->values_;
   2913 
   2914   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   2915   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   2916   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2917 
   2918   EXPECT_FATAL_FAILURE({  // NOLINT
   2919     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   2920                     v.further_from_negative_zero);
   2921   }, "v.further_from_negative_zero");
   2922 }
   2923 
   2924 // Tests comparing numbers close to each other.
   2925 TEST_F(FloatTest, SmallDiff) {
   2926   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   2927   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   2928                           "values_.further_from_one");
   2929 }
   2930 
   2931 // Tests comparing numbers far apart.
   2932 TEST_F(FloatTest, LargeDiff) {
   2933   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   2934                           "3.0");
   2935 }
   2936 
   2937 // Tests comparing with infinity.
   2938 //
   2939 // This ensures that no overflow occurs when comparing numbers whose
   2940 // absolute value is very large.
   2941 TEST_F(FloatTest, Infinity) {
   2942   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   2943   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   2944 #if !GTEST_OS_SYMBIAN
   2945   // Nokia's STLport crashes if we try to output infinity or NaN.
   2946   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   2947                           "-values_.infinity");
   2948 
   2949   // This is interesting as the representations of infinity and nan1
   2950   // are only 1 DLP apart.
   2951   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   2952                           "values_.nan1");
   2953 #endif  // !GTEST_OS_SYMBIAN
   2954 }
   2955 
   2956 // Tests that comparing with NAN always returns false.
   2957 TEST_F(FloatTest, NaN) {
   2958 #if !GTEST_OS_SYMBIAN
   2959 // Nokia's STLport crashes if we try to output infinity or NaN.
   2960 
   2961   // In C++Builder, names within local classes (such as used by
   2962   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2963   // scoping class.  Use a static local alias as a workaround.
   2964   // We use the assignment syntax since some compilers, like Sun Studio,
   2965   // don't allow initializing references using construction syntax
   2966   // (parentheses).
   2967   static const FloatTest::TestValues& v = this->values_;
   2968 
   2969   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   2970                           "v.nan1");
   2971   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   2972                           "v.nan2");
   2973   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   2974                           "v.nan1");
   2975 
   2976   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   2977                        "v.infinity");
   2978 #endif  // !GTEST_OS_SYMBIAN
   2979 }
   2980 
   2981 // Tests that *_FLOAT_EQ are reflexive.
   2982 TEST_F(FloatTest, Reflexive) {
   2983   EXPECT_FLOAT_EQ(0.0, 0.0);
   2984   EXPECT_FLOAT_EQ(1.0, 1.0);
   2985   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   2986 }
   2987 
   2988 // Tests that *_FLOAT_EQ are commutative.
   2989 TEST_F(FloatTest, Commutative) {
   2990   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   2991   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   2992 
   2993   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   2994   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   2995                           "1.0");
   2996 }
   2997 
   2998 // Tests EXPECT_NEAR.
   2999 TEST_F(FloatTest, EXPECT_NEAR) {
   3000   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   3001   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   3002   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   3003                           "The difference between 1.0f and 1.5f is 0.5, "
   3004                           "which exceeds 0.25f");
   3005   // To work around a bug in gcc 2.95.0, there is intentionally no
   3006   // space after the first comma in the previous line.
   3007 }
   3008 
   3009 // Tests ASSERT_NEAR.
   3010 TEST_F(FloatTest, ASSERT_NEAR) {
   3011   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   3012   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   3013   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   3014                        "The difference between 1.0f and 1.5f is 0.5, "
   3015                        "which exceeds 0.25f");
   3016   // To work around a bug in gcc 2.95.0, there is intentionally no
   3017   // space after the first comma in the previous line.
   3018 }
   3019 
   3020 // Tests the cases where FloatLE() should succeed.
   3021 TEST_F(FloatTest, FloatLESucceeds) {
   3022   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   3023   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   3024 
   3025   // or when val1 is greater than, but almost equals to, val2.
   3026   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   3027 }
   3028 
   3029 // Tests the cases where FloatLE() should fail.
   3030 TEST_F(FloatTest, FloatLEFails) {
   3031   // When val1 is greater than val2 by a large margin,
   3032   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   3033                           "(2.0f) <= (1.0f)");
   3034 
   3035   // or by a small yet non-negligible margin,
   3036   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3037     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   3038   }, "(values_.further_from_one) <= (1.0f)");
   3039 
   3040 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3041   // Nokia's STLport crashes if we try to output infinity or NaN.
   3042   // C++Builder gives bad results for ordered comparisons involving NaNs
   3043   // due to compiler bugs.
   3044   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3045     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   3046   }, "(values_.nan1) <= (values_.infinity)");
   3047   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3048     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   3049   }, "(-values_.infinity) <= (values_.nan1)");
   3050   EXPECT_FATAL_FAILURE({  // NOLINT
   3051     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   3052   }, "(values_.nan1) <= (values_.nan1)");
   3053 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3054 }
   3055 
   3056 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   3057 typedef FloatingPointTest<double> DoubleTest;
   3058 
   3059 // Tests that the size of Double::Bits matches the size of double.
   3060 TEST_F(DoubleTest, Size) {
   3061   TestSize();
   3062 }
   3063 
   3064 // Tests comparing with +0 and -0.
   3065 TEST_F(DoubleTest, Zeros) {
   3066   EXPECT_DOUBLE_EQ(0.0, -0.0);
   3067   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   3068                           "1.0");
   3069   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   3070                        "1.0");
   3071 }
   3072 
   3073 // Tests comparing numbers close to 0.
   3074 //
   3075 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   3076 // overflow occurs when comparing numbers whose absolute value is very
   3077 // small.
   3078 TEST_F(DoubleTest, AlmostZeros) {
   3079   // In C++Builder, names within local classes (such as used by
   3080   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   3081   // scoping class.  Use a static local alias as a workaround.
   3082   // We use the assignment syntax since some compilers, like Sun Studio,
   3083   // don't allow initializing references using construction syntax
   3084   // (parentheses).
   3085   static const DoubleTest::TestValues& v = this->values_;
   3086 
   3087   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   3088   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   3089   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   3090 
   3091   EXPECT_FATAL_FAILURE({  // NOLINT
   3092     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   3093                      v.further_from_negative_zero);
   3094   }, "v.further_from_negative_zero");
   3095 }
   3096 
   3097 // Tests comparing numbers close to each other.
   3098 TEST_F(DoubleTest, SmallDiff) {
   3099   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   3100   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   3101                           "values_.further_from_one");
   3102 }
   3103 
   3104 // Tests comparing numbers far apart.
   3105 TEST_F(DoubleTest, LargeDiff) {
   3106   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   3107                           "3.0");
   3108 }
   3109 
   3110 // Tests comparing with infinity.
   3111 //
   3112 // This ensures that no overflow occurs when comparing numbers whose
   3113 // absolute value is very large.
   3114 TEST_F(DoubleTest, Infinity) {
   3115   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   3116   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   3117 #if !GTEST_OS_SYMBIAN
   3118   // Nokia's STLport crashes if we try to output infinity or NaN.
   3119   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   3120                           "-values_.infinity");
   3121 
   3122   // This is interesting as the representations of infinity_ and nan1_
   3123   // are only 1 DLP apart.
   3124   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   3125                           "values_.nan1");
   3126 #endif  // !GTEST_OS_SYMBIAN
   3127 }
   3128 
   3129 // Tests that comparing with NAN always returns false.
   3130 TEST_F(DoubleTest, NaN) {
   3131 #if !GTEST_OS_SYMBIAN
   3132   // In C++Builder, names within local classes (such as used by
   3133   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   3134   // scoping class.  Use a static local alias as a workaround.
   3135   // We use the assignment syntax since some compilers, like Sun Studio,
   3136   // don't allow initializing references using construction syntax
   3137   // (parentheses).
   3138   static const DoubleTest::TestValues& v = this->values_;
   3139 
   3140   // Nokia's STLport crashes if we try to output infinity or NaN.
   3141   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   3142                           "v.nan1");
   3143   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   3144   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   3145   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   3146                        "v.infinity");
   3147 #endif  // !GTEST_OS_SYMBIAN
   3148 }
   3149 
   3150 // Tests that *_DOUBLE_EQ are reflexive.
   3151 TEST_F(DoubleTest, Reflexive) {
   3152   EXPECT_DOUBLE_EQ(0.0, 0.0);
   3153   EXPECT_DOUBLE_EQ(1.0, 1.0);
   3154 #if !GTEST_OS_SYMBIAN
   3155   // Nokia's STLport crashes if we try to output infinity or NaN.
   3156   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   3157 #endif  // !GTEST_OS_SYMBIAN
   3158 }
   3159 
   3160 // Tests that *_DOUBLE_EQ are commutative.
   3161 TEST_F(DoubleTest, Commutative) {
   3162   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   3163   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   3164 
   3165   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   3166   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   3167                           "1.0");
   3168 }
   3169 
   3170 // Tests EXPECT_NEAR.
   3171 TEST_F(DoubleTest, EXPECT_NEAR) {
   3172   EXPECT_NEAR(-1.0, -1.1, 0.2);
   3173   EXPECT_NEAR(2.0, 3.0, 1.0);
   3174   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3175                           "The difference between 1.0 and 1.5 is 0.5, "
   3176                           "which exceeds 0.25");
   3177   // To work around a bug in gcc 2.95.0, there is intentionally no
   3178   // space after the first comma in the previous statement.
   3179 }
   3180 
   3181 // Tests ASSERT_NEAR.
   3182 TEST_F(DoubleTest, ASSERT_NEAR) {
   3183   ASSERT_NEAR(-1.0, -1.1, 0.2);
   3184   ASSERT_NEAR(2.0, 3.0, 1.0);
   3185   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3186                        "The difference between 1.0 and 1.5 is 0.5, "
   3187                        "which exceeds 0.25");
   3188   // To work around a bug in gcc 2.95.0, there is intentionally no
   3189   // space after the first comma in the previous statement.
   3190 }
   3191 
   3192 // Tests the cases where DoubleLE() should succeed.
   3193 TEST_F(DoubleTest, DoubleLESucceeds) {
   3194   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   3195   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   3196 
   3197   // or when val1 is greater than, but almost equals to, val2.
   3198   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   3199 }
   3200 
   3201 // Tests the cases where DoubleLE() should fail.
   3202 TEST_F(DoubleTest, DoubleLEFails) {
   3203   // When val1 is greater than val2 by a large margin,
   3204   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   3205                           "(2.0) <= (1.0)");
   3206 
   3207   // or by a small yet non-negligible margin,
   3208   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3209     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   3210   }, "(values_.further_from_one) <= (1.0)");
   3211 
   3212 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3213   // Nokia's STLport crashes if we try to output infinity or NaN.
   3214   // C++Builder gives bad results for ordered comparisons involving NaNs
   3215   // due to compiler bugs.
   3216   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3217     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   3218   }, "(values_.nan1) <= (values_.infinity)");
   3219   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3220     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   3221   }, " (-values_.infinity) <= (values_.nan1)");
   3222   EXPECT_FATAL_FAILURE({  // NOLINT
   3223     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   3224   }, "(values_.nan1) <= (values_.nan1)");
   3225 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3226 }
   3227 
   3228 
   3229 // Verifies that a test or test case whose name starts with DISABLED_ is
   3230 // not run.
   3231 
   3232 // A test whose name starts with DISABLED_.
   3233 // Should not run.
   3234 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   3235   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3236 }
   3237 
   3238 // A test whose name does not start with DISABLED_.
   3239 // Should run.
   3240 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   3241   EXPECT_EQ(1, 1);
   3242 }
   3243 
   3244 // A test case whose name starts with DISABLED_.
   3245 // Should not run.
   3246 TEST(DISABLED_TestCase, TestShouldNotRun) {
   3247   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3248 }
   3249 
   3250 // A test case and test whose names start with DISABLED_.
   3251 // Should not run.
   3252 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   3253   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3254 }
   3255 
   3256 // Check that when all tests in a test case are disabled, SetupTestCase() and
   3257 // TearDownTestCase() are not called.
   3258 class DisabledTestsTest : public Test {
   3259  protected:
   3260   static void SetUpTestCase() {
   3261     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3262               "SetupTestCase() should not be called.";
   3263   }
   3264 
   3265   static void TearDownTestCase() {
   3266     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3267               "TearDownTestCase() should not be called.";
   3268   }
   3269 };
   3270 
   3271 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   3272   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3273 }
   3274 
   3275 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3276   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3277 }
   3278 
   3279 // Tests that disabled typed tests aren't run.
   3280 
   3281 #if GTEST_HAS_TYPED_TEST
   3282 
   3283 template <typename T>
   3284 class TypedTest : public Test {
   3285 };
   3286 
   3287 typedef testing::Types<int, double> NumericTypes;
   3288 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3289 
   3290 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3291   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3292 }
   3293 
   3294 template <typename T>
   3295 class DISABLED_TypedTest : public Test {
   3296 };
   3297 
   3298 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3299 
   3300 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3301   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3302 }
   3303 
   3304 #endif  // GTEST_HAS_TYPED_TEST
   3305 
   3306 // Tests that disabled type-parameterized tests aren't run.
   3307 
   3308 #if GTEST_HAS_TYPED_TEST_P
   3309 
   3310 template <typename T>
   3311 class TypedTestP : public Test {
   3312 };
   3313 
   3314 TYPED_TEST_CASE_P(TypedTestP);
   3315 
   3316 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3317   FAIL() << "Unexpected failure: "
   3318          << "Disabled type-parameterized test should not run.";
   3319 }
   3320 
   3321 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3322 
   3323 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3324 
   3325 template <typename T>
   3326 class DISABLED_TypedTestP : public Test {
   3327 };
   3328 
   3329 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3330 
   3331 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3332   FAIL() << "Unexpected failure: "
   3333          << "Disabled type-parameterized test should not run.";
   3334 }
   3335 
   3336 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3337 
   3338 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3339 
   3340 #endif  // GTEST_HAS_TYPED_TEST_P
   3341 
   3342 // Tests that assertion macros evaluate their arguments exactly once.
   3343 
   3344 class SingleEvaluationTest : public Test {
   3345  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3346   // This helper function is needed by the FailedASSERT_STREQ test
   3347   // below.  It's public to work around C++Builder's bug with scoping local
   3348   // classes.
   3349   static void CompareAndIncrementCharPtrs() {
   3350     ASSERT_STREQ(p1_++, p2_++);
   3351   }
   3352 
   3353   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3354   // public to work around C++Builder's bug with scoping local classes.
   3355   static void CompareAndIncrementInts() {
   3356     ASSERT_NE(a_++, b_++);
   3357   }
   3358 
   3359  protected:
   3360   SingleEvaluationTest() {
   3361     p1_ = s1_;
   3362     p2_ = s2_;
   3363     a_ = 0;
   3364     b_ = 0;
   3365   }
   3366 
   3367   static const char* const s1_;
   3368   static const char* const s2_;
   3369   static const char* p1_;
   3370   static const char* p2_;
   3371 
   3372   static int a_;
   3373   static int b_;
   3374 };
   3375 
   3376 const char* const SingleEvaluationTest::s1_ = "01234";
   3377 const char* const SingleEvaluationTest::s2_ = "abcde";
   3378 const char* SingleEvaluationTest::p1_;
   3379 const char* SingleEvaluationTest::p2_;
   3380 int SingleEvaluationTest::a_;
   3381 int SingleEvaluationTest::b_;
   3382 
   3383 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3384 // exactly once.
   3385 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3386   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3387                        "p2_++");
   3388   EXPECT_EQ(s1_ + 1, p1_);
   3389   EXPECT_EQ(s2_ + 1, p2_);
   3390 }
   3391 
   3392 // Tests that string assertion arguments are evaluated exactly once.
   3393 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3394   // successful EXPECT_STRNE
   3395   EXPECT_STRNE(p1_++, p2_++);
   3396   EXPECT_EQ(s1_ + 1, p1_);
   3397   EXPECT_EQ(s2_ + 1, p2_);
   3398 
   3399   // failed EXPECT_STRCASEEQ
   3400   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3401                           "ignoring case");
   3402   EXPECT_EQ(s1_ + 2, p1_);
   3403   EXPECT_EQ(s2_ + 2, p2_);
   3404 }
   3405 
   3406 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3407 // once.
   3408 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3409   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3410                        "(a_++) != (b_++)");
   3411   EXPECT_EQ(1, a_);
   3412   EXPECT_EQ(1, b_);
   3413 }
   3414 
   3415 // Tests that assertion arguments are evaluated exactly once.
   3416 TEST_F(SingleEvaluationTest, OtherCases) {
   3417   // successful EXPECT_TRUE
   3418   EXPECT_TRUE(0 == a_++);  // NOLINT
   3419   EXPECT_EQ(1, a_);
   3420 
   3421   // failed EXPECT_TRUE
   3422   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3423   EXPECT_EQ(2, a_);
   3424 
   3425   // successful EXPECT_GT
   3426   EXPECT_GT(a_++, b_++);
   3427   EXPECT_EQ(3, a_);
   3428   EXPECT_EQ(1, b_);
   3429 
   3430   // failed EXPECT_LT
   3431   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3432   EXPECT_EQ(4, a_);
   3433   EXPECT_EQ(2, b_);
   3434 
   3435   // successful ASSERT_TRUE
   3436   ASSERT_TRUE(0 < a_++);  // NOLINT
   3437   EXPECT_EQ(5, a_);
   3438 
   3439   // successful ASSERT_GT
   3440   ASSERT_GT(a_++, b_++);
   3441   EXPECT_EQ(6, a_);
   3442   EXPECT_EQ(3, b_);
   3443 }
   3444 
   3445 #if GTEST_HAS_EXCEPTIONS
   3446 
   3447 void ThrowAnInteger() {
   3448   throw 1;
   3449 }
   3450 
   3451 // Tests that assertion arguments are evaluated exactly once.
