Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include "gtest/gtest.h"
     36 
     37 // Verifies that the command line flag variables can be accessed
     38 // in code once <gtest/gtest.h> has been #included.
     39 // Do not move it after other #includes.
     40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     42       || testing::GTEST_FLAG(break_on_failure)
     43       || testing::GTEST_FLAG(catch_exceptions)
     44       || testing::GTEST_FLAG(color) != "unknown"
     45       || testing::GTEST_FLAG(filter) != "unknown"
     46       || testing::GTEST_FLAG(list_tests)
     47       || testing::GTEST_FLAG(output) != "unknown"
     48       || testing::GTEST_FLAG(print_time)
     49       || testing::GTEST_FLAG(random_seed)
     50       || testing::GTEST_FLAG(repeat) > 0
     51       || testing::GTEST_FLAG(show_internal_stack_frames)
     52       || testing::GTEST_FLAG(shuffle)
     53       || testing::GTEST_FLAG(stack_trace_depth) > 0
     54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
     55       || testing::GTEST_FLAG(throw_on_failure);
     56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     57 }
     58 
     59 #include <limits.h>  // For INT_MAX.
     60 #include <stdlib.h>
     61 #include <string.h>
     62 #include <time.h>
     63 
     64 #include <map>
     65 #include <vector>
     66 #include <ostream>
     67 
     68 #include "gtest/gtest-spi.h"
     69 
     70 // Indicates that this translation unit is part of Google Test's
     71 // implementation.  It must come before gtest-internal-inl.h is
     72 // included, or there will be a compiler error.  This trick is to
     73 // prevent a user from accidentally including gtest-internal-inl.h in
     74 // his code.
     75 #define GTEST_IMPLEMENTATION_ 1
     76 #include "src/gtest-internal-inl.h"
     77 #undef GTEST_IMPLEMENTATION_
     78 
     79 namespace testing {
     80 namespace internal {
     81 
     82 #if GTEST_CAN_STREAM_RESULTS_
     83 
     84 class StreamingListenerTest : public Test {
     85  public:
     86   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
     87    public:
     88     // Sends a string to the socket.
     89     virtual void Send(const string& message) { output_ += message; }
     90 
     91     string output_;
     92   };
     93 
     94   StreamingListenerTest()
     95       : fake_sock_writer_(new FakeSocketWriter),
     96         streamer_(fake_sock_writer_),
     97         test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
     98 
     99  protected:
    100   string* output() { return &(fake_sock_writer_->output_); }
    101 
    102   FakeSocketWriter* const fake_sock_writer_;
    103   StreamingListener streamer_;
    104   UnitTest unit_test_;
    105   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
    106 };
    107 
    108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
    109   *output() = "";
    110   streamer_.OnTestProgramEnd(unit_test_);
    111   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
    112 }
    113 
    114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
    115   *output() = "";
    116   streamer_.OnTestIterationEnd(unit_test_, 42);
    117   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
    118 }
    119 
    120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
    121   *output() = "";
    122   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
    123   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
    124 }
    125 
    126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
    127   *output() = "";
    128   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
    129   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
    130 }
    131 
    132 TEST_F(StreamingListenerTest, OnTestStart) {
    133   *output() = "";
    134   streamer_.OnTestStart(test_info_obj_);
    135   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
    136 }
    137 
    138 TEST_F(StreamingListenerTest, OnTestEnd) {
    139   *output() = "";
    140   streamer_.OnTestEnd(test_info_obj_);
    141   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
    142 }
    143 
    144 TEST_F(StreamingListenerTest, OnTestPartResult) {
    145   *output() = "";
    146   streamer_.OnTestPartResult(TestPartResult(
    147       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
    148 
    149   // Meta characters in the failure message should be properly escaped.
    150   EXPECT_EQ(
    151       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
    152       *output());
    153 }
    154 
    155 #endif  // GTEST_CAN_STREAM_RESULTS_
    156 
    157 // Provides access to otherwise private parts of the TestEventListeners class
    158 // that are needed to test it.
    159 class TestEventListenersAccessor {
    160  public:
    161   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
    162     return listeners->repeater();
    163   }
    164 
    165   static void SetDefaultResultPrinter(TestEventListeners* listeners,
    166                                       TestEventListener* listener) {
    167     listeners->SetDefaultResultPrinter(listener);
    168   }
    169   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
    170                                      TestEventListener* listener) {
    171     listeners->SetDefaultXmlGenerator(listener);
    172   }
    173 
    174   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
    175     return listeners.EventForwardingEnabled();
    176   }
    177 
    178   static void SuppressEventForwarding(TestEventListeners* listeners) {
    179     listeners->SuppressEventForwarding();
    180   }
    181 };
    182 
    183 class UnitTestRecordPropertyTestHelper : public Test {
    184  protected:
    185   UnitTestRecordPropertyTestHelper() {}
    186 
    187   // Forwards to UnitTest::RecordProperty() to bypass access controls.
    188   void UnitTestRecordProperty(const char* key, const std::string& value) {
    189     unit_test_.RecordProperty(key, value);
    190   }
    191 
    192   UnitTest unit_test_;
    193 };
    194 
    195 }  // namespace internal
    196 }  // namespace testing
    197 
    198 using testing::AssertionFailure;
    199 using testing::AssertionResult;
    200 using testing::AssertionSuccess;
    201 using testing::DoubleLE;
    202 using testing::EmptyTestEventListener;
    203 using testing::Environment;
    204 using testing::FloatLE;
    205 using testing::GTEST_FLAG(also_run_disabled_tests);
    206 using testing::GTEST_FLAG(break_on_failure);
    207 using testing::GTEST_FLAG(catch_exceptions);
    208 using testing::GTEST_FLAG(color);
    209 using testing::GTEST_FLAG(death_test_use_fork);
    210 using testing::GTEST_FLAG(filter);
    211 using testing::GTEST_FLAG(list_tests);
    212 using testing::GTEST_FLAG(output);
    213 using testing::GTEST_FLAG(print_time);
    214 using testing::GTEST_FLAG(random_seed);
    215 using testing::GTEST_FLAG(repeat);
    216 using testing::GTEST_FLAG(show_internal_stack_frames);
    217 using testing::GTEST_FLAG(shuffle);
    218 using testing::GTEST_FLAG(stack_trace_depth);
    219 using testing::GTEST_FLAG(stream_result_to);
    220 using testing::GTEST_FLAG(throw_on_failure);
    221 using testing::IsNotSubstring;
    222 using testing::IsSubstring;
    223 using testing::Message;
    224 using testing::ScopedFakeTestPartResultReporter;
    225 using testing::StaticAssertTypeEq;
    226 using testing::Test;
    227 using testing::TestCase;
    228 using testing::TestEventListeners;
    229 using testing::TestInfo;
    230 using testing::TestPartResult;
    231 using testing::TestPartResultArray;
    232 using testing::TestProperty;
    233 using testing::TestResult;
    234 using testing::TimeInMillis;
    235 using testing::UnitTest;
    236 using testing::kMaxStackTraceDepth;
    237 using testing::internal::AddReference;
    238 using testing::internal::AlwaysFalse;
    239 using testing::internal::AlwaysTrue;
    240 using testing::internal::AppendUserMessage;
    241 using testing::internal::ArrayAwareFind;
    242 using testing::internal::ArrayEq;
    243 using testing::internal::CodePointToUtf8;
    244 using testing::internal::CompileAssertTypesEqual;
    245 using testing::internal::CopyArray;
    246 using testing::internal::CountIf;
    247 using testing::internal::EqFailure;
    248 using testing::internal::FloatingPoint;
    249 using testing::internal::ForEach;
    250 using testing::internal::FormatEpochTimeInMillisAsIso8601;
    251 using testing::internal::FormatTimeInMillisAsSeconds;
    252 using testing::internal::GTestFlagSaver;
    253 using testing::internal::GetCurrentOsStackTraceExceptTop;
    254 using testing::internal::GetElementOr;
    255 using testing::internal::GetNextRandomSeed;
    256 using testing::internal::GetRandomSeedFromFlag;
    257 using testing::internal::GetTestTypeId;
    258 using testing::internal::GetTimeInMillis;
    259 using testing::internal::GetTypeId;
    260 using testing::internal::GetUnitTestImpl;
    261 using testing::internal::ImplicitlyConvertible;
    262 using testing::internal::Int32;
    263 using testing::internal::Int32FromEnvOrDie;
    264 using testing::internal::IsAProtocolMessage;
    265 using testing::internal::IsContainer;
    266 using testing::internal::IsContainerTest;
    267 using testing::internal::IsNotContainer;
    268 using testing::internal::NativeArray;
    269 using testing::internal::ParseInt32Flag;
    270 using testing::internal::RemoveConst;
    271 using testing::internal::RemoveReference;
    272 using testing::internal::ShouldRunTestOnShard;
    273 using testing::internal::ShouldShard;
    274 using testing::internal::ShouldUseColor;
    275 using testing::internal::Shuffle;
    276 using testing::internal::ShuffleRange;
    277 using testing::internal::SkipPrefix;
    278 using testing::internal::StreamableToString;
    279 using testing::internal::String;
    280 using testing::internal::TestEventListenersAccessor;
    281 using testing::internal::TestResultAccessor;
    282 using testing::internal::UInt32;
    283 using testing::internal::WideStringToUtf8;
    284 using testing::internal::kCopy;
    285 using testing::internal::kMaxRandomSeed;
    286 using testing::internal::kReference;
    287 using testing::internal::kTestTypeIdInGoogleTest;
    288 using testing::internal::scoped_ptr;
    289 
    290 #if GTEST_HAS_STREAM_REDIRECTION
    291 using testing::internal::CaptureStdout;
    292 using testing::internal::GetCapturedStdout;
    293 #endif
    294 
    295 #if GTEST_IS_THREADSAFE
    296 using testing::internal::ThreadWithParam;
    297 #endif
    298 
    299 class TestingVector : public std::vector<int> {
    300 };
    301 
    302 ::std::ostream& operator<<(::std::ostream& os,
    303                            const TestingVector& vector) {
    304   os << "{ ";
    305   for (size_t i = 0; i < vector.size(); i++) {
    306     os << vector[i] << " ";
    307   }
    308   os << "}";
    309   return os;
    310 }
    311 
    312 // This line tests that we can define tests in an unnamed namespace.
    313 namespace {
    314 
    315 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    316   const int seed = GetRandomSeedFromFlag(0);
    317   EXPECT_LE(1, seed);
    318   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    319 }
    320 
    321 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    322   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    323   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    324   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    325   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    326             GetRandomSeedFromFlag(kMaxRandomSeed));
    327 }
    328 
    329 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    330   const int seed1 = GetRandomSeedFromFlag(-1);
    331   EXPECT_LE(1, seed1);
    332   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    333 
    334   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    335   EXPECT_LE(1, seed2);
    336   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    337 }
    338 
    339 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    340   EXPECT_EQ(2, GetNextRandomSeed(1));
    341   EXPECT_EQ(3, GetNextRandomSeed(2));
    342   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    343             GetNextRandomSeed(kMaxRandomSeed - 1));
    344   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    345 
    346   // We deliberately don't test GetNextRandomSeed() with invalid
    347   // inputs, as that requires death tests, which are expensive.  This
    348   // is fine as GetNextRandomSeed() is internal and has a
    349   // straightforward definition.
    350 }
    351 
    352 static void ClearCurrentTestPartResults() {
    353   TestResultAccessor::ClearTestPartResults(
    354       GetUnitTestImpl()->current_test_result());
    355 }
    356 
    357 // Tests GetTypeId.
    358 
    359 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    360   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    361   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    362 }
    363 
    364 class SubClassOfTest : public Test {};
    365 class AnotherSubClassOfTest : public Test {};
    366 
    367 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    368   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    369   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    370   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    371   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    372   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    373   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    374 }
    375 
    376 // Verifies that GetTestTypeId() returns the same value, no matter it
    377 // is called from inside Google Test or outside of it.
    378 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    379   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    380 }
    381 
    382 // Tests FormatTimeInMillisAsSeconds().
    383 
    384 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    385   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
    386 }
    387 
    388 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    389   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
    390   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
    391   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
    392   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
    393   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
    394 }
    395 
    396 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    397   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    398   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    399   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    400   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    401   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
    402 }
    403 
    404 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
    405 // for particular dates below was verified in Python using
    406 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
    407 
    408 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
    409 // have to set up a particular timezone to obtain predictable results.
    410 class FormatEpochTimeInMillisAsIso8601Test : public Test {
    411  public:
    412   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
    413   // 32 bits, even when 64-bit integer types are available.  We have to
    414   // force the constants to have a 64-bit type here.
    415   static const TimeInMillis kMillisPerSec = 1000;
    416 
    417  private:
    418   virtual void SetUp() {
    419     saved_tz_ = NULL;
    420 #if _MSC_VER
    421 # pragma warning(push)          // Saves the current warning state.
    422 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    423                                 // (function or variable may be unsafe
    424                                 // for getenv, function is deprecated for
    425                                 // strdup).
    426     if (getenv("TZ"))
    427       saved_tz_ = strdup(getenv("TZ"));
    428 # pragma warning(pop)           // Restores the warning state again.
    429 #else
    430     if (getenv("TZ"))
    431       saved_tz_ = strdup(getenv("TZ"));
    432 #endif
    433 
    434     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
    435     // cannot use the local time zone because the function's output depends
    436     // on the time zone.
    437     SetTimeZone("UTC+00");
    438   }
    439 
    440   virtual void TearDown() {
    441     SetTimeZone(saved_tz_);
    442     free(const_cast<char*>(saved_tz_));
    443     saved_tz_ = NULL;
    444   }
    445 
    446   static void SetTimeZone(const char* time_zone) {
    447     // tzset() distinguishes between the TZ variable being present and empty
    448     // and not being present, so we have to consider the case of time_zone
    449     // being NULL.
    450 #if _MSC_VER
    451     // ...Unless it's MSVC, whose standard library's _putenv doesn't
    452     // distinguish between an empty and a missing variable.
    453     const std::string env_var =
    454         std::string("TZ=") + (time_zone ? time_zone : "");
    455     _putenv(env_var.c_str());
    456 # pragma warning(push)          // Saves the current warning state.
    457 # pragma warning(disable:4996)  // Temporarily disables warning 4996
    458                                 // (function is deprecated).
    459     tzset();
    460 # pragma warning(pop)           // Restores the warning state again.
    461 #else
    462     if (time_zone) {
    463       setenv(("TZ"), time_zone, 1);
    464     } else {
    465       unsetenv("TZ");
    466     }
    467     tzset();
    468 #endif
    469   }
    470 
    471   const char* saved_tz_;
    472 };
    473 
    474 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
    475 
    476 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
    477   EXPECT_EQ("2011-10-31T18:52:42",
    478             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
    479 }
    480 
    481 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
    482   EXPECT_EQ(
    483       "2011-10-31T18:52:42",
    484       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
    485 }
    486 
    487 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
    488   EXPECT_EQ("2011-09-03T05:07:02",
    489             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
    490 }
    491 
    492 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
    493   EXPECT_EQ("2011-09-28T17:08:22",
    494             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
    495 }
    496 
    497 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
    498   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
    499 }
    500 
    501 #if GTEST_CAN_COMPARE_NULL
    502 
    503 # ifdef __BORLANDC__
    504 // Silences warnings: "Condition is always true", "Unreachable code"
    505 #  pragma option push -w-ccc -w-rch
    506 # endif
    507 
    508 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    509 // pointer literal.
    510 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    511   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    512   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    513   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    514   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    515 }
    516 
    517 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    518 // pointer literal.
    519 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    520   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    521   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    522   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    523   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    524 }
    525 
    526 # ifdef __BORLANDC__
    527 // Restores warnings after previous "#pragma option push" suppressed them.
    528 #  pragma option pop
    529 # endif
    530 
    531 #endif  // GTEST_CAN_COMPARE_NULL
    532 //
    533 // Tests CodePointToUtf8().
    534 
    535 // Tests that the NUL character L'\0' is encoded correctly.
    536 TEST(CodePointToUtf8Test, CanEncodeNul) {
    537   EXPECT_EQ("", CodePointToUtf8(L'\0'));
    538 }
    539 
    540 // Tests that ASCII characters are encoded correctly.
    541 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    542   EXPECT_EQ("a", CodePointToUtf8(L'a'));
    543   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
    544   EXPECT_EQ("&", CodePointToUtf8(L'&'));
    545   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
    546 }
    547 
    548 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    549 // as 110xxxxx 10xxxxxx.
    550 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    551   // 000 1101 0011 => 110-00011 10-010011
    552   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
    553 
    554   // 101 0111 0110 => 110-10101 10-110110
    555   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
    556   // in wide strings and wide chars. In order to accomodate them, we have to
    557   // introduce such character constants as integers.
    558   EXPECT_EQ("\xD5\xB6",
    559             CodePointToUtf8(static_cast<wchar_t>(0x576)));
    560 }
    561 
    562 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    563 // as 1110xxxx 10xxxxxx 10xxxxxx.
    564 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    565   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    566   EXPECT_EQ("\xE0\xA3\x93",
    567             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
    568 
    569   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    570   EXPECT_EQ("\xEC\x9D\x8D",
    571             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
    572 }
    573 
    574 #if !GTEST_WIDE_STRING_USES_UTF16_
    575 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    576 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    577 // 16-bit wide. This code may not compile on those systems.
    578 
    579 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    580 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    581 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    582   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    583   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
    584 
    585   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    586   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
    587 
    588   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    589   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
    590 }
    591 
    592 // Tests that encoding an invalid code-point generates the expected result.
    593 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    594   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
    595 }
    596 
    597 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    598 
    599 // Tests WideStringToUtf8().
    600 
    601 // Tests that the NUL character L'\0' is encoded correctly.
    602 TEST(WideStringToUtf8Test, CanEncodeNul) {
    603   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    604   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    605 }
    606 
    607 // Tests that ASCII strings are encoded correctly.
    608 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    609   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    610   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    611   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    612   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    613 }
    614 
    615 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    616 // as 110xxxxx 10xxxxxx.
    617 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    618   // 000 1101 0011 => 110-00011 10-010011
    619   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    620   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    621 
    622   // 101 0111 0110 => 110-10101 10-110110
    623   const wchar_t s[] = { 0x576, '\0' };
    624   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
    625   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
    626 }
    627 
    628 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    629 // as 1110xxxx 10xxxxxx 10xxxxxx.
    630 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    631   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    632   const wchar_t s1[] = { 0x8D3, '\0' };
    633   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
    634   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
    635 
    636   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    637   const wchar_t s2[] = { 0xC74D, '\0' };
    638   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
    639   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
    640 }
    641 
    642 // Tests that the conversion stops when the function encounters \0 character.
    643 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    644   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    645 }
    646 
    647 // Tests that the conversion stops when the function reaches the limit
    648 // specified by the 'length' parameter.
    649 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    650   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    651 }
    652 
    653 #if !GTEST_WIDE_STRING_USES_UTF16_
    654 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    655 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    656 // on the systems using UTF-16 encoding.
    657 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    658   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    659   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    660   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    661 
    662   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    663   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    664   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    665 }
    666 
    667 // Tests that encoding an invalid code-point generates the expected result.
    668 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    669   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    670                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    671 }
    672 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    673 // Tests that surrogate pairs are encoded correctly on the systems using
    674 // UTF-16 encoding in the wide strings.
    675 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    676   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
    677   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
    678 }
    679 
    680 // Tests that encoding an invalid UTF-16 surrogate pair
    681 // generates the expected result.
    682 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    683   // Leading surrogate is at the end of the string.
    684   const wchar_t s1[] = { 0xD800, '\0' };
    685   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
    686   // Leading surrogate is not followed by the trailing surrogate.
    687   const wchar_t s2[] = { 0xD800, 'M', '\0' };
    688   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
    689   // Trailing surrogate appearas without a leading surrogate.
    690   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
    691   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
    692 }
    693 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    694 
    695 // Tests that codepoint concatenation works correctly.
    696 #if !GTEST_WIDE_STRING_USES_UTF16_
    697 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    698   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
    699   EXPECT_STREQ(
    700       "\xF4\x88\x98\xB4"
    701           "\xEC\x9D\x8D"
    702           "\n"
    703           "\xD5\xB6"
    704           "\xE0\xA3\x93"
    705           "\xF4\x88\x98\xB4",
    706       WideStringToUtf8(s, -1).c_str());
    707 }
    708 #else
    709 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    710   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
    711   EXPECT_STREQ(
    712       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    713       WideStringToUtf8(s, -1).c_str());
    714 }
    715 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    716 
    717 // Tests the Random class.
    718 
    719 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    720   testing::internal::Random random(42);
    721   EXPECT_DEATH_IF_SUPPORTED(
    722       random.Generate(0),
    723       "Cannot generate a number in the range \\[0, 0\\)");
    724   EXPECT_DEATH_IF_SUPPORTED(
    725       random.Generate(testing::internal::Random::kMaxRange + 1),
    726       "Generation of a number in \\[0, 2147483649\\) was requested, "
    727       "but this can only generate numbers in \\[0, 2147483648\\)");
    728 }
    729 
    730 TEST(RandomTest, GeneratesNumbersWithinRange) {
    731   const UInt32 kRange = 10000;
    732   testing::internal::Random random(12345);
    733   for (int i = 0; i < 10; i++) {
    734     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    735   }
    736 
    737   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    738   for (int i = 0; i < 10; i++) {
    739     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    740   }
    741 }
    742 
    743 TEST(RandomTest, RepeatsWhenReseeded) {
    744   const int kSeed = 123;
    745   const int kArraySize = 10;
    746   const UInt32 kRange = 10000;
    747   UInt32 values[kArraySize];
    748 
    749   testing::internal::Random random(kSeed);
    750   for (int i = 0; i < kArraySize; i++) {
    751     values[i] = random.Generate(kRange);
    752   }
    753 
    754   random.Reseed(kSeed);
    755   for (int i = 0; i < kArraySize; i++) {
    756     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    757   }
    758 }
    759 
    760 // Tests STL container utilities.
    761 
    762 // Tests CountIf().
    763 
    764 static bool IsPositive(int n) { return n > 0; }
    765 
    766 TEST(ContainerUtilityTest, CountIf) {
    767   std::vector<int> v;
    768   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
    769 
    770   v.push_back(-1);
    771   v.push_back(0);
    772   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
    773 
    774   v.push_back(2);
    775   v.push_back(-10);
    776   v.push_back(10);
    777   EXPECT_EQ(2, CountIf(v, IsPositive));
    778 }
    779 
    780 // Tests ForEach().
    781 
    782 static int g_sum = 0;
    783 static void Accumulate(int n) { g_sum += n; }
    784 
    785 TEST(ContainerUtilityTest, ForEach) {
    786   std::vector<int> v;
    787   g_sum = 0;
    788   ForEach(v, Accumulate);
    789   EXPECT_EQ(0, g_sum);  // Works for an empty container;
    790 
    791   g_sum = 0;
    792   v.push_back(1);
    793   ForEach(v, Accumulate);
    794   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
    795 
    796   g_sum = 0;
    797   v.push_back(20);
    798   v.push_back(300);
    799   ForEach(v, Accumulate);
    800   EXPECT_EQ(321, g_sum);
    801 }
    802 
    803 // Tests GetElementOr().
    804 TEST(ContainerUtilityTest, GetElementOr) {
    805   std::vector<char> a;
    806   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
    807 
    808   a.push_back('a');
    809   a.push_back('b');
    810   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
    811   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
    812   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
    813   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
    814 }
    815 
    816 TEST(ContainerUtilityDeathTest, ShuffleRange) {
    817   std::vector<int> a;
    818   a.push_back(0);
    819   a.push_back(1);
    820   a.push_back(2);
    821   testing::internal::Random random(1);
    822 
    823   EXPECT_DEATH_IF_SUPPORTED(
    824       ShuffleRange(&random, -1, 1, &a),
    825       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    826   EXPECT_DEATH_IF_SUPPORTED(
    827       ShuffleRange(&random, 4, 4, &a),
    828       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    829   EXPECT_DEATH_IF_SUPPORTED(
    830       ShuffleRange(&random, 3, 2, &a),
    831       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    832   EXPECT_DEATH_IF_SUPPORTED(
    833       ShuffleRange(&random, 3, 4, &a),
    834       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    835 }
    836 
    837 class VectorShuffleTest : public Test {
    838  protected:
    839   static const int kVectorSize = 20;
    840 
    841   VectorShuffleTest() : random_(1) {
    842     for (int i = 0; i < kVectorSize; i++) {
    843       vector_.push_back(i);
    844     }
    845   }
    846 
    847   static bool VectorIsCorrupt(const TestingVector& vector) {
    848     if (kVectorSize != static_cast<int>(vector.size())) {
    849       return true;
    850     }
    851 
    852     bool found_in_vector[kVectorSize] = { false };
    853     for (size_t i = 0; i < vector.size(); i++) {
    854       const int e = vector[i];
    855       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    856         return true;
    857       }
    858       found_in_vector[e] = true;
    859     }
    860 
    861     // Vector size is correct, elements' range is correct, no
    862     // duplicate elements.  Therefore no corruption has occurred.
    863     return false;
    864   }
    865 
    866   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    867     return !VectorIsCorrupt(vector);
    868   }
    869 
    870   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    871     for (int i = begin; i < end; i++) {
    872       if (i != vector[i]) {
    873         return true;
    874       }
    875     }
    876     return false;
    877   }
    878 
    879   static bool RangeIsUnshuffled(
    880       const TestingVector& vector, int begin, int end) {
    881     return !RangeIsShuffled(vector, begin, end);
    882   }
    883 
    884   static bool VectorIsShuffled(const TestingVector& vector) {
    885     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
    886   }
    887 
    888   static bool VectorIsUnshuffled(const TestingVector& vector) {
    889     return !VectorIsShuffled(vector);
    890   }
    891 
    892   testing::internal::Random random_;
    893   TestingVector vector_;
    894 };  // class VectorShuffleTest
    895 
    896 const int VectorShuffleTest::kVectorSize;
    897 
    898 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    899   // Tests an empty range at the beginning...
    900   ShuffleRange(&random_, 0, 0, &vector_);
    901   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    902   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    903 
    904   // ...in the middle...
    905   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
    906   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    907   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    908 
    909   // ...at the end...
    910   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
    911   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    912   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    913 
    914   // ...and past the end.
    915   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
    916   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    917   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    918 }
    919 
    920 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    921   // Tests a size one range at the beginning...
    922   ShuffleRange(&random_, 0, 1, &vector_);
    923   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    924   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    925 
    926   // ...in the middle...
    927   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
    928   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    929   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    930 
    931   // ...and at the end.
    932   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
    933   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    934   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    935 }
    936 
    937 // Because we use our own random number generator and a fixed seed,
    938 // we can guarantee that the following "random" tests will succeed.
    939 
    940 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    941   Shuffle(&random_, &vector_);
    942   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    943   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    944 
    945   // Tests the first and last elements in particular to ensure that
    946   // there are no off-by-one problems in our shuffle algorithm.
    947   EXPECT_NE(0, vector_[0]);
    948   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
    949 }
    950 
    951 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
    952   const int kRangeSize = kVectorSize/2;
    953 
    954   ShuffleRange(&random_, 0, kRangeSize, &vector_);
    955 
    956   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    957   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
    958   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
    959 }
    960 
    961 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
    962   const int kRangeSize = kVectorSize / 2;
    963   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
    964 
    965   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    966   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    967   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
    968 }
    969 
    970 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
    971   int kRangeSize = kVectorSize/3;
    972   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
    973 
    974   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    975   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    976   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
    977   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
    978 }
    979 
    980 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
    981   TestingVector vector2;
    982   for (int i = 0; i < kVectorSize; i++) {
    983     vector2.push_back(i);
    984   }
    985 
    986   random_.Reseed(1234);
    987   Shuffle(&random_, &vector_);
    988   random_.Reseed(1234);
    989   Shuffle(&random_, &vector2);
    990 
    991   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    992   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
    993 
    994   for (int i = 0; i < kVectorSize; i++) {
    995     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
    996   }
    997 }
    998 
    999 // Tests the size of the AssertHelper class.
   1000 
   1001 TEST(AssertHelperTest, AssertHelperIsSmall) {
   1002   // To avoid breaking clients that use lots of assertions in one
   1003   // function, we cannot grow the size of AssertHelper.
   1004   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
   1005 }
   1006 
   1007 // Tests String::EndsWithCaseInsensitive().
   1008 TEST(StringTest, EndsWithCaseInsensitive) {
   1009   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
   1010   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
   1011   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
   1012   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
   1013 
   1014   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
   1015   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
   1016   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
   1017 }
   1018 
   1019 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1020 // appear in macro parameters after wide char literals.  Provide an alias
   1021 // for NULL as a workaround.
   1022 static const wchar_t* const kNull = NULL;
   1023 
   1024 // Tests String::CaseInsensitiveWideCStringEquals
   1025 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1026   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1027   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1028   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1029   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1030   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1031   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1032   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1033   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1034 }
   1035 
   1036 #if GTEST_OS_WINDOWS
   1037 
   1038 // Tests String::ShowWideCString().
   1039 TEST(StringTest, ShowWideCString) {
   1040   EXPECT_STREQ("(null)",
   1041                String::ShowWideCString(NULL).c_str());
   1042   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1043   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1044 }
   1045 
   1046 # if GTEST_OS_WINDOWS_MOBILE
   1047 TEST(StringTest, AnsiAndUtf16Null) {
   1048   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1049   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1050 }
   1051 
   1052 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1053   const char* ansi = String::Utf16ToAnsi(L"str");
   1054   EXPECT_STREQ("str", ansi);
   1055   delete [] ansi;
   1056   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1057   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1058   delete [] utf16;
   1059 }
   1060 
   1061 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1062   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1063   EXPECT_STREQ(".:\\ \"*?", ansi);
   1064   delete [] ansi;
   1065   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1066   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1067   delete [] utf16;
   1068 }
   1069 # endif  // GTEST_OS_WINDOWS_MOBILE
   1070 
   1071 #endif  // GTEST_OS_WINDOWS
   1072 
   1073 // Tests TestProperty construction.
   1074 TEST(TestPropertyTest, StringValue) {
   1075   TestProperty property("key", "1");
   1076   EXPECT_STREQ("key", property.key());
   1077   EXPECT_STREQ("1", property.value());
   1078 }
   1079 
   1080 // Tests TestProperty replacing a value.
   1081 TEST(TestPropertyTest, ReplaceStringValue) {
   1082   TestProperty property("key", "1");
   1083   EXPECT_STREQ("1", property.value());
   1084   property.SetValue("2");
   1085   EXPECT_STREQ("2", property.value());
   1086 }
   1087 
   1088 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1089 // functions (i.e. their definitions cannot be inlined at the call
   1090 // sites), or C++Builder won't compile the code.
   1091 static void AddFatalFailure() {
   1092   FAIL() << "Expected fatal failure.";
   1093 }
   1094 
   1095 static void AddNonfatalFailure() {
   1096   ADD_FAILURE() << "Expected non-fatal failure.";
   1097 }
   1098 
   1099 class ScopedFakeTestPartResultReporterTest : public Test {
   1100  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1101   enum FailureMode {
   1102     FATAL_FAILURE,
   1103     NONFATAL_FAILURE
   1104   };
   1105   static void AddFailure(FailureMode failure) {
   1106     if (failure == FATAL_FAILURE) {
   1107       AddFatalFailure();
   1108     } else {
   1109       AddNonfatalFailure();
   1110     }
   1111   }
   1112 };
   1113 
   1114 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1115 // failures.
   1116 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1117   TestPartResultArray results;
   1118   {
   1119     ScopedFakeTestPartResultReporter reporter(
   1120         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1121         &results);
   1122     AddFailure(NONFATAL_FAILURE);
   1123     AddFailure(FATAL_FAILURE);
   1124   }
   1125 
   1126   EXPECT_EQ(2, results.size());
   1127   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1128   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1129 }
   1130 
   1131 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1132   TestPartResultArray results;
   1133   {
   1134     // Tests, that the deprecated constructor still works.
   1135     ScopedFakeTestPartResultReporter reporter(&results);
   1136     AddFailure(NONFATAL_FAILURE);
   1137   }
   1138   EXPECT_EQ(1, results.size());
   1139 }
   1140 
   1141 #if GTEST_IS_THREADSAFE
   1142 
   1143 class ScopedFakeTestPartResultReporterWithThreadsTest
   1144   : public ScopedFakeTestPartResultReporterTest {
   1145  protected:
   1146   static void AddFailureInOtherThread(FailureMode failure) {
   1147     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
   1148     thread.Join();
   1149   }
   1150 };
   1151 
   1152 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1153        InterceptsTestFailuresInAllThreads) {
   1154   TestPartResultArray results;
   1155   {
   1156     ScopedFakeTestPartResultReporter reporter(
   1157         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1158     AddFailure(NONFATAL_FAILURE);
   1159     AddFailure(FATAL_FAILURE);
   1160     AddFailureInOtherThread(NONFATAL_FAILURE);
   1161     AddFailureInOtherThread(FATAL_FAILURE);
   1162   }
   1163 
   1164   EXPECT_EQ(4, results.size());
   1165   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1166   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1167   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1168   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1169 }
   1170 
   1171 #endif  // GTEST_IS_THREADSAFE
   1172 
   1173 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1174 // work even if the failure is generated in a called function rather than
   1175 // the current context.
   1176 
   1177 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1178 
   1179 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1180   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1181 }
   1182 
   1183 #if GTEST_HAS_GLOBAL_STRING
   1184 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
   1185   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
   1186 }
   1187 #endif
   1188 
   1189 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
   1190   EXPECT_FATAL_FAILURE(AddFatalFailure(),
   1191                        ::std::string("Expected fatal failure."));
   1192 }
   1193 
   1194 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1195   // We have another test below to verify that the macro catches fatal
   1196   // failures generated on another thread.
   1197   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1198                                       "Expected fatal failure.");
   1199 }
   1200 
   1201 #ifdef __BORLANDC__
   1202 // Silences warnings: "Condition is always true"
   1203 # pragma option push -w-ccc
   1204 #endif
   1205 
   1206 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1207 // function even when the statement in it contains ASSERT_*.
   1208 
   1209 int NonVoidFunction() {
   1210   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1211   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1212   return 0;
   1213 }
   1214 
   1215 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1216   NonVoidFunction();
   1217 }
   1218 
   1219 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1220 // current function even though 'statement' generates a fatal failure.
   1221 
   1222 void DoesNotAbortHelper(bool* aborted) {
   1223   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1224   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1225 
   1226   *aborted = false;
   1227 }
   1228 
   1229 #ifdef __BORLANDC__
   1230 // Restores warnings after previous "#pragma option push" suppressed them.
   1231 # pragma option pop
   1232 #endif
   1233 
   1234 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1235   bool aborted = true;
   1236   DoesNotAbortHelper(&aborted);
   1237   EXPECT_FALSE(aborted);
   1238 }
   1239 
   1240 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1241 // statement that contains a macro which expands to code containing an
   1242 // unprotected comma.
   1243 
   1244 static int global_var = 0;
   1245 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1246 
   1247 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1248 #ifndef __BORLANDC__
   1249   // ICE's in C++Builder.
   1250   EXPECT_FATAL_FAILURE({
   1251     GTEST_USE_UNPROTECTED_COMMA_;
   1252     AddFatalFailure();
   1253   }, "");
   1254 #endif
   1255 
   1256   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1257     GTEST_USE_UNPROTECTED_COMMA_;
   1258     AddFatalFailure();
   1259   }, "");
   1260 }
   1261 
   1262 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1263 
   1264 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1265 
   1266 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1267   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1268                           "Expected non-fatal failure.");
   1269 }
   1270 
   1271 #if GTEST_HAS_GLOBAL_STRING
   1272 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
   1273   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1274                           ::string("Expected non-fatal failure."));
   1275 }
   1276 #endif
   1277 
   1278 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
   1279   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1280                           ::std::string("Expected non-fatal failure."));
   1281 }
   1282 
   1283 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1284   // We have another test below to verify that the macro catches
   1285   // non-fatal failures generated on another thread.
   1286   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1287                                          "Expected non-fatal failure.");
   1288 }
   1289 
   1290 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1291 // statement that contains a macro which expands to code containing an
   1292 // unprotected comma.
   1293 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1294   EXPECT_NONFATAL_FAILURE({
   1295     GTEST_USE_UNPROTECTED_COMMA_;
   1296     AddNonfatalFailure();
   1297   }, "");
   1298 
   1299   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1300     GTEST_USE_UNPROTECTED_COMMA_;
   1301     AddNonfatalFailure();
   1302   }, "");
   1303 }
   1304 
   1305 #if GTEST_IS_THREADSAFE
   1306 
   1307 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1308     ExpectFailureWithThreadsTest;
   1309 
   1310 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1311   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1312                                       "Expected fatal failure.");
   1313 }
   1314 
   1315 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1316   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1317       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1318 }
   1319 
   1320 #endif  // GTEST_IS_THREADSAFE
   1321 
   1322 // Tests the TestProperty class.
   1323 
   1324 TEST(TestPropertyTest, ConstructorWorks) {
   1325   const TestProperty property("key", "value");
   1326   EXPECT_STREQ("key", property.key());
   1327   EXPECT_STREQ("value", property.value());
   1328 }
   1329 
   1330 TEST(TestPropertyTest, SetValue) {
   1331   TestProperty property("key", "value_1");
   1332   EXPECT_STREQ("key", property.key());
   1333   property.SetValue("value_2");
   1334   EXPECT_STREQ("key", property.key());
   1335   EXPECT_STREQ("value_2", property.value());
   1336 }
   1337 
   1338 // Tests the TestResult class
   1339 
   1340 // The test fixture for testing TestResult.
   1341 class TestResultTest : public Test {
   1342  protected:
   1343   typedef std::vector<TestPartResult> TPRVector;
   1344 
   1345   // We make use of 2 TestPartResult objects,
   1346   TestPartResult * pr1, * pr2;
   1347 
   1348   // ... and 3 TestResult objects.
   1349   TestResult * r0, * r1, * r2;
   1350 
   1351   virtual void SetUp() {
   1352     // pr1 is for success.
   1353     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1354                              "foo/bar.cc",
   1355                              10,
   1356                              "Success!");
   1357 
   1358     // pr2 is for fatal failure.
   1359     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1360                              "foo/bar.cc",
   1361                              -1,  // This line number means "unknown"
   1362                              "Failure!");
   1363 
   1364     // Creates the TestResult objects.
   1365     r0 = new TestResult();
   1366     r1 = new TestResult();
   1367     r2 = new TestResult();
   1368 
   1369     // In order to test TestResult, we need to modify its internal
   1370     // state, in particular the TestPartResult vector it holds.
   1371     // test_part_results() returns a const reference to this vector.
   1372     // We cast it to a non-const object s.t. it can be modified (yes,
   1373     // this is a hack).
   1374     TPRVector* results1 = const_cast<TPRVector*>(
   1375         &TestResultAccessor::test_part_results(*r1));
   1376     TPRVector* results2 = const_cast<TPRVector*>(
   1377         &TestResultAccessor::test_part_results(*r2));
   1378 
   1379     // r0 is an empty TestResult.
   1380 
   1381     // r1 contains a single SUCCESS TestPartResult.
   1382     results1->push_back(*pr1);
   1383 
   1384     // r2 contains a SUCCESS, and a FAILURE.
   1385     results2->push_back(*pr1);
   1386     results2->push_back(*pr2);
   1387   }
   1388 
   1389   virtual void TearDown() {
   1390     delete pr1;
   1391     delete pr2;
   1392 
   1393     delete r0;
   1394     delete r1;
   1395     delete r2;
   1396   }
   1397 
   1398   // Helper that compares two two TestPartResults.
   1399   static void CompareTestPartResult(const TestPartResult& expected,
   1400                                     const TestPartResult& actual) {
   1401     EXPECT_EQ(expected.type(), actual.type());
   1402     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1403     EXPECT_EQ(expected.line_number(), actual.line_number());
   1404     EXPECT_STREQ(expected.summary(), actual.summary());
   1405     EXPECT_STREQ(expected.message(), actual.message());
   1406     EXPECT_EQ(expected.passed(), actual.passed());
   1407     EXPECT_EQ(expected.failed(), actual.failed());
   1408     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1409     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1410   }
   1411 };
   1412 
   1413 // Tests TestResult::total_part_count().
   1414 TEST_F(TestResultTest, total_part_count) {
   1415   ASSERT_EQ(0, r0->total_part_count());
   1416   ASSERT_EQ(1, r1->total_part_count());
   1417   ASSERT_EQ(2, r2->total_part_count());
   1418 }
   1419 
   1420 // Tests TestResult::Passed().
   1421 TEST_F(TestResultTest, Passed) {
   1422   ASSERT_TRUE(r0->Passed());
   1423   ASSERT_TRUE(r1->Passed());
   1424   ASSERT_FALSE(r2->Passed());
   1425 }
   1426 
   1427 // Tests TestResult::Failed().
   1428 TEST_F(TestResultTest, Failed) {
   1429   ASSERT_FALSE(r0->Failed());
   1430   ASSERT_FALSE(r1->Failed());
   1431   ASSERT_TRUE(r2->Failed());
   1432 }
   1433 
   1434 // Tests TestResult::GetTestPartResult().
   1435 
   1436 typedef TestResultTest TestResultDeathTest;
   1437 
   1438 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1439   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1440   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1441   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
   1442   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
   1443 }
   1444 
   1445 // Tests TestResult has no properties when none are added.
   1446 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1447   TestResult test_result;
   1448   ASSERT_EQ(0, test_result.test_property_count());
   1449 }
   1450 
   1451 // Tests TestResult has the expected property when added.
   1452 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1453   TestResult test_result;
   1454   TestProperty property("key_1", "1");
   1455   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
   1456   ASSERT_EQ(1, test_result.test_property_count());
   1457   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1458   EXPECT_STREQ("key_1", actual_property.key());
   1459   EXPECT_STREQ("1", actual_property.value());
   1460 }
   1461 
   1462 // Tests TestResult has multiple properties when added.
   1463 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1464   TestResult test_result;
   1465   TestProperty property_1("key_1", "1");
   1466   TestProperty property_2("key_2", "2");
   1467   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1468   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1469   ASSERT_EQ(2, test_result.test_property_count());
   1470   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1471   EXPECT_STREQ("key_1", actual_property_1.key());
   1472   EXPECT_STREQ("1", actual_property_1.value());
   1473 
   1474   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1475   EXPECT_STREQ("key_2", actual_property_2.key());
   1476   EXPECT_STREQ("2", actual_property_2.value());
   1477 }
   1478 
   1479 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1480 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1481   TestResult test_result;
   1482   TestProperty property_1_1("key_1", "1");
   1483   TestProperty property_2_1("key_2", "2");
   1484   TestProperty property_1_2("key_1", "12");
   1485   TestProperty property_2_2("key_2", "22");
   1486   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
   1487   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
   1488   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
   1489   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
   1490 
   1491   ASSERT_EQ(2, test_result.test_property_count());
   1492   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1493   EXPECT_STREQ("key_1", actual_property_1.key());
   1494   EXPECT_STREQ("12", actual_property_1.value());
   1495 
   1496   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1497   EXPECT_STREQ("key_2", actual_property_2.key());
   1498   EXPECT_STREQ("22", actual_property_2.value());
   1499 }
   1500 
   1501 // Tests TestResult::GetTestProperty().
   1502 TEST(TestResultPropertyTest, GetTestProperty) {
   1503   TestResult test_result;
   1504   TestProperty property_1("key_1", "1");
   1505   TestProperty property_2("key_2", "2");
   1506   TestProperty property_3("key_3", "3");
   1507   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1508   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1509   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
   1510 
   1511   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1512   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1513   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1514 
   1515   EXPECT_STREQ("key_1", fetched_property_1.key());
   1516   EXPECT_STREQ("1", fetched_property_1.value());
   1517 
   1518   EXPECT_STREQ("key_2", fetched_property_2.key());
   1519   EXPECT_STREQ("2", fetched_property_2.value());
   1520 
   1521   EXPECT_STREQ("key_3", fetched_property_3.key());
   1522   EXPECT_STREQ("3", fetched_property_3.value());
   1523 
   1524   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
   1525   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
   1526 }
   1527 
   1528 // Tests that GTestFlagSaver works on Windows and Mac.
   1529 
   1530 class GTestFlagSaverTest : public Test {
   1531  protected:
   1532   // Saves the Google Test flags such that we can restore them later, and
   1533   // then sets them to their default values.  This will be called
   1534   // before the first test in this test case is run.
   1535   static void SetUpTestCase() {
   1536     saver_ = new GTestFlagSaver;
   1537 
   1538     GTEST_FLAG(also_run_disabled_tests) = false;
   1539     GTEST_FLAG(break_on_failure) = false;
   1540     GTEST_FLAG(catch_exceptions) = false;
   1541     GTEST_FLAG(death_test_use_fork) = false;
   1542     GTEST_FLAG(color) = "auto";
   1543     GTEST_FLAG(filter) = "";
   1544     GTEST_FLAG(list_tests) = false;
   1545     GTEST_FLAG(output) = "";
   1546     GTEST_FLAG(print_time) = true;
   1547     GTEST_FLAG(random_seed) = 0;
   1548     GTEST_FLAG(repeat) = 1;
   1549     GTEST_FLAG(shuffle) = false;
   1550     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   1551     GTEST_FLAG(stream_result_to) = "";
   1552     GTEST_FLAG(throw_on_failure) = false;
   1553   }
   1554 
   1555   // Restores the Google Test flags that the tests have modified.  This will
   1556   // be called after the last test in this test case is run.
   1557   static void TearDownTestCase() {
   1558     delete saver_;
   1559     saver_ = NULL;
   1560   }
   1561 
   1562   // Verifies that the Google Test flags have their default values, and then
   1563   // modifies each of them.
   1564   void VerifyAndModifyFlags() {
   1565     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   1566     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   1567     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   1568     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   1569     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   1570     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   1571     EXPECT_FALSE(GTEST_FLAG(list_tests));
   1572     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   1573     EXPECT_TRUE(GTEST_FLAG(print_time));
   1574     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   1575     EXPECT_EQ(1, GTEST_FLAG(repeat));
   1576     EXPECT_FALSE(GTEST_FLAG(shuffle));
   1577     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
   1578     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
   1579     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   1580 
   1581     GTEST_FLAG(also_run_disabled_tests) = true;
   1582     GTEST_FLAG(break_on_failure) = true;
   1583     GTEST_FLAG(catch_exceptions) = true;
   1584     GTEST_FLAG(color) = "no";
   1585     GTEST_FLAG(death_test_use_fork) = true;
   1586     GTEST_FLAG(filter) = "abc";
   1587     GTEST_FLAG(list_tests) = true;
   1588     GTEST_FLAG(output) = "xml:foo.xml";
   1589     GTEST_FLAG(print_time) = false;
   1590     GTEST_FLAG(random_seed) = 1;
   1591     GTEST_FLAG(repeat) = 100;
   1592     GTEST_FLAG(shuffle) = true;
   1593     GTEST_FLAG(stack_trace_depth) = 1;
   1594     GTEST_FLAG(stream_result_to) = "localhost:1234";
   1595     GTEST_FLAG(throw_on_failure) = true;
   1596   }
   1597 
   1598  private:
   1599   // For saving Google Test flags during this test case.