   3452 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3453   // successful EXPECT_THROW
   3454   EXPECT_THROW({  // NOLINT
   3455     a_++;
   3456     ThrowAnInteger();
   3457   }, int);
   3458   EXPECT_EQ(1, a_);
   3459 
   3460   // failed EXPECT_THROW, throws different
   3461   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3462     a_++;
   3463     ThrowAnInteger();
   3464   }, bool), "throws a different type");
   3465   EXPECT_EQ(2, a_);
   3466 
   3467   // failed EXPECT_THROW, throws nothing
   3468   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3469   EXPECT_EQ(3, a_);
   3470 
   3471   // successful EXPECT_NO_THROW
   3472   EXPECT_NO_THROW(a_++);
   3473   EXPECT_EQ(4, a_);
   3474 
   3475   // failed EXPECT_NO_THROW
   3476   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3477     a_++;
   3478     ThrowAnInteger();
   3479   }), "it throws");
   3480   EXPECT_EQ(5, a_);
   3481 
   3482   // successful EXPECT_ANY_THROW
   3483   EXPECT_ANY_THROW({  // NOLINT
   3484     a_++;
   3485     ThrowAnInteger();
   3486   });
   3487   EXPECT_EQ(6, a_);
   3488 
   3489   // failed EXPECT_ANY_THROW
   3490   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3491   EXPECT_EQ(7, a_);
   3492 }
   3493 
   3494 #endif  // GTEST_HAS_EXCEPTIONS
   3495 
   3496 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3497 class NoFatalFailureTest : public Test {
   3498  protected:
   3499   void Succeeds() {}
   3500   void FailsNonFatal() {
   3501     ADD_FAILURE() << "some non-fatal failure";
   3502   }
   3503   void Fails() {
   3504     FAIL() << "some fatal failure";
   3505   }
   3506 
   3507   void DoAssertNoFatalFailureOnFails() {
   3508     ASSERT_NO_FATAL_FAILURE(Fails());
   3509     ADD_FAILURE() << "shold not reach here.";
   3510   }
   3511 
   3512   void DoExpectNoFatalFailureOnFails() {
   3513     EXPECT_NO_FATAL_FAILURE(Fails());
   3514     ADD_FAILURE() << "other failure";
   3515   }
   3516 };
   3517 
   3518 TEST_F(NoFatalFailureTest, NoFailure) {
   3519   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3520   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3521 }
   3522 
   3523 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3524   EXPECT_NONFATAL_FAILURE(
   3525       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3526       "some non-fatal failure");
   3527   EXPECT_NONFATAL_FAILURE(
   3528       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3529       "some non-fatal failure");
   3530 }
   3531 
   3532 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3533   TestPartResultArray gtest_failures;
   3534   {
   3535     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3536     DoAssertNoFatalFailureOnFails();
   3537   }
   3538   ASSERT_EQ(2, gtest_failures.size());
   3539   EXPECT_EQ(TestPartResult::kFatalFailure,
   3540             gtest_failures.GetTestPartResult(0).type());
   3541   EXPECT_EQ(TestPartResult::kFatalFailure,
   3542             gtest_failures.GetTestPartResult(1).type());
   3543   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3544                       gtest_failures.GetTestPartResult(0).message());
   3545   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3546                       gtest_failures.GetTestPartResult(1).message());
   3547 }
   3548 
   3549 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3550   TestPartResultArray gtest_failures;
   3551   {
   3552     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3553     DoExpectNoFatalFailureOnFails();
   3554   }
   3555   ASSERT_EQ(3, gtest_failures.size());
   3556   EXPECT_EQ(TestPartResult::kFatalFailure,
   3557             gtest_failures.GetTestPartResult(0).type());
   3558   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3559             gtest_failures.GetTestPartResult(1).type());
   3560   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3561             gtest_failures.GetTestPartResult(2).type());
   3562   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3563                       gtest_failures.GetTestPartResult(0).message());
   3564   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3565                       gtest_failures.GetTestPartResult(1).message());
   3566   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3567                       gtest_failures.GetTestPartResult(2).message());
   3568 }
   3569 
   3570 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3571   TestPartResultArray gtest_failures;
   3572   {
   3573     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3574     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3575   }
   3576   ASSERT_EQ(2, gtest_failures.size());
   3577   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3578             gtest_failures.GetTestPartResult(0).type());
   3579   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3580             gtest_failures.GetTestPartResult(1).type());
   3581   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3582                       gtest_failures.GetTestPartResult(0).message());
   3583   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3584                       gtest_failures.GetTestPartResult(1).message());
   3585 }
   3586 
   3587 // Tests non-string assertions.
   3588 
   3589 // Tests EqFailure(), used for implementing *EQ* assertions.
   3590 TEST(AssertionTest, EqFailure) {
   3591   const String foo_val("5"), bar_val("6");
   3592   const String msg1(
   3593       EqFailure("foo", "bar", foo_val, bar_val, false)
   3594       .failure_message());
   3595   EXPECT_STREQ(
   3596       "Value of: bar\n"
   3597       "  Actual: 6\n"
   3598       "Expected: foo\n"
   3599       "Which is: 5",
   3600       msg1.c_str());
   3601 
   3602   const String msg2(
   3603       EqFailure("foo", "6", foo_val, bar_val, false)
   3604       .failure_message());
   3605   EXPECT_STREQ(
   3606       "Value of: 6\n"
   3607       "Expected: foo\n"
   3608       "Which is: 5",
   3609       msg2.c_str());
   3610 
   3611   const String msg3(
   3612       EqFailure("5", "bar", foo_val, bar_val, false)
   3613       .failure_message());
   3614   EXPECT_STREQ(
   3615       "Value of: bar\n"
   3616       "  Actual: 6\n"
   3617       "Expected: 5",
   3618       msg3.c_str());
   3619 
   3620   const String msg4(
   3621       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3622   EXPECT_STREQ(
   3623       "Value of: 6\n"
   3624       "Expected: 5",
   3625       msg4.c_str());
   3626 
   3627   const String msg5(
   3628       EqFailure("foo", "bar",
   3629                 String("\"x\""), String("\"y\""),
   3630                 true).failure_message());
   3631   EXPECT_STREQ(
   3632       "Value of: bar\n"
   3633       "  Actual: \"y\"\n"
   3634       "Expected: foo (ignoring case)\n"
   3635       "Which is: \"x\"",
   3636       msg5.c_str());
   3637 }
   3638 
   3639 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3640 TEST(AssertionTest, AppendUserMessage) {
   3641   const String foo("foo");
   3642 
   3643   Message msg;
   3644   EXPECT_STREQ("foo",
   3645                AppendUserMessage(foo, msg).c_str());
   3646 
   3647   msg << "bar";
   3648   EXPECT_STREQ("foo\nbar",
   3649                AppendUserMessage(foo, msg).c_str());
   3650 }
   3651 
   3652 #ifdef __BORLANDC__
   3653 // Silences warnings: "Condition is always true", "Unreachable code"
   3654 # pragma option push -w-ccc -w-rch
   3655 #endif
   3656 
   3657 // Tests ASSERT_TRUE.
   3658 TEST(AssertionTest, ASSERT_TRUE) {
   3659   ASSERT_TRUE(2 > 1);  // NOLINT
   3660   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3661                        "2 < 1");
   3662 }
   3663 
   3664 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
   3665 TEST(AssertionTest, AssertTrueWithAssertionResult) {
   3666   ASSERT_TRUE(ResultIsEven(2));
   3667 #ifndef __BORLANDC__
   3668   // ICE's in C++Builder.
   3669   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
   3670                        "Value of: ResultIsEven(3)\n"
   3671                        "  Actual: false (3 is odd)\n"
   3672                        "Expected: true");
   3673 #endif
   3674   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
   3675   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
   3676                        "Value of: ResultIsEvenNoExplanation(3)\n"
   3677                        "  Actual: false (3 is odd)\n"
   3678                        "Expected: true");
   3679 }
   3680 
   3681 // Tests ASSERT_FALSE.
   3682 TEST(AssertionTest, ASSERT_FALSE) {
   3683   ASSERT_FALSE(2 < 1);  // NOLINT
   3684   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3685                        "Value of: 2 > 1\n"
   3686                        "  Actual: true\n"
   3687                        "Expected: false");
   3688 }
   3689 
   3690 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
   3691 TEST(AssertionTest, AssertFalseWithAssertionResult) {
   3692   ASSERT_FALSE(ResultIsEven(3));
   3693 #ifndef __BORLANDC__
   3694   // ICE's in C++Builder.
   3695   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
   3696                        "Value of: ResultIsEven(2)\n"
   3697                        "  Actual: true (2 is even)\n"
   3698                        "Expected: false");
   3699 #endif
   3700   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
   3701   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
   3702                        "Value of: ResultIsEvenNoExplanation(2)\n"
   3703                        "  Actual: true\n"
   3704                        "Expected: false");
   3705 }
   3706 
   3707 #ifdef __BORLANDC__
   3708 // Restores warnings after previous "#pragma option push" supressed them
   3709 # pragma option pop
   3710 #endif
   3711 
   3712 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3713 // sure that the specialization we did for integer and anonymous enums
   3714 // isn't used for double arguments.
   3715 TEST(ExpectTest, ASSERT_EQ_Double) {
   3716   // A success.
   3717   ASSERT_EQ(5.6, 5.6);
   3718 
   3719   // A failure.
   3720   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3721                        "5.1");
   3722 }
   3723 
   3724 // Tests ASSERT_EQ.
   3725 TEST(AssertionTest, ASSERT_EQ) {
   3726   ASSERT_EQ(5, 2 + 3);
   3727   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3728                        "Value of: 2*3\n"
   3729                        "  Actual: 6\n"
   3730                        "Expected: 5");
   3731 }
   3732 
   3733 // Tests ASSERT_EQ(NULL, pointer).
   3734 #if GTEST_CAN_COMPARE_NULL
   3735 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3736   // A success.
   3737   const char* p = NULL;
   3738   // Some older GCC versions may issue a spurious waring in this or the next
   3739   // assertion statement. This warning should not be suppressed with
   3740   // static_cast since the test verifies the ability to use bare NULL as the
   3741   // expected parameter to the macro.
   3742   ASSERT_EQ(NULL, p);
   3743 
   3744   // A failure.
   3745   static int n = 0;
   3746   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3747                        "Value of: &n\n");
   3748 }
   3749 #endif  // GTEST_CAN_COMPARE_NULL
   3750 
   3751 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3752 // treated as a null pointer by the compiler, we need to make sure
   3753 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3754 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3755 TEST(ExpectTest, ASSERT_EQ_0) {
   3756   int n = 0;
   3757 
   3758   // A success.
   3759   ASSERT_EQ(0, n);
   3760 
   3761   // A failure.
   3762   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3763                        "Expected: 0");
   3764 }
   3765 
   3766 // Tests ASSERT_NE.
   3767 TEST(AssertionTest, ASSERT_NE) {
   3768   ASSERT_NE(6, 7);
   3769   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3770                        "Expected: ('a') != ('a'), "
   3771                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3772 }
   3773 
   3774 // Tests ASSERT_LE.
   3775 TEST(AssertionTest, ASSERT_LE) {
   3776   ASSERT_LE(2, 3);
   3777   ASSERT_LE(2, 2);
   3778   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3779                        "Expected: (2) <= (0), actual: 2 vs 0");
   3780 }
   3781 
   3782 // Tests ASSERT_LT.
   3783 TEST(AssertionTest, ASSERT_LT) {
   3784   ASSERT_LT(2, 3);
   3785   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3786                        "Expected: (2) < (2), actual: 2 vs 2");
   3787 }
   3788 
   3789 // Tests ASSERT_GE.
   3790 TEST(AssertionTest, ASSERT_GE) {
   3791   ASSERT_GE(2, 1);
   3792   ASSERT_GE(2, 2);
   3793   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3794                        "Expected: (2) >= (3), actual: 2 vs 3");
   3795 }
   3796 
   3797 // Tests ASSERT_GT.
   3798 TEST(AssertionTest, ASSERT_GT) {
   3799   ASSERT_GT(2, 1);
   3800   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3801                        "Expected: (2) > (2), actual: 2 vs 2");
   3802 }
   3803 
   3804 #if GTEST_HAS_EXCEPTIONS
   3805 
   3806 void ThrowNothing() {}
   3807 
   3808 // Tests ASSERT_THROW.
   3809 TEST(AssertionTest, ASSERT_THROW) {
   3810   ASSERT_THROW(ThrowAnInteger(), int);
   3811 
   3812 # ifndef __BORLANDC__
   3813 
   3814   // ICE's in C++Builder 2007 and 2009.
   3815   EXPECT_FATAL_FAILURE(
   3816       ASSERT_THROW(ThrowAnInteger(), bool),
   3817       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3818       "  Actual: it throws a different type.");
   3819 # endif
   3820 
   3821   EXPECT_FATAL_FAILURE(
   3822       ASSERT_THROW(ThrowNothing(), bool),
   3823       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3824       "  Actual: it throws nothing.");
   3825 }
   3826 
   3827 // Tests ASSERT_NO_THROW.
   3828 TEST(AssertionTest, ASSERT_NO_THROW) {
   3829   ASSERT_NO_THROW(ThrowNothing());
   3830   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3831                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3832                        "\n  Actual: it throws.");
   3833 }
   3834 
   3835 // Tests ASSERT_ANY_THROW.
   3836 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3837   ASSERT_ANY_THROW(ThrowAnInteger());
   3838   EXPECT_FATAL_FAILURE(
   3839       ASSERT_ANY_THROW(ThrowNothing()),
   3840       "Expected: ThrowNothing() throws an exception.\n"
   3841       "  Actual: it doesn't.");
   3842 }
   3843 
   3844 #endif  // GTEST_HAS_EXCEPTIONS
   3845 
   3846 // Makes sure we deal with the precedence of <<.  This test should
   3847 // compile.
   3848 TEST(AssertionTest, AssertPrecedence) {
   3849   ASSERT_EQ(1 < 2, true);
   3850   bool false_value = false;
   3851   ASSERT_EQ(true && false_value, false);
   3852 }
   3853 
   3854 // A subroutine used by the following test.
   3855 void TestEq1(int x) {
   3856   ASSERT_EQ(1, x);
   3857 }
   3858 
   3859 // Tests calling a test subroutine that's not part of a fixture.
   3860 TEST(AssertionTest, NonFixtureSubroutine) {
   3861   EXPECT_FATAL_FAILURE(TestEq1(2),
   3862                        "Value of: x");
   3863 }
   3864 
   3865 // An uncopyable class.
   3866 class Uncopyable {
   3867  public:
   3868   explicit Uncopyable(int a_value) : value_(a_value) {}
   3869 
   3870   int value() const { return value_; }
   3871   bool operator==(const Uncopyable& rhs) const {
   3872     return value() == rhs.value();
   3873   }
   3874  private:
   3875   // This constructor deliberately has no implementation, as we don't
   3876   // want this class to be copyable.
   3877   Uncopyable(const Uncopyable&);  // NOLINT
   3878 
   3879   int value_;
   3880 };
   3881 
   3882 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3883   return os << value.value();
   3884 }
   3885 
   3886 
   3887 bool IsPositiveUncopyable(const Uncopyable& x) {
   3888   return x.value() > 0;
   3889 }
   3890 
   3891 // A subroutine used by the following test.
   3892 void TestAssertNonPositive() {
   3893   Uncopyable y(-1);
   3894   ASSERT_PRED1(IsPositiveUncopyable, y);
   3895 }
   3896 // A subroutine used by the following test.
   3897 void TestAssertEqualsUncopyable() {
   3898   Uncopyable x(5);
   3899   Uncopyable y(-1);
   3900   ASSERT_EQ(x, y);
   3901 }
   3902 
   3903 // Tests that uncopyable objects can be used in assertions.
   3904 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3905   Uncopyable x(5);
   3906   ASSERT_PRED1(IsPositiveUncopyable, x);
   3907   ASSERT_EQ(x, x);
   3908   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3909     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3910   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   3911     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3912 }
   3913 
   3914 // Tests that uncopyable objects can be used in expects.
   3915 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   3916   Uncopyable x(5);
   3917   EXPECT_PRED1(IsPositiveUncopyable, x);
   3918   Uncopyable y(-1);
   3919   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   3920     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3921   EXPECT_EQ(x, x);
   3922   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   3923     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3924 }
   3925 
   3926 enum NamedEnum {
   3927   kE1 = 0,
   3928   kE2 = 1
   3929 };
   3930 
   3931 TEST(AssertionTest, NamedEnum) {
   3932   EXPECT_EQ(kE1, kE1);
   3933   EXPECT_LT(kE1, kE2);
   3934   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
   3935   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
   3936 }
   3937 
   3938 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   3939 // anonymous enums in assertions.  Therefore the following test is not
   3940 // done on Mac.
   3941 // Sun Studio and HP aCC also reject this code.
   3942 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
   3943 
   3944 // Tests using assertions with anonymous enums.
   3945 enum {
   3946   kCaseA = -1,
   3947 
   3948 # if GTEST_OS_LINUX
   3949 
   3950   // We want to test the case where the size of the anonymous enum is
   3951   // larger than sizeof(int), to make sure our implementation of the
   3952   // assertions doesn't truncate the enums.  However, MSVC
   3953   // (incorrectly) doesn't allow an enum value to exceed the range of
   3954   // an int, so this has to be conditionally compiled.
   3955   //
   3956   // On Linux, kCaseB and kCaseA have the same value when truncated to
   3957   // int size.  We want to test whether this will confuse the
   3958   // assertions.
   3959   kCaseB = testing::internal::kMaxBiggestInt,
   3960 
   3961 # else
   3962 
   3963   kCaseB = INT_MAX,
   3964 
   3965 # endif  // GTEST_OS_LINUX
   3966 
   3967   kCaseC = 42
   3968 };
   3969 
   3970 TEST(AssertionTest, AnonymousEnum) {
   3971 # if GTEST_OS_LINUX
   3972 
   3973   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
   3974 
   3975 # endif  // GTEST_OS_LINUX
   3976 
   3977   EXPECT_EQ(kCaseA, kCaseA);
   3978   EXPECT_NE(kCaseA, kCaseB);
   3979   EXPECT_LT(kCaseA, kCaseB);
   3980   EXPECT_LE(kCaseA, kCaseB);
   3981   EXPECT_GT(kCaseB, kCaseA);
   3982   EXPECT_GE(kCaseA, kCaseA);
   3983   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
   3984                           "(kCaseA) >= (kCaseB)");
   3985   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
   3986                           "-1 vs 42");
   3987 
   3988   ASSERT_EQ(kCaseA, kCaseA);
   3989   ASSERT_NE(kCaseA, kCaseB);
   3990   ASSERT_LT(kCaseA, kCaseB);
   3991   ASSERT_LE(kCaseA, kCaseB);
   3992   ASSERT_GT(kCaseB, kCaseA);
   3993   ASSERT_GE(kCaseA, kCaseA);
   3994 
   3995 # ifndef __BORLANDC__
   3996 
   3997   // ICE's in C++Builder.