   1600   static GTestFlagSaver* saver_;
   1601 };
   1602 
   1603 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   1604 
   1605 // Google Test doesn't guarantee the order of tests.  The following two
   1606 // tests are designed to work regardless of their order.
   1607 
   1608 // Modifies the Google Test flags in the test body.
   1609 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   1610   VerifyAndModifyFlags();
   1611 }
   1612 
   1613 // Verifies that the Google Test flags in the body of the previous test were
   1614 // restored to their original values.
   1615 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   1616   VerifyAndModifyFlags();
   1617 }
   1618 
   1619 // Sets an environment variable with the given name to the given
   1620 // value.  If the value argument is "", unsets the environment
   1621 // variable.  The caller must ensure that both arguments are not NULL.
   1622 static void SetEnv(const char* name, const char* value) {
   1623 #if GTEST_OS_WINDOWS_MOBILE
   1624   // Environment variables are not supported on Windows CE.
   1625   return;
   1626 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
   1627   // C++Builder's putenv only stores a pointer to its parameter; we have to
   1628   // ensure that the string remains valid as long as it might be needed.
   1629   // We use an std::map to do so.
   1630   static std::map<std::string, std::string*> added_env;
   1631 
   1632   // Because putenv stores a pointer to the string buffer, we can't delete the
   1633   // previous string (if present) until after it's replaced.
   1634   std::string *prev_env = NULL;
   1635   if (added_env.find(name) != added_env.end()) {
   1636     prev_env = added_env[name];
   1637   }
   1638   added_env[name] = new std::string(
   1639       (Message() << name << "=" << value).GetString());
   1640 
   1641   // The standard signature of putenv accepts a 'char*' argument. Other
   1642   // implementations, like C++Builder's, accept a 'const char*'.
   1643   // We cast away the 'const' since that would work for both variants.
   1644   putenv(const_cast<char*>(added_env[name]->c_str()));
   1645   delete prev_env;
   1646 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   1647   _putenv((Message() << name << "=" << value).GetString().c_str());
   1648 #else
   1649   if (*value == '\0') {
   1650     unsetenv(name);
   1651   } else {
   1652     setenv(name, value, 1);
   1653   }
   1654 #endif  // GTEST_OS_WINDOWS_MOBILE
   1655 }
   1656 
   1657 #if !GTEST_OS_WINDOWS_MOBILE
   1658 // Environment variables are not supported on Windows CE.
   1659 
   1660 using testing::internal::Int32FromGTestEnv;
   1661 
   1662 // Tests Int32FromGTestEnv().
   1663 
   1664 // Tests that Int32FromGTestEnv() returns the default value when the
   1665 // environment variable is not set.
   1666 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   1667   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   1668   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   1669 }
   1670 
   1671 // Tests that Int32FromGTestEnv() returns the default value when the
   1672 // environment variable overflows as an Int32.
   1673 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   1674   printf("(expecting 2 warnings)\n");
   1675 
   1676   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   1677   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   1678 
   1679   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   1680   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   1681 }
   1682 
   1683 // Tests that Int32FromGTestEnv() returns the default value when the
   1684 // environment variable does not represent a valid decimal integer.
   1685 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   1686   printf("(expecting 2 warnings)\n");
   1687 
   1688   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   1689   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   1690 
   1691   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   1692   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   1693 }
   1694 
   1695 // Tests that Int32FromGTestEnv() parses and returns the value of the
   1696 // environment variable when it represents a valid decimal integer in
   1697 // the range of an Int32.
   1698 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   1699   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   1700   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   1701 
   1702   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   1703   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   1704 }
   1705 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1706 
   1707 // Tests ParseInt32Flag().
   1708 
   1709 // Tests that ParseInt32Flag() returns false and doesn't change the
   1710 // output value when the flag has wrong format
   1711 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   1712   Int32 value = 123;
   1713   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   1714   EXPECT_EQ(123, value);
   1715 
   1716   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   1717   EXPECT_EQ(123, value);
   1718 }
   1719 
   1720 // Tests that ParseInt32Flag() returns false and doesn't change the
   1721 // output value when the flag overflows as an Int32.
   1722 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   1723   printf("(expecting 2 warnings)\n");
   1724 
   1725   Int32 value = 123;
   1726   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   1727   EXPECT_EQ(123, value);
   1728 
   1729   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   1730   EXPECT_EQ(123, value);
   1731 }
   1732 
   1733 // Tests that ParseInt32Flag() returns false and doesn't change the
   1734 // output value when the flag does not represent a valid decimal
   1735 // integer.
   1736 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   1737   printf("(expecting 2 warnings)\n");
   1738 
   1739   Int32 value = 123;
   1740   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   1741   EXPECT_EQ(123, value);
   1742 
   1743   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   1744   EXPECT_EQ(123, value);
   1745 }
   1746 
   1747 // Tests that ParseInt32Flag() parses the value of the flag and
   1748 // returns true when the flag represents a valid decimal integer in
   1749 // the range of an Int32.
   1750 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   1751   Int32 value = 123;
   1752   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   1753   EXPECT_EQ(456, value);
   1754 
   1755   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   1756                              "abc", &value));
   1757   EXPECT_EQ(-789, value);
   1758 }
   1759 
   1760 // Tests that Int32FromEnvOrDie() parses the value of the var or
   1761 // returns the correct default.
   1762 // Environment variables are not supported on Windows CE.
   1763 #if !GTEST_OS_WINDOWS_MOBILE
   1764 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   1765   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1766   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   1767   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1768   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   1769   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1770 }
   1771 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1772 
   1773 // Tests that Int32FromEnvOrDie() aborts with an error message
   1774 // if the variable is not an Int32.
   1775 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   1776   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   1777   EXPECT_DEATH_IF_SUPPORTED(
   1778       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1779       ".*");
   1780 }
   1781 
   1782 // Tests that Int32FromEnvOrDie() aborts with an error message
   1783 // if the variable cannot be represnted by an Int32.
   1784 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   1785   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   1786   EXPECT_DEATH_IF_SUPPORTED(
   1787       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1788       ".*");
   1789 }
   1790 
   1791 // Tests that ShouldRunTestOnShard() selects all tests
   1792 // where there is 1 shard.
   1793 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   1794   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   1795   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   1796   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   1797   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   1798   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   1799 }
   1800 
   1801 class ShouldShardTest : public testing::Test {
   1802  protected:
   1803   virtual void SetUp() {
   1804     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   1805     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   1806   }
   1807 
   1808   virtual void TearDown() {
   1809     SetEnv(index_var_, "");
   1810     SetEnv(total_var_, "");
   1811   }
   1812 
   1813   const char* index_var_;
   1814   const char* total_var_;
   1815 };
   1816 
   1817 // Tests that sharding is disabled if neither of the environment variables
   1818 // are set.
   1819 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   1820   SetEnv(index_var_, "");
   1821   SetEnv(total_var_, "");
   1822 
   1823   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1824   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1825 }
   1826 
   1827 // Tests that sharding is not enabled if total_shards  == 1.
   1828 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   1829   SetEnv(index_var_, "0");
   1830   SetEnv(total_var_, "1");
   1831   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1832   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1833 }
   1834 
   1835 // Tests that sharding is enabled if total_shards > 1 and
   1836 // we are not in a death test subprocess.
   1837 // Environment variables are not supported on Windows CE.
   1838 #if !GTEST_OS_WINDOWS_MOBILE
   1839 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   1840   SetEnv(index_var_, "4");
   1841   SetEnv(total_var_, "22");
   1842   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1843   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1844 
   1845   SetEnv(index_var_, "8");
   1846   SetEnv(total_var_, "9");
   1847   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1848   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1849 
   1850   SetEnv(index_var_, "0");
   1851   SetEnv(total_var_, "9");
   1852   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1853   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1854 }
   1855 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1856 
   1857 // Tests that we exit in error if the sharding values are not valid.
   1858 
   1859 typedef ShouldShardTest ShouldShardDeathTest;
   1860 
   1861 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   1862   SetEnv(index_var_, "4");
   1863   SetEnv(total_var_, "4");
   1864   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1865 
   1866   SetEnv(index_var_, "4");
   1867   SetEnv(total_var_, "-2");
   1868   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1869 
   1870   SetEnv(index_var_, "5");
   1871   SetEnv(total_var_, "");
   1872   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1873 
   1874   SetEnv(index_var_, "");
   1875   SetEnv(total_var_, "5");
   1876   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1877 }
   1878 
   1879 // Tests that ShouldRunTestOnShard is a partition when 5
   1880 // shards are used.
   1881 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   1882   // Choose an arbitrary number of tests and shards.
   1883   const int num_tests = 17;
   1884   const int num_shards = 5;
   1885 
   1886   // Check partitioning: each test should be on exactly 1 shard.
   1887   for (int test_id = 0; test_id < num_tests; test_id++) {
   1888     int prev_selected_shard_index = -1;
   1889     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1890       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   1891         if (prev_selected_shard_index < 0) {
   1892           prev_selected_shard_index = shard_index;
   1893         } else {
   1894           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   1895             << shard_index << " are both selected to run test " << test_id;
   1896         }
   1897       }
   1898     }
   1899   }
   1900 
   1901   // Check balance: This is not required by the sharding protocol, but is a
   1902   // desirable property for performance.
   1903   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1904     int num_tests_on_shard = 0;
   1905     for (int test_id = 0; test_id < num_tests; test_id++) {
   1906       num_tests_on_shard +=
   1907         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   1908     }
   1909     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   1910   }
   1911 }
   1912 
   1913 // For the same reason we are not explicitly testing everything in the
   1914 // Test class, there are no separate tests for the following classes
   1915 // (except for some trivial cases):
   1916 //
   1917 //   TestCase, UnitTest, UnitTestResultPrinter.
   1918 //
   1919 // Similarly, there are no separate tests for the following macros:
   1920 //
   1921 //   TEST, TEST_F, RUN_ALL_TESTS
   1922 
   1923 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   1924   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   1925   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   1926 }
   1927 
   1928 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
   1929   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
   1930   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
   1931 }
   1932 
   1933 // When a property using a reserved key is supplied to this function, it
   1934 // tests that a non-fatal failure is added, a fatal failure is not added,
   1935 // and that the property is not recorded.
   1936 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1937     const TestResult& test_result, const char* key) {
   1938   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
   1939   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
   1940                                                   << "' recorded unexpectedly.";
   1941 }
   1942 
   1943 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   1944     const char* key) {
   1945   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
   1946   ASSERT_TRUE(test_info != NULL);
   1947   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
   1948                                                         key);
   1949 }
   1950 
   1951 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1952     const char* key) {
   1953   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1954   ASSERT_TRUE(test_case != NULL);
   1955   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1956       test_case->ad_hoc_test_result(), key);
   1957 }
   1958 
   1959 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   1960     const char* key) {
   1961   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1962       UnitTest::GetInstance()->ad_hoc_test_result(), key);
   1963 }
   1964 
   1965 // Tests that property recording functions in UnitTest outside of tests
   1966 // functions correcly.  Creating a separate instance of UnitTest ensures it
   1967 // is in a state similar to the UnitTest's singleton's between tests.
   1968 class UnitTestRecordPropertyTest :
   1969     public testing::internal::UnitTestRecordPropertyTestHelper {
   1970  public:
   1971   static void SetUpTestCase() {
   1972     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1973         "disabled");
   1974     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1975         "errors");
   1976     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1977         "failures");
   1978     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1979         "name");
   1980     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1981         "tests");
   1982     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1983         "time");
   1984 
   1985     Test::RecordProperty("test_case_key_1", "1");
   1986     const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1987     ASSERT_TRUE(test_case != NULL);
   1988 
   1989     ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
   1990     EXPECT_STREQ("test_case_key_1",
   1991                  test_case->ad_hoc_test_result().GetTestProperty(0).key());
   1992     EXPECT_STREQ("1",
   1993                  test_case->ad_hoc_test_result().GetTestProperty(0).value());
   1994   }
   1995 };
   1996 
   1997 // Tests TestResult has the expected property when added.
   1998 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
   1999   UnitTestRecordProperty("key_1", "1");
   2000 
   2001   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
   2002 
   2003   EXPECT_STREQ("key_1",
   2004                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2005   EXPECT_STREQ("1",
   2006                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2007 }
   2008 
   2009 // Tests TestResult has multiple properties when added.
   2010 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
   2011   UnitTestRecordProperty("key_1", "1");
   2012   UnitTestRecordProperty("key_2", "2");
   2013 
   2014   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2015 
   2016   EXPECT_STREQ("key_1",
   2017                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2018   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2019 
   2020   EXPECT_STREQ("key_2",
   2021                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2022   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2023 }
   2024 
   2025 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   2026 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
   2027   UnitTestRecordProperty("key_1", "1");
   2028   UnitTestRecordProperty("key_2", "2");
   2029   UnitTestRecordProperty("key_1", "12");
   2030   UnitTestRecordProperty("key_2", "22");
   2031 
   2032   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2033 
   2034   EXPECT_STREQ("key_1",
   2035                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2036   EXPECT_STREQ("12",
   2037                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2038 
   2039   EXPECT_STREQ("key_2",
   2040                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2041   EXPECT_STREQ("22",
   2042                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2043 }
   2044 
   2045 TEST_F(UnitTestRecordPropertyTest,
   2046        AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
   2047   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2048       "name");
   2049   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2050       "value_param");
   2051   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2052       "type_param");
   2053   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2054       "status");
   2055   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2056       "time");
   2057   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2058       "classname");
   2059 }
   2060 
   2061 TEST_F(UnitTestRecordPropertyTest,
   2062        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
   2063   EXPECT_NONFATAL_FAILURE(
   2064       Test::RecordProperty("name", "1"),
   2065       "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
   2066       " are reserved");
   2067 }
   2068 
   2069 class UnitTestRecordPropertyTestEnvironment : public Environment {
   2070  public:
   2071   virtual void TearDown() {
   2072     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2073         "tests");
   2074     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2075         "failures");
   2076     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2077         "disabled");
   2078     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2079         "errors");
   2080     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2081         "name");
   2082     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2083         "timestamp");
   2084     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2085         "time");
   2086     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2087         "random_seed");
   2088   }
   2089 };
   2090 
   2091 // This will test property recording outside of any test or test case.
   2092 static Environment* record_property_env =
   2093     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
   2094 
   2095 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   2096 // of various arities.  They do not attempt to be exhaustive.  Rather,
   2097 // view them as smoke tests that can be easily reviewed and verified.
   2098 // A more complete set of tests for predicate assertions can be found
   2099 // in gtest_pred_impl_unittest.cc.
   2100 
   2101 // First, some predicates and predicate-formatters needed by the tests.
   2102 
   2103 // Returns true iff the argument is an even number.
   2104 bool IsEven(int n) {
   2105   return (n % 2) == 0;
   2106 }
   2107 
   2108 // A functor that returns true iff the argument is an even number.
   2109 struct IsEvenFunctor {
   2110   bool operator()(int n) { return IsEven(n); }
   2111 };
   2112 
   2113 // A predicate-formatter function that asserts the argument is an even
   2114 // number.
   2115 AssertionResult AssertIsEven(const char* expr, int n) {
   2116   if (IsEven(n)) {
   2117     return AssertionSuccess();
   2118   }
   2119 
   2120   Message msg;
   2121   msg << expr << " evaluates to " << n << ", which is not even.";
   2122   return AssertionFailure(msg);
   2123 }
   2124 
   2125 // A predicate function that returns AssertionResult for use in
   2126 // EXPECT/ASSERT_TRUE/FALSE.
   2127 AssertionResult ResultIsEven(int n) {
   2128   if (IsEven(n))
   2129     return AssertionSuccess() << n << " is even";
   2130   else
   2131     return AssertionFailure() << n << " is odd";
   2132 }
   2133 
   2134 // A predicate function that returns AssertionResult but gives no
   2135 // explanation why it succeeds. Needed for testing that
   2136 // EXPECT/ASSERT_FALSE handles such functions correctly.
   2137 AssertionResult ResultIsEvenNoExplanation(int n) {
   2138   if (IsEven(n))
   2139     return AssertionSuccess();
   2140   else
   2141     return AssertionFailure() << n << " is odd";
   2142 }
   2143 
   2144 // A predicate-formatter functor that asserts the argument is an even
   2145 // number.
   2146 struct AssertIsEvenFunctor {
   2147   AssertionResult operator()(const char* expr, int n) {
   2148     return AssertIsEven(expr, n);
   2149   }
   2150 };
   2151 
   2152 // Returns true iff the sum of the arguments is an even number.
   2153 bool SumIsEven2(int n1, int n2) {
   2154   return IsEven(n1 + n2);
   2155 }
   2156 
   2157 // A functor that returns true iff the sum of the arguments is an even
   2158 // number.
   2159 struct SumIsEven3Functor {
   2160   bool operator()(int n1, int n2, int n3) {
   2161     return IsEven(n1 + n2 + n3);
   2162   }
   2163 };
   2164 
   2165 // A predicate-formatter function that asserts the sum of the
   2166 // arguments is an even number.
   2167 AssertionResult AssertSumIsEven4(
   2168     const char* e1, const char* e2, const char* e3, const char* e4,
   2169     int n1, int n2, int n3, int n4) {
   2170   const int sum = n1 + n2 + n3 + n4;
   2171   if (IsEven(sum)) {
   2172     return AssertionSuccess();
   2173   }
   2174 
   2175   Message msg;
   2176   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2177       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2178       << ") evaluates to " << sum << ", which is not even.";
   2179   return AssertionFailure(msg);
   2180 }
   2181 
   2182 // A predicate-formatter functor that asserts the sum of the arguments
   2183 // is an even number.
   2184 struct AssertSumIsEven5Functor {
   2185   AssertionResult operator()(
   2186       const char* e1, const char* e2, const char* e3, const char* e4,
   2187       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2188     const int sum = n1 + n2 + n3 + n4 + n5;
   2189     if (IsEven(sum)) {
   2190       return AssertionSuccess();
   2191     }
   2192 
   2193     Message msg;
   2194     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2195         << " ("
   2196         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2197         << ") evaluates to " << sum << ", which is not even.";
   2198     return AssertionFailure(msg);
   2199   }
   2200 };
   2201 
   2202 
   2203 // Tests unary predicate assertions.
   2204 
   2205 // Tests unary predicate assertions that don't use a custom formatter.
   2206 TEST(Pred1Test, WithoutFormat) {
   2207   // Success cases.
   2208   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2209   ASSERT_PRED1(IsEven, 4);
   2210 
   2211   // Failure cases.
   2212   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2213     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2214   }, "This failure is expected.");
   2215   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2216                        "evaluates to false");
   2217 }
   2218 
   2219 // Tests unary predicate assertions that use a custom formatter.
   2220 TEST(Pred1Test, WithFormat) {
   2221   // Success cases.
   2222   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2223   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2224     << "This failure is UNEXPECTED!";
   2225 
   2226   // Failure cases.
   2227   const int n = 5;
   2228   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2229                           "n evaluates to 5, which is not even.");
   2230   EXPECT_FATAL_FAILURE({  // NOLINT
   2231     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2232   }, "This failure is expected.");
   2233 }
   2234 
   2235 // Tests that unary predicate assertions evaluates their arguments
   2236 // exactly once.
   2237 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2238   // A success case.
   2239   static int n = 0;
   2240   EXPECT_PRED1(IsEven, n++);
   2241   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2242 
   2243   // A failure case.
   2244   EXPECT_FATAL_FAILURE({  // NOLINT
   2245     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2246         << "This failure is expected.";
   2247   }, "This failure is expected.");
   2248   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2249 }
   2250 
   2251 
   2252 // Tests predicate assertions whose arity is >= 2.
   2253 
   2254 // Tests predicate assertions that don't use a custom formatter.
   2255 TEST(PredTest, WithoutFormat) {
   2256   // Success cases.
   2257   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2258   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2259 
   2260   // Failure cases.
   2261   const int n1 = 1;
   2262   const int n2 = 2;
   2263   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2264     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2265   }, "This failure is expected.");
   2266   EXPECT_FATAL_FAILURE({  // NOLINT
   2267     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2268   }, "evaluates to false");
   2269 }
   2270 
   2271 // Tests predicate assertions that use a custom formatter.
   2272 TEST(PredTest, WithFormat) {
   2273   // Success cases.
   2274   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2275     "This failure is UNEXPECTED!";
   2276   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2277 
   2278   // Failure cases.
   2279   const int n1 = 1;
   2280   const int n2 = 2;
   2281   const int n3 = 4;
   2282   const int n4 = 6;
   2283   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2284     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2285   }, "evaluates to 13, which is not even.");
   2286   EXPECT_FATAL_FAILURE({  // NOLINT
   2287     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2288         << "This failure is expected.";
   2289   }, "This failure is expected.");
   2290 }
   2291 
   2292 // Tests that predicate assertions evaluates their arguments
   2293 // exactly once.
   2294 TEST(PredTest, SingleEvaluationOnFailure) {
   2295   // A success case.
   2296   int n1 = 0;
   2297   int n2 = 0;
   2298   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2299   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2300   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2301 
   2302   // Another success case.
   2303   n1 = n2 = 0;
   2304   int n3 = 0;
   2305   int n4 = 0;
   2306   int n5 = 0;
   2307   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2308                       n1++, n2++, n3++, n4++, n5++)
   2309                         << "This failure is UNEXPECTED!";
   2310   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2311   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2312   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2313   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2314   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2315 
   2316   // A failure case.
   2317   n1 = n2 = n3 = 0;
   2318   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2319     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2320         << "This failure is expected.";
   2321   }, "This failure is expected.");
   2322   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2323   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2324   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2325 
   2326   // Another failure case.
   2327   n1 = n2 = n3 = n4 = 0;
   2328   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2329     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2330   }, "evaluates to 1, which is not even.");
   2331   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2332   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2333   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2334   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2335 }
   2336 
   2337 
   2338 // Some helper functions for testing using overloaded/template
   2339 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2340 
   2341 bool IsPositive(double x) {
   2342   return x > 0;
   2343 }
   2344 
   2345 template <typename T>
   2346 bool IsNegative(T x) {
   2347   return x < 0;
   2348 }
   2349 
   2350 template <typename T1, typename T2>
   2351 bool GreaterThan(T1 x1, T2 x2) {
   2352   return x1 > x2;
   2353 }
   2354 
   2355 // Tests that overloaded functions can be used in *_PRED* as long as
   2356 // their types are explicitly specified.
   2357 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2358   // C++Builder requires C-style casts rather than static_cast.
   2359   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2360   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2361 }
   2362 
   2363 // Tests that template functions can be used in *_PRED* as long as
   2364 // their types are explicitly specified.
   2365 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2366   EXPECT_PRED1(IsNegative<int>, -5);
   2367   // Makes sure that we can handle templates with more than one
   2368   // parameter.