   3998   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
   3999                        "Value of: kCaseB");
   4000   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   4001                        "Actual: 42");
   4002 # endif
   4003 
   4004   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   4005                        "Which is: -1");
   4006 }
   4007 
   4008 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   4009 
   4010 #if GTEST_OS_WINDOWS
   4011 
   4012 static HRESULT UnexpectedHRESULTFailure() {
   4013   return E_UNEXPECTED;
   4014 }
   4015 
   4016 static HRESULT OkHRESULTSuccess() {
   4017   return S_OK;
   4018 }
   4019 
   4020 static HRESULT FalseHRESULTSuccess() {
   4021   return S_FALSE;
   4022 }
   4023 
   4024 // HRESULT assertion tests test both zero and non-zero
   4025 // success codes as well as failure message for each.
   4026 //
   4027 // Windows CE doesn't support message texts.
   4028 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   4029   EXPECT_HRESULT_SUCCEEDED(S_OK);
   4030   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   4031 
   4032   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   4033     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   4034     "  Actual: 0x8000FFFF");
   4035 }
   4036 
   4037 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   4038   ASSERT_HRESULT_SUCCEEDED(S_OK);
   4039   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   4040 
   4041   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   4042     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   4043     "  Actual: 0x8000FFFF");
   4044 }
   4045 
   4046 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   4047   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   4048 
   4049   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   4050     "Expected: (OkHRESULTSuccess()) fails.\n"
   4051     "  Actual: 0x00000000");
   4052   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   4053     "Expected: (FalseHRESULTSuccess()) fails.\n"
   4054     "  Actual: 0x00000001");
   4055 }
   4056 
   4057 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   4058   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   4059 
   4060 # ifndef __BORLANDC__
   4061 
   4062   // ICE's in C++Builder 2007 and 2009.
   4063   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   4064     "Expected: (OkHRESULTSuccess()) fails.\n"
   4065     "  Actual: 0x00000000");
   4066 # endif
   4067 
   4068   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   4069     "Expected: (FalseHRESULTSuccess()) fails.\n"
   4070     "  Actual: 0x00000001");
   4071 }
   4072 
   4073 // Tests that streaming to the HRESULT macros works.
   4074 TEST(HRESULTAssertionTest, Streaming) {
   4075   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4076   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4077   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4078   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4079 
   4080   EXPECT_NONFATAL_FAILURE(
   4081       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4082       "expected failure");
   4083 
   4084 # ifndef __BORLANDC__
   4085 
   4086   // ICE's in C++Builder 2007 and 2009.
   4087   EXPECT_FATAL_FAILURE(
   4088       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4089       "expected failure");
   4090 # endif
   4091 
   4092   EXPECT_NONFATAL_FAILURE(
   4093       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   4094       "expected failure");
   4095 
   4096   EXPECT_FATAL_FAILURE(
   4097       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   4098       "expected failure");
   4099 }
   4100 
   4101 #endif  // GTEST_OS_WINDOWS
   4102 
   4103 #ifdef __BORLANDC__
   4104 // Silences warnings: "Condition is always true", "Unreachable code"
   4105 # pragma option push -w-ccc -w-rch
   4106 #endif
   4107 
   4108 // Tests that the assertion macros behave like single statements.
   4109 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   4110   if (AlwaysFalse())
   4111     ASSERT_TRUE(false) << "This should never be executed; "
   4112                           "It's a compilation test only.";
   4113 
   4114   if (AlwaysTrue())
   4115     EXPECT_FALSE(false);
   4116   else
   4117     ;  // NOLINT
   4118 
   4119   if (AlwaysFalse())
   4120     ASSERT_LT(1, 3);
   4121 
   4122   if (AlwaysFalse())
   4123     ;  // NOLINT
   4124   else
   4125     EXPECT_GT(3, 2) << "";
   4126 }
   4127 
   4128 #if GTEST_HAS_EXCEPTIONS
   4129 // Tests that the compiler will not complain about unreachable code in the
   4130 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   4131 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   4132   int n = 0;
   4133 
   4134   EXPECT_THROW(throw 1, int);
   4135   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   4136   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   4137   EXPECT_NO_THROW(n++);
   4138   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   4139   EXPECT_ANY_THROW(throw 1);
   4140   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   4141 }
   4142 
   4143 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   4144   if (AlwaysFalse())
   4145     EXPECT_THROW(ThrowNothing(), bool);
   4146 
   4147   if (AlwaysTrue())
   4148     EXPECT_THROW(ThrowAnInteger(), int);
   4149   else
   4150     ;  // NOLINT
   4151 
   4152   if (AlwaysFalse())
   4153     EXPECT_NO_THROW(ThrowAnInteger());
   4154 
   4155   if (AlwaysTrue())
   4156     EXPECT_NO_THROW(ThrowNothing());
   4157   else
   4158     ;  // NOLINT
   4159 
   4160   if (AlwaysFalse())
   4161     EXPECT_ANY_THROW(ThrowNothing());
   4162 
   4163   if (AlwaysTrue())
   4164     EXPECT_ANY_THROW(ThrowAnInteger());
   4165   else
   4166     ;  // NOLINT
   4167 }
   4168 #endif  // GTEST_HAS_EXCEPTIONS
   4169 
   4170 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   4171   if (AlwaysFalse())
   4172     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   4173                                     << "It's a compilation test only.";
   4174   else
   4175     ;  // NOLINT
   4176 
   4177   if (AlwaysFalse())
   4178     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   4179   else
   4180     ;  // NOLINT
   4181 
   4182   if (AlwaysTrue())
   4183     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   4184   else
   4185     ;  // NOLINT
   4186 
   4187   if (AlwaysFalse())
   4188     ;  // NOLINT
   4189   else
   4190     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   4191 }
   4192 
   4193 // Tests that the assertion macros work well with switch statements.
   4194 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   4195   switch (0) {
   4196     case 1:
   4197       break;
   4198     default:
   4199       ASSERT_TRUE(true);
   4200   }
   4201 
   4202   switch (0)
   4203     case 0:
   4204       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   4205 
   4206   // Binary assertions are implemented using a different code path
   4207   // than the Boolean assertions.  Hence we test them separately.
   4208   switch (0) {
   4209     case 1:
   4210     default:
   4211       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   4212   }
   4213 
   4214   switch (0)
   4215     case 0:
   4216       EXPECT_NE(1, 2);
   4217 }
   4218 
   4219 #if GTEST_HAS_EXCEPTIONS
   4220 
   4221 void ThrowAString() {
   4222     throw "String";
   4223 }
   4224 
   4225 // Test that the exception assertion macros compile and work with const
   4226 // type qualifier.
   4227 TEST(AssertionSyntaxTest, WorksWithConst) {
   4228     ASSERT_THROW(ThrowAString(), const char*);
   4229 
   4230     EXPECT_THROW(ThrowAString(), const char*);
   4231 }
   4232 
   4233 #endif  // GTEST_HAS_EXCEPTIONS
   4234 
   4235 }  // namespace
   4236 
   4237 namespace testing {
   4238 
   4239 // Tests that Google Test tracks SUCCEED*.
   4240 TEST(SuccessfulAssertionTest, SUCCEED) {
   4241   SUCCEED();
   4242   SUCCEED() << "OK";
   4243   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   4244 }
   4245 
   4246 // Tests that Google Test doesn't track successful EXPECT_*.
   4247 TEST(SuccessfulAssertionTest, EXPECT) {
   4248   EXPECT_TRUE(true);
   4249   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4250 }
   4251 
   4252 // Tests that Google Test doesn't track successful EXPECT_STR*.
   4253 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   4254   EXPECT_STREQ("", "");
   4255   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4256 }
   4257 
   4258 // Tests that Google Test doesn't track successful ASSERT_*.
   4259 TEST(SuccessfulAssertionTest, ASSERT) {
   4260   ASSERT_TRUE(true);
   4261   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4262 }
   4263 
   4264 // Tests that Google Test doesn't track successful ASSERT_STR*.
   4265 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   4266   ASSERT_STREQ("", "");
   4267   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4268 }
   4269 
   4270 }  // namespace testing
   4271 
   4272 namespace {
   4273 
   4274 // Tests the message streaming variation of assertions.
   4275 
   4276 TEST(AssertionWithMessageTest, EXPECT) {
   4277   EXPECT_EQ(1, 1) << "This should succeed.";
   4278   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
   4279                           "Expected failure #1");
   4280   EXPECT_LE(1, 2) << "This should succeed.";
   4281   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
   4282                           "Expected failure #2.");
   4283   EXPECT_GE(1, 0) << "This should succeed.";
   4284   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
   4285                           "Expected failure #3.");
   4286 
   4287   EXPECT_STREQ("1", "1") << "This should succeed.";
   4288   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
   4289                           "Expected failure #4.");
   4290   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
   4291   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
   4292                           "Expected failure #5.");
   4293 
   4294   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
   4295   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
   4296                           "Expected failure #6.");
   4297   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
   4298 }
   4299 
   4300 TEST(AssertionWithMessageTest, ASSERT) {
   4301   ASSERT_EQ(1, 1) << "This should succeed.";
   4302   ASSERT_NE(1, 2) << "This should succeed.";
   4303   ASSERT_LE(1, 2) << "This should succeed.";
   4304   ASSERT_LT(1, 2) << "This should succeed.";
   4305   ASSERT_GE(1, 0) << "This should succeed.";
   4306   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
   4307                        "Expected failure.");
   4308 }
   4309 
   4310 TEST(AssertionWithMessageTest, ASSERT_STR) {
   4311   ASSERT_STREQ("1", "1") << "This should succeed.";
   4312   ASSERT_STRNE("1", "2") << "This should succeed.";
   4313   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
   4314   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
   4315                        "Expected failure.");
   4316 }
   4317 
   4318 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
   4319   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
   4320   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
   4321   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
   4322                        "Expect failure.");
   4323   // To work around a bug in gcc 2.95.0, there is intentionally no
   4324   // space after the first comma in the previous statement.
   4325 }
   4326 
   4327 // Tests using ASSERT_FALSE with a streamed message.
   4328 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
   4329   ASSERT_FALSE(false) << "This shouldn't fail.";
   4330   EXPECT_FATAL_FAILURE({  // NOLINT
   4331     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
   4332                        << " evaluates to " << true;
   4333   }, "Expected failure");
   4334 }
   4335 
   4336 // Tests using FAIL with a streamed message.
   4337 TEST(AssertionWithMessageTest, FAIL) {
   4338   EXPECT_FATAL_FAILURE(FAIL() << 0,
   4339                        "0");
   4340 }
   4341 
   4342 // Tests using SUCCEED with a streamed message.
   4343 TEST(AssertionWithMessageTest, SUCCEED) {
   4344   SUCCEED() << "Success == " << 1;
   4345 }
   4346 
   4347 // Tests using ASSERT_TRUE with a streamed message.
   4348 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
   4349   ASSERT_TRUE(true) << "This should succeed.";
   4350   ASSERT_TRUE(true) << true;
   4351   EXPECT_FATAL_FAILURE({  // NOLINT
   4352     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
   4353                        << static_cast<char *>(NULL);
   4354   }, "(null)(null)");
   4355 }
   4356 
   4357 #if GTEST_OS_WINDOWS
   4358 // Tests using wide strings in assertion messages.
   4359 TEST(AssertionWithMessageTest, WideStringMessage) {
   4360   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4361     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
   4362   }, "This failure is expected.");
   4363   EXPECT_FATAL_FAILURE({  // NOLINT
   4364     ASSERT_EQ(1, 2) << "This failure is "
   4365                     << L"expected too.\x8120";
   4366   }, "This failure is expected too.");
   4367 }
   4368 #endif  // GTEST_OS_WINDOWS
   4369 
   4370 // Tests EXPECT_TRUE.
   4371 TEST(ExpectTest, EXPECT_TRUE) {
   4372   EXPECT_TRUE(true) << "Intentional success";
   4373   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
   4374                           "Intentional failure #1.");
   4375   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
   4376                           "Intentional failure #2.");
   4377   EXPECT_TRUE(2 > 1);  // NOLINT
   4378   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4379                           "Value of: 2 < 1\n"
   4380                           "  Actual: false\n"
   4381                           "Expected: true");
   4382   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4383                           "2 > 3");
   4384 }
   4385 
   4386 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
   4387 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
   4388   EXPECT_TRUE(ResultIsEven(2));
   4389   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
   4390                           "Value of: ResultIsEven(3)\n"
   4391                           "  Actual: false (3 is odd)\n"
   4392                           "Expected: true");
   4393   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
   4394   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
   4395                           "Value of: ResultIsEvenNoExplanation(3)\n"
   4396                           "  Actual: false (3 is odd)\n"
   4397                           "Expected: true");
   4398 }
   4399 
   4400 // Tests EXPECT_FALSE with a streamed message.
   4401 TEST(ExpectTest, EXPECT_FALSE) {
   4402   EXPECT_FALSE(2 < 1);  // NOLINT
   4403   EXPECT_FALSE(false) << "Intentional success";
   4404   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
   4405                           "Intentional failure #1.");
   4406   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
   4407                           "Intentional failure #2.");
   4408   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4409                           "Value of: 2 > 1\n"
   4410                           "  Actual: true\n"
   4411                           "Expected: false");
   4412   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4413                           "2 < 3");
   4414 }
   4415 
   4416 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
   4417 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
   4418   EXPECT_FALSE(ResultIsEven(3));
   4419   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
   4420                           "Value of: ResultIsEven(2)\n"
   4421                           "  Actual: true (2 is even)\n"
   4422                           "Expected: false");
   4423   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
   4424   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
   4425                           "Value of: ResultIsEvenNoExplanation(2)\n"
   4426                           "  Actual: true\n"
   4427                           "Expected: false");
   4428 }
   4429 
   4430 #ifdef __BORLANDC__
   4431 // Restores warnings after previous "#pragma option push" supressed them
   4432 # pragma option pop
   4433 #endif
   4434 
   4435 // Tests EXPECT_EQ.
   4436 TEST(ExpectTest, EXPECT_EQ) {
   4437   EXPECT_EQ(5, 2 + 3);
   4438   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4439                           "Value of: 2*3\n"
   4440                           "  Actual: 6\n"
   4441                           "Expected: 5");
   4442   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4443                           "2 - 3");
   4444 }
   4445 
   4446 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4447 // sure that the specialization we did for integer and anonymous enums
   4448 // isn't used for double arguments.
   4449 TEST(ExpectTest, EXPECT_EQ_Double) {
   4450   // A success.
   4451   EXPECT_EQ(5.6, 5.6);
   4452 
   4453   // A failure.
   4454   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4455                           "5.1");
   4456 }
   4457 
   4458 #if GTEST_CAN_COMPARE_NULL
   4459 // Tests EXPECT_EQ(NULL, pointer).
   4460 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4461   // A success.
   4462   const char* p = NULL;
   4463   // Some older GCC versions may issue a spurious warning in this or the next
   4464   // assertion statement. This warning should not be suppressed with
   4465   // static_cast since the test verifies the ability to use bare NULL as the
   4466   // expected parameter to the macro.
   4467   EXPECT_EQ(NULL, p);
   4468 
   4469   // A failure.
   4470   int n = 0;
   4471   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4472                           "Value of: &n\n");
   4473 }
   4474 #endif  // GTEST_CAN_COMPARE_NULL
   4475 
   4476 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4477 // treated as a null pointer by the compiler, we need to make sure
   4478 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4479 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4480 TEST(ExpectTest, EXPECT_EQ_0) {
   4481   int n = 0;
   4482 
   4483   // A success.
   4484   EXPECT_EQ(0, n);
   4485 
   4486   // A failure.
   4487   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4488                           "Expected: 0");
   4489 }
   4490 
   4491 // Tests EXPECT_NE.
   4492 TEST(ExpectTest, EXPECT_NE) {
   4493   EXPECT_NE(6, 7);
   4494 
   4495   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4496                           "Expected: ('a') != ('a'), "
   4497                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4498   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4499                           "2");
   4500   char* const p0 = NULL;
   4501   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4502                           "p0");
   4503   // Only way to get the Nokia compiler to compile the cast
   4504   // is to have a separate void* variable first. Putting
   4505   // the two casts on the same line doesn't work, neither does
   4506   // a direct C-style to char*.
   4507   void* pv1 = (void*)0x1234;  // NOLINT
   4508   char* const p1 = reinterpret_cast<char*>(pv1);
   4509   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4510                           "p1");
   4511 }
   4512 
   4513 // Tests EXPECT_LE.
   4514 TEST(ExpectTest, EXPECT_LE) {
   4515   EXPECT_LE(2, 3);
   4516   EXPECT_LE(2, 2);
   4517   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4518                           "Expected: (2) <= (0), actual: 2 vs 0");
   4519   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4520                           "(1.1) <= (0.9)");
   4521 }
   4522 
   4523 // Tests EXPECT_LT.
   4524 TEST(ExpectTest, EXPECT_LT) {
   4525   EXPECT_LT(2, 3);
   4526   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4527                           "Expected: (2) < (2), actual: 2 vs 2");
   4528   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4529                           "(2) < (1)");
   4530 }
   4531 
   4532 // Tests EXPECT_GE.
   4533 TEST(ExpectTest, EXPECT_GE) {
   4534   EXPECT_GE(2, 1);
   4535   EXPECT_GE(2, 2);
   4536   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4537                           "Expected: (2) >= (3), actual: 2 vs 3");
   4538   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4539                           "(0.9) >= (1.1)");
   4540 }
   4541 
   4542 // Tests EXPECT_GT.
   4543 TEST(ExpectTest, EXPECT_GT) {
   4544   EXPECT_GT(2, 1);
   4545   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4546                           "Expected: (2) > (2), actual: 2 vs 2");
   4547   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4548                           "(2) > (3)");
   4549 }
   4550 
   4551 #if GTEST_HAS_EXCEPTIONS
   4552 
   4553 // Tests EXPECT_THROW.
   4554 TEST(ExpectTest, EXPECT_THROW) {
   4555   EXPECT_THROW(ThrowAnInteger(), int);
   4556   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4557                           "Expected: ThrowAnInteger() throws an exception of "
   4558                           "type bool.\n  Actual: it throws a different type.");
   4559   EXPECT_NONFATAL_FAILURE(
   4560       EXPECT_THROW(ThrowNothing(), bool),
   4561       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4562       "  Actual: it throws nothing.");
   4563 }
   4564 
   4565 // Tests EXPECT_NO_THROW.