   2369   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2370 }
   2371 
   2372 
   2373 // Some helper functions for testing using overloaded/template
   2374 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2375 
   2376 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2377   return n > 0 ? AssertionSuccess() :
   2378       AssertionFailure(Message() << "Failure");
   2379 }
   2380 
   2381 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2382   return x > 0 ? AssertionSuccess() :
   2383       AssertionFailure(Message() << "Failure");
   2384 }
   2385 
   2386 template <typename T>
   2387 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2388   return x < 0 ? AssertionSuccess() :
   2389       AssertionFailure(Message() << "Failure");
   2390 }
   2391 
   2392 template <typename T1, typename T2>
   2393 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2394                              const T1& x1, const T2& x2) {
   2395   return x1 == x2 ? AssertionSuccess() :
   2396       AssertionFailure(Message() << "Failure");
   2397 }
   2398 
   2399 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2400 // without explicitly specifying their types.
   2401 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2402   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2403   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2404 }
   2405 
   2406 // Tests that template functions can be used in *_PRED_FORMAT* without
   2407 // explicitly specifying their types.
   2408 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2409   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2410   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2411 }
   2412 
   2413 
   2414 // Tests string assertions.
   2415 
   2416 // Tests ASSERT_STREQ with non-NULL arguments.
   2417 TEST(StringAssertionTest, ASSERT_STREQ) {
   2418   const char * const p1 = "good";
   2419   ASSERT_STREQ(p1, p1);
   2420 
   2421   // Let p2 have the same content as p1, but be at a different address.
   2422   const char p2[] = "good";
   2423   ASSERT_STREQ(p1, p2);
   2424 
   2425   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
   2426                        "Expected: \"bad\"");
   2427 }
   2428 
   2429 // Tests ASSERT_STREQ with NULL arguments.
   2430 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2431   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2432   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2433                        "non-null");
   2434 }
   2435 
   2436 // Tests ASSERT_STREQ with NULL arguments.
   2437 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2438   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2439                        "non-null");
   2440 }
   2441 
   2442 // Tests ASSERT_STRNE.
   2443 TEST(StringAssertionTest, ASSERT_STRNE) {
   2444   ASSERT_STRNE("hi", "Hi");
   2445   ASSERT_STRNE("Hi", NULL);
   2446   ASSERT_STRNE(NULL, "Hi");
   2447   ASSERT_STRNE("", NULL);
   2448   ASSERT_STRNE(NULL, "");
   2449   ASSERT_STRNE("", "Hi");
   2450   ASSERT_STRNE("Hi", "");
   2451   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2452                        "\"Hi\" vs \"Hi\"");
   2453 }
   2454 
   2455 // Tests ASSERT_STRCASEEQ.
   2456 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2457   ASSERT_STRCASEEQ("hi", "Hi");
   2458   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2459 
   2460   ASSERT_STRCASEEQ("", "");
   2461   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2462                        "(ignoring case)");
   2463 }
   2464 
   2465 // Tests ASSERT_STRCASENE.
   2466 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2467   ASSERT_STRCASENE("hi1", "Hi2");
   2468   ASSERT_STRCASENE("Hi", NULL);
   2469   ASSERT_STRCASENE(NULL, "Hi");
   2470   ASSERT_STRCASENE("", NULL);
   2471   ASSERT_STRCASENE(NULL, "");
   2472   ASSERT_STRCASENE("", "Hi");
   2473   ASSERT_STRCASENE("Hi", "");
   2474   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2475                        "(ignoring case)");
   2476 }
   2477 
   2478 // Tests *_STREQ on wide strings.
   2479 TEST(StringAssertionTest, STREQ_Wide) {
   2480   // NULL strings.
   2481   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2482 
   2483   // Empty strings.
   2484   ASSERT_STREQ(L"", L"");
   2485 
   2486   // Non-null vs NULL.
   2487   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2488                           "non-null");
   2489 
   2490   // Equal strings.
   2491   EXPECT_STREQ(L"Hi", L"Hi");
   2492 
   2493   // Unequal strings.
   2494   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2495                           "Abc");
   2496 
   2497   // Strings containing wide characters.
   2498   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2499                           "abc");
   2500 
   2501   // The streaming variation.
   2502   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2503     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
   2504   }, "Expected failure");
   2505 }
   2506 
   2507 // Tests *_STRNE on wide strings.
   2508 TEST(StringAssertionTest, STRNE_Wide) {
   2509   // NULL strings.
   2510   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2511     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2512   }, "");
   2513 
   2514   // Empty strings.
   2515   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2516                           "L\"\"");
   2517 
   2518   // Non-null vs NULL.
   2519   ASSERT_STRNE(L"non-null", NULL);
   2520 
   2521   // Equal strings.
   2522   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2523                           "L\"Hi\"");
   2524 
   2525   // Unequal strings.
   2526   EXPECT_STRNE(L"abc", L"Abc");
   2527 
   2528   // Strings containing wide characters.
   2529   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2530                           "abc");
   2531 
   2532   // The streaming variation.
   2533   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
   2534 }
   2535 
   2536 // Tests for ::testing::IsSubstring().
   2537 
   2538 // Tests that IsSubstring() returns the correct result when the input
   2539 // argument type is const char*.
   2540 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2541   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2542   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2543   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2544 
   2545   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2546   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2547 }
   2548 
   2549 // Tests that IsSubstring() returns the correct result when the input
   2550 // argument type is const wchar_t*.
   2551 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2552   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2553   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2554   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2555 
   2556   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2557   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2558 }
   2559 
   2560 // Tests that IsSubstring() generates the correct message when the input
   2561 // argument type is const char*.
   2562 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2563   EXPECT_STREQ("Value of: needle_expr\n"
   2564                "  Actual: \"needle\"\n"
   2565                "Expected: a substring of haystack_expr\n"
   2566                "Which is: \"haystack\"",
   2567                IsSubstring("needle_expr", "haystack_expr",
   2568                            "needle", "haystack").failure_message());
   2569 }
   2570 
   2571 // Tests that IsSubstring returns the correct result when the input
   2572 // argument type is ::std::string.
   2573 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2574   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2575   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2576 }
   2577 
   2578 #if GTEST_HAS_STD_WSTRING
   2579 // Tests that IsSubstring returns the correct result when the input
   2580 // argument type is ::std::wstring.
   2581 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2582   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2583   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2584 }
   2585 
   2586 // Tests that IsSubstring() generates the correct message when the input
   2587 // argument type is ::std::wstring.
   2588 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2589   EXPECT_STREQ("Value of: needle_expr\n"
   2590                "  Actual: L\"needle\"\n"
   2591                "Expected: a substring of haystack_expr\n"
   2592                "Which is: L\"haystack\"",
   2593                IsSubstring(
   2594                    "needle_expr", "haystack_expr",
   2595                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2596 }
   2597 
   2598 #endif  // GTEST_HAS_STD_WSTRING
   2599 
   2600 // Tests for ::testing::IsNotSubstring().
   2601 
   2602 // Tests that IsNotSubstring() returns the correct result when the input
   2603 // argument type is const char*.
   2604 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2605   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2606   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2607 }
   2608 
   2609 // Tests that IsNotSubstring() returns the correct result when the input
   2610 // argument type is const wchar_t*.
   2611 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2612   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2613   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2614 }
   2615 
   2616 // Tests that IsNotSubstring() generates the correct message when the input
   2617 // argument type is const wchar_t*.
   2618 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2619   EXPECT_STREQ("Value of: needle_expr\n"
   2620                "  Actual: L\"needle\"\n"
   2621                "Expected: not a substring of haystack_expr\n"
   2622                "Which is: L\"two needles\"",
   2623                IsNotSubstring(
   2624                    "needle_expr", "haystack_expr",
   2625                    L"needle", L"two needles").failure_message());
   2626 }
   2627 
   2628 // Tests that IsNotSubstring returns the correct result when the input
   2629 // argument type is ::std::string.
   2630 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2631   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2632   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2633 }
   2634 
   2635 // Tests that IsNotSubstring() generates the correct message when the input
   2636 // argument type is ::std::string.
   2637 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2638   EXPECT_STREQ("Value of: needle_expr\n"
   2639                "  Actual: \"needle\"\n"
   2640                "Expected: not a substring of haystack_expr\n"
   2641                "Which is: \"two needles\"",
   2642                IsNotSubstring(
   2643                    "needle_expr", "haystack_expr",
   2644                    ::std::string("needle"), "two needles").failure_message());
   2645 }
   2646 
   2647 #if GTEST_HAS_STD_WSTRING
   2648 
   2649 // Tests that IsNotSubstring returns the correct result when the input
   2650 // argument type is ::std::wstring.
   2651 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2652   EXPECT_FALSE(
   2653       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2654   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2655 }
   2656 
   2657 #endif  // GTEST_HAS_STD_WSTRING
   2658 
   2659 // Tests floating-point assertions.
   2660 
   2661 template <typename RawType>
   2662 class FloatingPointTest : public Test {
   2663  protected:
   2664   // Pre-calculated numbers to be used by the tests.
   2665   struct TestValues {
   2666     RawType close_to_positive_zero;
   2667     RawType close_to_negative_zero;
   2668     RawType further_from_negative_zero;
   2669 
   2670     RawType close_to_one;
   2671     RawType further_from_one;
   2672 
   2673     RawType infinity;
   2674     RawType close_to_infinity;
   2675     RawType further_from_infinity;
   2676 
   2677     RawType nan1;
   2678     RawType nan2;
   2679   };
   2680 
   2681   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2682   typedef typename Floating::Bits Bits;
   2683 
   2684   virtual void SetUp() {
   2685     const size_t max_ulps = Floating::kMaxUlps;
   2686 
   2687     // The bits that represent 0.0.
   2688     const Bits zero_bits = Floating(0).bits();
   2689 
   2690     // Makes some numbers close to 0.0.
   2691     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2692         zero_bits + max_ulps/2);
   2693     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2694         zero_bits + max_ulps - max_ulps/2);
   2695     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2696         zero_bits + max_ulps + 1 - max_ulps/2);
   2697 
   2698     // The bits that represent 1.0.
   2699     const Bits one_bits = Floating(1).bits();
   2700 
   2701     // Makes some numbers close to 1.0.
   2702     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2703     values_.further_from_one = Floating::ReinterpretBits(
   2704         one_bits + max_ulps + 1);
   2705 
   2706     // +infinity.
   2707     values_.infinity = Floating::Infinity();
   2708 
   2709     // The bits that represent +infinity.
   2710     const Bits infinity_bits = Floating(values_.infinity).bits();
   2711 
   2712     // Makes some numbers close to infinity.
   2713     values_.close_to_infinity = Floating::ReinterpretBits(
   2714         infinity_bits - max_ulps);
   2715     values_.further_from_infinity = Floating::ReinterpretBits(
   2716         infinity_bits - max_ulps - 1);
   2717 
   2718     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   2719     // our NaN's are quiet; trying to process a signaling NaN would raise an
   2720     // exception if our environment enables floating point exceptions.
   2721     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2722         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   2723     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2724         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   2725   }
   2726 
   2727   void TestSize() {
   2728     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   2729   }
   2730 
   2731   static TestValues values_;
   2732 };
   2733 
   2734 template <typename RawType>
   2735 typename FloatingPointTest<RawType>::TestValues
   2736     FloatingPointTest<RawType>::values_;
   2737 
   2738 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   2739 typedef FloatingPointTest<float> FloatTest;
   2740 
   2741 // Tests that the size of Float::Bits matches the size of float.
   2742 TEST_F(FloatTest, Size) {
   2743   TestSize();
   2744 }
   2745 
   2746 // Tests comparing with +0 and -0.
   2747 TEST_F(FloatTest, Zeros) {
   2748   EXPECT_FLOAT_EQ(0.0, -0.0);
   2749   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   2750                           "1.0");
   2751   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   2752                        "1.5");
   2753 }
   2754 
   2755 // Tests comparing numbers close to 0.
   2756 //
   2757 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   2758 // overflow occurs when comparing numbers whose absolute value is very
   2759 // small.
   2760 TEST_F(FloatTest, AlmostZeros) {
   2761   // In C++Builder, names within local classes (such as used by
   2762   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2763   // scoping class.  Use a static local alias as a workaround.
   2764   // We use the assignment syntax since some compilers, like Sun Studio,
   2765   // don't allow initializing references using construction syntax
   2766   // (parentheses).
   2767   static const FloatTest::TestValues& v = this->values_;
   2768 
   2769   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   2770   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   2771   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2772 
   2773   EXPECT_FATAL_FAILURE({  // NOLINT
   2774     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   2775                     v.further_from_negative_zero);
   2776   }, "v.further_from_negative_zero");
   2777 }
   2778 
   2779 // Tests comparing numbers close to each other.
   2780 TEST_F(FloatTest, SmallDiff) {
   2781   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   2782   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   2783                           "values_.further_from_one");
   2784 }
   2785 
   2786 // Tests comparing numbers far apart.
   2787 TEST_F(FloatTest, LargeDiff) {
   2788   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   2789                           "3.0");
   2790 }
   2791 
   2792 // Tests comparing with infinity.
   2793 //
   2794 // This ensures that no overflow occurs when comparing numbers whose
   2795 // absolute value is very large.
   2796 TEST_F(FloatTest, Infinity) {
   2797   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   2798   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   2799 #if !GTEST_OS_SYMBIAN
   2800   // Nokia's STLport crashes if we try to output infinity or NaN.
   2801   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   2802                           "-values_.infinity");
   2803 
   2804   // This is interesting as the representations of infinity and nan1
   2805   // are only 1 DLP apart.
   2806   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   2807                           "values_.nan1");
   2808 #endif  // !GTEST_OS_SYMBIAN
   2809 }
   2810 
   2811 // Tests that comparing with NAN always returns false.
   2812 TEST_F(FloatTest, NaN) {
   2813 #if !GTEST_OS_SYMBIAN
   2814 // Nokia's STLport crashes if we try to output infinity or NaN.
   2815 
   2816   // In C++Builder, names within local classes (such as used by
   2817   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2818   // scoping class.  Use a static local alias as a workaround.
   2819   // We use the assignment syntax since some compilers, like Sun Studio,
   2820   // don't allow initializing references using construction syntax
   2821   // (parentheses).
   2822   static const FloatTest::TestValues& v = this->values_;
   2823 
   2824   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   2825                           "v.nan1");
   2826   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   2827                           "v.nan2");
   2828   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   2829                           "v.nan1");
   2830 
   2831   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   2832                        "v.infinity");
   2833 #endif  // !GTEST_OS_SYMBIAN
   2834 }
   2835 
   2836 // Tests that *_FLOAT_EQ are reflexive.
   2837 TEST_F(FloatTest, Reflexive) {
   2838   EXPECT_FLOAT_EQ(0.0, 0.0);
   2839   EXPECT_FLOAT_EQ(1.0, 1.0);
   2840   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   2841 }
   2842 
   2843 // Tests that *_FLOAT_EQ are commutative.
   2844 TEST_F(FloatTest, Commutative) {
   2845   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   2846   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   2847 
   2848   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   2849   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   2850                           "1.0");
   2851 }
   2852 
   2853 // Tests EXPECT_NEAR.
   2854 TEST_F(FloatTest, EXPECT_NEAR) {
   2855   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   2856   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   2857   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2858                           "The difference between 1.0f and 1.5f is 0.5, "
   2859                           "which exceeds 0.25f");
   2860   // To work around a bug in gcc 2.95.0, there is intentionally no
   2861   // space after the first comma in the previous line.
   2862 }
   2863 
   2864 // Tests ASSERT_NEAR.
   2865 TEST_F(FloatTest, ASSERT_NEAR) {
   2866   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   2867   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   2868   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2869                        "The difference between 1.0f and 1.5f is 0.5, "
   2870                        "which exceeds 0.25f");
   2871   // To work around a bug in gcc 2.95.0, there is intentionally no
   2872   // space after the first comma in the previous line.
   2873 }
   2874 
   2875 // Tests the cases where FloatLE() should succeed.
   2876 TEST_F(FloatTest, FloatLESucceeds) {
   2877   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   2878   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   2879 
   2880   // or when val1 is greater than, but almost equals to, val2.
   2881   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   2882 }
   2883 
   2884 // Tests the cases where FloatLE() should fail.
   2885 TEST_F(FloatTest, FloatLEFails) {
   2886   // When val1 is greater than val2 by a large margin,
   2887   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   2888                           "(2.0f) <= (1.0f)");
   2889 
   2890   // or by a small yet non-negligible margin,
   2891   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2892     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   2893   }, "(values_.further_from_one) <= (1.0f)");
   2894 
   2895 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2896   // Nokia's STLport crashes if we try to output infinity or NaN.
   2897   // C++Builder gives bad results for ordered comparisons involving NaNs
   2898   // due to compiler bugs.
   2899   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2900     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   2901   }, "(values_.nan1) <= (values_.infinity)");
   2902   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2903     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   2904   }, "(-values_.infinity) <= (values_.nan1)");
   2905   EXPECT_FATAL_FAILURE({  // NOLINT
   2906     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   2907   }, "(values_.nan1) <= (values_.nan1)");
   2908 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2909 }
   2910 
   2911 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   2912 typedef FloatingPointTest<double> DoubleTest;
   2913 
   2914 // Tests that the size of Double::Bits matches the size of double.
   2915 TEST_F(DoubleTest, Size) {
   2916   TestSize();
   2917 }
   2918 
   2919 // Tests comparing with +0 and -0.
   2920 TEST_F(DoubleTest, Zeros) {
   2921   EXPECT_DOUBLE_EQ(0.0, -0.0);
   2922   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   2923                           "1.0");
   2924   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   2925                        "1.0");
   2926 }
   2927 
   2928 // Tests comparing numbers close to 0.
   2929 //
   2930 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   2931 // overflow occurs when comparing numbers whose absolute value is very
   2932 // small.
   2933 TEST_F(DoubleTest, AlmostZeros) {
   2934   // In C++Builder, names within local classes (such as used by
   2935   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2936   // scoping class.  Use a static local alias as a workaround.
   2937   // We use the assignment syntax since some compilers, like Sun Studio,
   2938   // don't allow initializing references using construction syntax
   2939   // (parentheses).
   2940   static const DoubleTest::TestValues& v = this->values_;
   2941 
   2942   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   2943   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   2944   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2945 
   2946   EXPECT_FATAL_FAILURE({  // NOLINT
   2947     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   2948                      v.further_from_negative_zero);
   2949   }, "v.further_from_negative_zero");
   2950 }
   2951 
   2952 // Tests comparing numbers close to each other.
   2953 TEST_F(DoubleTest, SmallDiff) {
   2954   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   2955   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   2956                           "values_.further_from_one");
   2957 }
   2958 
   2959 // Tests comparing numbers far apart.
   2960 TEST_F(DoubleTest, LargeDiff) {
   2961   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   2962                           "3.0");
   2963 }
   2964 
   2965 // Tests comparing with infinity.
   2966 //
   2967 // This ensures that no overflow occurs when comparing numbers whose
   2968 // absolute value is very large.
   2969 TEST_F(DoubleTest, Infinity) {
   2970   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   2971   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   2972 #if !GTEST_OS_SYMBIAN
   2973   // Nokia's STLport crashes if we try to output infinity or NaN.
   2974   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   2975                           "-values_.infinity");
   2976 
   2977   // This is interesting as the representations of infinity_ and nan1_
   2978   // are only 1 DLP apart.
   2979   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   2980                           "values_.nan1");
   2981 #endif  // !GTEST_OS_SYMBIAN
   2982 }
   2983 
   2984 // Tests that comparing with NAN always returns false.
   2985 TEST_F(DoubleTest, NaN) {
   2986 #if !GTEST_OS_SYMBIAN
   2987   // In C++Builder, names within local classes (such as used by
   2988   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2989   // scoping class.  Use a static local alias as a workaround.
   2990   // We use the assignment syntax since some compilers, like Sun Studio,
   2991   // don't allow initializing references using construction syntax
   2992   // (parentheses).
   2993   static const DoubleTest::TestValues& v = this->values_;
   2994 
   2995   // Nokia's STLport crashes if we try to output infinity or NaN.
   2996   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   2997                           "v.nan1");
   2998   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   2999   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   3000   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   3001                        "v.infinity");
   3002 #endif  // !GTEST_OS_SYMBIAN
   3003 }
   3004 
   3005 // Tests that *_DOUBLE_EQ are reflexive.
   3006 TEST_F(DoubleTest, Reflexive) {
   3007   EXPECT_DOUBLE_EQ(0.0, 0.0);
   3008   EXPECT_DOUBLE_EQ(1.0, 1.0);
   3009 #if !GTEST_OS_SYMBIAN
   3010   // Nokia's STLport crashes if we try to output infinity or NaN.
   3011   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   3012 #endif  // !GTEST_OS_SYMBIAN
   3013 }
   3014 
   3015 // Tests that *_DOUBLE_EQ are commutative.
   3016 TEST_F(DoubleTest, Commutative) {
   3017   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   3018   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   3019 
   3020   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   3021   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   3022                           "1.0");
   3023 }
   3024 
   3025 // Tests EXPECT_NEAR.
   3026 TEST_F(DoubleTest, EXPECT_NEAR) {
   3027   EXPECT_NEAR(-1.0, -1.1, 0.2);
   3028   EXPECT_NEAR(2.0, 3.0, 1.0);
   3029   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3030                           "The difference between 1.0 and 1.5 is 0.5, "
   3031                           "which exceeds 0.25");
   3032   // To work around a bug in gcc 2.95.0, there is intentionally no
   3033   // space after the first comma in the previous statement.
   3034 }
   3035 
   3036 // Tests ASSERT_NEAR.
   3037 TEST_F(DoubleTest, ASSERT_NEAR) {
   3038   ASSERT_NEAR(-1.0, -1.1, 0.2);
   3039   ASSERT_NEAR(2.0, 3.0, 1.0);
   3040   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3041                        "The difference between 1.0 and 1.5 is 0.5, "
   3042                        "which exceeds 0.25");
   3043   // To work around a bug in gcc 2.95.0, there is intentionally no
   3044   // space after the first comma in the previous statement.
   3045 }
   3046 
   3047 // Tests the cases where DoubleLE() should succeed.
   3048 TEST_F(DoubleTest, DoubleLESucceeds) {
   3049   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   3050   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   3051 
   3052   // or when val1 is greater than, but almost equals to, val2.
   3053   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   3054 }
   3055 
   3056 // Tests the cases where DoubleLE() should fail.
   3057 TEST_F(DoubleTest, DoubleLEFails) {
   3058   // When val1 is greater than val2 by a large margin,
   3059   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   3060                           "(2.0) <= (1.0)");
   3061 
   3062   // or by a small yet non-negligible margin,
   3063   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3064     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   3065   }, "(values_.further_from_one) <= (1.0)");
   3066 
   3067 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3068   // Nokia's STLport crashes if we try to output infinity or NaN.
   3069   // C++Builder gives bad results for ordered comparisons involving NaNs
   3070   // due to compiler bugs.
   3071   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3072     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   3073   }, "(values_.nan1) <= (values_.infinity)");
   3074   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3075     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   3076   }, " (-values_.infinity) <= (values_.nan1)");
   3077   EXPECT_FATAL_FAILURE({  // NOLINT
   3078     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   3079   }, "(values_.nan1) <= (values_.nan1)");
   3080 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3081 }
   3082 
   3083 
   3084 // Verifies that a test or test case whose name starts with DISABLED_ is
   3085 // not run.
   3086 
   3087 // A test whose name starts with DISABLED_.
   3088 // Should not run.
   3089 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   3090   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3091 }
   3092 
   3093 // A test whose name does not start with DISABLED_.
   3094 // Should run.
   3095 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   3096   EXPECT_EQ(1, 1);
   3097 }
   3098 
   3099 // A test case whose name starts with DISABLED_.
   3100 // Should not run.
   3101 TEST(DISABLED_TestCase, TestShouldNotRun) {
   3102   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3103 }
   3104 
   3105 // A test case and test whose names start with DISABLED_.
   3106 // Should not run.
   3107 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   3108   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3109 }
   3110 
   3111 // Check that when all tests in a test case are disabled, SetupTestCase() and
   3112 // TearDownTestCase() are not called.
   3113 class DisabledTestsTest : public Test {
   3114  protected:
   3115   static void SetUpTestCase() {
   3116     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3117               "SetupTestCase() should not be called.";
   3118   }
   3119 
   3120   static void TearDownTestCase() {
   3121     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3122               "TearDownTestCase() should not be called.";
   3123   }
   3124 };
   3125 
   3126 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   3127   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3128 }
   3129 
   3130 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3131   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3132 }
   3133 
   3134 // Tests that disabled typed tests aren't run.
   3135 
   3136 #if GTEST_HAS_TYPED_TEST
   3137 
   3138 template <typename T>
   3139 class TypedTest : public Test {
   3140 };
   3141 
   3142 typedef testing::Types<int, double> NumericTypes;
   3143 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3144 
   3145 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3146   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3147 }
   3148 
   3149 template <typename T>
   3150 class DISABLED_TypedTest : public Test {
   3151 };
   3152 
   3153 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3154 
   3155 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3156   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3157 }
   3158 
   3159 #endif  // GTEST_HAS_TYPED_TEST
   3160 
   3161 // Tests that disabled type-parameterized tests aren't run.
   3162 
   3163 #if GTEST_HAS_TYPED_TEST_P
   3164 
   3165 template <typename T>
   3166 class TypedTestP : public Test {
   3167 };
   3168 
   3169 TYPED_TEST_CASE_P(TypedTestP);
   3170 
   3171 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3172   FAIL() << "Unexpected failure: "
   3173          << "Disabled type-parameterized test should not run.";
   3174 }
   3175 
   3176 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3177 
   3178 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3179 
   3180 template <typename T>
   3181 class DISABLED_TypedTestP : public Test {
   3182 };
   3183 
   3184 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3185 
   3186 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3187   FAIL() << "Unexpected failure: "
   3188          << "Disabled type-parameterized test should not run.";
   3189 }
   3190 
   3191 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3192 
   3193 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3194 
   3195 #endif  // GTEST_HAS_TYPED_TEST_P
   3196 
   3197 // Tests that assertion macros evaluate their arguments exactly once.
   3198 
   3199 class SingleEvaluationTest : public Test {
   3200  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3201   // This helper function is needed by the FailedASSERT_STREQ test
   3202   // below.  It's public to work around C++Builder's bug with scoping local
   3203   // classes.
   3204   static void CompareAndIncrementCharPtrs() {
   3205     ASSERT_STREQ(p1_++, p2_++);
   3206   }
   3207 
   3208   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3209   // public to work around C++Builder's bug with scoping local classes.
   3210   static void CompareAndIncrementInts() {
   3211     ASSERT_NE(a_++, b_++);
   3212   }
   3213 
   3214  protected:
   3215   SingleEvaluationTest() {
   3216     p1_ = s1_;
   3217     p2_ = s2_;
   3218     a_ = 0;
   3219     b_ = 0;
   3220   }
   3221 
   3222   static const char* const s1_;
   3223   static const char* const s2_;
   3224   static const char* p1_;
   3225   static const char* p2_;
   3226 
   3227   static int a_;
   3228   static int b_;
   3229 };
   3230 
   3231 const char* const SingleEvaluationTest::s1_ = "01234";
   3232 const char* const SingleEvaluationTest::s2_ = "abcde";
   3233 const char* SingleEvaluationTest::p1_;
   3234 const char* SingleEvaluationTest::p2_;
   3235 int SingleEvaluationTest::a_;
   3236 int SingleEvaluationTest::b_;
   3237 
   3238 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3239 // exactly once.
   3240 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3241   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3242                        "p2_++");
   3243   EXPECT_EQ(s1_ + 1, p1_);
   3244   EXPECT_EQ(s2_ + 1, p2_);
   3245 }
   3246 
   3247 // Tests that string assertion arguments are evaluated exactly once.
   3248 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3249   // successful EXPECT_STRNE
   3250   EXPECT_STRNE(p1_++, p2_++);
   3251   EXPECT_EQ(s1_ + 1, p1_);
   3252   EXPECT_EQ(s2_ + 1, p2_);
   3253 
   3254   // failed EXPECT_STRCASEEQ
   3255   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3256                           "ignoring case");
   3257   EXPECT_EQ(s1_ + 2, p1_);
   3258   EXPECT_EQ(s2_ + 2, p2_);
   3259 }
   3260 
   3261 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3262 // once.
   3263 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3264   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3265                        "(a_++) != (b_++)");
   3266   EXPECT_EQ(1, a_);
   3267   EXPECT_EQ(1, b_);
   3268 }
   3269 
   3270 // Tests that assertion arguments are evaluated exactly once.
   3271 TEST_F(SingleEvaluationTest, OtherCases) {
   3272   // successful EXPECT_TRUE
   3273   EXPECT_TRUE(0 == a_++);  // NOLINT
   3274   EXPECT_EQ(1, a_);
   3275 
   3276   // failed EXPECT_TRUE
   3277   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3278   EXPECT_EQ(2, a_);
   3279 
   3280   // successful EXPECT_GT
   3281   EXPECT_GT(a_++, b_++);
   3282   EXPECT_EQ(3, a_);
   3283   EXPECT_EQ(1, b_);
   3284 
   3285   // failed EXPECT_LT
   3286   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3287   EXPECT_EQ(4, a_);
   3288   EXPECT_EQ(2, b_);
   3289 
   3290   // successful ASSERT_TRUE
   3291   ASSERT_TRUE(0 < a_++);  // NOLINT
   3292   EXPECT_EQ(5, a_);
   3293 
   3294   // successful ASSERT_GT
   3295   ASSERT_GT(a_++, b_++);
   3296   EXPECT_EQ(6, a_);
   3297   EXPECT_EQ(3, b_);
   3298 }
   3299 
   3300 #if GTEST_HAS_EXCEPTIONS
   3301 
   3302 void ThrowAnInteger() {
   3303   throw 1;
   3304 }
   3305 
   3306 // Tests that assertion arguments are evaluated exactly once.
   3307 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3308   // successful EXPECT_THROW
   3309   EXPECT_THROW({  // NOLINT
   3310     a_++;
   3311     ThrowAnInteger();
   3312   }, int);
   3313   EXPECT_EQ(1, a_);
   3314 
   3315   // failed EXPECT_THROW, throws different
   3316   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3317     a_++;
   3318     ThrowAnInteger();
   3319   }, bool), "throws a different type");
   3320   EXPECT_EQ(2, a_);
   3321 
   3322   // failed EXPECT_THROW, throws nothing
   3323   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3324   EXPECT_EQ(3, a_);
   3325 
   3326   // successful EXPECT_NO_THROW
   3327   EXPECT_NO_THROW(a_++);
   3328   EXPECT_EQ(4, a_);
   3329 
   3330   // failed EXPECT_NO_THROW
   3331   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3332     a_++;
   3333     ThrowAnInteger();
   3334   }), "it throws");
   3335   EXPECT_EQ(5, a_);
   3336 
   3337   // successful EXPECT_ANY_THROW
   3338   EXPECT_ANY_THROW({  // NOLINT
   3339     a_++;
   3340     ThrowAnInteger();
   3341   });
   3342   EXPECT_EQ(6, a_);
   3343 
   3344   // failed EXPECT_ANY_THROW
   3345   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3346   EXPECT_EQ(7, a_);
   3347 }
   3348 
   3349 #endif  // GTEST_HAS_EXCEPTIONS
   3350 
   3351 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3352 class NoFatalFailureTest : public Test {
   3353  protected:
   3354   void Succeeds() {}
   3355   void FailsNonFatal() {
   3356     ADD_FAILURE() << "some non-fatal failure";
   3357   }
   3358   void Fails() {
   3359     FAIL() << "some fatal failure";
   3360   }
   3361 
   3362   void DoAssertNoFatalFailureOnFails() {
   3363     ASSERT_NO_FATAL_FAILURE(Fails());
   3364     ADD_FAILURE() << "shold not reach here.";
   3365   }
   3366 
   3367   void DoExpectNoFatalFailureOnFails() {
   3368     EXPECT_NO_FATAL_FAILURE(Fails());
   3369     ADD_FAILURE() << "other failure";
   3370   }
   3371 };
   3372 
   3373 TEST_F(NoFatalFailureTest, NoFailure) {
   3374   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3375   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3376 }
   3377 
   3378 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3379   EXPECT_NONFATAL_FAILURE(
   3380       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3381       "some non-fatal failure");
   3382   EXPECT_NONFATAL_FAILURE(
   3383       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3384       "some non-fatal failure");
   3385 }
   3386 
   3387 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3388   TestPartResultArray gtest_failures;
   3389   {
   3390     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3391     DoAssertNoFatalFailureOnFails();
   3392   }
   3393   ASSERT_EQ(2, gtest_failures.size());
   3394   EXPECT_EQ(TestPartResult::kFatalFailure,
   3395             gtest_failures.GetTestPartResult(0).type());
   3396   EXPECT_EQ(TestPartResult::kFatalFailure,
   3397             gtest_failures.GetTestPartResult(1).type());
   3398   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3399                       gtest_failures.GetTestPartResult(0).message());
   3400   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3401                       gtest_failures.GetTestPartResult(1).message());
   3402 }
   3403 
   3404 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3405   TestPartResultArray gtest_failures;
   3406   {
   3407     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3408     DoExpectNoFatalFailureOnFails();
   3409   }
   3410   ASSERT_EQ(3, gtest_failures.size());
   3411   EXPECT_EQ(TestPartResult::kFatalFailure,
   3412             gtest_failures.GetTestPartResult(0).type());
   3413   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3414             gtest_failures.GetTestPartResult(1).type());
   3415   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3416             gtest_failures.GetTestPartResult(2).type());
   3417   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3418                       gtest_failures.GetTestPartResult(0).message());
   3419   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3420                       gtest_failures.GetTestPartResult(1).message());
   3421   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3422                       gtest_failures.GetTestPartResult(2).message());
   3423 }
   3424 
   3425 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3426   TestPartResultArray gtest_failures;
   3427   {
   3428     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3429     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3430   }
   3431   ASSERT_EQ(2, gtest_failures.size());
   3432   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3433             gtest_failures.GetTestPartResult(0).type());
   3434   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3435             gtest_failures.GetTestPartResult(1).type());
   3436   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3437                       gtest_failures.GetTestPartResult(0).message());
   3438   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3439                       gtest_failures.GetTestPartResult(1).message());
   3440 }
   3441 
   3442 // Tests non-string assertions.
   3443 
   3444 // Tests EqFailure(), used for implementing *EQ* assertions.
   3445 TEST(AssertionTest, EqFailure) {
   3446   const std::string foo_val("5"), bar_val("6");
   3447   const std::string msg1(
   3448       EqFailure("foo", "bar", foo_val, bar_val, false)
   3449       .failure_message());
   3450   EXPECT_STREQ(
   3451       "Value of: bar\n"
   3452       "  Actual: 6\n"
   3453       "Expected: foo\n"
   3454       "Which is: 5",
   3455       msg1.c_str());
   3456 
   3457   const std::string msg2(
   3458       EqFailure("foo", "6", foo_val, bar_val, false)
   3459       .failure_message());
   3460   EXPECT_STREQ(
   3461       "Value of: 6\n"
   3462       "Expected: foo\n"
   3463       "Which is: 5",
   3464       msg2.c_str());
   3465 
   3466   const std::string msg3(
   3467       EqFailure("5", "bar", foo_val, bar_val, false)
   3468       .failure_message());
   3469   EXPECT_STREQ(
   3470       "Value of: bar\n"
   3471       "  Actual: 6\n"
   3472       "Expected: 5",
   3473       msg3.c_str());
   3474 
   3475   const std::string msg4(
   3476       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3477   EXPECT_STREQ(
   3478       "Value of: 6\n"
   3479       "Expected: 5",
   3480       msg4.c_str());
   3481 
   3482   const std::string msg5(
   3483       EqFailure("foo", "bar",
   3484                 std::string("\"x\""), std::string("\"y\""),
   3485                 true).failure_message());
   3486   EXPECT_STREQ(
   3487       "Value of: bar\n"
   3488       "  Actual: \"y\"\n"
   3489       "Expected: foo (ignoring case)\n"
   3490       "Which is: \"x\"",
   3491       msg5.c_str());
   3492 }
   3493 
   3494 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3495 TEST(AssertionTest, AppendUserMessage) {
   3496   const std::string foo("foo");
   3497 
   3498   Message msg;
   3499   EXPECT_STREQ("foo",
   3500                AppendUserMessage(foo, msg).c_str());
   3501 
   3502   msg << "bar";
   3503   EXPECT_STREQ("foo\nbar",
   3504                AppendUserMessage(foo, msg).c_str());
   3505 }
   3506 
   3507 #ifdef __BORLANDC__
   3508 // Silences warnings: "Condition is always true", "Unreachable code"
   3509 # pragma option push -w-ccc -w-rch
   3510 #endif
   3511 
   3512 // Tests ASSERT_TRUE.
   3513 TEST(AssertionTest, ASSERT_TRUE) {
   3514   ASSERT_TRUE(2 > 1);  // NOLINT
   3515   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3516                        "2 < 1");
   3517 }
   3518 
   3519 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
   3520 TEST(AssertionTest, AssertTrueWithAssertionResult) {
   3521   ASSERT_TRUE(ResultIsEven(2));
   3522 #ifndef __BORLANDC__
   3523   // ICE's in C++Builder.
   3524   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
   3525                        "Value of: ResultIsEven(3)\n"
   3526                        "  Actual: false (3 is odd)\n"
   3527                        "Expected: true");
   3528 #endif
   3529   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
   3530   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
   3531                        "Value of: ResultIsEvenNoExplanation(3)\n"
   3532                        "  Actual: false (3 is odd)\n"
   3533                        "Expected: true");
   3534 }
   3535 
   3536 // Tests ASSERT_FALSE.
   3537 TEST(AssertionTest, ASSERT_FALSE) {
   3538   ASSERT_FALSE(2 < 1);  // NOLINT
   3539   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3540                        "Value of: 2 > 1\n"
   3541                        "  Actual: true\n"
   3542                        "Expected: false");
   3543 }
   3544 
   3545 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
   3546 TEST(AssertionTest, AssertFalseWithAssertionResult) {
   3547   ASSERT_FALSE(ResultIsEven(3));
   3548 #ifndef __BORLANDC__
   3549   // ICE's in C++Builder.
   3550   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
   3551                        "Value of: ResultIsEven(2)\n"
   3552                        "  Actual: true (2 is even)\n"
   3553                        "Expected: false");
   3554 #endif
   3555   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
   3556   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
   3557                        "Value of: ResultIsEvenNoExplanation(2)\n"
   3558                        "  Actual: true\n"
   3559                        "Expected: false");
   3560 }
   3561 
   3562 #ifdef __BORLANDC__
   3563 // Restores warnings after previous "#pragma option push" supressed them
   3564 # pragma option pop
   3565 #endif
   3566 
   3567 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3568 // sure that the specialization we did for integer and anonymous enums
   3569 // isn't used for double arguments.
   3570 TEST(ExpectTest, ASSERT_EQ_Double) {
   3571   // A success.
   3572   ASSERT_EQ(5.6, 5.6);
   3573 
   3574   // A failure.
   3575   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3576                        "5.1");
   3577 }
   3578 
   3579 // Tests ASSERT_EQ.
   3580 TEST(AssertionTest, ASSERT_EQ) {
   3581   ASSERT_EQ(5, 2 + 3);
   3582   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3583                        "Value of: 2*3\n"
   3584                        "  Actual: 6\n"
   3585                        "Expected: 5");
   3586 }
   3587 
   3588 // Tests ASSERT_EQ(NULL, pointer).
   3589 #if GTEST_CAN_COMPARE_NULL
   3590 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3591   // A success.
   3592   const char* p = NULL;
   3593   // Some older GCC versions may issue a spurious waring in this or the next
   3594   // assertion statement. This warning should not be suppressed with
   3595   // static_cast since the test verifies the ability to use bare NULL as the
   3596   // expected parameter to the macro.
   3597   ASSERT_EQ(NULL, p);
   3598 
   3599   // A failure.
   3600   static int n = 0;
   3601   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3602                        "Value of: &n\n");
   3603 }
   3604 #endif  // GTEST_CAN_COMPARE_NULL
   3605 
   3606 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3607 // treated as a null pointer by the compiler, we need to make sure
   3608 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3609 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3610 TEST(ExpectTest, ASSERT_EQ_0) {
   3611   int n = 0;
   3612 
   3613   // A success.
   3614   ASSERT_EQ(0, n);
   3615 
   3616   // A failure.
   3617   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3618                        "Expected: 0");
   3619 }
   3620 
   3621 // Tests ASSERT_NE.
   3622 TEST(AssertionTest, ASSERT_NE) {
   3623   ASSERT_NE(6, 7);
   3624   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3625                        "Expected: ('a') != ('a'), "
   3626                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3627 }
   3628 
   3629 // Tests ASSERT_LE.
   3630 TEST(AssertionTest, ASSERT_LE) {
   3631   ASSERT_LE(2, 3);
   3632   ASSERT_LE(2, 2);
   3633   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3634                        "Expected: (2) <= (0), actual: 2 vs 0");
   3635 }
   3636 
   3637 // Tests ASSERT_LT.
   3638 TEST(AssertionTest, ASSERT_LT) {
   3639   ASSERT_LT(2, 3);
   3640   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3641                        "Expected: (2) < (2), actual: 2 vs 2");
   3642 }
   3643 
   3644 // Tests ASSERT_GE.
   3645 TEST(AssertionTest, ASSERT_GE) {
   3646   ASSERT_GE(2, 1);
   3647   ASSERT_GE(2, 2);
   3648   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3649                        "Expected: (2) >= (3), actual: 2 vs 3");
   3650 }
   3651 
   3652 // Tests ASSERT_GT.
   3653 TEST(AssertionTest, ASSERT_GT) {
   3654   ASSERT_GT(2, 1);
   3655   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3656                        "Expected: (2) > (2), actual: 2 vs 2");
   3657 }
   3658 
   3659 #if GTEST_HAS_EXCEPTIONS
   3660 
   3661 void ThrowNothing() {}
   3662 
   3663 // Tests ASSERT_THROW.
   3664 TEST(AssertionTest, ASSERT_THROW) {
   3665   ASSERT_THROW(ThrowAnInteger(), int);
   3666 
   3667 # ifndef __BORLANDC__
   3668 
   3669   // ICE's in C++Builder 2007 and 2009.
   3670   EXPECT_FATAL_FAILURE(
   3671       ASSERT_THROW(ThrowAnInteger(), bool),
   3672       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3673       "  Actual: it throws a different type.");
   3674 # endif
   3675 
   3676   EXPECT_FATAL_FAILURE(
   3677       ASSERT_THROW(ThrowNothing(), bool),
   3678       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3679       "  Actual: it throws nothing.");
   3680 }
   3681 
   3682 // Tests ASSERT_NO_THROW.
   3683 TEST(AssertionTest, ASSERT_NO_THROW) {
   3684   ASSERT_NO_THROW(ThrowNothing());
   3685   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3686                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3687                        "\n  Actual: it throws.");
   3688 }
   3689 
   3690 // Tests ASSERT_ANY_THROW.
   3691 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3692   ASSERT_ANY_THROW(ThrowAnInteger());
   3693   EXPECT_FATAL_FAILURE(
   3694       ASSERT_ANY_THROW(ThrowNothing()),
   3695       "Expected: ThrowNothing() throws an exception.\n"
   3696       "  Actual: it doesn't.");
   3697 }
   3698 
   3699 #endif  // GTEST_HAS_EXCEPTIONS
   3700 
   3701 // Makes sure we deal with the precedence of <<.  This test should
   3702 // compile.
   3703 TEST(AssertionTest, AssertPrecedence) {
   3704   ASSERT_EQ(1 < 2, true);
   3705   bool false_value = false;
   3706   ASSERT_EQ(true && false_value, false);
   3707 }
   3708 
   3709 // A subroutine used by the following test.
   3710 void TestEq1(int x) {
   3711   ASSERT_EQ(1, x);
   3712 }
   3713 
   3714 // Tests calling a test subroutine that's not part of a fixture.
   3715 TEST(AssertionTest, NonFixtureSubroutine) {
   3716   EXPECT_FATAL_FAILURE(TestEq1(2),
   3717                        "Value of: x");
   3718 }
   3719 
   3720 // An uncopyable class.
   3721 class Uncopyable {
   3722  public:
   3723   explicit Uncopyable(int a_value) : value_(a_value) {}
   3724 
   3725   int value() const { return value_; }
   3726   bool operator==(const Uncopyable& rhs) const {
   3727     return value() == rhs.value();
   3728   }
   3729  private:
   3730   // This constructor deliberately has no implementation, as we don't
   3731   // want this class to be copyable.
   3732   Uncopyable(const Uncopyable&);  // NOLINT
   3733 
   3734   int value_;
   3735 };
   3736 
   3737 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3738   return os << value.value();
   3739 }
   3740 
   3741 
   3742 bool IsPositiveUncopyable(const Uncopyable& x) {
   3743   return x.value() > 0;
   3744 }
   3745 
   3746 // A subroutine used by the following test.
   3747 void TestAssertNonPositive() {
   3748   Uncopyable y(-1);
   3749   ASSERT_PRED1(IsPositiveUncopyable, y);
   3750 }
   3751 // A subroutine used by the following test.
   3752 void TestAssertEqualsUncopyable() {
   3753   Uncopyable x(5);
   3754   Uncopyable y(-1);
   3755   ASSERT_EQ(x, y);
   3756 }
   3757 
   3758 // Tests that uncopyable objects can be used in assertions.
   3759 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3760   Uncopyable x(5);
   3761   ASSERT_PRED1(IsPositiveUncopyable, x);
   3762   ASSERT_EQ(x, x);
   3763   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3764     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3765   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   3766     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3767 }
   3768 
   3769 // Tests that uncopyable objects can be used in expects.
   3770 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   3771   Uncopyable x(5);
   3772   EXPECT_PRED1(IsPositiveUncopyable, x);
   3773   Uncopyable y(-1);
   3774   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   3775     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3776   EXPECT_EQ(x, x);
   3777   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   3778     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3779 }
   3780 
   3781 enum NamedEnum {
   3782   kE1 = 0,
   3783   kE2 = 1
   3784 };
   3785 
   3786 TEST(AssertionTest, NamedEnum) {
   3787   EXPECT_EQ(kE1, kE1);
   3788   EXPECT_LT(kE1, kE2);
   3789   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
   3790   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
   3791 }
   3792 
   3793 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   3794 // anonymous enums in assertions.  Therefore the following test is not
   3795 // done on Mac.
   3796 // Sun Studio and HP aCC also reject this code.
   3797 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
   3798 
   3799 // Tests using assertions with anonymous enums.