   4566 TEST(ExpectTest, EXPECT_NO_THROW) {
   4567   EXPECT_NO_THROW(ThrowNothing());
   4568   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4569                           "Expected: ThrowAnInteger() doesn't throw an "
   4570                           "exception.\n  Actual: it throws.");
   4571 }
   4572 
   4573 // Tests EXPECT_ANY_THROW.
   4574 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4575   EXPECT_ANY_THROW(ThrowAnInteger());
   4576   EXPECT_NONFATAL_FAILURE(
   4577       EXPECT_ANY_THROW(ThrowNothing()),
   4578       "Expected: ThrowNothing() throws an exception.\n"
   4579       "  Actual: it doesn't.");
   4580 }
   4581 
   4582 #endif  // GTEST_HAS_EXCEPTIONS
   4583 
   4584 // Make sure we deal with the precedence of <<.
   4585 TEST(ExpectTest, ExpectPrecedence) {
   4586   EXPECT_EQ(1 < 2, true);
   4587   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4588                           "Value of: true && false");
   4589 }
   4590 
   4591 
   4592 // Tests the StreamableToString() function.
   4593 
   4594 // Tests using StreamableToString() on a scalar.
   4595 TEST(StreamableToStringTest, Scalar) {
   4596   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4597 }
   4598 
   4599 // Tests using StreamableToString() on a non-char pointer.
   4600 TEST(StreamableToStringTest, Pointer) {
   4601   int n = 0;
   4602   int* p = &n;
   4603   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4604 }
   4605 
   4606 // Tests using StreamableToString() on a NULL non-char pointer.
   4607 TEST(StreamableToStringTest, NullPointer) {
   4608   int* p = NULL;
   4609   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4610 }
   4611 
   4612 // Tests using StreamableToString() on a C string.
   4613 TEST(StreamableToStringTest, CString) {
   4614   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4615 }
   4616 
   4617 // Tests using StreamableToString() on a NULL C string.
   4618 TEST(StreamableToStringTest, NullCString) {
   4619   char* p = NULL;
   4620   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4621 }
   4622 
   4623 // Tests using streamable values as assertion messages.
   4624 
   4625 // Tests using std::string as an assertion message.
   4626 TEST(StreamableTest, string) {
   4627   static const std::string str(
   4628       "This failure message is a std::string, and is expected.");
   4629   EXPECT_FATAL_FAILURE(FAIL() << str,
   4630                        str.c_str());
   4631 }
   4632 
   4633 // Tests that we can output strings containing embedded NULs.
   4634 // Limited to Linux because we can only do this with std::string's.
   4635 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4636   static const char char_array_with_nul[] =
   4637       "Here's a NUL\0 and some more string";
   4638   static const std::string string_with_nul(char_array_with_nul,
   4639                                            sizeof(char_array_with_nul)
   4640                                            - 1);  // drops the trailing NUL
   4641   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4642                        "Here's a NUL\\0 and some more string");
   4643 }
   4644 
   4645 // Tests that we can output a NUL char.
   4646 TEST(StreamableTest, NULChar) {
   4647   EXPECT_FATAL_FAILURE({  // NOLINT
   4648     FAIL() << "A NUL" << '\0' << " and some more string";
   4649   }, "A NUL\\0 and some more string");
   4650 }
   4651 
   4652 // Tests using int as an assertion message.
   4653 TEST(StreamableTest, int) {
   4654   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4655                        "900913");
   4656 }
   4657 
   4658 // Tests using NULL char pointer as an assertion message.
   4659 //
   4660 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4661 // implemented a workaround (substituting "(null)" for NULL).  This
   4662 // tests whether the workaround works.
   4663 TEST(StreamableTest, NullCharPtr) {
   4664   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4665                        "(null)");
   4666 }
   4667 
   4668 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4669 // streamed to testing::Message.
   4670 TEST(StreamableTest, BasicIoManip) {
   4671   EXPECT_FATAL_FAILURE({  // NOLINT
   4672     FAIL() << "Line 1." << std::endl
   4673            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4674   }, "Line 1.\nA NUL char \\0 in line 2.");
   4675 }
   4676 
   4677 // Tests the macros that haven't been covered so far.
   4678 
   4679 void AddFailureHelper(bool* aborted) {
   4680   *aborted = true;
   4681   ADD_FAILURE() << "Intentional failure.";
   4682   *aborted = false;
   4683 }
   4684 
   4685 // Tests ADD_FAILURE.
   4686 TEST(MacroTest, ADD_FAILURE) {
   4687   bool aborted = true;
   4688   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4689                           "Intentional failure.");
   4690   EXPECT_FALSE(aborted);
   4691 }
   4692 
   4693 // Tests ADD_FAILURE_AT.
   4694 TEST(MacroTest, ADD_FAILURE_AT) {
   4695   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
   4696   // the failure message contains the user-streamed part.
   4697   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
   4698 
   4699   // Verifies that the user-streamed part is optional.
   4700   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
   4701 
   4702   // Unfortunately, we cannot verify that the failure message contains
   4703   // the right file path and line number the same way, as
   4704   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
   4705   // line number.  Instead, we do that in gtest_output_test_.cc.
   4706 }
   4707 
   4708 // Tests FAIL.
   4709 TEST(MacroTest, FAIL) {
   4710   EXPECT_FATAL_FAILURE(FAIL(),
   4711                        "Failed");
   4712   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4713                        "Intentional failure.");
   4714 }
   4715 
   4716 // Tests SUCCEED
   4717 TEST(MacroTest, SUCCEED) {
   4718   SUCCEED();
   4719   SUCCEED() << "Explicit success.";
   4720 }
   4721 
   4722 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4723 //
   4724 // These tests fail *intentionally*, s.t. the failure messages can be
   4725 // generated and tested.
   4726 //
   4727 // We have different tests for different argument types.
   4728 
   4729 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4730 TEST(EqAssertionTest, Bool) {
   4731   EXPECT_EQ(true,  true);
   4732   EXPECT_FATAL_FAILURE({
   4733       bool false_value = false;
   4734       ASSERT_EQ(false_value, true);
   4735     }, "Value of: true");
   4736 }
   4737 
   4738 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4739 TEST(EqAssertionTest, Int) {
   4740   ASSERT_EQ(32, 32);
   4741   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4742                           "33");
   4743 }
   4744 
   4745 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4746 TEST(EqAssertionTest, Time_T) {
   4747   EXPECT_EQ(static_cast<time_t>(0),
   4748             static_cast<time_t>(0));
   4749   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4750                                  static_cast<time_t>(1234)),
   4751                        "1234");
   4752 }
   4753 
   4754 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4755 TEST(EqAssertionTest, Char) {
   4756   ASSERT_EQ('z', 'z');
   4757   const char ch = 'b';
   4758   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4759                           "ch");
   4760   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4761                           "ch");
   4762 }
   4763 
   4764 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4765 TEST(EqAssertionTest, WideChar) {
   4766   EXPECT_EQ(L'b', L'b');
   4767 
   4768   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4769                           "Value of: L'x'\n"
   4770                           "  Actual: L'x' (120, 0x78)\n"
   4771                           "Expected: L'\0'\n"
   4772                           "Which is: L'\0' (0, 0x0)");
   4773 
   4774   static wchar_t wchar;
   4775   wchar = L'b';
   4776   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4777                           "wchar");
   4778   wchar = 0x8119;
   4779   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
   4780                        "Value of: wchar");
   4781 }
   4782 
   4783 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4784 TEST(EqAssertionTest, StdString) {
   4785   // Compares a const char* to an std::string that has identical
   4786   // content.
   4787   ASSERT_EQ("Test", ::std::string("Test"));
   4788 
   4789   // Compares two identical std::strings.
   4790   static const ::std::string str1("A * in the middle");
   4791   static const ::std::string str2(str1);
   4792   EXPECT_EQ(str1, str2);
   4793 
   4794   // Compares a const char* to an std::string that has different
   4795   // content
   4796   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4797                           "::std::string(\"test\")");
   4798 
   4799   // Compares an std::string to a char* that has different content.
   4800   char* const p1 = const_cast<char*>("foo");
   4801   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4802                           "p1");
   4803 
   4804   // Compares two std::strings that have different contents, one of
   4805   // which having a NUL character in the middle.  This should fail.
   4806   static ::std::string str3(str1);
   4807   str3.at(2) = '\0';
   4808   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4809                        "Value of: str3\n"
   4810                        "  Actual: \"A \\0 in the middle\"");
   4811 }
   4812 
   4813 #if GTEST_HAS_STD_WSTRING
   4814 
   4815 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4816 TEST(EqAssertionTest, StdWideString) {
   4817   // Compares two identical std::wstrings.
   4818   const ::std::wstring wstr1(L"A * in the middle");
   4819   const ::std::wstring wstr2(wstr1);
   4820   ASSERT_EQ(wstr1, wstr2);
   4821 
   4822   // Compares an std::wstring to a const wchar_t* that has identical
   4823   // content.
   4824   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4825   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
   4826 
   4827   // Compares an std::wstring to a const wchar_t* that has different
   4828   // content.
   4829   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4830   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4831     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
   4832   }, "kTestX8120");
   4833 
   4834   // Compares two std::wstrings that have different contents, one of
   4835   // which having a NUL character in the middle.
   4836   ::std::wstring wstr3(wstr1);
   4837   wstr3.at(2) = L'\0';
   4838   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4839                           "wstr3");
   4840 
   4841   // Compares a wchar_t* to an std::wstring that has different
   4842   // content.
   4843   EXPECT_FATAL_FAILURE({  // NOLINT
   4844     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4845   }, "");
   4846 }
   4847 
   4848 #endif  // GTEST_HAS_STD_WSTRING
   4849 
   4850 #if GTEST_HAS_GLOBAL_STRING
   4851 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4852 TEST(EqAssertionTest, GlobalString) {
   4853   // Compares a const char* to a ::string that has identical content.
   4854   EXPECT_EQ("Test", ::string("Test"));
   4855 
   4856   // Compares two identical ::strings.
   4857   const ::string str1("A * in the middle");
   4858   const ::string str2(str1);
   4859   ASSERT_EQ(str1, str2);
   4860 
   4861   // Compares a ::string to a const char* that has different content.
   4862   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4863                           "test");
   4864 
   4865   // Compares two ::strings that have different contents, one of which
   4866   // having a NUL character in the middle.
   4867   ::string str3(str1);
   4868   str3.at(2) = '\0';
   4869   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4870                           "str3");
   4871 
   4872   // Compares a ::string to a char* that has different content.
   4873   EXPECT_FATAL_FAILURE({  // NOLINT
   4874     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4875   }, "");
   4876 }
   4877 
   4878 #endif  // GTEST_HAS_GLOBAL_STRING
   4879 
   4880 #if GTEST_HAS_GLOBAL_WSTRING
   4881 
   4882 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4883 TEST(EqAssertionTest, GlobalWideString) {
   4884   // Compares two identical ::wstrings.
   4885   static const ::wstring wstr1(L"A * in the middle");
   4886   static const ::wstring wstr2(wstr1);
   4887   EXPECT_EQ(wstr1, wstr2);
   4888 
   4889   // Compares a const wchar_t* to a ::wstring that has identical content.
   4890   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4891   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
   4892 
   4893   // Compares a const wchar_t* to a ::wstring that has different
   4894   // content.
   4895   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4896   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4897     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
   4898   }, "Test\\x8119");
   4899 
   4900   // Compares a wchar_t* to a ::wstring that has different content.
   4901   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4902   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4903                           "bar");
   4904 
   4905   // Compares two ::wstrings that have different contents, one of which
   4906   // having a NUL character in the middle.
   4907   static ::wstring wstr3;
   4908   wstr3 = wstr1;
   4909   wstr3.at(2) = L'\0';
   4910   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4911                        "wstr3");
   4912 }
   4913 
   4914 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4915 
   4916 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4917 TEST(EqAssertionTest, CharPointer) {
   4918   char* const p0 = NULL;
   4919   // Only way to get the Nokia compiler to compile the cast
   4920   // is to have a separate void* variable first. Putting
   4921   // the two casts on the same line doesn't work, neither does
   4922   // a direct C-style to char*.
   4923   void* pv1 = (void*)0x1234;  // NOLINT
   4924   void* pv2 = (void*)0xABC0;  // NOLINT
   4925   char* const p1 = reinterpret_cast<char*>(pv1);
   4926   char* const p2 = reinterpret_cast<char*>(pv2);
   4927   ASSERT_EQ(p1, p1);
   4928 
   4929   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4930                           "Value of: p2");
   4931   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4932                           "p2");
   4933   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4934                                  reinterpret_cast<char*>(0xABC0)),
   4935                        "ABC0");
   4936 }
   4937 
   4938 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4939 TEST(EqAssertionTest, WideCharPointer) {
   4940   wchar_t* const p0 = NULL;
   4941   // Only way to get the Nokia compiler to compile the cast
   4942   // is to have a separate void* variable first. Putting
   4943   // the two casts on the same line doesn't work, neither does
   4944   // a direct C-style to char*.
   4945   void* pv1 = (void*)0x1234;  // NOLINT
   4946   void* pv2 = (void*)0xABC0;  // NOLINT
   4947   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4948   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4949   EXPECT_EQ(p0, p0);
   4950 
   4951   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4952                           "Value of: p2");
   4953   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4954                           "p2");
   4955   void* pv3 = (void*)0x1234;  // NOLINT
   4956   void* pv4 = (void*)0xABC0;  // NOLINT
   4957   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4958   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4959   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4960                           "p4");
   4961 }
   4962 
   4963 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4964 TEST(EqAssertionTest, OtherPointer) {
   4965   ASSERT_EQ(static_cast<const int*>(NULL),
   4966             static_cast<const int*>(NULL));
   4967   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4968                                  reinterpret_cast<const int*>(0x1234)),
   4969                        "0x1234");
   4970 }
   4971 
   4972 // A class that supports binary comparison operators but not streaming.
   4973 class UnprintableChar {
   4974  public:
   4975   explicit UnprintableChar(char ch) : char_(ch) {}
   4976 
   4977   bool operator==(const UnprintableChar& rhs) const {
   4978     return char_ == rhs.char_;
   4979   }
   4980   bool operator!=(const UnprintableChar& rhs) const {
   4981     return char_ != rhs.char_;
   4982   }
   4983   bool operator<(const UnprintableChar& rhs) const {
   4984     return char_ < rhs.char_;
   4985   }
   4986   bool operator<=(const UnprintableChar& rhs) const {
   4987     return char_ <= rhs.char_;
   4988   }
   4989   bool operator>(const UnprintableChar& rhs) const {
   4990     return char_ > rhs.char_;
   4991   }
   4992   bool operator>=(const UnprintableChar& rhs) const {
   4993     return char_ >= rhs.char_;
   4994   }
   4995 
   4996  private:
   4997   char char_;
   4998 };
   4999 
   5000 // Tests that ASSERT_EQ() and friends don't require the arguments to
   5001 // be printable.
   5002 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
   5003   const UnprintableChar x('x'), y('y');
   5004   ASSERT_EQ(x, x);
   5005   EXPECT_NE(x, y);
   5006   ASSERT_LT(x, y);
   5007   EXPECT_LE(x, y);
   5008   ASSERT_GT(y, x);
   5009   EXPECT_GE(x, x);
   5010 
   5011   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
   5012   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
   5013   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
   5014   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
   5015   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
   5016 
   5017   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
   5018   // variables, so we have to write UnprintableChar('x') instead of x.
   5019 #ifndef __BORLANDC__
   5020   // ICE's in C++Builder.
   5021   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
   5022                        "1-byte object <78>");
   5023   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   5024                        "1-byte object <78>");
   5025 #endif
   5026   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   5027                        "1-byte object <79>");
   5028   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   5029                        "1-byte object <78>");
   5030   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   5031                        "1-byte object <79>");
   5032 }
   5033 
   5034 // Tests the FRIEND_TEST macro.
   5035 
   5036 // This class has a private member we want to test.  We will test it
   5037 // both in a TEST and in a TEST_F.
   5038 class Foo {
   5039  public:
   5040   Foo() {}
   5041 
   5042  private:
   5043   int Bar() const { return 1; }
   5044 
   5045   // Declares the friend tests that can access the private member
   5046   // Bar().
   5047   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   5048   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   5049 };
   5050 
   5051 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   5052 // class's private members.  This should compile.
   5053 TEST(FRIEND_TEST_Test, TEST) {
   5054   ASSERT_EQ(1, Foo().Bar());
   5055 }
   5056 
   5057 // The fixture needed to test using FRIEND_TEST with TEST_F.
   5058 class FRIEND_TEST_Test2 : public Test {
   5059  protected:
   5060   Foo foo;
   5061 };
   5062 
   5063 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   5064 // class's private members.  This should compile.
   5065 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   5066   ASSERT_EQ(1, foo.Bar());
   5067 }
   5068 
   5069 // Tests the life cycle of Test objects.
   5070 
   5071 // The test fixture for testing the life cycle of Test objects.
   5072 //
   5073 // This class counts the number of live test objects that uses this
   5074 // fixture.
   5075 class TestLifeCycleTest : public Test {
   5076  protected:
   5077   // Constructor.  Increments the number of test objects that uses
   5078   // this fixture.
   5079   TestLifeCycleTest() { count_++; }
   5080 
   5081   // Destructor.  Decrements the number of test objects that uses this
   5082   // fixture.
   5083   ~TestLifeCycleTest() { count_--; }
   5084 
   5085   // Returns the number of live test objects that uses this fixture.
   5086   int count() const { return count_; }
   5087 
   5088  private:
   5089   static int count_;
   5090 };
   5091 
   5092 int TestLifeCycleTest::count_ = 0;
   5093 
   5094 // Tests the life cycle of test objects.
   5095 TEST_F(TestLifeCycleTest, Test1) {
   5096   // There should be only one test object in this test case that's
   5097   // currently alive.
   5098   ASSERT_EQ(1, count());
   5099 }
   5100 
   5101 // Tests the life cycle of test objects.
   5102 TEST_F(TestLifeCycleTest, Test2) {
   5103   // After Test1 is done and Test2 is started, there should still be
   5104   // only one live test object, as the object for Test1 should've been
   5105   // deleted.
   5106   ASSERT_EQ(1, count());
   5107 }
   5108 
   5109 }  // namespace
   5110 
   5111 // Tests that the copy constructor works when it is NOT optimized away by
   5112 // the compiler.
   5113 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
   5114   // Checks that the copy constructor doesn't try to dereference NULL pointers
   5115   // in the source object.
   5116   AssertionResult r1 = AssertionSuccess();
   5117   AssertionResult r2 = r1;
   5118   // The following line is added to prevent the compiler from optimizing
   5119   // away the constructor call.
   5120   r1 << "abc";
   5121 
   5122   AssertionResult r3 = r1;
   5123   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
   5124   EXPECT_STREQ("abc", r1.message());
   5125 }
   5126 
   5127 // Tests that AssertionSuccess and AssertionFailure construct
   5128 // AssertionResult objects as expected.
   5129 TEST(AssertionResultTest, ConstructionWorks) {
   5130   AssertionResult r1 = AssertionSuccess();
   5131   EXPECT_TRUE(r1);
   5132   EXPECT_STREQ("", r1.message());
   5133 
   5134   AssertionResult r2 = AssertionSuccess() << "abc";
   5135   EXPECT_TRUE(r2);
   5136   EXPECT_STREQ("abc", r2.message());
   5137 
   5138   AssertionResult r3 = AssertionFailure();
   5139   EXPECT_FALSE(r3);
   5140   EXPECT_STREQ("", r3.message());
   5141 
   5142   AssertionResult r4 = AssertionFailure() << "def";
   5143   EXPECT_FALSE(r4);
   5144   EXPECT_STREQ("def", r4.message());
   5145 
   5146   AssertionResult r5 = AssertionFailure(Message() << "ghi");
   5147   EXPECT_FALSE(r5);
   5148   EXPECT_STREQ("ghi", r5.message());
   5149 }
   5150 
   5151 // Tests that the negation flips the predicate result but keeps the message.
   5152 TEST(AssertionResultTest, NegationWorks) {
   5153   AssertionResult r1 = AssertionSuccess() << "abc";
   5154   EXPECT_FALSE(!r1);
   5155   EXPECT_STREQ("abc", (!r1).message());
   5156 
   5157   AssertionResult r2 = AssertionFailure() << "def";
   5158   EXPECT_TRUE(!r2);
   5159   EXPECT_STREQ("def", (!r2).message());
   5160 }
   5161 
   5162 TEST(AssertionResultTest, StreamingWorks) {
   5163   AssertionResult r = AssertionSuccess();
   5164   r << "abc" << 'd' << 0 << true;
   5165   EXPECT_STREQ("abcd0true", r.message());
   5166 }
   5167 
   5168 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
   5169   AssertionResult r = AssertionSuccess();
   5170   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
   5171   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
   5172 }
   5173 
   5174 // Tests streaming a user type whose definition and operator << are
   5175 // both in the global namespace.
   5176 class Base {
   5177  public:
   5178   explicit Base(int an_x) : x_(an_x) {}
   5179   int x() const { return x_; }
   5180  private:
   5181   int x_;
   5182 };
   5183 std::ostream& operator<<(std::ostream& os,
   5184                          const Base& val) {
   5185   return os << val.x();
   5186 }
   5187 std::ostream& operator<<(std::ostream& os,
   5188                          const Base* pointer) {
   5189   return os << "(" << pointer->x() << ")";
   5190 }
   5191 
   5192 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   5193   Message msg;
   5194   Base a(1);
   5195 
   5196   msg << a << &a;  // Uses ::operator<<.
   5197   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5198 }
   5199 
   5200 // Tests streaming a user type whose definition and operator<< are
   5201 // both in an unnamed namespace.
   5202 namespace {
   5203 class MyTypeInUnnamedNameSpace : public Base {
   5204  public:
   5205   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
   5206 };
   5207 std::ostream& operator<<(std::ostream& os,
   5208                          const MyTypeInUnnamedNameSpace& val) {
   5209   return os << val.x();
   5210 }
   5211 std::ostream& operator<<(std::ostream& os,
   5212                          const MyTypeInUnnamedNameSpace* pointer) {
   5213   return os << "(" << pointer->x() << ")";
   5214 }
   5215 }  // namespace
   5216 
   5217 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   5218   Message msg;
   5219   MyTypeInUnnamedNameSpace a(1);
   5220 
   5221   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   5222   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5223 }
   5224 
   5225 // Tests streaming a user type whose definition and operator<< are
   5226 // both in a user namespace.
   5227 namespace namespace1 {
   5228 class MyTypeInNameSpace1 : public Base {
   5229  public:
   5230   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
   5231 };
   5232 std::ostream& operator<<(std::ostream& os,
   5233                          const MyTypeInNameSpace1& val) {
   5234   return os << val.x();
   5235 }
   5236 std::ostream& operator<<(std::ostream& os,
   5237                          const MyTypeInNameSpace1* pointer) {
   5238   return os << "(" << pointer->x() << ")";
   5239 }
   5240 }  // namespace namespace1
   5241 
   5242 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   5243   Message msg;
   5244   namespace1::MyTypeInNameSpace1 a(1);
   5245 
   5246   msg << a << &a;  // Uses namespace1::operator<<.
   5247   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5248 }
   5249 
   5250 // Tests streaming a user type whose definition is in a user namespace
   5251 // but whose operator<< is in the global namespace.
   5252 namespace namespace2 {
   5253 class MyTypeInNameSpace2 : public ::Base {
   5254  public:
   5255   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
   5256 };
   5257 }  // namespace namespace2
   5258 std::ostream& operator<<(std::ostream& os,
   5259                          const namespace2::MyTypeInNameSpace2& val) {
   5260   return os << val.x();
   5261 }
   5262 std::ostream& operator<<(std::ostream& os,
   5263                          const namespace2::MyTypeInNameSpace2* pointer) {
   5264   return os << "(" << pointer->x() << ")";
   5265 }
   5266 
   5267 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   5268   Message msg;
   5269   namespace2::MyTypeInNameSpace2 a(1);
   5270 
   5271   msg << a << &a;  // Uses ::operator<<.
   5272   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5273 }
   5274 
   5275 // Tests streaming NULL pointers to testing::Message.
   5276 TEST(MessageTest, NullPointers) {
   5277   Message msg;
   5278   char* const p1 = NULL;
   5279   unsigned char* const p2 = NULL;
   5280   int* p3 = NULL;
   5281   double* p4 = NULL;
   5282   bool* p5 = NULL;
   5283   Message* p6 = NULL;
   5284 
   5285   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5286   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5287                msg.GetString().c_str());
   5288 }
   5289 
   5290 // Tests streaming wide strings to testing::Message.
   5291 TEST(MessageTest, WideStrings) {
   5292   // Streams a NULL of type const wchar_t*.
   5293   const wchar_t* const_wstr = NULL;
   5294   EXPECT_STREQ("(null)",
   5295                (Message() << const_wstr).GetString().c_str());
   5296 
   5297   // Streams a NULL of type wchar_t*.
   5298   wchar_t* wstr = NULL;
   5299   EXPECT_STREQ("(null)",
   5300                (Message() << wstr).GetString().c_str());
   5301 
   5302   // Streams a non-NULL of type const wchar_t*.
   5303   const_wstr = L"abc\x8119";
   5304   EXPECT_STREQ("abc\xe8\x84\x99",
   5305                (Message() << const_wstr).GetString().c_str());
   5306 
   5307   // Streams a non-NULL of type wchar_t*.
   5308   wstr = const_cast<wchar_t*>(const_wstr);
   5309   EXPECT_STREQ("abc\xe8\x84\x99",
   5310                (Message() << wstr).GetString().c_str());
   5311 }
   5312 
   5313 
   5314 // This line tests that we can define tests in the testing namespace.
   5315 namespace testing {
   5316 
   5317 // Tests the TestInfo class.
   5318 
   5319 class TestInfoTest : public Test {
   5320  protected:
   5321   static const TestInfo* GetTestInfo(const char* test_name) {
   5322     const TestCase* const test_case = GetUnitTestImpl()->
   5323         GetTestCase("TestInfoTest", "", NULL, NULL);
   5324 
   5325     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5326       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5327       if (strcmp(test_name, test_info->name()) == 0)
   5328         return test_info;
   5329     }
   5330     return NULL;
   5331   }
   5332 
   5333   static const TestResult* GetTestResult(
   5334       const TestInfo* test_info) {
   5335     return test_info->result();
   5336   }
   5337 };
   5338 
   5339 // Tests TestInfo::test_case_name() and TestInfo::name().
   5340 TEST_F(TestInfoTest, Names) {
   5341   const TestInfo* const test_info = GetTestInfo("Names");
   5342 
   5343   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5344   ASSERT_STREQ("Names", test_info->name());
   5345 }
   5346 
   5347 // Tests TestInfo::result().
   5348 TEST_F(TestInfoTest, result) {
   5349   const TestInfo* const test_info = GetTestInfo("result");
   5350 
   5351   // Initially, there is no TestPartResult for this test.
   5352   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5353 
   5354   // After the previous assertion, there is still none.
   5355   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5356 }
   5357 
   5358 // Tests setting up and tearing down a test case.
   5359 
   5360 class SetUpTestCaseTest : public Test {
   5361  protected:
   5362   // This will be called once before the first test in this test case
   5363   // is run.
   5364   static void SetUpTestCase() {
   5365     printf("Setting up the test case . . .\n");
   5366 
   5367     // Initializes some shared resource.  In this simple example, we
   5368     // just create a C string.  More complex stuff can be done if
   5369     // desired.
   5370     shared_resource_ = "123";
   5371 
   5372     // Increments the number of test cases that have been set up.
   5373     counter_++;
   5374 
   5375     // SetUpTestCase() should be called only once.
   5376     EXPECT_EQ(1, counter_);
   5377   }
   5378 
   5379   // This will be called once after the last test in this test case is
   5380   // run.
   5381   static void TearDownTestCase() {
   5382     printf("Tearing down the test case . . .\n");
   5383 
   5384     // Decrements the number of test cases that have been set up.
   5385     counter_--;
   5386 
   5387     // TearDownTestCase() should be called only once.
   5388     EXPECT_EQ(0, counter_);
   5389 
   5390     // Cleans up the shared resource.
   5391     shared_resource_ = NULL;
   5392   }
   5393 
   5394   // This will be called before each test in this test case.
   5395   virtual void SetUp() {
   5396     // SetUpTestCase() should be called only once, so counter_ should
   5397     // always be 1.
   5398     EXPECT_EQ(1, counter_);
   5399   }
   5400 
   5401   // Number of test cases that have been set up.
   5402   static int counter_;
   5403 
   5404   // Some resource to be shared by all tests in this test case.
   5405   static const char* shared_resource_;
   5406 };
   5407 
   5408 int SetUpTestCaseTest::counter_ = 0;
   5409 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5410 
   5411 // A test that uses the shared resource.
   5412 TEST_F(SetUpTestCaseTest, Test1) {
   5413   EXPECT_STRNE(NULL, shared_resource_);
   5414 }
   5415 
   5416 // Another test that uses the shared resource.
   5417 TEST_F(SetUpTestCaseTest, Test2) {
   5418   EXPECT_STREQ("123", shared_resource_);
   5419 }
   5420 
   5421 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5422 
   5423 // The Flags struct stores a copy of all Google Test flags.
   5424 struct Flags {
   5425   // Constructs a Flags struct where each flag has its default value.
   5426   Flags() : also_run_disabled_tests(false),
   5427             break_on_failure(false),
   5428             catch_exceptions(false),
   5429             death_test_use_fork(false),
   5430             filter(""),
   5431             list_tests(false),
   5432             output(""),
   5433             print_time(true),
   5434             random_seed(0),
   5435             repeat(1),
   5436             shuffle(false),
   5437             stack_trace_depth(kMaxStackTraceDepth),
   5438             stream_result_to(""),
   5439             throw_on_failure(false) {}
   5440 
   5441   // Factory methods.
   5442 
   5443   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5444   // the given value.
   5445   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5446     Flags flags;
   5447     flags.also_run_disabled_tests = also_run_disabled_tests;
   5448     return flags;
   5449   }
   5450 
   5451   // Creates a Flags struct where the gtest_break_on_failure flag has
   5452   // the given value.
   5453   static Flags BreakOnFailure(bool break_on_failure) {
   5454     Flags flags;
   5455     flags.break_on_failure = break_on_failure;
   5456     return flags;
   5457   }
   5458 
   5459   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5460   // the given value.
   5461   static Flags CatchExceptions(bool catch_exceptions) {
   5462     Flags flags;
   5463     flags.catch_exceptions = catch_exceptions;
   5464     return flags;
   5465   }
   5466 
   5467   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5468   // the given value.
   5469   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5470     Flags flags;
   5471     flags.death_test_use_fork = death_test_use_fork;
   5472     return flags;
   5473   }
   5474 
   5475   // Creates a Flags struct where the gtest_filter flag has the given
   5476   // value.
   5477   static Flags Filter(const char* filter) {
   5478     Flags flags;
   5479     flags.filter = filter;
   5480     return flags;
   5481   }
   5482 
   5483   // Creates a Flags struct where the gtest_list_tests flag has the
   5484   // given value.
   5485   static Flags ListTests(bool list_tests) {
   5486     Flags flags;
   5487     flags.list_tests = list_tests;
   5488     return flags;
   5489   }
   5490 
   5491   // Creates a Flags struct where the gtest_output flag has the given
   5492   // value.
   5493   static Flags Output(const char* output) {
   5494     Flags flags;
   5495     flags.output = output;
   5496     return flags;
   5497   }
   5498 
   5499   // Creates a Flags struct where the gtest_print_time flag has the given
   5500   // value.
   5501   static Flags PrintTime(bool print_time) {
   5502     Flags flags;
   5503     flags.print_time = print_time;
   5504     return flags;
   5505   }
   5506 
   5507   // Creates a Flags struct where the gtest_random_seed flag has
   5508   // the given value.
   5509   static Flags RandomSeed(Int32 random_seed) {
   5510     Flags flags;
   5511     flags.random_seed = random_seed;
   5512     return flags;
   5513   }
   5514 
   5515   // Creates a Flags struct where the gtest_repeat flag has the given
   5516   // value.
   5517   static Flags Repeat(Int32 repeat) {
   5518     Flags flags;
   5519     flags.repeat = repeat;
   5520     return flags;
   5521   }
   5522 
   5523   // Creates a Flags struct where the gtest_shuffle flag has
   5524   // the given value.
   5525   static Flags Shuffle(bool shuffle) {
   5526     Flags flags;
   5527     flags.shuffle = shuffle;
   5528     return flags;
   5529   }
   5530 
   5531   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
   5532   // the given value.
   5533   static Flags StackTraceDepth(Int32 stack_trace_depth) {
   5534     Flags flags;
   5535     flags.stack_trace_depth = stack_trace_depth;
   5536     return flags;
   5537   }
   5538 
   5539   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
   5540   // the given value.
   5541   static Flags StreamResultTo(const char* stream_result_to) {
   5542     Flags flags;
   5543     flags.stream_result_to = stream_result_to;
   5544     return flags;
   5545   }
   5546 
   5547   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5548   // the given value.
   5549   static Flags ThrowOnFailure(bool throw_on_failure) {
   5550     Flags flags;
   5551     flags.throw_on_failure = throw_on_failure;
   5552     return flags;
   5553   }
   5554 
   5555   // These fields store the flag values.
   5556   bool also_run_disabled_tests;
   5557   bool break_on_failure;
   5558   bool catch_exceptions;
   5559   bool death_test_use_fork;
   5560   const char* filter;
   5561   bool list_tests;
   5562   const char* output;
   5563   bool print_time;
   5564   Int32 random_seed;
   5565   Int32 repeat;
   5566   bool shuffle;
   5567   Int32 stack_trace_depth;
   5568   const char* stream_result_to;
   5569   bool throw_on_failure;
   5570 };
   5571 
   5572 // Fixture for testing InitGoogleTest().
   5573 class InitGoogleTestTest : public Test {
   5574  protected:
   5575   // Clears the flags before each test.
   5576   virtual void SetUp() {
   5577     GTEST_FLAG(also_run_disabled_tests) = false;
   5578     GTEST_FLAG(break_on_failure) = false;
   5579     GTEST_FLAG(catch_exceptions) = false;
   5580     GTEST_FLAG(death_test_use_fork) = false;
   5581     GTEST_FLAG(filter) = "";
   5582     GTEST_FLAG(list_tests) = false;
   5583     GTEST_FLAG(output) = "";
   5584     GTEST_FLAG(print_time) = true;
   5585     GTEST_FLAG(random_seed) = 0;
   5586     GTEST_FLAG(repeat) = 1;
   5587     GTEST_FLAG(shuffle) = false;
   5588     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   5589     GTEST_FLAG(stream_result_to) = "";
   5590     GTEST_FLAG(throw_on_failure) = false;
   5591   }
   5592 
   5593   // Asserts that two narrow or wide string arrays are equal.
   5594   template <typename CharType>
   5595   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5596                                   size_t size2, CharType** array2) {
   5597     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5598 
   5599     for (size_t i = 0; i != size1; i++) {
   5600       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5601     }
   5602   }
   5603 
   5604   // Verifies that the flag values match the expected values.
   5605   static void CheckFlags(const Flags& expected) {
   5606     EXPECT_EQ(expected.also_run_disabled_tests,
   5607               GTEST_FLAG(also_run_disabled_tests));
   5608     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5609     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5610     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5611     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5612     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5613     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5614     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5615     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5616     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5617     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5618     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
   5619     EXPECT_STREQ(expected.stream_result_to,
   5620                  GTEST_FLAG(stream_result_to).c_str());
   5621     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5622   }
   5623 
   5624   // Parses a command line (specified by argc1 and argv1), then
   5625   // verifies that the flag values are expected and that the
   5626   // recognized flags are removed from the command line.
   5627   template <typename CharType>
   5628   static void TestParsingFlags(int argc1, const CharType** argv1,
   5629                                int argc2, const CharType** argv2,
   5630                                const Flags& expected, bool should_print_help) {
   5631     const bool saved_help_flag = ::testing::internal::g_help_flag;
   5632     ::testing::internal::g_help_flag = false;
   5633 
   5634 #if GTEST_HAS_STREAM_REDIRECTION
   5635     CaptureStdout();
   5636 #endif
   5637 
   5638     // Parses the command line.