   3800 enum {
   3801   kCaseA = -1,
   3802 
   3803 # if GTEST_OS_LINUX
   3804 
   3805   // We want to test the case where the size of the anonymous enum is
   3806   // larger than sizeof(int), to make sure our implementation of the
   3807   // assertions doesn't truncate the enums.  However, MSVC
   3808   // (incorrectly) doesn't allow an enum value to exceed the range of
   3809   // an int, so this has to be conditionally compiled.
   3810   //
   3811   // On Linux, kCaseB and kCaseA have the same value when truncated to
   3812   // int size.  We want to test whether this will confuse the
   3813   // assertions.
   3814   kCaseB = testing::internal::kMaxBiggestInt,
   3815 
   3816 # else
   3817 
   3818   kCaseB = INT_MAX,
   3819 
   3820 # endif  // GTEST_OS_LINUX
   3821 
   3822   kCaseC = 42
   3823 };
   3824 
   3825 TEST(AssertionTest, AnonymousEnum) {
   3826 # if GTEST_OS_LINUX
   3827 
   3828   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
   3829 
   3830 # endif  // GTEST_OS_LINUX
   3831 
   3832   EXPECT_EQ(kCaseA, kCaseA);
   3833   EXPECT_NE(kCaseA, kCaseB);
   3834   EXPECT_LT(kCaseA, kCaseB);
   3835   EXPECT_LE(kCaseA, kCaseB);
   3836   EXPECT_GT(kCaseB, kCaseA);
   3837   EXPECT_GE(kCaseA, kCaseA);
   3838   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
   3839                           "(kCaseA) >= (kCaseB)");
   3840   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
   3841                           "-1 vs 42");
   3842 
   3843   ASSERT_EQ(kCaseA, kCaseA);
   3844   ASSERT_NE(kCaseA, kCaseB);
   3845   ASSERT_LT(kCaseA, kCaseB);
   3846   ASSERT_LE(kCaseA, kCaseB);
   3847   ASSERT_GT(kCaseB, kCaseA);
   3848   ASSERT_GE(kCaseA, kCaseA);
   3849 
   3850 # ifndef __BORLANDC__
   3851 
   3852   // ICE's in C++Builder.
   3853   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
   3854                        "Value of: kCaseB");
   3855   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3856                        "Actual: 42");
   3857 # endif
   3858 
   3859   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3860                        "Which is: -1");
   3861 }
   3862 
   3863 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   3864 
   3865 #if GTEST_OS_WINDOWS
   3866 
   3867 static HRESULT UnexpectedHRESULTFailure() {
   3868   return E_UNEXPECTED;
   3869 }
   3870 
   3871 static HRESULT OkHRESULTSuccess() {
   3872   return S_OK;
   3873 }
   3874 
   3875 static HRESULT FalseHRESULTSuccess() {
   3876   return S_FALSE;
   3877 }
   3878 
   3879 // HRESULT assertion tests test both zero and non-zero
   3880 // success codes as well as failure message for each.
   3881 //
   3882 // Windows CE doesn't support message texts.
   3883 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   3884   EXPECT_HRESULT_SUCCEEDED(S_OK);
   3885   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   3886 
   3887   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3888     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3889     "  Actual: 0x8000FFFF");
   3890 }
   3891 
   3892 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   3893   ASSERT_HRESULT_SUCCEEDED(S_OK);
   3894   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   3895 
   3896   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3897     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3898     "  Actual: 0x8000FFFF");
   3899 }
   3900 
   3901 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   3902   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   3903 
   3904   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   3905     "Expected: (OkHRESULTSuccess()) fails.\n"
   3906     "  Actual: 0x0");
   3907   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3908     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3909     "  Actual: 0x1");
   3910 }
   3911 
   3912 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   3913   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   3914 
   3915 # ifndef __BORLANDC__
   3916 
   3917   // ICE's in C++Builder 2007 and 2009.
   3918   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   3919     "Expected: (OkHRESULTSuccess()) fails.\n"
   3920     "  Actual: 0x0");
   3921 # endif
   3922 
   3923   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3924     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3925     "  Actual: 0x1");
   3926 }
   3927 
   3928 // Tests that streaming to the HRESULT macros works.
   3929 TEST(HRESULTAssertionTest, Streaming) {
   3930   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3931   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3932   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3933   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3934 
   3935   EXPECT_NONFATAL_FAILURE(
   3936       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3937       "expected failure");
   3938 
   3939 # ifndef __BORLANDC__
   3940 
   3941   // ICE's in C++Builder 2007 and 2009.
   3942   EXPECT_FATAL_FAILURE(
   3943       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3944       "expected failure");
   3945 # endif
   3946 
   3947   EXPECT_NONFATAL_FAILURE(
   3948       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   3949       "expected failure");
   3950 
   3951   EXPECT_FATAL_FAILURE(
   3952       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   3953       "expected failure");
   3954 }
   3955 
   3956 #endif  // GTEST_OS_WINDOWS
   3957 
   3958 #ifdef __BORLANDC__
   3959 // Silences warnings: "Condition is always true", "Unreachable code"
   3960 # pragma option push -w-ccc -w-rch
   3961 #endif
   3962 
   3963 // Tests that the assertion macros behave like single statements.
   3964 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   3965   if (AlwaysFalse())
   3966     ASSERT_TRUE(false) << "This should never be executed; "
   3967                           "It's a compilation test only.";
   3968 
   3969   if (AlwaysTrue())
   3970     EXPECT_FALSE(false);
   3971   else
   3972     ;  // NOLINT
   3973 
   3974   if (AlwaysFalse())
   3975     ASSERT_LT(1, 3);
   3976 
   3977   if (AlwaysFalse())
   3978     ;  // NOLINT
   3979   else
   3980     EXPECT_GT(3, 2) << "";
   3981 }
   3982 
   3983 #if GTEST_HAS_EXCEPTIONS
   3984 // Tests that the compiler will not complain about unreachable code in the
   3985 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   3986 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   3987   int n = 0;
   3988 
   3989   EXPECT_THROW(throw 1, int);
   3990   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   3991   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   3992   EXPECT_NO_THROW(n++);
   3993   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   3994   EXPECT_ANY_THROW(throw 1);
   3995   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   3996 }
   3997 
   3998 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   3999   if (AlwaysFalse())
   4000     EXPECT_THROW(ThrowNothing(), bool);
   4001 
   4002   if (AlwaysTrue())
   4003     EXPECT_THROW(ThrowAnInteger(), int);
   4004   else
   4005     ;  // NOLINT
   4006 
   4007   if (AlwaysFalse())
   4008     EXPECT_NO_THROW(ThrowAnInteger());
   4009 
   4010   if (AlwaysTrue())
   4011     EXPECT_NO_THROW(ThrowNothing());
   4012   else
   4013     ;  // NOLINT
   4014 
   4015   if (AlwaysFalse())
   4016     EXPECT_ANY_THROW(ThrowNothing());
   4017 
   4018   if (AlwaysTrue())
   4019     EXPECT_ANY_THROW(ThrowAnInteger());
   4020   else
   4021     ;  // NOLINT
   4022 }
   4023 #endif  // GTEST_HAS_EXCEPTIONS
   4024 
   4025 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   4026   if (AlwaysFalse())
   4027     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   4028                                     << "It's a compilation test only.";
   4029   else
   4030     ;  // NOLINT
   4031 
   4032   if (AlwaysFalse())
   4033     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   4034   else
   4035     ;  // NOLINT
   4036 
   4037   if (AlwaysTrue())
   4038     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   4039   else
   4040     ;  // NOLINT
   4041 
   4042   if (AlwaysFalse())
   4043     ;  // NOLINT
   4044   else
   4045     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   4046 }
   4047 
   4048 // Tests that the assertion macros work well with switch statements.
   4049 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   4050   switch (0) {
   4051     case 1:
   4052       break;
   4053     default:
   4054       ASSERT_TRUE(true);
   4055   }
   4056 
   4057   switch (0)
   4058     case 0:
   4059       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   4060 
   4061   // Binary assertions are implemented using a different code path
   4062   // than the Boolean assertions.  Hence we test them separately.
   4063   switch (0) {
   4064     case 1:
   4065     default:
   4066       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   4067   }
   4068 
   4069   switch (0)
   4070     case 0:
   4071       EXPECT_NE(1, 2);
   4072 }
   4073 
   4074 #if GTEST_HAS_EXCEPTIONS
   4075 
   4076 void ThrowAString() {
   4077     throw "std::string";
   4078 }
   4079 
   4080 // Test that the exception assertion macros compile and work with const
   4081 // type qualifier.
   4082 TEST(AssertionSyntaxTest, WorksWithConst) {
   4083     ASSERT_THROW(ThrowAString(), const char*);
   4084 
   4085     EXPECT_THROW(ThrowAString(), const char*);
   4086 }
   4087 
   4088 #endif  // GTEST_HAS_EXCEPTIONS
   4089 
   4090 }  // namespace
   4091 
   4092 namespace testing {
   4093 
   4094 // Tests that Google Test tracks SUCCEED*.
   4095 TEST(SuccessfulAssertionTest, SUCCEED) {
   4096   SUCCEED();
   4097   SUCCEED() << "OK";
   4098   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   4099 }
   4100 
   4101 // Tests that Google Test doesn't track successful EXPECT_*.
   4102 TEST(SuccessfulAssertionTest, EXPECT) {
   4103   EXPECT_TRUE(true);
   4104   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4105 }
   4106 
   4107 // Tests that Google Test doesn't track successful EXPECT_STR*.
   4108 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   4109   EXPECT_STREQ("", "");
   4110   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4111 }
   4112 
   4113 // Tests that Google Test doesn't track successful ASSERT_*.
   4114 TEST(SuccessfulAssertionTest, ASSERT) {
   4115   ASSERT_TRUE(true);
   4116   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4117 }
   4118 
   4119 // Tests that Google Test doesn't track successful ASSERT_STR*.
   4120 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   4121   ASSERT_STREQ("", "");
   4122   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4123 }
   4124 
   4125 }  // namespace testing
   4126 
   4127 namespace {
   4128 
   4129 // Tests the message streaming variation of assertions.
   4130 
   4131 TEST(AssertionWithMessageTest, EXPECT) {
   4132   EXPECT_EQ(1, 1) << "This should succeed.";
   4133   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
   4134                           "Expected failure #1");
   4135   EXPECT_LE(1, 2) << "This should succeed.";
   4136   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
   4137                           "Expected failure #2.");
   4138   EXPECT_GE(1, 0) << "This should succeed.";
   4139   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
   4140                           "Expected failure #3.");
   4141 
   4142   EXPECT_STREQ("1", "1") << "This should succeed.";
   4143   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
   4144                           "Expected failure #4.");
   4145   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
   4146   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
   4147                           "Expected failure #5.");
   4148 
   4149   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
   4150   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
   4151                           "Expected failure #6.");
   4152   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
   4153 }
   4154 
   4155 TEST(AssertionWithMessageTest, ASSERT) {
   4156   ASSERT_EQ(1, 1) << "This should succeed.";
   4157   ASSERT_NE(1, 2) << "This should succeed.";
   4158   ASSERT_LE(1, 2) << "This should succeed.";
   4159   ASSERT_LT(1, 2) << "This should succeed.";
   4160   ASSERT_GE(1, 0) << "This should succeed.";
   4161   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
   4162                        "Expected failure.");
   4163 }
   4164 
   4165 TEST(AssertionWithMessageTest, ASSERT_STR) {
   4166   ASSERT_STREQ("1", "1") << "This should succeed.";
   4167   ASSERT_STRNE("1", "2") << "This should succeed.";
   4168   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
   4169   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
   4170                        "Expected failure.");
   4171 }
   4172 
   4173 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
   4174   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
   4175   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
   4176   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
   4177                        "Expect failure.");
   4178   // To work around a bug in gcc 2.95.0, there is intentionally no
   4179   // space after the first comma in the previous statement.
   4180 }
   4181 
   4182 // Tests using ASSERT_FALSE with a streamed message.
   4183 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
   4184   ASSERT_FALSE(false) << "This shouldn't fail.";
   4185   EXPECT_FATAL_FAILURE({  // NOLINT
   4186     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
   4187                        << " evaluates to " << true;
   4188   }, "Expected failure");
   4189 }
   4190 
   4191 // Tests using FAIL with a streamed message.
   4192 TEST(AssertionWithMessageTest, FAIL) {
   4193   EXPECT_FATAL_FAILURE(FAIL() << 0,
   4194                        "0");
   4195 }
   4196 
   4197 // Tests using SUCCEED with a streamed message.
   4198 TEST(AssertionWithMessageTest, SUCCEED) {
   4199   SUCCEED() << "Success == " << 1;
   4200 }
   4201 
   4202 // Tests using ASSERT_TRUE with a streamed message.
   4203 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
   4204   ASSERT_TRUE(true) << "This should succeed.";
   4205   ASSERT_TRUE(true) << true;
   4206   EXPECT_FATAL_FAILURE({  // NOLINT
   4207     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
   4208                        << static_cast<char *>(NULL);
   4209   }, "(null)(null)");
   4210 }
   4211 
   4212 #if GTEST_OS_WINDOWS
   4213 // Tests using wide strings in assertion messages.
   4214 TEST(AssertionWithMessageTest, WideStringMessage) {
   4215   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4216     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
   4217   }, "This failure is expected.");
   4218   EXPECT_FATAL_FAILURE({  // NOLINT
   4219     ASSERT_EQ(1, 2) << "This failure is "
   4220                     << L"expected too.\x8120";
   4221   }, "This failure is expected too.");
   4222 }
   4223 #endif  // GTEST_OS_WINDOWS
   4224 
   4225 // Tests EXPECT_TRUE.
   4226 TEST(ExpectTest, EXPECT_TRUE) {
   4227   EXPECT_TRUE(true) << "Intentional success";
   4228   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
   4229                           "Intentional failure #1.");
   4230   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
   4231                           "Intentional failure #2.");
   4232   EXPECT_TRUE(2 > 1);  // NOLINT
   4233   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4234                           "Value of: 2 < 1\n"
   4235                           "  Actual: false\n"
   4236                           "Expected: true");
   4237   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4238                           "2 > 3");
   4239 }
   4240 
   4241 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
   4242 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
   4243   EXPECT_TRUE(ResultIsEven(2));
   4244   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
   4245                           "Value of: ResultIsEven(3)\n"
   4246                           "  Actual: false (3 is odd)\n"
   4247                           "Expected: true");
   4248   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
   4249   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
   4250                           "Value of: ResultIsEvenNoExplanation(3)\n"
   4251                           "  Actual: false (3 is odd)\n"
   4252                           "Expected: true");
   4253 }
   4254 
   4255 // Tests EXPECT_FALSE with a streamed message.
   4256 TEST(ExpectTest, EXPECT_FALSE) {
   4257   EXPECT_FALSE(2 < 1);  // NOLINT
   4258   EXPECT_FALSE(false) << "Intentional success";
   4259   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
   4260                           "Intentional failure #1.");
   4261   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
   4262                           "Intentional failure #2.");
   4263   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4264                           "Value of: 2 > 1\n"
   4265                           "  Actual: true\n"
   4266                           "Expected: false");
   4267   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4268                           "2 < 3");
   4269 }
   4270 
   4271 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
   4272 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
   4273   EXPECT_FALSE(ResultIsEven(3));
   4274   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
   4275                           "Value of: ResultIsEven(2)\n"
   4276                           "  Actual: true (2 is even)\n"
   4277                           "Expected: false");
   4278   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
   4279   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
   4280                           "Value of: ResultIsEvenNoExplanation(2)\n"
   4281                           "  Actual: true\n"
   4282                           "Expected: false");
   4283 }
   4284 
   4285 #ifdef __BORLANDC__
   4286 // Restores warnings after previous "#pragma option push" supressed them
   4287 # pragma option pop
   4288 #endif
   4289 
   4290 // Tests EXPECT_EQ.
   4291 TEST(ExpectTest, EXPECT_EQ) {
   4292   EXPECT_EQ(5, 2 + 3);
   4293   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4294                           "Value of: 2*3\n"
   4295                           "  Actual: 6\n"
   4296                           "Expected: 5");
   4297   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4298                           "2 - 3");
   4299 }
   4300 
   4301 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4302 // sure that the specialization we did for integer and anonymous enums
   4303 // isn't used for double arguments.
   4304 TEST(ExpectTest, EXPECT_EQ_Double) {
   4305   // A success.
   4306   EXPECT_EQ(5.6, 5.6);
   4307 
   4308   // A failure.
   4309   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4310                           "5.1");
   4311 }
   4312 
   4313 #if GTEST_CAN_COMPARE_NULL
   4314 // Tests EXPECT_EQ(NULL, pointer).
   4315 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4316   // A success.
   4317   const char* p = NULL;
   4318   // Some older GCC versions may issue a spurious warning in this or the next
   4319   // assertion statement. This warning should not be suppressed with
   4320   // static_cast since the test verifies the ability to use bare NULL as the
   4321   // expected parameter to the macro.
   4322   EXPECT_EQ(NULL, p);
   4323 
   4324   // A failure.
   4325   int n = 0;
   4326   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4327                           "Value of: &n\n");
   4328 }
   4329 #endif  // GTEST_CAN_COMPARE_NULL
   4330 
   4331 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4332 // treated as a null pointer by the compiler, we need to make sure
   4333 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4334 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4335 TEST(ExpectTest, EXPECT_EQ_0) {
   4336   int n = 0;
   4337 
   4338   // A success.
   4339   EXPECT_EQ(0, n);
   4340 
   4341   // A failure.
   4342   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4343                           "Expected: 0");
   4344 }
   4345 
   4346 // Tests EXPECT_NE.
   4347 TEST(ExpectTest, EXPECT_NE) {
   4348   EXPECT_NE(6, 7);
   4349 
   4350   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4351                           "Expected: ('a') != ('a'), "
   4352                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4353   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4354                           "2");
   4355   char* const p0 = NULL;
   4356   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4357                           "p0");
   4358   // Only way to get the Nokia compiler to compile the cast
   4359   // is to have a separate void* variable first. Putting
   4360   // the two casts on the same line doesn't work, neither does
   4361   // a direct C-style to char*.
   4362   void* pv1 = (void*)0x1234;  // NOLINT
   4363   char* const p1 = reinterpret_cast<char*>(pv1);
   4364   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4365                           "p1");
   4366 }
   4367 
   4368 // Tests EXPECT_LE.
   4369 TEST(ExpectTest, EXPECT_LE) {
   4370   EXPECT_LE(2, 3);
   4371   EXPECT_LE(2, 2);
   4372   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4373                           "Expected: (2) <= (0), actual: 2 vs 0");
   4374   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4375                           "(1.1) <= (0.9)");
   4376 }
   4377 
   4378 // Tests EXPECT_LT.
   4379 TEST(ExpectTest, EXPECT_LT) {
   4380   EXPECT_LT(2, 3);
   4381   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4382                           "Expected: (2) < (2), actual: 2 vs 2");
   4383   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4384                           "(2) < (1)");
   4385 }
   4386 
   4387 // Tests EXPECT_GE.
   4388 TEST(ExpectTest, EXPECT_GE) {
   4389   EXPECT_GE(2, 1);
   4390   EXPECT_GE(2, 2);
   4391   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4392                           "Expected: (2) >= (3), actual: 2 vs 3");
   4393   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4394                           "(0.9) >= (1.1)");
   4395 }
   4396 
   4397 // Tests EXPECT_GT.
   4398 TEST(ExpectTest, EXPECT_GT) {
   4399   EXPECT_GT(2, 1);
   4400   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4401                           "Expected: (2) > (2), actual: 2 vs 2");
   4402   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4403                           "(2) > (3)");
   4404 }
   4405 
   4406 #if GTEST_HAS_EXCEPTIONS
   4407 
   4408 // Tests EXPECT_THROW.
   4409 TEST(ExpectTest, EXPECT_THROW) {
   4410   EXPECT_THROW(ThrowAnInteger(), int);
   4411   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4412                           "Expected: ThrowAnInteger() throws an exception of "
   4413                           "type bool.\n  Actual: it throws a different type.");
   4414   EXPECT_NONFATAL_FAILURE(
   4415       EXPECT_THROW(ThrowNothing(), bool),
   4416       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4417       "  Actual: it throws nothing.");
   4418 }
   4419 
   4420 // Tests EXPECT_NO_THROW.
   4421 TEST(ExpectTest, EXPECT_NO_THROW) {
   4422   EXPECT_NO_THROW(ThrowNothing());
   4423   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4424                           "Expected: ThrowAnInteger() doesn't throw an "
   4425                           "exception.\n  Actual: it throws.");
   4426 }
   4427 
   4428 // Tests EXPECT_ANY_THROW.
   4429 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4430   EXPECT_ANY_THROW(ThrowAnInteger());
   4431   EXPECT_NONFATAL_FAILURE(
   4432       EXPECT_ANY_THROW(ThrowNothing()),
   4433       "Expected: ThrowNothing() throws an exception.\n"
   4434       "  Actual: it doesn't.");
   4435 }
   4436 
   4437 #endif  // GTEST_HAS_EXCEPTIONS
   4438 
   4439 // Make sure we deal with the precedence of <<.
   4440 TEST(ExpectTest, ExpectPrecedence) {
   4441   EXPECT_EQ(1 < 2, true);
   4442   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4443                           "Value of: true && false");
   4444 }
   4445 
   4446 
   4447 // Tests the StreamableToString() function.
   4448 
   4449 // Tests using StreamableToString() on a scalar.
   4450 TEST(StreamableToStringTest, Scalar) {
   4451   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4452 }
   4453 
   4454 // Tests using StreamableToString() on a non-char pointer.
   4455 TEST(StreamableToStringTest, Pointer) {
   4456   int n = 0;
   4457   int* p = &n;
   4458   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4459 }
   4460 
   4461 // Tests using StreamableToString() on a NULL non-char pointer.
   4462 TEST(StreamableToStringTest, NullPointer) {
   4463   int* p = NULL;
   4464   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4465 }
   4466 
   4467 // Tests using StreamableToString() on a C string.
   4468 TEST(StreamableToStringTest, CString) {
   4469   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4470 }
   4471 
   4472 // Tests using StreamableToString() on a NULL C string.
   4473 TEST(StreamableToStringTest, NullCString) {
   4474   char* p = NULL;
   4475   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4476 }
   4477 
   4478 // Tests using streamable values as assertion messages.
   4479 
   4480 // Tests using std::string as an assertion message.
   4481 TEST(StreamableTest, string) {
   4482   static const std::string str(
   4483       "This failure message is a std::string, and is expected.");
   4484   EXPECT_FATAL_FAILURE(FAIL() << str,
   4485                        str.c_str());
   4486 }
   4487 
   4488 // Tests that we can output strings containing embedded NULs.
   4489 // Limited to Linux because we can only do this with std::string's.
   4490 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4491   static const char char_array_with_nul[] =
   4492       "Here's a NUL\0 and some more string";
   4493   static const std::string string_with_nul(char_array_with_nul,
   4494                                            sizeof(char_array_with_nul)
   4495                                            - 1);  // drops the trailing NUL
   4496   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4497                        "Here's a NUL\\0 and some more string");
   4498 }
   4499 
   4500 // Tests that we can output a NUL char.
   4501 TEST(StreamableTest, NULChar) {
   4502   EXPECT_FATAL_FAILURE({  // NOLINT
   4503     FAIL() << "A NUL" << '\0' << " and some more string";
   4504   }, "A NUL\\0 and some more string");
   4505 }
   4506 
   4507 // Tests using int as an assertion message.