   5639     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5640 
   5641 #if GTEST_HAS_STREAM_REDIRECTION
   5642     const String captured_stdout = GetCapturedStdout();
   5643 #endif
   5644 
   5645     // Verifies the flag values.
   5646     CheckFlags(expected);
   5647 
   5648     // Verifies that the recognized flags are removed from the command
   5649     // line.
   5650     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5651 
   5652     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
   5653     // help message for the flags it recognizes.
   5654     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
   5655 
   5656 #if GTEST_HAS_STREAM_REDIRECTION
   5657     const char* const expected_help_fragment =
   5658         "This program contains tests written using";
   5659     if (should_print_help) {
   5660       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
   5661     } else {
   5662       EXPECT_PRED_FORMAT2(IsNotSubstring,
   5663                           expected_help_fragment, captured_stdout);
   5664     }
   5665 #endif  // GTEST_HAS_STREAM_REDIRECTION
   5666 
   5667     ::testing::internal::g_help_flag = saved_help_flag;
   5668   }
   5669 
   5670   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5671   // to specify the array sizes.
   5672 
   5673 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
   5674   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5675                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
   5676                    expected, should_print_help)
   5677 };
   5678 
   5679 // Tests parsing an empty command line.
   5680 TEST_F(InitGoogleTestTest, Empty) {
   5681   const char* argv[] = {
   5682     NULL
   5683   };
   5684 
   5685   const char* argv2[] = {
   5686     NULL
   5687   };
   5688 
   5689   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5690 }
   5691 
   5692 // Tests parsing a command line that has no flag.
   5693 TEST_F(InitGoogleTestTest, NoFlag) {
   5694   const char* argv[] = {
   5695     "foo.exe",
   5696     NULL
   5697   };
   5698 
   5699   const char* argv2[] = {
   5700     "foo.exe",
   5701     NULL
   5702   };
   5703 
   5704   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5705 }
   5706 
   5707 // Tests parsing a bad --gtest_filter flag.
   5708 TEST_F(InitGoogleTestTest, FilterBad) {
   5709   const char* argv[] = {
   5710     "foo.exe",
   5711     "--gtest_filter",
   5712     NULL
   5713   };
   5714 
   5715   const char* argv2[] = {
   5716     "foo.exe",
   5717     "--gtest_filter",
   5718     NULL
   5719   };
   5720 
   5721   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
   5722 }
   5723 
   5724 // Tests parsing an empty --gtest_filter flag.
   5725 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5726   const char* argv[] = {
   5727     "foo.exe",
   5728     "--gtest_filter=",
   5729     NULL
   5730   };
   5731 
   5732   const char* argv2[] = {
   5733     "foo.exe",
   5734     NULL
   5735   };
   5736 
   5737   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
   5738 }
   5739 
   5740 // Tests parsing a non-empty --gtest_filter flag.
   5741 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5742   const char* argv[] = {
   5743     "foo.exe",
   5744     "--gtest_filter=abc",
   5745     NULL
   5746   };
   5747 
   5748   const char* argv2[] = {
   5749     "foo.exe",
   5750     NULL
   5751   };
   5752 
   5753   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   5754 }
   5755 
   5756 // Tests parsing --gtest_break_on_failure.
   5757 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5758   const char* argv[] = {
   5759     "foo.exe",
   5760     "--gtest_break_on_failure",
   5761     NULL
   5762 };
   5763 
   5764   const char* argv2[] = {
   5765     "foo.exe",
   5766     NULL
   5767   };
   5768 
   5769   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5770 }
   5771 
   5772 // Tests parsing --gtest_break_on_failure=0.
   5773 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5774   const char* argv[] = {
   5775     "foo.exe",
   5776     "--gtest_break_on_failure=0",
   5777     NULL
   5778   };
   5779 
   5780   const char* argv2[] = {
   5781     "foo.exe",
   5782     NULL
   5783   };
   5784 
   5785   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5786 }
   5787 
   5788 // Tests parsing --gtest_break_on_failure=f.
   5789 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5790   const char* argv[] = {
   5791     "foo.exe",
   5792     "--gtest_break_on_failure=f",
   5793     NULL
   5794   };
   5795 
   5796   const char* argv2[] = {
   5797     "foo.exe",
   5798     NULL
   5799   };
   5800 
   5801   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5802 }
   5803 
   5804 // Tests parsing --gtest_break_on_failure=F.
   5805 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5806   const char* argv[] = {
   5807     "foo.exe",
   5808     "--gtest_break_on_failure=F",
   5809     NULL
   5810   };
   5811 
   5812   const char* argv2[] = {
   5813     "foo.exe",
   5814     NULL
   5815   };
   5816 
   5817   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5818 }
   5819 
   5820 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5821 // definition.
   5822 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5823   const char* argv[] = {
   5824     "foo.exe",
   5825     "--gtest_break_on_failure=1",
   5826     NULL
   5827   };
   5828 
   5829   const char* argv2[] = {
   5830     "foo.exe",
   5831     NULL
   5832   };
   5833 
   5834   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5835 }
   5836 
   5837 // Tests parsing --gtest_catch_exceptions.
   5838 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5839   const char* argv[] = {
   5840     "foo.exe",
   5841     "--gtest_catch_exceptions",
   5842     NULL
   5843   };
   5844 
   5845   const char* argv2[] = {
   5846     "foo.exe",
   5847     NULL
   5848   };
   5849 
   5850   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
   5851 }
   5852 
   5853 // Tests parsing --gtest_death_test_use_fork.
   5854 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5855   const char* argv[] = {
   5856     "foo.exe",
   5857     "--gtest_death_test_use_fork",
   5858     NULL
   5859   };
   5860 
   5861   const char* argv2[] = {
   5862     "foo.exe",
   5863     NULL
   5864   };
   5865 
   5866   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
   5867 }
   5868 
   5869 // Tests having the same flag twice with different values.  The
   5870 // expected behavior is that the one coming last takes precedence.
   5871 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5872   const char* argv[] = {
   5873     "foo.exe",
   5874     "--gtest_filter=a",
   5875     "--gtest_filter=b",
   5876     NULL
   5877   };
   5878 
   5879   const char* argv2[] = {
   5880     "foo.exe",
   5881     NULL
   5882   };
   5883 
   5884   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
   5885 }
   5886 
   5887 // Tests having an unrecognized flag on the command line.
   5888 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5889   const char* argv[] = {
   5890     "foo.exe",
   5891     "--gtest_break_on_failure",
   5892     "bar",  // Unrecognized by Google Test.
   5893     "--gtest_filter=b",
   5894     NULL
   5895   };
   5896 
   5897   const char* argv2[] = {
   5898     "foo.exe",
   5899     "bar",
   5900     NULL
   5901   };
   5902 
   5903   Flags flags;
   5904   flags.break_on_failure = true;
   5905   flags.filter = "b";
   5906   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
   5907 }
   5908 
   5909 // Tests having a --gtest_list_tests flag
   5910 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5911     const char* argv[] = {
   5912       "foo.exe",
   5913       "--gtest_list_tests",
   5914       NULL
   5915     };
   5916 
   5917     const char* argv2[] = {
   5918       "foo.exe",
   5919       NULL
   5920     };
   5921 
   5922     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5923 }
   5924 
   5925 // Tests having a --gtest_list_tests flag with a "true" value
   5926 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5927     const char* argv[] = {
   5928       "foo.exe",
   5929       "--gtest_list_tests=1",
   5930       NULL
   5931     };
   5932 
   5933     const char* argv2[] = {
   5934       "foo.exe",
   5935       NULL
   5936     };
   5937 
   5938     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5939 }
   5940 
   5941 // Tests having a --gtest_list_tests flag with a "false" value
   5942 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5943     const char* argv[] = {
   5944       "foo.exe",
   5945       "--gtest_list_tests=0",
   5946       NULL
   5947     };
   5948 
   5949     const char* argv2[] = {
   5950       "foo.exe",
   5951       NULL
   5952     };
   5953 
   5954     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5955 }
   5956 
   5957 // Tests parsing --gtest_list_tests=f.
   5958 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   5959   const char* argv[] = {
   5960     "foo.exe",
   5961     "--gtest_list_tests=f",
   5962     NULL
   5963   };
   5964 
   5965   const char* argv2[] = {
   5966     "foo.exe",
   5967     NULL
   5968   };
   5969 
   5970   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5971 }
   5972 
   5973 // Tests parsing --gtest_list_tests=F.
   5974 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   5975   const char* argv[] = {
   5976     "foo.exe",
   5977     "--gtest_list_tests=F",
   5978     NULL
   5979   };
   5980 
   5981   const char* argv2[] = {
   5982     "foo.exe",
   5983     NULL
   5984   };
   5985 
   5986   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5987 }
   5988 
   5989 // Tests parsing --gtest_output (invalid).
   5990 TEST_F(InitGoogleTestTest, OutputEmpty) {
   5991   const char* argv[] = {
   5992     "foo.exe",
   5993     "--gtest_output",
   5994     NULL
   5995   };
   5996 
   5997   const char* argv2[] = {
   5998     "foo.exe",
   5999     "--gtest_output",
   6000     NULL
   6001   };
   6002 
   6003   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
   6004 }
   6005 
   6006 // Tests parsing --gtest_output=xml
   6007 TEST_F(InitGoogleTestTest, OutputXml) {
   6008   const char* argv[] = {
   6009     "foo.exe",
   6010     "--gtest_output=xml",
   6011     NULL
   6012   };
   6013 
   6014   const char* argv2[] = {
   6015     "foo.exe",
   6016     NULL
   6017   };
   6018 
   6019   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
   6020 }
   6021 
   6022 // Tests parsing --gtest_output=xml:file
   6023 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   6024   const char* argv[] = {
   6025     "foo.exe",
   6026     "--gtest_output=xml:file",
   6027     NULL
   6028   };
   6029 
   6030   const char* argv2[] = {
   6031     "foo.exe",
   6032     NULL
   6033   };
   6034 
   6035   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
   6036 }
   6037 
   6038 // Tests parsing --gtest_output=xml:directory/path/
   6039 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   6040   const char* argv[] = {
   6041     "foo.exe",
   6042     "--gtest_output=xml:directory/path/",
   6043     NULL
   6044   };
   6045 
   6046   const char* argv2[] = {
   6047     "foo.exe",
   6048     NULL
   6049   };
   6050 
   6051   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6052                             Flags::Output("xml:directory/path/"), false);
   6053 }
   6054 
   6055 // Tests having a --gtest_print_time flag
   6056 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   6057     const char* argv[] = {
   6058       "foo.exe",
   6059       "--gtest_print_time",
   6060       NULL
   6061     };
   6062 
   6063     const char* argv2[] = {
   6064       "foo.exe",
   6065       NULL
   6066     };
   6067 
   6068     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   6069 }
   6070 
   6071 // Tests having a --gtest_print_time flag with a "true" value
   6072 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   6073     const char* argv[] = {
   6074       "foo.exe",
   6075       "--gtest_print_time=1",
   6076       NULL
   6077     };
   6078 
   6079     const char* argv2[] = {
   6080       "foo.exe",
   6081       NULL
   6082     };
   6083 
   6084     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   6085 }
   6086 
   6087 // Tests having a --gtest_print_time flag with a "false" value
   6088 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   6089     const char* argv[] = {
   6090       "foo.exe",
   6091       "--gtest_print_time=0",
   6092       NULL
   6093     };
   6094 
   6095     const char* argv2[] = {
   6096       "foo.exe",
   6097       NULL
   6098     };
   6099 
   6100     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6101 }
   6102 
   6103 // Tests parsing --gtest_print_time=f.
   6104 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   6105   const char* argv[] = {
   6106     "foo.exe",
   6107     "--gtest_print_time=f",
   6108     NULL
   6109   };
   6110 
   6111   const char* argv2[] = {
   6112     "foo.exe",
   6113     NULL
   6114   };
   6115 
   6116   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6117 }
   6118 
   6119 // Tests parsing --gtest_print_time=F.
   6120 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   6121   const char* argv[] = {
   6122     "foo.exe",
   6123     "--gtest_print_time=F",
   6124     NULL
   6125   };
   6126 
   6127   const char* argv2[] = {
   6128     "foo.exe",
   6129     NULL
   6130   };
   6131 
   6132   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6133 }
   6134 
   6135 // Tests parsing --gtest_random_seed=number
   6136 TEST_F(InitGoogleTestTest, RandomSeed) {
   6137   const char* argv[] = {
   6138     "foo.exe",
   6139     "--gtest_random_seed=1000",
   6140     NULL
   6141   };
   6142 
   6143   const char* argv2[] = {
   6144     "foo.exe",
   6145     NULL
   6146   };
   6147 
   6148   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
   6149 }
   6150 
   6151 // Tests parsing --gtest_repeat=number
   6152 TEST_F(InitGoogleTestTest, Repeat) {
   6153   const char* argv[] = {
   6154     "foo.exe",
   6155     "--gtest_repeat=1000",
   6156     NULL
   6157   };
   6158 
   6159   const char* argv2[] = {
   6160     "foo.exe",
   6161     NULL
   6162   };
   6163 
   6164   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
   6165 }
   6166 
   6167 // Tests having a --gtest_also_run_disabled_tests flag
   6168 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   6169     const char* argv[] = {
   6170       "foo.exe",
   6171       "--gtest_also_run_disabled_tests",
   6172       NULL
   6173     };
   6174 
   6175     const char* argv2[] = {
   6176       "foo.exe",
   6177       NULL
   6178     };
   6179 
   6180     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6181                               Flags::AlsoRunDisabledTests(true), false);
   6182 }
   6183 
   6184 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   6185 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   6186     const char* argv[] = {
   6187       "foo.exe",
   6188       "--gtest_also_run_disabled_tests=1",
   6189       NULL
   6190     };
   6191 
   6192     const char* argv2[] = {
   6193       "foo.exe",
   6194       NULL
   6195     };
   6196 
   6197     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6198                               Flags::AlsoRunDisabledTests(true), false);
   6199 }
   6200 
   6201 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   6202 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   6203     const char* argv[] = {
   6204       "foo.exe",
   6205       "--gtest_also_run_disabled_tests=0",
   6206       NULL
   6207     };
   6208 
   6209     const char* argv2[] = {
   6210       "foo.exe",
   6211       NULL
   6212     };
   6213 
   6214     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6215                               Flags::AlsoRunDisabledTests(false), false);
   6216 }
   6217 
   6218 // Tests parsing --gtest_shuffle.
   6219 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   6220   const char* argv[] = {
   6221     "foo.exe",
   6222     "--gtest_shuffle",
   6223     NULL
   6224 };
   6225 
   6226   const char* argv2[] = {
   6227     "foo.exe",
   6228     NULL
   6229   };
   6230 
   6231   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6232 }
   6233 
   6234 // Tests parsing --gtest_shuffle=0.
   6235 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   6236   const char* argv[] = {
   6237     "foo.exe",
   6238     "--gtest_shuffle=0",
   6239     NULL
   6240   };
   6241 
   6242   const char* argv2[] = {
   6243     "foo.exe",
   6244     NULL
   6245   };
   6246 
   6247   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
   6248 }
   6249 
   6250 // Tests parsing a --gtest_shuffle flag that has a "true"
   6251 // definition.
   6252 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   6253   const char* argv[] = {
   6254     "foo.exe",
   6255     "--gtest_shuffle=1",
   6256     NULL
   6257   };
   6258 
   6259   const char* argv2[] = {
   6260     "foo.exe",
   6261     NULL
   6262   };
   6263 
   6264   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6265 }
   6266 
   6267 // Tests parsing --gtest_stack_trace_depth=number.
   6268 TEST_F(InitGoogleTestTest, StackTraceDepth) {
   6269   const char* argv[] = {
   6270     "foo.exe",
   6271     "--gtest_stack_trace_depth=5",
   6272     NULL
   6273   };
   6274 
   6275   const char* argv2[] = {
   6276     "foo.exe",
   6277     NULL
   6278   };
   6279 
   6280   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
   6281 }
   6282 
   6283 TEST_F(InitGoogleTestTest, StreamResultTo) {
   6284   const char* argv[] = {
   6285     "foo.exe",
   6286     "--gtest_stream_result_to=localhost:1234",
   6287     NULL
   6288   };
   6289 
   6290   const char* argv2[] = {
   6291     "foo.exe",
   6292     NULL
   6293   };
   6294 
   6295   GTEST_TEST_PARSING_FLAGS_(
   6296       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
   6297 }
   6298 
   6299 // Tests parsing --gtest_throw_on_failure.
   6300 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   6301   const char* argv[] = {
   6302     "foo.exe",
   6303     "--gtest_throw_on_failure",
   6304     NULL
   6305 };
   6306 
   6307   const char* argv2[] = {
   6308     "foo.exe",
   6309     NULL
   6310   };
   6311 
   6312   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6313 }
   6314 
   6315 // Tests parsing --gtest_throw_on_failure=0.
   6316 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6317   const char* argv[] = {
   6318     "foo.exe",
   6319     "--gtest_throw_on_failure=0",
   6320     NULL
   6321   };
   6322 
   6323   const char* argv2[] = {
   6324     "foo.exe",
   6325     NULL
   6326   };
   6327 
   6328   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
   6329 }
   6330 
   6331 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6332 // definition.
   6333 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6334   const char* argv[] = {
   6335     "foo.exe",
   6336     "--gtest_throw_on_failure=1",
   6337     NULL
   6338   };
   6339 
   6340   const char* argv2[] = {
   6341     "foo.exe",
   6342     NULL
   6343   };
   6344 
   6345   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6346 }
   6347 
   6348 #if GTEST_OS_WINDOWS
   6349 // Tests parsing wide strings.
   6350 TEST_F(InitGoogleTestTest, WideStrings) {
   6351   const wchar_t* argv[] = {
   6352     L"foo.exe",
   6353     L"--gtest_filter=Foo*",
   6354     L"--gtest_list_tests=1",
   6355     L"--gtest_break_on_failure",
   6356     L"--non_gtest_flag",
   6357     NULL
   6358   };
   6359 
   6360   const wchar_t* argv2[] = {
   6361     L"foo.exe",
   6362     L"--non_gtest_flag",
   6363     NULL
   6364   };
   6365 
   6366   Flags expected_flags;
   6367   expected_flags.break_on_failure = true;
   6368   expected_flags.filter = "Foo*";
   6369   expected_flags.list_tests = true;
   6370 
   6371   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6372 }
   6373 #endif  // GTEST_OS_WINDOWS
   6374 
   6375 // Tests current_test_info() in UnitTest.
   6376 class CurrentTestInfoTest : public Test {
   6377  protected:
   6378   // Tests that current_test_info() returns NULL before the first test in
   6379   // the test case is run.
   6380   static void SetUpTestCase() {
   6381     // There should be no tests running at this point.
   6382     const TestInfo* test_info =
   6383       UnitTest::GetInstance()->current_test_info();
   6384     EXPECT_TRUE(test_info == NULL)
   6385         << "There should be no tests running at this point.";
   6386   }
   6387 
   6388   // Tests that current_test_info() returns NULL after the last test in
   6389   // the test case has run.
   6390   static void TearDownTestCase() {
   6391     const TestInfo* test_info =
   6392       UnitTest::GetInstance()->current_test_info();
   6393     EXPECT_TRUE(test_info == NULL)
   6394         << "There should be no tests running at this point.";
   6395   }
   6396 };
   6397 
   6398 // Tests that current_test_info() returns TestInfo for currently running
   6399 // test by checking the expected test name against the actual one.
   6400 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6401   const TestInfo* test_info =
   6402     UnitTest::GetInstance()->current_test_info();
   6403   ASSERT_TRUE(NULL != test_info)
   6404       << "There is a test running so we should have a valid TestInfo.";
   6405   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6406       << "Expected the name of the currently running test case.";
   6407   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6408       << "Expected the name of the currently running test.";
   6409 }
   6410 
   6411 // Tests that current_test_info() returns TestInfo for currently running
   6412 // test by checking the expected test name against the actual one.  We
   6413 // use this test to see that the TestInfo object actually changed from
   6414 // the previous invocation.
   6415 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6416   const TestInfo* test_info =
   6417     UnitTest::GetInstance()->current_test_info();
   6418   ASSERT_TRUE(NULL != test_info)
   6419       << "There is a test running so we should have a valid TestInfo.";
   6420   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6421       << "Expected the name of the currently running test case.";
   6422   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6423       << "Expected the name of the currently running test.";
   6424 }
   6425 
   6426 }  // namespace testing
   6427 
   6428 // These two lines test that we can define tests in a namespace that
   6429 // has the name "testing" and is nested in another namespace.
   6430 namespace my_namespace {
   6431 namespace testing {
   6432 
   6433 // Makes sure that TEST knows to use ::testing::Test instead of
   6434 // ::my_namespace::testing::Test.
   6435 class Test {};
   6436 
   6437 // Makes sure that an assertion knows to use ::testing::Message instead of
   6438 // ::my_namespace::testing::Message.
   6439 class Message {};
   6440 
   6441 // Makes sure that an assertion knows to use
   6442 // ::testing::AssertionResult instead of
   6443 // ::my_namespace::testing::AssertionResult.
   6444 class AssertionResult {};
   6445 
   6446 // Tests that an assertion that should succeed works as expected.
   6447 TEST(NestedTestingNamespaceTest, Success) {
   6448   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6449 }
   6450 
   6451 // Tests that an assertion that should fail works as expected.
   6452 TEST(NestedTestingNamespaceTest, Failure) {
   6453   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6454                        "This failure is expected.");
   6455 }
   6456 
   6457 }  // namespace testing
   6458 }  // namespace my_namespace
   6459 
   6460 // Tests that one can call superclass SetUp and TearDown methods--
   6461 // that is, that they are not private.
   6462 // No tests are based on this fixture; the test "passes" if it compiles
   6463 // successfully.
   6464 class ProtectedFixtureMethodsTest : public Test {
   6465  protected:
   6466   virtual void SetUp() {
   6467     Test::SetUp();
   6468   }
   6469   virtual void TearDown() {
   6470     Test::TearDown();
   6471   }
   6472 };
   6473 
   6474 // StreamingAssertionsTest tests the streaming versions of a representative
   6475 // sample of assertions.
   6476 TEST(StreamingAssertionsTest, Unconditional) {
   6477   SUCCEED() << "expected success";
   6478   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6479                           "expected failure");
   6480   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6481                        "expected failure");
   6482 }
   6483 
   6484 #ifdef __BORLANDC__
   6485 // Silences warnings: "Condition is always true", "Unreachable code"
   6486 # pragma option push -w-ccc -w-rch
   6487 #endif
   6488 
   6489 TEST(StreamingAssertionsTest, Truth) {
   6490   EXPECT_TRUE(true) << "unexpected failure";
   6491   ASSERT_TRUE(true) << "unexpected failure";
   6492   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6493                           "expected failure");
   6494   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6495                        "expected failure");
   6496 }
   6497 
   6498 TEST(StreamingAssertionsTest, Truth2) {
   6499   EXPECT_FALSE(false) << "unexpected failure";
   6500   ASSERT_FALSE(false) << "unexpected failure";
   6501   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6502                           "expected failure");
   6503   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6504                        "expected failure");
   6505 }
   6506 
   6507 #ifdef __BORLANDC__
   6508 // Restores warnings after previous "#pragma option push" supressed them
   6509 # pragma option pop
   6510 #endif
   6511 
   6512 TEST(StreamingAssertionsTest, IntegerEquals) {
   6513   EXPECT_EQ(1, 1) << "unexpected failure";
   6514   ASSERT_EQ(1, 1) << "unexpected failure";
   6515   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6516                           "expected failure");
   6517   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6518                        "expected failure");
   6519 }
   6520 
   6521 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6522   EXPECT_LT(1, 2) << "unexpected failure";
   6523   ASSERT_LT(1, 2) << "unexpected failure";
   6524   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6525                           "expected failure");
   6526   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6527                        "expected failure");
   6528 }
   6529 
   6530 TEST(StreamingAssertionsTest, StringsEqual) {
   6531   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6532   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6533   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6534                           "expected failure");
   6535   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6536                        "expected failure");
   6537 }
   6538 
   6539 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6540   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6541   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6542   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6543                           "expected failure");
   6544   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6545                        "expected failure");
   6546 }
   6547 
   6548 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6549   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6550   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6551   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6552                           "expected failure");
   6553   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6554                        "expected failure");
   6555 }
   6556 
   6557 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6558   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6559   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6560   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6561                           "expected failure");
   6562   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6563                        "expected failure");
   6564 }
   6565 
   6566 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6567   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6568   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6569   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6570                           "expected failure");
   6571   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6572                        "expected failure");
   6573 }
   6574 
   6575 #if GTEST_HAS_EXCEPTIONS
   6576 
   6577 TEST(StreamingAssertionsTest, Throw) {
   6578   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6579   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6580   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6581                           "expected failure", "expected failure");
   6582   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6583                        "expected failure", "expected failure");
   6584 }
   6585 
   6586 TEST(StreamingAssertionsTest, NoThrow) {
   6587   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6588   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6589   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6590                           "expected failure", "expected failure");
   6591   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6592                        "expected failure", "expected failure");
   6593 }
   6594 
   6595 TEST(StreamingAssertionsTest, AnyThrow) {
   6596   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6597   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6598   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6599                           "expected failure", "expected failure");
   6600   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6601                        "expected failure", "expected failure");
   6602 }
   6603 
   6604 #endif  // GTEST_HAS_EXCEPTIONS
   6605 
   6606 // Tests that Google Test correctly decides whether to use colors in the output.
   6607 
   6608 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6609   GTEST_FLAG(color) = "yes";
   6610 
   6611   SetEnv("TERM", "xterm");  // TERM supports colors.
   6612   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6613   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6614 
   6615   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6616   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6617   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6618 }
   6619 
   6620 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6621   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6622 
   6623   GTEST_FLAG(color) = "True";
   6624   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6625 
   6626   GTEST_FLAG(color) = "t";
   6627   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6628 
   6629   GTEST_FLAG(color) = "1";
   6630   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6631 }
   6632 
   6633 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6634   GTEST_FLAG(color) = "no";
   6635 
   6636   SetEnv("TERM", "xterm");  // TERM supports colors.
   6637   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6638   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6639 
   6640   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6641   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6642   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6643 }
   6644 
   6645 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6646   SetEnv("TERM", "xterm");  // TERM supports colors.
   6647 
   6648   GTEST_FLAG(color) = "F";
   6649   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6650 
   6651   GTEST_FLAG(color) = "0";
   6652   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6653 
   6654   GTEST_FLAG(color) = "unknown";
   6655   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6656 }
   6657 
   6658 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6659   GTEST_FLAG(color) = "auto";
   6660 
   6661   SetEnv("TERM", "xterm");  // TERM supports colors.
   6662   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6663   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6664 }
   6665 
   6666 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6667   GTEST_FLAG(color) = "auto";
   6668 
   6669 #if GTEST_OS_WINDOWS
   6670   // On Windows, we ignore the TERM variable as it's usually not set.
   6671 
   6672   SetEnv("TERM", "dumb");
   6673   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6674 
   6675   SetEnv("TERM", "");
   6676   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6677 
   6678   SetEnv("TERM", "xterm");
   6679   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6680 #else
   6681   // On non-Windows platforms, we rely on TERM to determine if the
   6682   // terminal supports colors.
   6683 
   6684   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6685   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6686 
   6687   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6688   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6689 
   6690   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6691   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6692 
   6693   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6694   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6695 
   6696   SetEnv("TERM", "xterm");  // TERM supports colors.
   6697   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6698 
   6699   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6700   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6701 
   6702   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
   6703   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6704 
   6705   SetEnv("TERM", "screen");  // TERM supports colors.
   6706   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6707 
   6708   SetEnv("TERM", "linux");  // TERM supports colors.
   6709   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6710 
   6711   SetEnv("TERM", "cygwin");  // TERM supports colors.
   6712   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6713 #endif  // GTEST_OS_WINDOWS
   6714 }
   6715 
   6716 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6717 
   6718 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
   6719 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
   6720     StaticAssertTypeEq<const int, const int>();
   6721 
   6722 // Verifies that StaticAssertTypeEq works in a class.
   6723 
   6724 template <typename T>
   6725 class StaticAssertTypeEqTestHelper {
   6726  public:
   6727   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6728 };
   6729 
   6730 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6731   StaticAssertTypeEqTestHelper<bool>();
   6732 }
   6733 
   6734 // Verifies that StaticAssertTypeEq works inside a function.
   6735 
   6736 typedef int IntAlias;
   6737 
   6738 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6739   StaticAssertTypeEq<int, IntAlias>();
   6740   StaticAssertTypeEq<int*, IntAlias*>();
   6741 }
   6742 
   6743 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6744   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6745 
   6746   // We don't have a stack walker in Google Test yet.
   6747   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6748   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6749 }
   6750 
   6751 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6752   EXPECT_FALSE(HasNonfatalFailure());
   6753 }
   6754 
   6755 static void FailFatally() { FAIL(); }
   6756 
   6757 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6758   FailFatally();
   6759   const bool has_nonfatal_failure = HasNonfatalFailure();
   6760   ClearCurrentTestPartResults();
   6761   EXPECT_FALSE(has_nonfatal_failure);
   6762 }
   6763 
   6764 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6765   ADD_FAILURE();
   6766   const bool has_nonfatal_failure = HasNonfatalFailure();
   6767   ClearCurrentTestPartResults();
   6768   EXPECT_TRUE(has_nonfatal_failure);
   6769 }
   6770 
   6771 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6772   FailFatally();
   6773   ADD_FAILURE();
   6774   const bool has_nonfatal_failure = HasNonfatalFailure();
   6775   ClearCurrentTestPartResults();
   6776   EXPECT_TRUE(has_nonfatal_failure);
   6777 }
   6778 
   6779 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6780 static bool HasNonfatalFailureHelper() {
   6781   return testing::Test::HasNonfatalFailure();
   6782 }
   6783 
   6784 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6785   EXPECT_FALSE(HasNonfatalFailureHelper());
   6786 }
   6787 
   6788 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6789   ADD_FAILURE();
   6790   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6791   ClearCurrentTestPartResults();
   6792   EXPECT_TRUE(has_nonfatal_failure);
   6793 }
   6794 
   6795 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6796   EXPECT_FALSE(HasFailure());
   6797 }
   6798 
   6799 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6800   FailFatally();
   6801   const bool has_failure = HasFailure();
   6802   ClearCurrentTestPartResults();
   6803   EXPECT_TRUE(has_failure);
   6804 }
   6805 
   6806 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6807   ADD_FAILURE();
   6808   const bool has_failure = HasFailure();
   6809   ClearCurrentTestPartResults();
   6810   EXPECT_TRUE(has_failure);
   6811 }
   6812 
   6813 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6814   FailFatally();
   6815   ADD_FAILURE();
   6816   const bool has_failure = HasFailure();
   6817   ClearCurrentTestPartResults();
   6818   EXPECT_TRUE(has_failure);
   6819 }
   6820 
   6821 // A wrapper for calling HasFailure outside of a test body.
   6822 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6823 
   6824 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6825   EXPECT_FALSE(HasFailureHelper());
   6826 }
   6827 
   6828 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6829   ADD_FAILURE();
   6830   const bool has_failure = HasFailureHelper();
   6831   ClearCurrentTestPartResults();
   6832   EXPECT_TRUE(has_failure);
   6833 }
   6834 
   6835 class TestListener : public EmptyTestEventListener {
   6836  public:
   6837   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6838   TestListener(int* on_start_counter, bool* is_destroyed)
   6839       : on_start_counter_(on_start_counter),
   6840         is_destroyed_(is_destroyed) {}
   6841 
   6842   virtual ~TestListener() {
   6843     if (is_destroyed_)
   6844       *is_destroyed_ = true;
   6845   }
   6846 
   6847  protected:
   6848   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6849     if (on_start_counter_ != NULL)
   6850       (*on_start_counter_)++;
   6851   }
   6852 
   6853  private:
   6854   int* on_start_counter_;
   6855   bool* is_destroyed_;
   6856 };
   6857 
   6858 // Tests the constructor.
   6859 TEST(TestEventListenersTest, ConstructionWorks) {
   6860   TestEventListeners listeners;
   6861 
   6862   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   6863   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6864   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6865 }
   6866 
   6867 // Tests that the TestEventListeners destructor deletes all the listeners it
   6868 // owns.
   6869 TEST(TestEventListenersTest, DestructionWorks) {
   6870   bool default_result_printer_is_destroyed = false;
   6871   bool default_xml_printer_is_destroyed = false;
   6872   bool extra_listener_is_destroyed = false;
   6873   TestListener* default_result_printer = new TestListener(
   6874       NULL, &default_result_printer_is_destroyed);
   6875   TestListener* default_xml_printer = new TestListener(
   6876       NULL, &default_xml_printer_is_destroyed);
   6877   TestListener* extra_listener = new TestListener(
   6878       NULL, &extra_listener_is_destroyed);
   6879 
   6880   {
   6881     TestEventListeners listeners;
   6882     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   6883                                                         default_result_printer);
   6884     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   6885                                                        default_xml_printer);
   6886     listeners.Append(extra_listener);
   6887   }
   6888   EXPECT_TRUE(default_result_printer_is_destroyed);
   6889   EXPECT_TRUE(default_xml_printer_is_destroyed);
   6890   EXPECT_TRUE(extra_listener_is_destroyed);
   6891 }
   6892 
   6893 // Tests that a listener Append'ed to a TestEventListeners list starts
   6894 // receiving events.
   6895 TEST(TestEventListenersTest, Append) {
   6896   int on_start_counter = 0;
   6897   bool is_destroyed = false;
   6898   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6899   {
   6900     TestEventListeners listeners;
   6901     listeners.Append(listener);
   6902     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6903         *UnitTest::GetInstance());
   6904     EXPECT_EQ(1, on_start_counter);
   6905   }
   6906   EXPECT_TRUE(is_destroyed);
   6907 }
   6908 
   6909 // Tests that listeners receive events in the order they were appended to
   6910 // the list, except for *End requests, which must be received in the reverse
   6911 // order.
   6912 class SequenceTestingListener : public EmptyTestEventListener {
   6913  public:
   6914   SequenceTestingListener(std::vector<String>* vector, const char* id)
   6915       : vector_(vector), id_(id) {}
   6916 
   6917  protected:
   6918   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6919     vector_->push_back(GetEventDescription("OnTestProgramStart"));
   6920   }
   6921 
   6922   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   6923     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
   6924   }
   6925 
   6926   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   6927                                     int /*iteration*/) {
   6928     vector_->push_back(GetEventDescription("OnTestIterationStart"));
   6929   }
   6930 
   6931   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   6932                                   int /*iteration*/) {
   6933     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
   6934   }
   6935 
   6936  private:
   6937   String GetEventDescription(const char* method) {
   6938     Message message;
   6939     message << id_ << "." << method;
   6940     return message.GetString();
   6941   }
   6942 
   6943   std::vector<String>* vector_;
   6944   const char* const id_;
   6945 
   6946   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   6947 };
   6948 
   6949 TEST(EventListenerTest, AppendKeepsOrder) {
   6950   std::vector<String> vec;
   6951   TestEventListeners listeners;
   6952   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   6953   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   6954   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   6955 
   6956   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6957       *UnitTest::GetInstance());
   6958   ASSERT_EQ(3U, vec.size());
   6959   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
   6960   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
   6961   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
   6962 
   6963   vec.clear();
   6964   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   6965       *UnitTest::GetInstance());
   6966   ASSERT_EQ(3U, vec.size());
   6967   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
   6968   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
   6969   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
   6970 
   6971   vec.clear();
   6972   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   6973       *UnitTest::GetInstance(), 0);
   6974   ASSERT_EQ(3U, vec.size());
   6975   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
   6976   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
   6977   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
   6978 
   6979   vec.clear();
   6980   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   6981       *UnitTest::GetInstance(), 0);
   6982   ASSERT_EQ(3U, vec.size());
   6983   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
   6984   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
   6985   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
   6986 }
   6987 
   6988 // Tests that a listener removed from a TestEventListeners list stops receiving
   6989 // events and is not deleted when the list is destroyed.
   6990 TEST(TestEventListenersTest, Release) {
   6991   int on_start_counter = 0;
   6992   bool is_destroyed = false;
   6993   // Although Append passes the ownership of this object to the list,
   6994   // the following calls release it, and we need to delete it before the
   6995   // test ends.