   4508 TEST(StreamableTest, int) {
   4509   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4510                        "900913");
   4511 }
   4512 
   4513 // Tests using NULL char pointer as an assertion message.
   4514 //
   4515 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4516 // implemented a workaround (substituting "(null)" for NULL).  This
   4517 // tests whether the workaround works.
   4518 TEST(StreamableTest, NullCharPtr) {
   4519   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4520                        "(null)");
   4521 }
   4522 
   4523 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4524 // streamed to testing::Message.
   4525 TEST(StreamableTest, BasicIoManip) {
   4526   EXPECT_FATAL_FAILURE({  // NOLINT
   4527     FAIL() << "Line 1." << std::endl
   4528            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4529   }, "Line 1.\nA NUL char \\0 in line 2.");
   4530 }
   4531 
   4532 // Tests the macros that haven't been covered so far.
   4533 
   4534 void AddFailureHelper(bool* aborted) {
   4535   *aborted = true;
   4536   ADD_FAILURE() << "Intentional failure.";
   4537   *aborted = false;
   4538 }
   4539 
   4540 // Tests ADD_FAILURE.
   4541 TEST(MacroTest, ADD_FAILURE) {
   4542   bool aborted = true;
   4543   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4544                           "Intentional failure.");
   4545   EXPECT_FALSE(aborted);
   4546 }
   4547 
   4548 // Tests ADD_FAILURE_AT.
   4549 TEST(MacroTest, ADD_FAILURE_AT) {
   4550   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
   4551   // the failure message contains the user-streamed part.
   4552   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
   4553 
   4554   // Verifies that the user-streamed part is optional.
   4555   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
   4556 
   4557   // Unfortunately, we cannot verify that the failure message contains
   4558   // the right file path and line number the same way, as
   4559   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
   4560   // line number.  Instead, we do that in gtest_output_test_.cc.
   4561 }
   4562 
   4563 // Tests FAIL.
   4564 TEST(MacroTest, FAIL) {
   4565   EXPECT_FATAL_FAILURE(FAIL(),
   4566                        "Failed");
   4567   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4568                        "Intentional failure.");
   4569 }
   4570 
   4571 // Tests SUCCEED
   4572 TEST(MacroTest, SUCCEED) {
   4573   SUCCEED();
   4574   SUCCEED() << "Explicit success.";
   4575 }
   4576 
   4577 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4578 //
   4579 // These tests fail *intentionally*, s.t. the failure messages can be
   4580 // generated and tested.
   4581 //
   4582 // We have different tests for different argument types.
   4583 
   4584 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4585 TEST(EqAssertionTest, Bool) {
   4586   EXPECT_EQ(true,  true);
   4587   EXPECT_FATAL_FAILURE({
   4588       bool false_value = false;
   4589       ASSERT_EQ(false_value, true);
   4590     }, "Value of: true");
   4591 }
   4592 
   4593 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4594 TEST(EqAssertionTest, Int) {
   4595   ASSERT_EQ(32, 32);
   4596   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4597                           "33");
   4598 }
   4599 
   4600 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4601 TEST(EqAssertionTest, Time_T) {
   4602   EXPECT_EQ(static_cast<time_t>(0),
   4603             static_cast<time_t>(0));
   4604   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4605                                  static_cast<time_t>(1234)),
   4606                        "1234");
   4607 }
   4608 
   4609 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4610 TEST(EqAssertionTest, Char) {
   4611   ASSERT_EQ('z', 'z');
   4612   const char ch = 'b';
   4613   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4614                           "ch");
   4615   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4616                           "ch");
   4617 }
   4618 
   4619 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4620 TEST(EqAssertionTest, WideChar) {
   4621   EXPECT_EQ(L'b', L'b');
   4622 
   4623   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4624                           "Value of: L'x'\n"
   4625                           "  Actual: L'x' (120, 0x78)\n"
   4626                           "Expected: L'\0'\n"
   4627                           "Which is: L'\0' (0, 0x0)");
   4628 
   4629   static wchar_t wchar;
   4630   wchar = L'b';
   4631   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4632                           "wchar");
   4633   wchar = 0x8119;
   4634   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
   4635                        "Value of: wchar");
   4636 }
   4637 
   4638 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4639 TEST(EqAssertionTest, StdString) {
   4640   // Compares a const char* to an std::string that has identical
   4641   // content.
   4642   ASSERT_EQ("Test", ::std::string("Test"));
   4643 
   4644   // Compares two identical std::strings.
   4645   static const ::std::string str1("A * in the middle");
   4646   static const ::std::string str2(str1);
   4647   EXPECT_EQ(str1, str2);
   4648 
   4649   // Compares a const char* to an std::string that has different
   4650   // content
   4651   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4652                           "\"test\"");
   4653 
   4654   // Compares an std::string to a char* that has different content.
   4655   char* const p1 = const_cast<char*>("foo");
   4656   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4657                           "p1");
   4658 
   4659   // Compares two std::strings that have different contents, one of
   4660   // which having a NUL character in the middle.  This should fail.
   4661   static ::std::string str3(str1);
   4662   str3.at(2) = '\0';
   4663   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4664                        "Value of: str3\n"
   4665                        "  Actual: \"A \\0 in the middle\"");
   4666 }
   4667 
   4668 #if GTEST_HAS_STD_WSTRING
   4669 
   4670 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4671 TEST(EqAssertionTest, StdWideString) {
   4672   // Compares two identical std::wstrings.
   4673   const ::std::wstring wstr1(L"A * in the middle");
   4674   const ::std::wstring wstr2(wstr1);
   4675   ASSERT_EQ(wstr1, wstr2);
   4676 
   4677   // Compares an std::wstring to a const wchar_t* that has identical
   4678   // content.
   4679   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4680   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
   4681 
   4682   // Compares an std::wstring to a const wchar_t* that has different
   4683   // content.
   4684   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4685   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4686     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
   4687   }, "kTestX8120");
   4688 
   4689   // Compares two std::wstrings that have different contents, one of
   4690   // which having a NUL character in the middle.
   4691   ::std::wstring wstr3(wstr1);
   4692   wstr3.at(2) = L'\0';
   4693   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4694                           "wstr3");
   4695 
   4696   // Compares a wchar_t* to an std::wstring that has different
   4697   // content.
   4698   EXPECT_FATAL_FAILURE({  // NOLINT
   4699     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4700   }, "");
   4701 }
   4702 
   4703 #endif  // GTEST_HAS_STD_WSTRING
   4704 
   4705 #if GTEST_HAS_GLOBAL_STRING
   4706 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4707 TEST(EqAssertionTest, GlobalString) {
   4708   // Compares a const char* to a ::string that has identical content.
   4709   EXPECT_EQ("Test", ::string("Test"));
   4710 
   4711   // Compares two identical ::strings.
   4712   const ::string str1("A * in the middle");
   4713   const ::string str2(str1);
   4714   ASSERT_EQ(str1, str2);
   4715 
   4716   // Compares a ::string to a const char* that has different content.
   4717   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4718                           "test");
   4719 
   4720   // Compares two ::strings that have different contents, one of which
   4721   // having a NUL character in the middle.
   4722   ::string str3(str1);
   4723   str3.at(2) = '\0';
   4724   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4725                           "str3");
   4726 
   4727   // Compares a ::string to a char* that has different content.
   4728   EXPECT_FATAL_FAILURE({  // NOLINT
   4729     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4730   }, "");
   4731 }
   4732 
   4733 #endif  // GTEST_HAS_GLOBAL_STRING
   4734 
   4735 #if GTEST_HAS_GLOBAL_WSTRING
   4736 
   4737 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4738 TEST(EqAssertionTest, GlobalWideString) {
   4739   // Compares two identical ::wstrings.
   4740   static const ::wstring wstr1(L"A * in the middle");
   4741   static const ::wstring wstr2(wstr1);
   4742   EXPECT_EQ(wstr1, wstr2);
   4743 
   4744   // Compares a const wchar_t* to a ::wstring that has identical content.
   4745   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4746   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
   4747 
   4748   // Compares a const wchar_t* to a ::wstring that has different
   4749   // content.
   4750   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4751   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4752     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
   4753   }, "Test\\x8119");
   4754 
   4755   // Compares a wchar_t* to a ::wstring that has different content.
   4756   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4757   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4758                           "bar");
   4759 
   4760   // Compares two ::wstrings that have different contents, one of which
   4761   // having a NUL character in the middle.
   4762   static ::wstring wstr3;
   4763   wstr3 = wstr1;
   4764   wstr3.at(2) = L'\0';
   4765   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4766                        "wstr3");
   4767 }
   4768 
   4769 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4770 
   4771 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4772 TEST(EqAssertionTest, CharPointer) {
   4773   char* const p0 = NULL;
   4774   // Only way to get the Nokia compiler to compile the cast
   4775   // is to have a separate void* variable first. Putting
   4776   // the two casts on the same line doesn't work, neither does
   4777   // a direct C-style to char*.
   4778   void* pv1 = (void*)0x1234;  // NOLINT
   4779   void* pv2 = (void*)0xABC0;  // NOLINT
   4780   char* const p1 = reinterpret_cast<char*>(pv1);
   4781   char* const p2 = reinterpret_cast<char*>(pv2);
   4782   ASSERT_EQ(p1, p1);
   4783 
   4784   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4785                           "Value of: p2");
   4786   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4787                           "p2");
   4788   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4789                                  reinterpret_cast<char*>(0xABC0)),
   4790                        "ABC0");
   4791 }
   4792 
   4793 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4794 TEST(EqAssertionTest, WideCharPointer) {
   4795   wchar_t* const p0 = NULL;
   4796   // Only way to get the Nokia compiler to compile the cast
   4797   // is to have a separate void* variable first. Putting
   4798   // the two casts on the same line doesn't work, neither does
   4799   // a direct C-style to char*.
   4800   void* pv1 = (void*)0x1234;  // NOLINT
   4801   void* pv2 = (void*)0xABC0;  // NOLINT
   4802   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4803   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4804   EXPECT_EQ(p0, p0);
   4805 
   4806   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4807                           "Value of: p2");
   4808   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4809                           "p2");
   4810   void* pv3 = (void*)0x1234;  // NOLINT
   4811   void* pv4 = (void*)0xABC0;  // NOLINT
   4812   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4813   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4814   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4815                           "p4");
   4816 }
   4817 
   4818 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4819 TEST(EqAssertionTest, OtherPointer) {
   4820   ASSERT_EQ(static_cast<const int*>(NULL),
   4821             static_cast<const int*>(NULL));
   4822   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4823                                  reinterpret_cast<const int*>(0x1234)),
   4824                        "0x1234");
   4825 }
   4826 
   4827 // A class that supports binary comparison operators but not streaming.
   4828 class UnprintableChar {
   4829  public:
   4830   explicit UnprintableChar(char ch) : char_(ch) {}
   4831 
   4832   bool operator==(const UnprintableChar& rhs) const {
   4833     return char_ == rhs.char_;
   4834   }
   4835   bool operator!=(const UnprintableChar& rhs) const {
   4836     return char_ != rhs.char_;
   4837   }
   4838   bool operator<(const UnprintableChar& rhs) const {
   4839     return char_ < rhs.char_;
   4840   }
   4841   bool operator<=(const UnprintableChar& rhs) const {
   4842     return char_ <= rhs.char_;
   4843   }
   4844   bool operator>(const UnprintableChar& rhs) const {
   4845     return char_ > rhs.char_;
   4846   }
   4847   bool operator>=(const UnprintableChar& rhs) const {
   4848     return char_ >= rhs.char_;
   4849   }
   4850 
   4851  private:
   4852   char char_;
   4853 };
   4854 
   4855 // Tests that ASSERT_EQ() and friends don't require the arguments to
   4856 // be printable.
   4857 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
   4858   const UnprintableChar x('x'), y('y');
   4859   ASSERT_EQ(x, x);
   4860   EXPECT_NE(x, y);
   4861   ASSERT_LT(x, y);
   4862   EXPECT_LE(x, y);
   4863   ASSERT_GT(y, x);
   4864   EXPECT_GE(x, x);
   4865 
   4866   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
   4867   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
   4868   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
   4869   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
   4870   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
   4871 
   4872   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
   4873   // variables, so we have to write UnprintableChar('x') instead of x.
   4874 #ifndef __BORLANDC__
   4875   // ICE's in C++Builder.
   4876   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
   4877                        "1-byte object <78>");
   4878   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4879                        "1-byte object <78>");
   4880 #endif
   4881   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4882                        "1-byte object <79>");
   4883   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4884                        "1-byte object <78>");
   4885   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4886                        "1-byte object <79>");
   4887 }
   4888 
   4889 // Tests the FRIEND_TEST macro.
   4890 
   4891 // This class has a private member we want to test.  We will test it
   4892 // both in a TEST and in a TEST_F.
   4893 class Foo {
   4894  public:
   4895   Foo() {}
   4896 
   4897  private:
   4898   int Bar() const { return 1; }
   4899 
   4900   // Declares the friend tests that can access the private member
   4901   // Bar().
   4902   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   4903   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   4904 };
   4905 
   4906 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   4907 // class's private members.  This should compile.
   4908 TEST(FRIEND_TEST_Test, TEST) {
   4909   ASSERT_EQ(1, Foo().Bar());
   4910 }
   4911 
   4912 // The fixture needed to test using FRIEND_TEST with TEST_F.
   4913 class FRIEND_TEST_Test2 : public Test {
   4914  protected:
   4915   Foo foo;
   4916 };
   4917 
   4918 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   4919 // class's private members.  This should compile.
   4920 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   4921   ASSERT_EQ(1, foo.Bar());
   4922 }
   4923 
   4924 // Tests the life cycle of Test objects.
   4925 
   4926 // The test fixture for testing the life cycle of Test objects.
   4927 //
   4928 // This class counts the number of live test objects that uses this
   4929 // fixture.
   4930 class TestLifeCycleTest : public Test {
   4931  protected:
   4932   // Constructor.  Increments the number of test objects that uses
   4933   // this fixture.
   4934   TestLifeCycleTest() { count_++; }
   4935 
   4936   // Destructor.  Decrements the number of test objects that uses this
   4937   // fixture.
   4938   ~TestLifeCycleTest() { count_--; }
   4939 
   4940   // Returns the number of live test objects that uses this fixture.
   4941   int count() const { return count_; }
   4942 
   4943  private:
   4944   static int count_;
   4945 };
   4946 
   4947 int TestLifeCycleTest::count_ = 0;
   4948 
   4949 // Tests the life cycle of test objects.
   4950 TEST_F(TestLifeCycleTest, Test1) {
   4951   // There should be only one test object in this test case that's
   4952   // currently alive.
   4953   ASSERT_EQ(1, count());
   4954 }
   4955 
   4956 // Tests the life cycle of test objects.
   4957 TEST_F(TestLifeCycleTest, Test2) {
   4958   // After Test1 is done and Test2 is started, there should still be
   4959   // only one live test object, as the object for Test1 should've been
   4960   // deleted.
   4961   ASSERT_EQ(1, count());
   4962 }
   4963 
   4964 }  // namespace
   4965 
   4966 // Tests that the copy constructor works when it is NOT optimized away by
   4967 // the compiler.
   4968 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
   4969   // Checks that the copy constructor doesn't try to dereference NULL pointers
   4970   // in the source object.
   4971   AssertionResult r1 = AssertionSuccess();
   4972   AssertionResult r2 = r1;
   4973   // The following line is added to prevent the compiler from optimizing
   4974   // away the constructor call.
   4975   r1 << "abc";
   4976 
   4977   AssertionResult r3 = r1;
   4978   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
   4979   EXPECT_STREQ("abc", r1.message());
   4980 }
   4981 
   4982 // Tests that AssertionSuccess and AssertionFailure construct
   4983 // AssertionResult objects as expected.
   4984 TEST(AssertionResultTest, ConstructionWorks) {
   4985   AssertionResult r1 = AssertionSuccess();
   4986   EXPECT_TRUE(r1);
   4987   EXPECT_STREQ("", r1.message());
   4988 
   4989   AssertionResult r2 = AssertionSuccess() << "abc";
   4990   EXPECT_TRUE(r2);
   4991   EXPECT_STREQ("abc", r2.message());
   4992 
   4993   AssertionResult r3 = AssertionFailure();
   4994   EXPECT_FALSE(r3);
   4995   EXPECT_STREQ("", r3.message());
   4996 
   4997   AssertionResult r4 = AssertionFailure() << "def";
   4998   EXPECT_FALSE(r4);
   4999   EXPECT_STREQ("def", r4.message());
   5000 
   5001   AssertionResult r5 = AssertionFailure(Message() << "ghi");
   5002   EXPECT_FALSE(r5);
   5003   EXPECT_STREQ("ghi", r5.message());
   5004 }
   5005 
   5006 // Tests that the negation flips the predicate result but keeps the message.
   5007 TEST(AssertionResultTest, NegationWorks) {
   5008   AssertionResult r1 = AssertionSuccess() << "abc";
   5009   EXPECT_FALSE(!r1);
   5010   EXPECT_STREQ("abc", (!r1).message());
   5011 
   5012   AssertionResult r2 = AssertionFailure() << "def";
   5013   EXPECT_TRUE(!r2);
   5014   EXPECT_STREQ("def", (!r2).message());
   5015 }
   5016 
   5017 TEST(AssertionResultTest, StreamingWorks) {
   5018   AssertionResult r = AssertionSuccess();
   5019   r << "abc" << 'd' << 0 << true;
   5020   EXPECT_STREQ("abcd0true", r.message());
   5021 }
   5022 
   5023 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
   5024   AssertionResult r = AssertionSuccess();
   5025   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
   5026   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
   5027 }
   5028 
   5029 // Tests streaming a user type whose definition and operator << are
   5030 // both in the global namespace.
   5031 class Base {
   5032  public:
   5033   explicit Base(int an_x) : x_(an_x) {}
   5034   int x() const { return x_; }
   5035  private:
   5036   int x_;
   5037 };
   5038 std::ostream& operator<<(std::ostream& os,
   5039                          const Base& val) {
   5040   return os << val.x();
   5041 }
   5042 std::ostream& operator<<(std::ostream& os,
   5043                          const Base* pointer) {
   5044   return os << "(" << pointer->x() << ")";
   5045 }
   5046 
   5047 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   5048   Message msg;
   5049   Base a(1);
   5050 
   5051   msg << a << &a;  // Uses ::operator<<.
   5052   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5053 }
   5054 
   5055 // Tests streaming a user type whose definition and operator<< are
   5056 // both in an unnamed namespace.
   5057 namespace {
   5058 class MyTypeInUnnamedNameSpace : public Base {
   5059  public:
   5060   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
   5061 };
   5062 std::ostream& operator<<(std::ostream& os,
   5063                          const MyTypeInUnnamedNameSpace& val) {
   5064   return os << val.x();
   5065 }
   5066 std::ostream& operator<<(std::ostream& os,
   5067                          const MyTypeInUnnamedNameSpace* pointer) {
   5068   return os << "(" << pointer->x() << ")";
   5069 }
   5070 }  // namespace
   5071 
   5072 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   5073   Message msg;
   5074   MyTypeInUnnamedNameSpace a(1);
   5075 
   5076   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   5077   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5078 }
   5079 
   5080 // Tests streaming a user type whose definition and operator<< are
   5081 // both in a user namespace.
   5082 namespace namespace1 {
   5083 class MyTypeInNameSpace1 : public Base {
   5084  public:
   5085   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
   5086 };
   5087 std::ostream& operator<<(std::ostream& os,
   5088                          const MyTypeInNameSpace1& val) {
   5089   return os << val.x();
   5090 }
   5091 std::ostream& operator<<(std::ostream& os,
   5092                          const MyTypeInNameSpace1* pointer) {
   5093   return os << "(" << pointer->x() << ")";
   5094 }
   5095 }  // namespace namespace1
   5096 
   5097 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   5098   Message msg;
   5099   namespace1::MyTypeInNameSpace1 a(1);
   5100 
   5101   msg << a << &a;  // Uses namespace1::operator<<.
   5102   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5103 }
   5104 
   5105 // Tests streaming a user type whose definition is in a user namespace
   5106 // but whose operator<< is in the global namespace.
   5107 namespace namespace2 {
   5108 class MyTypeInNameSpace2 : public ::Base {
   5109  public:
   5110   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
   5111 };
   5112 }  // namespace namespace2
   5113 std::ostream& operator<<(std::ostream& os,
   5114                          const namespace2::MyTypeInNameSpace2& val) {
   5115   return os << val.x();
   5116 }
   5117 std::ostream& operator<<(std::ostream& os,
   5118                          const namespace2::MyTypeInNameSpace2* pointer) {
   5119   return os << "(" << pointer->x() << ")";
   5120 }
   5121 
   5122 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   5123   Message msg;
   5124   namespace2::MyTypeInNameSpace2 a(1);
   5125 
   5126   msg << a << &a;  // Uses ::operator<<.
   5127   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5128 }
   5129 
   5130 // Tests streaming NULL pointers to testing::Message.
   5131 TEST(MessageTest, NullPointers) {
   5132   Message msg;
   5133   char* const p1 = NULL;
   5134   unsigned char* const p2 = NULL;
   5135   int* p3 = NULL;
   5136   double* p4 = NULL;
   5137   bool* p5 = NULL;
   5138   Message* p6 = NULL;
   5139 
   5140   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5141   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5142                msg.GetString().c_str());
   5143 }
   5144 
   5145 // Tests streaming wide strings to testing::Message.
   5146 TEST(MessageTest, WideStrings) {
   5147   // Streams a NULL of type const wchar_t*.
   5148   const wchar_t* const_wstr = NULL;
   5149   EXPECT_STREQ("(null)",
   5150                (Message() << const_wstr).GetString().c_str());
   5151 
   5152   // Streams a NULL of type wchar_t*.
   5153   wchar_t* wstr = NULL;
   5154   EXPECT_STREQ("(null)",
   5155                (Message() << wstr).GetString().c_str());
   5156 
   5157   // Streams a non-NULL of type const wchar_t*.
   5158   const_wstr = L"abc\x8119";
   5159   EXPECT_STREQ("abc\xe8\x84\x99",
   5160                (Message() << const_wstr).GetString().c_str());
   5161 
   5162   // Streams a non-NULL of type wchar_t*.
   5163   wstr = const_cast<wchar_t*>(const_wstr);
   5164   EXPECT_STREQ("abc\xe8\x84\x99",
   5165                (Message() << wstr).GetString().c_str());
   5166 }
   5167 
   5168 
   5169 // This line tests that we can define tests in the testing namespace.
   5170 namespace testing {
   5171 
   5172 // Tests the TestInfo class.
   5173 
   5174 class TestInfoTest : public Test {
   5175  protected:
   5176   static const TestInfo* GetTestInfo(const char* test_name) {
   5177     const TestCase* const test_case = GetUnitTestImpl()->
   5178         GetTestCase("TestInfoTest", "", NULL, NULL);
   5179 
   5180     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5181       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5182       if (strcmp(test_name, test_info->name()) == 0)
   5183         return test_info;
   5184     }
   5185     return NULL;
   5186   }
   5187 
   5188   static const TestResult* GetTestResult(
   5189       const TestInfo* test_info) {
   5190     return test_info->result();
   5191   }
   5192 };
   5193 
   5194 // Tests TestInfo::test_case_name() and TestInfo::name().