   6996   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6997   {
   6998     TestEventListeners listeners;
   6999     listeners.Append(listener);
   7000     EXPECT_EQ(listener, listeners.Release(listener));
   7001     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7002         *UnitTest::GetInstance());
   7003     EXPECT_TRUE(listeners.Release(listener) == NULL);
   7004   }
   7005   EXPECT_EQ(0, on_start_counter);
   7006   EXPECT_FALSE(is_destroyed);
   7007   delete listener;
   7008 }
   7009 
   7010 // Tests that no events are forwarded when event forwarding is disabled.
   7011 TEST(EventListenerTest, SuppressEventForwarding) {
   7012   int on_start_counter = 0;
   7013   TestListener* listener = new TestListener(&on_start_counter, NULL);
   7014 
   7015   TestEventListeners listeners;
   7016   listeners.Append(listener);
   7017   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   7018   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   7019   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   7020   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7021       *UnitTest::GetInstance());
   7022   EXPECT_EQ(0, on_start_counter);
   7023 }
   7024 
   7025 // Tests that events generated by Google Test are not forwarded in
   7026 // death test subprocesses.
   7027 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   7028   EXPECT_DEATH_IF_SUPPORTED({
   7029       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   7030           *GetUnitTestImpl()->listeners())) << "expected failure";},
   7031       "expected failure");
   7032 }
   7033 
   7034 // Tests that a listener installed via SetDefaultResultPrinter() starts
   7035 // receiving events and is returned via default_result_printer() and that
   7036 // the previous default_result_printer is removed from the list and deleted.
   7037 TEST(EventListenerTest, default_result_printer) {
   7038   int on_start_counter = 0;
   7039   bool is_destroyed = false;
   7040   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7041 
   7042   TestEventListeners listeners;
   7043   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   7044 
   7045   EXPECT_EQ(listener, listeners.default_result_printer());
   7046 
   7047   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7048       *UnitTest::GetInstance());
   7049 
   7050   EXPECT_EQ(1, on_start_counter);
   7051 
   7052   // Replacing default_result_printer with something else should remove it
   7053   // from the list and destroy it.
   7054   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   7055 
   7056   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   7057   EXPECT_TRUE(is_destroyed);
   7058 
   7059   // After broadcasting an event the counter is still the same, indicating
   7060   // the listener is not in the list anymore.
   7061   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7062       *UnitTest::GetInstance());
   7063   EXPECT_EQ(1, on_start_counter);
   7064 }
   7065 
   7066 // Tests that the default_result_printer listener stops receiving events
   7067 // when removed via Release and that is not owned by the list anymore.
   7068 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   7069   int on_start_counter = 0;
   7070   bool is_destroyed = false;
   7071   // Although Append passes the ownership of this object to the list,
   7072   // the following calls release it, and we need to delete it before the
   7073   // test ends.
   7074   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7075   {
   7076     TestEventListeners listeners;
   7077     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   7078 
   7079     EXPECT_EQ(listener, listeners.Release(listener));
   7080     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   7081     EXPECT_FALSE(is_destroyed);
   7082 
   7083     // Broadcasting events now should not affect default_result_printer.
   7084     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7085         *UnitTest::GetInstance());
   7086     EXPECT_EQ(0, on_start_counter);
   7087   }
   7088   // Destroying the list should not affect the listener now, too.
   7089   EXPECT_FALSE(is_destroyed);
   7090   delete listener;
   7091 }
   7092 
   7093 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   7094 // receiving events and is returned via default_xml_generator() and that
   7095 // the previous default_xml_generator is removed from the list and deleted.
   7096 TEST(EventListenerTest, default_xml_generator) {
   7097   int on_start_counter = 0;
   7098   bool is_destroyed = false;
   7099   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7100 
   7101   TestEventListeners listeners;
   7102   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   7103 
   7104   EXPECT_EQ(listener, listeners.default_xml_generator());
   7105 
   7106   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7107       *UnitTest::GetInstance());
   7108 
   7109   EXPECT_EQ(1, on_start_counter);
   7110 
   7111   // Replacing default_xml_generator with something else should remove it
   7112   // from the list and destroy it.
   7113   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   7114 
   7115   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7116   EXPECT_TRUE(is_destroyed);
   7117 
   7118   // After broadcasting an event the counter is still the same, indicating
   7119   // the listener is not in the list anymore.
   7120   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7121       *UnitTest::GetInstance());
   7122   EXPECT_EQ(1, on_start_counter);
   7123 }
   7124 
   7125 // Tests that the default_xml_generator listener stops receiving events
   7126 // when removed via Release and that is not owned by the list anymore.
   7127 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   7128   int on_start_counter = 0;
   7129   bool is_destroyed = false;
   7130   // Although Append passes the ownership of this object to the list,
   7131   // the following calls release it, and we need to delete it before the
   7132   // test ends.
   7133   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7134   {
   7135     TestEventListeners listeners;
   7136     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   7137 
   7138     EXPECT_EQ(listener, listeners.Release(listener));
   7139     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7140     EXPECT_FALSE(is_destroyed);
   7141 
   7142     // Broadcasting events now should not affect default_xml_generator.
   7143     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7144         *UnitTest::GetInstance());
   7145     EXPECT_EQ(0, on_start_counter);
   7146   }
   7147   // Destroying the list should not affect the listener now, too.
   7148   EXPECT_FALSE(is_destroyed);
   7149   delete listener;
   7150 }
   7151 
   7152 // Sanity tests to ensure that the alternative, verbose spellings of
   7153 // some of the macros work.  We don't test them thoroughly as that
   7154 // would be quite involved.  Since their implementations are
   7155 // straightforward, and they are rarely used, we'll just rely on the
   7156 // users to tell us when they are broken.
   7157 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
   7158   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
   7159 
   7160   // GTEST_FAIL is the same as FAIL.
   7161   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
   7162                        "An expected failure");
   7163 
   7164   // GTEST_ASSERT_XY is the same as ASSERT_XY.
   7165 
   7166   GTEST_ASSERT_EQ(0, 0);
   7167   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
   7168                        "An expected failure");
   7169   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
   7170                        "An expected failure");
   7171 
   7172   GTEST_ASSERT_NE(0, 1);
   7173   GTEST_ASSERT_NE(1, 0);
   7174   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
   7175                        "An expected failure");
   7176 
   7177   GTEST_ASSERT_LE(0, 0);
   7178   GTEST_ASSERT_LE(0, 1);
   7179   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
   7180                        "An expected failure");
   7181 
   7182   GTEST_ASSERT_LT(0, 1);
   7183   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
   7184                        "An expected failure");
   7185   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
   7186                        "An expected failure");
   7187 
   7188   GTEST_ASSERT_GE(0, 0);
   7189   GTEST_ASSERT_GE(1, 0);
   7190   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
   7191                        "An expected failure");
   7192 
   7193   GTEST_ASSERT_GT(1, 0);
   7194   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
   7195                        "An expected failure");
   7196   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
   7197                        "An expected failure");
   7198 }
   7199 
   7200 // Tests for internal utilities necessary for implementation of the universal
   7201 // printing.
   7202 // TODO(vladl (at) google.com): Find a better home for them.
   7203 
   7204 class ConversionHelperBase {};
   7205 class ConversionHelperDerived : public ConversionHelperBase {};
   7206 
   7207 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
   7208 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
   7209   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
   7210                         const_true);
   7211   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
   7212 }
   7213 
   7214 // Tests that IsAProtocolMessage<T>::value is true when T is
   7215 // proto2::Message or a sub-class of it.
   7216 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
   7217   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
   7218   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
   7219 }
   7220 
   7221 // Tests that IsAProtocolMessage<T>::value is false when T is neither
   7222 // ProtocolMessage nor a sub-class of it.
   7223 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
   7224   EXPECT_FALSE(IsAProtocolMessage<int>::value);
   7225   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
   7226 }
   7227 
   7228 // Tests that CompileAssertTypesEqual compiles when the type arguments are
   7229 // equal.
   7230 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
   7231   CompileAssertTypesEqual<void, void>();
   7232   CompileAssertTypesEqual<int*, int*>();
   7233 }
   7234 
   7235 // Tests that RemoveReference does not affect non-reference types.
   7236 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
   7237   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
   7238   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
   7239 }
   7240 
   7241 // Tests that RemoveReference removes reference from reference types.
   7242 TEST(RemoveReferenceTest, RemovesReference) {
   7243   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
   7244   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
   7245 }
   7246 
   7247 // Tests GTEST_REMOVE_REFERENCE_.
   7248 
   7249 template <typename T1, typename T2>
   7250 void TestGTestRemoveReference() {
   7251   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
   7252 }
   7253 
   7254 TEST(RemoveReferenceTest, MacroVersion) {
   7255   TestGTestRemoveReference<int, int>();
   7256   TestGTestRemoveReference<const char, const char&>();
   7257 }
   7258 
   7259 
   7260 // Tests that RemoveConst does not affect non-const types.
   7261 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
   7262   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
   7263   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
   7264 }
   7265 
   7266 // Tests that RemoveConst removes const from const types.
   7267 TEST(RemoveConstTest, RemovesConst) {
   7268   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
   7269   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
   7270   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
   7271 }
   7272 
   7273 // Tests GTEST_REMOVE_CONST_.
   7274 
   7275 template <typename T1, typename T2>
   7276 void TestGTestRemoveConst() {
   7277   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
   7278 }
   7279 
   7280 TEST(RemoveConstTest, MacroVersion) {
   7281   TestGTestRemoveConst<int, int>();
   7282   TestGTestRemoveConst<double&, double&>();
   7283   TestGTestRemoveConst<char, const char>();
   7284 }
   7285 
   7286 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
   7287 
   7288 template <typename T1, typename T2>
   7289 void TestGTestRemoveReferenceAndConst() {
   7290   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
   7291 }
   7292 
   7293 TEST(RemoveReferenceToConstTest, Works) {
   7294   TestGTestRemoveReferenceAndConst<int, int>();
   7295   TestGTestRemoveReferenceAndConst<double, double&>();
   7296   TestGTestRemoveReferenceAndConst<char, const char>();
   7297   TestGTestRemoveReferenceAndConst<char, const char&>();
   7298   TestGTestRemoveReferenceAndConst<const char*, const char*>();
   7299 }
   7300 
   7301 // Tests that AddReference does not affect reference types.
   7302 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
   7303   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
   7304   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
   7305 }
   7306 
   7307 // Tests that AddReference adds reference to non-reference types.
   7308 TEST(AddReferenceTest, AddsReference) {
   7309   CompileAssertTypesEqual<int&, AddReference<int>::type>();
   7310   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
   7311 }
   7312 
   7313 // Tests GTEST_ADD_REFERENCE_.
   7314 
   7315 template <typename T1, typename T2>
   7316 void TestGTestAddReference() {
   7317   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
   7318 }
   7319 
   7320 TEST(AddReferenceTest, MacroVersion) {
   7321   TestGTestAddReference<int&, int>();
   7322   TestGTestAddReference<const char&, const char&>();
   7323 }
   7324 
   7325 // Tests GTEST_REFERENCE_TO_CONST_.
   7326 
   7327 template <typename T1, typename T2>
   7328 void TestGTestReferenceToConst() {
   7329   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
   7330 }
   7331 
   7332 TEST(GTestReferenceToConstTest, Works) {
   7333   TestGTestReferenceToConst<const char&, char>();
   7334   TestGTestReferenceToConst<const int&, const int>();
   7335   TestGTestReferenceToConst<const double&, double>();
   7336   TestGTestReferenceToConst<const String&, const String&>();
   7337 }
   7338 
   7339 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
   7340 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
   7341   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
   7342   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
   7343                         const_false);
   7344 }
   7345 
   7346 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
   7347 // be implicitly converted to T2.
   7348 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
   7349   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
   7350   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
   7351   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
   7352   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
   7353   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
   7354                                      const ConversionHelperBase&>::value));
   7355   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
   7356                                      ConversionHelperBase>::value));
   7357 }
   7358 
   7359 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
   7360 // cannot be implicitly converted to T2.
   7361 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
   7362   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
   7363   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
   7364   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
   7365   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
   7366                                       ConversionHelperDerived&>::value));
   7367 }
   7368 
   7369 // Tests IsContainerTest.
   7370 
   7371 class NonContainer {};
   7372 
   7373 TEST(IsContainerTestTest, WorksForNonContainer) {
   7374   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
   7375   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
   7376   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
   7377 }
   7378 
   7379 TEST(IsContainerTestTest, WorksForContainer) {
   7380   EXPECT_EQ(sizeof(IsContainer),
   7381             sizeof(IsContainerTest<std::vector<bool> >(0)));
   7382   EXPECT_EQ(sizeof(IsContainer),
   7383             sizeof(IsContainerTest<std::map<int, double> >(0)));
   7384 }
   7385 
   7386 // Tests ArrayEq().
   7387 
   7388 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
   7389   EXPECT_TRUE(ArrayEq(5, 5L));
   7390   EXPECT_FALSE(ArrayEq('a', 0));
   7391 }
   7392 
   7393 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
   7394   // Note that a and b are distinct but compatible types.
   7395   const int a[] = { 0, 1 };
   7396   long b[] = { 0, 1 };
   7397   EXPECT_TRUE(ArrayEq(a, b));
   7398   EXPECT_TRUE(ArrayEq(a, 2, b));
   7399 
   7400   b[0] = 2;
   7401   EXPECT_FALSE(ArrayEq(a, b));
   7402   EXPECT_FALSE(ArrayEq(a, 1, b));
   7403 }
   7404 
   7405 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
   7406   const char a[][3] = { "hi", "lo" };
   7407   const char b[][3] = { "hi", "lo" };
   7408   const char c[][3] = { "hi", "li" };
   7409 
   7410   EXPECT_TRUE(ArrayEq(a, b));
   7411   EXPECT_TRUE(ArrayEq(a, 2, b));
   7412 
   7413   EXPECT_FALSE(ArrayEq(a, c));
   7414   EXPECT_FALSE(ArrayEq(a, 2, c));
   7415 }
   7416 
   7417 // Tests ArrayAwareFind().
   7418 
   7419 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
   7420   const char a[] = "hello";
   7421   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
   7422   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
   7423 }
   7424 
   7425 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
   7426   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
   7427   const int b[2] = { 2, 3 };
   7428   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
   7429 
   7430   const int c[2] = { 6, 7 };
   7431   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
   7432 }
   7433 
   7434 // Tests CopyArray().
   7435 
   7436 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
   7437   int n = 0;
   7438   CopyArray('a', &n);
   7439   EXPECT_EQ('a', n);
   7440 }
   7441 
   7442 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
   7443   const char a[3] = "hi";
   7444   int b[3];
   7445 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7446   CopyArray(a, &b);
   7447   EXPECT_TRUE(ArrayEq(a, b));
   7448 #endif
   7449 
   7450   int c[3];
   7451   CopyArray(a, 3, c);
   7452   EXPECT_TRUE(ArrayEq(a, c));
   7453 }
   7454 
   7455 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
   7456   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
   7457   int b[2][3];
   7458 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7459   CopyArray(a, &b);
   7460   EXPECT_TRUE(ArrayEq(a, b));
   7461 #endif
   7462 
   7463   int c[2][3];
   7464   CopyArray(a, 2, c);
   7465   EXPECT_TRUE(ArrayEq(a, c));
   7466 }
   7467 
   7468 // Tests NativeArray.
   7469 
   7470 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
   7471   const int a[3] = { 0, 1, 2 };
   7472   NativeArray<int> na(a, 3, kReference);
   7473   EXPECT_EQ(3U, na.size());
   7474   EXPECT_EQ(a, na.begin());
   7475 }
   7476 
   7477 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
   7478   typedef int Array[2];
   7479   Array* a = new Array[1];
   7480   (*a)[0] = 0;
   7481   (*a)[1] = 1;
   7482   NativeArray<int> na(*a, 2, kCopy);
   7483   EXPECT_NE(*a, na.begin());
   7484   delete[] a;
   7485   EXPECT_EQ(0, na.begin()[0]);
   7486   EXPECT_EQ(1, na.begin()[1]);
   7487 
   7488   // We rely on the heap checker to verify that na deletes the copy of
   7489   // array.
   7490 }
   7491 
   7492 TEST(NativeArrayTest, TypeMembersAreCorrect) {
   7493   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
   7494   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
   7495 
   7496   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
   7497   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
   7498 }
   7499 
   7500 TEST(NativeArrayTest, MethodsWork) {
   7501   const int a[3] = { 0, 1, 2 };
   7502   NativeArray<int> na(a, 3, kCopy);
   7503   ASSERT_EQ(3U, na.size());
   7504   EXPECT_EQ(3, na.end() - na.begin());
   7505 
   7506   NativeArray<int>::const_iterator it = na.begin();
   7507   EXPECT_EQ(0, *it);
   7508   ++it;
   7509   EXPECT_EQ(1, *it);
   7510   it++;
   7511   EXPECT_EQ(2, *it);
   7512   ++it;
   7513   EXPECT_EQ(na.end(), it);
   7514 
   7515   EXPECT_TRUE(na == na);
   7516 
   7517   NativeArray<int> na2(a, 3, kReference);
   7518   EXPECT_TRUE(na == na2);
   7519 
   7520   const int b1[3] = { 0, 1, 1 };
   7521   const int b2[4] = { 0, 1, 2, 3 };
   7522   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
   7523   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
   7524 }
   7525 
   7526 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
   7527   const char a[2][3] = { "hi", "lo" };
   7528   NativeArray<char[3]> na(a, 2, kReference);
   7529   ASSERT_EQ(2U, na.size());
   7530   EXPECT_EQ(a, na.begin());
   7531 }
   7532 
   7533 // Tests SkipPrefix().
   7534 
   7535 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
   7536   const char* const str = "hello";
   7537 
   7538   const char* p = str;
   7539   EXPECT_TRUE(SkipPrefix("", &p));
   7540   EXPECT_EQ(str, p);
   7541 
   7542   p = str;
   7543   EXPECT_TRUE(SkipPrefix("hell", &p));
   7544   EXPECT_EQ(str + 4, p);
   7545 }
   7546 
   7547 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
   7548   const char* const str = "world";
   7549 
   7550   const char* p = str;
   7551   EXPECT_FALSE(SkipPrefix("W", &p));
   7552   EXPECT_EQ(str, p);
   7553 
   7554   p = str;
   7555   EXPECT_FALSE(SkipPrefix("world!", &p));
   7556   EXPECT_EQ(str, p);
   7557 }
   7558