   5195 TEST_F(TestInfoTest, Names) {
   5196   const TestInfo* const test_info = GetTestInfo("Names");
   5197 
   5198   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5199   ASSERT_STREQ("Names", test_info->name());
   5200 }
   5201 
   5202 // Tests TestInfo::result().
   5203 TEST_F(TestInfoTest, result) {
   5204   const TestInfo* const test_info = GetTestInfo("result");
   5205 
   5206   // Initially, there is no TestPartResult for this test.
   5207   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5208 
   5209   // After the previous assertion, there is still none.
   5210   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5211 }
   5212 
   5213 // Tests setting up and tearing down a test case.
   5214 
   5215 class SetUpTestCaseTest : public Test {
   5216  protected:
   5217   // This will be called once before the first test in this test case
   5218   // is run.
   5219   static void SetUpTestCase() {
   5220     printf("Setting up the test case . . .\n");
   5221 
   5222     // Initializes some shared resource.  In this simple example, we
   5223     // just create a C string.  More complex stuff can be done if
   5224     // desired.
   5225     shared_resource_ = "123";
   5226 
   5227     // Increments the number of test cases that have been set up.
   5228     counter_++;
   5229 
   5230     // SetUpTestCase() should be called only once.
   5231     EXPECT_EQ(1, counter_);
   5232   }
   5233 
   5234   // This will be called once after the last test in this test case is
   5235   // run.
   5236   static void TearDownTestCase() {
   5237     printf("Tearing down the test case . . .\n");
   5238 
   5239     // Decrements the number of test cases that have been set up.
   5240     counter_--;
   5241 
   5242     // TearDownTestCase() should be called only once.
   5243     EXPECT_EQ(0, counter_);
   5244 
   5245     // Cleans up the shared resource.
   5246     shared_resource_ = NULL;
   5247   }
   5248 
   5249   // This will be called before each test in this test case.
   5250   virtual void SetUp() {
   5251     // SetUpTestCase() should be called only once, so counter_ should
   5252     // always be 1.
   5253     EXPECT_EQ(1, counter_);
   5254   }
   5255 
   5256   // Number of test cases that have been set up.
   5257   static int counter_;
   5258 
   5259   // Some resource to be shared by all tests in this test case.
   5260   static const char* shared_resource_;
   5261 };
   5262 
   5263 int SetUpTestCaseTest::counter_ = 0;
   5264 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5265 
   5266 // A test that uses the shared resource.
   5267 TEST_F(SetUpTestCaseTest, Test1) {
   5268   EXPECT_STRNE(NULL, shared_resource_);
   5269 }
   5270 
   5271 // Another test that uses the shared resource.
   5272 TEST_F(SetUpTestCaseTest, Test2) {
   5273   EXPECT_STREQ("123", shared_resource_);
   5274 }
   5275 
   5276 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5277 
   5278 // The Flags struct stores a copy of all Google Test flags.
   5279 struct Flags {
   5280   // Constructs a Flags struct where each flag has its default value.
   5281   Flags() : also_run_disabled_tests(false),
   5282             break_on_failure(false),
   5283             catch_exceptions(false),
   5284             death_test_use_fork(false),
   5285             filter(""),
   5286             list_tests(false),
   5287             output(""),
   5288             print_time(true),
   5289             random_seed(0),
   5290             repeat(1),
   5291             shuffle(false),
   5292             stack_trace_depth(kMaxStackTraceDepth),
   5293             stream_result_to(""),
   5294             throw_on_failure(false) {}
   5295 
   5296   // Factory methods.
   5297 
   5298   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5299   // the given value.
   5300   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5301     Flags flags;
   5302     flags.also_run_disabled_tests = also_run_disabled_tests;
   5303     return flags;
   5304   }
   5305 
   5306   // Creates a Flags struct where the gtest_break_on_failure flag has
   5307   // the given value.
   5308   static Flags BreakOnFailure(bool break_on_failure) {
   5309     Flags flags;
   5310     flags.break_on_failure = break_on_failure;
   5311     return flags;
   5312   }
   5313 
   5314   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5315   // the given value.
   5316   static Flags CatchExceptions(bool catch_exceptions) {
   5317     Flags flags;
   5318     flags.catch_exceptions = catch_exceptions;
   5319     return flags;
   5320   }
   5321 
   5322   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5323   // the given value.
   5324   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5325     Flags flags;
   5326     flags.death_test_use_fork = death_test_use_fork;
   5327     return flags;
   5328   }
   5329 
   5330   // Creates a Flags struct where the gtest_filter flag has the given
   5331   // value.
   5332   static Flags Filter(const char* filter) {
   5333     Flags flags;
   5334     flags.filter = filter;
   5335     return flags;
   5336   }
   5337 
   5338   // Creates a Flags struct where the gtest_list_tests flag has the
   5339   // given value.
   5340   static Flags ListTests(bool list_tests) {
   5341     Flags flags;
   5342     flags.list_tests = list_tests;
   5343     return flags;
   5344   }
   5345 
   5346   // Creates a Flags struct where the gtest_output flag has the given
   5347   // value.
   5348   static Flags Output(const char* output) {
   5349     Flags flags;
   5350     flags.output = output;
   5351     return flags;
   5352   }
   5353 
   5354   // Creates a Flags struct where the gtest_print_time flag has the given
   5355   // value.
   5356   static Flags PrintTime(bool print_time) {
   5357     Flags flags;
   5358     flags.print_time = print_time;
   5359     return flags;
   5360   }
   5361 
   5362   // Creates a Flags struct where the gtest_random_seed flag has
   5363   // the given value.
   5364   static Flags RandomSeed(Int32 random_seed) {
   5365     Flags flags;
   5366     flags.random_seed = random_seed;
   5367     return flags;
   5368   }
   5369 
   5370   // Creates a Flags struct where the gtest_repeat flag has the given
   5371   // value.
   5372   static Flags Repeat(Int32 repeat) {
   5373     Flags flags;
   5374     flags.repeat = repeat;
   5375     return flags;
   5376   }
   5377 
   5378   // Creates a Flags struct where the gtest_shuffle flag has
   5379   // the given value.
   5380   static Flags Shuffle(bool shuffle) {
   5381     Flags flags;
   5382     flags.shuffle = shuffle;
   5383     return flags;
   5384   }
   5385 
   5386   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
   5387   // the given value.
   5388   static Flags StackTraceDepth(Int32 stack_trace_depth) {
   5389     Flags flags;
   5390     flags.stack_trace_depth = stack_trace_depth;
   5391     return flags;
   5392   }
   5393 
   5394   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
   5395   // the given value.
   5396   static Flags StreamResultTo(const char* stream_result_to) {
   5397     Flags flags;
   5398     flags.stream_result_to = stream_result_to;
   5399     return flags;
   5400   }
   5401 
   5402   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5403   // the given value.
   5404   static Flags ThrowOnFailure(bool throw_on_failure) {
   5405     Flags flags;
   5406     flags.throw_on_failure = throw_on_failure;
   5407     return flags;
   5408   }
   5409 
   5410   // These fields store the flag values.
   5411   bool also_run_disabled_tests;
   5412   bool break_on_failure;
   5413   bool catch_exceptions;
   5414   bool death_test_use_fork;
   5415   const char* filter;
   5416   bool list_tests;
   5417   const char* output;
   5418   bool print_time;
   5419   Int32 random_seed;
   5420   Int32 repeat;
   5421   bool shuffle;
   5422   Int32 stack_trace_depth;
   5423   const char* stream_result_to;
   5424   bool throw_on_failure;
   5425 };
   5426 
   5427 // Fixture for testing InitGoogleTest().
   5428 class InitGoogleTestTest : public Test {
   5429  protected:
   5430   // Clears the flags before each test.
   5431   virtual void SetUp() {
   5432     GTEST_FLAG(also_run_disabled_tests) = false;
   5433     GTEST_FLAG(break_on_failure) = false;
   5434     GTEST_FLAG(catch_exceptions) = false;
   5435     GTEST_FLAG(death_test_use_fork) = false;
   5436     GTEST_FLAG(filter) = "";
   5437     GTEST_FLAG(list_tests) = false;
   5438     GTEST_FLAG(output) = "";
   5439     GTEST_FLAG(print_time) = true;
   5440     GTEST_FLAG(random_seed) = 0;
   5441     GTEST_FLAG(repeat) = 1;
   5442     GTEST_FLAG(shuffle) = false;
   5443     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   5444     GTEST_FLAG(stream_result_to) = "";
   5445     GTEST_FLAG(throw_on_failure) = false;
   5446   }
   5447 
   5448   // Asserts that two narrow or wide string arrays are equal.
   5449   template <typename CharType>
   5450   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5451                                   size_t size2, CharType** array2) {
   5452     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5453 
   5454     for (size_t i = 0; i != size1; i++) {
   5455       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5456     }
   5457   }
   5458 
   5459   // Verifies that the flag values match the expected values.
   5460   static void CheckFlags(const Flags& expected) {
   5461     EXPECT_EQ(expected.also_run_disabled_tests,
   5462               GTEST_FLAG(also_run_disabled_tests));
   5463     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5464     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5465     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5466     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5467     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5468     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5469     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5470     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5471     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5472     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5473     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
   5474     EXPECT_STREQ(expected.stream_result_to,
   5475                  GTEST_FLAG(stream_result_to).c_str());
   5476     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5477   }
   5478 
   5479   // Parses a command line (specified by argc1 and argv1), then
   5480   // verifies that the flag values are expected and that the
   5481   // recognized flags are removed from the command line.
   5482   template <typename CharType>
   5483   static void TestParsingFlags(int argc1, const CharType** argv1,
   5484                                int argc2, const CharType** argv2,
   5485                                const Flags& expected, bool should_print_help) {
   5486     const bool saved_help_flag = ::testing::internal::g_help_flag;
   5487     ::testing::internal::g_help_flag = false;
   5488 
   5489 #if GTEST_HAS_STREAM_REDIRECTION
   5490     CaptureStdout();
   5491 #endif
   5492 
   5493     // Parses the command line.
   5494     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5495 
   5496 #if GTEST_HAS_STREAM_REDIRECTION
   5497     const std::string captured_stdout = GetCapturedStdout();
   5498 #endif
   5499 
   5500     // Verifies the flag values.
   5501     CheckFlags(expected);
   5502 
   5503     // Verifies that the recognized flags are removed from the command
   5504     // line.
   5505     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5506 
   5507     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
   5508     // help message for the flags it recognizes.
   5509     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
   5510 
   5511 #if GTEST_HAS_STREAM_REDIRECTION
   5512     const char* const expected_help_fragment =
   5513         "This program contains tests written using";
   5514     if (should_print_help) {
   5515       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
   5516     } else {
   5517       EXPECT_PRED_FORMAT2(IsNotSubstring,
   5518                           expected_help_fragment, captured_stdout);
   5519     }
   5520 #endif  // GTEST_HAS_STREAM_REDIRECTION
   5521 
   5522     ::testing::internal::g_help_flag = saved_help_flag;
   5523   }
   5524 
   5525   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5526   // to specify the array sizes.
   5527 
   5528 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
   5529   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5530                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
   5531                    expected, should_print_help)
   5532 };
   5533 
   5534 // Tests parsing an empty command line.
   5535 TEST_F(InitGoogleTestTest, Empty) {
   5536   const char* argv[] = {
   5537     NULL
   5538   };
   5539 
   5540   const char* argv2[] = {
   5541     NULL
   5542   };
   5543 
   5544   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5545 }
   5546 
   5547 // Tests parsing a command line that has no flag.
   5548 TEST_F(InitGoogleTestTest, NoFlag) {
   5549   const char* argv[] = {
   5550     "foo.exe",
   5551     NULL
   5552   };
   5553 
   5554   const char* argv2[] = {
   5555     "foo.exe",
   5556     NULL
   5557   };
   5558 
   5559   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5560 }
   5561 
   5562 // Tests parsing a bad --gtest_filter flag.
   5563 TEST_F(InitGoogleTestTest, FilterBad) {
   5564   const char* argv[] = {
   5565     "foo.exe",
   5566     "--gtest_filter",
   5567     NULL
   5568   };
   5569 
   5570   const char* argv2[] = {
   5571     "foo.exe",
   5572     "--gtest_filter",
   5573     NULL
   5574   };
   5575 
   5576   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
   5577 }
   5578 
   5579 // Tests parsing an empty --gtest_filter flag.
   5580 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5581   const char* argv[] = {
   5582     "foo.exe",
   5583     "--gtest_filter=",
   5584     NULL
   5585   };
   5586 
   5587   const char* argv2[] = {
   5588     "foo.exe",
   5589     NULL
   5590   };
   5591 
   5592   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
   5593 }
   5594 
   5595 // Tests parsing a non-empty --gtest_filter flag.
   5596 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5597   const char* argv[] = {
   5598     "foo.exe",
   5599     "--gtest_filter=abc",
   5600     NULL
   5601   };
   5602 
   5603   const char* argv2[] = {
   5604     "foo.exe",
   5605     NULL
   5606   };
   5607 
   5608   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   5609 }
   5610 
   5611 // Tests parsing --gtest_break_on_failure.
   5612 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5613   const char* argv[] = {
   5614     "foo.exe",
   5615     "--gtest_break_on_failure",
   5616     NULL
   5617 };
   5618 
   5619   const char* argv2[] = {
   5620     "foo.exe",
   5621     NULL
   5622   };
   5623 
   5624   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5625 }
   5626 
   5627 // Tests parsing --gtest_break_on_failure=0.
   5628 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5629   const char* argv[] = {
   5630     "foo.exe",
   5631     "--gtest_break_on_failure=0",
   5632     NULL
   5633   };
   5634 
   5635   const char* argv2[] = {
   5636     "foo.exe",
   5637     NULL
   5638   };
   5639 
   5640   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5641 }
   5642 
   5643 // Tests parsing --gtest_break_on_failure=f.
   5644 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5645   const char* argv[] = {
   5646     "foo.exe",
   5647     "--gtest_break_on_failure=f",
   5648     NULL
   5649   };
   5650 
   5651   const char* argv2[] = {
   5652     "foo.exe",
   5653     NULL
   5654   };
   5655 
   5656   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5657 }
   5658 
   5659 // Tests parsing --gtest_break_on_failure=F.
   5660 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5661   const char* argv[] = {
   5662     "foo.exe",
   5663     "--gtest_break_on_failure=F",
   5664     NULL
   5665   };
   5666 
   5667   const char* argv2[] = {
   5668     "foo.exe",
   5669     NULL
   5670   };
   5671 
   5672   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5673 }
   5674 
   5675 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5676 // definition.
   5677 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5678   const char* argv[] = {
   5679     "foo.exe",
   5680     "--gtest_break_on_failure=1",
   5681     NULL
   5682   };
   5683 
   5684   const char* argv2[] = {
   5685     "foo.exe",
   5686     NULL
   5687   };
   5688 
   5689   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5690 }
   5691 
   5692 // Tests parsing --gtest_catch_exceptions.
   5693 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5694   const char* argv[] = {
   5695     "foo.exe",
   5696     "--gtest_catch_exceptions",
   5697     NULL
   5698   };
   5699 
   5700   const char* argv2[] = {
   5701     "foo.exe",
   5702     NULL
   5703   };
   5704 
   5705   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
   5706 }
   5707 
   5708 // Tests parsing --gtest_death_test_use_fork.
   5709 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5710   const char* argv[] = {
   5711     "foo.exe",
   5712     "--gtest_death_test_use_fork",
   5713     NULL
   5714   };
   5715 
   5716   const char* argv2[] = {
   5717     "foo.exe",
   5718     NULL
   5719   };
   5720 
   5721   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
   5722 }
   5723 
   5724 // Tests having the same flag twice with different values.  The
   5725 // expected behavior is that the one coming last takes precedence.
   5726 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5727   const char* argv[] = {
   5728     "foo.exe",
   5729     "--gtest_filter=a",
   5730     "--gtest_filter=b",
   5731     NULL
   5732   };
   5733 
   5734   const char* argv2[] = {
   5735     "foo.exe",
   5736     NULL
   5737   };
   5738 
   5739   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
   5740 }
   5741 
   5742 // Tests having an unrecognized flag on the command line.
   5743 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5744   const char* argv[] = {
   5745     "foo.exe",
   5746     "--gtest_break_on_failure",
   5747     "bar",  // Unrecognized by Google Test.
   5748     "--gtest_filter=b",
   5749     NULL
   5750   };
   5751 
   5752   const char* argv2[] = {
   5753     "foo.exe",
   5754     "bar",
   5755     NULL
   5756   };
   5757 
   5758   Flags flags;
   5759   flags.break_on_failure = true;
   5760   flags.filter = "b";
   5761   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
   5762 }
   5763 
   5764 // Tests having a --gtest_list_tests flag
   5765 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5766     const char* argv[] = {
   5767       "foo.exe",
   5768       "--gtest_list_tests",
   5769       NULL
   5770     };
   5771 
   5772     const char* argv2[] = {
   5773       "foo.exe",
   5774       NULL
   5775     };
   5776 
   5777     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5778 }
   5779 
   5780 // Tests having a --gtest_list_tests flag with a "true" value
   5781 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5782     const char* argv[] = {
   5783       "foo.exe",
   5784       "--gtest_list_tests=1",
   5785       NULL
   5786     };
   5787 
   5788     const char* argv2[] = {
   5789       "foo.exe",
   5790       NULL
   5791     };
   5792 
   5793     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5794 }
   5795 
   5796 // Tests having a --gtest_list_tests flag with a "false" value
   5797 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5798     const char* argv[] = {
   5799       "foo.exe",
   5800       "--gtest_list_tests=0",
   5801       NULL
   5802     };
   5803 
   5804     const char* argv2[] = {
   5805       "foo.exe",
   5806       NULL
   5807     };
   5808 
   5809     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5810 }
   5811 
   5812 // Tests parsing --gtest_list_tests=f.
   5813 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   5814   const char* argv[] = {
   5815     "foo.exe",
   5816     "--gtest_list_tests=f",
   5817     NULL
   5818   };
   5819 
   5820   const char* argv2[] = {
   5821     "foo.exe",
   5822     NULL
   5823   };
   5824 
   5825   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5826 }
   5827 
   5828 // Tests parsing --gtest_list_tests=F.
   5829 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   5830   const char* argv[] = {
   5831     "foo.exe",
   5832     "--gtest_list_tests=F",
   5833     NULL
   5834   };
   5835 
   5836   const char* argv2[] = {
   5837     "foo.exe",
   5838     NULL
   5839   };
   5840 
   5841   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5842 }
   5843 
   5844 // Tests parsing --gtest_output (invalid).
   5845 TEST_F(InitGoogleTestTest, OutputEmpty) {
   5846   const char* argv[] = {
   5847     "foo.exe",
   5848     "--gtest_output",
   5849     NULL
   5850   };
   5851 
   5852   const char* argv2[] = {
   5853     "foo.exe",
   5854     "--gtest_output",
   5855     NULL
   5856   };
   5857 
   5858   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
   5859 }
   5860 
   5861 // Tests parsing --gtest_output=xml
   5862 TEST_F(InitGoogleTestTest, OutputXml) {
   5863   const char* argv[] = {
   5864     "foo.exe",
   5865     "--gtest_output=xml",
   5866     NULL
   5867   };
   5868 
   5869   const char* argv2[] = {
   5870     "foo.exe",
   5871     NULL
   5872   };
   5873 
   5874   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
   5875 }
   5876 
   5877 // Tests parsing --gtest_output=xml:file
   5878 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   5879   const char* argv[] = {
   5880     "foo.exe",
   5881     "--gtest_output=xml:file",
   5882     NULL
   5883   };
   5884 
   5885   const char* argv2[] = {
   5886     "foo.exe",
   5887     NULL
   5888   };
   5889 
   5890   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
   5891 }
   5892 
   5893 // Tests parsing --gtest_output=xml:directory/path/
   5894 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   5895   const char* argv[] = {
   5896     "foo.exe",
   5897     "--gtest_output=xml:directory/path/",
   5898     NULL
   5899   };
   5900 
   5901   const char* argv2[] = {
   5902     "foo.exe",
   5903     NULL
   5904   };
   5905 
   5906   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5907                             Flags::Output("xml:directory/path/"), false);
   5908 }
   5909 
   5910 // Tests having a --gtest_print_time flag
   5911 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   5912     const char* argv[] = {
   5913       "foo.exe",
   5914       "--gtest_print_time",
   5915       NULL
   5916     };
   5917 
   5918     const char* argv2[] = {
   5919       "foo.exe",
   5920       NULL
   5921     };
   5922 
   5923     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5924 }
   5925 
   5926 // Tests having a --gtest_print_time flag with a "true" value
   5927 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   5928     const char* argv[] = {
   5929       "foo.exe",
   5930       "--gtest_print_time=1",
   5931       NULL
   5932     };
   5933 
   5934     const char* argv2[] = {
   5935       "foo.exe",
   5936       NULL
   5937     };
   5938 
   5939     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5940 }
   5941 
   5942 // Tests having a --gtest_print_time flag with a "false" value
   5943 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   5944     const char* argv[] = {
   5945       "foo.exe",
   5946       "--gtest_print_time=0",
   5947       NULL
   5948     };
   5949 
   5950     const char* argv2[] = {
   5951       "foo.exe",
   5952       NULL
   5953     };
   5954 
   5955     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5956 }
   5957 
   5958 // Tests parsing --gtest_print_time=f.
   5959 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   5960   const char* argv[] = {
   5961     "foo.exe",
   5962     "--gtest_print_time=f",
   5963     NULL
   5964   };
   5965 
   5966   const char* argv2[] = {
   5967     "foo.exe",
   5968     NULL
   5969   };
   5970 
   5971   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5972 }
   5973 
   5974 // Tests parsing --gtest_print_time=F.
   5975 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   5976   const char* argv[] = {
   5977     "foo.exe",
   5978     "--gtest_print_time=F",
   5979     NULL
   5980   };
   5981 
   5982   const char* argv2[] = {
   5983     "foo.exe",
   5984     NULL
   5985   };
   5986 
   5987   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5988 }
   5989 
   5990 // Tests parsing --gtest_random_seed=number
   5991 TEST_F(InitGoogleTestTest, RandomSeed) {
   5992   const char* argv[] = {
   5993     "foo.exe",
   5994     "--gtest_random_seed=1000",
   5995     NULL
   5996   };
   5997 
   5998   const char* argv2[] = {
   5999     "foo.exe",
   6000     NULL
   6001   };
   6002 
   6003   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
   6004 }
   6005 
   6006 // Tests parsing --gtest_repeat=number
   6007 TEST_F(InitGoogleTestTest, Repeat) {
   6008   const char* argv[] = {
   6009     "foo.exe",
   6010     "--gtest_repeat=1000",
   6011     NULL
   6012   };
   6013 
   6014   const char* argv2[] = {
   6015     "foo.exe",
   6016     NULL
   6017   };
   6018 
   6019   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
   6020 }
   6021 
   6022 // Tests having a --gtest_also_run_disabled_tests flag
   6023 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   6024     const char* argv[] = {
   6025       "foo.exe",
   6026       "--gtest_also_run_disabled_tests",
   6027       NULL
   6028     };
   6029 
   6030     const char* argv2[] = {
   6031       "foo.exe",
   6032       NULL
   6033     };
   6034 
   6035     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6036                               Flags::AlsoRunDisabledTests(true), false);
   6037 }
   6038 
   6039 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   6040 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   6041     const char* argv[] = {
   6042       "foo.exe",
   6043       "--gtest_also_run_disabled_tests=1",
   6044       NULL
   6045     };
   6046 
   6047     const char* argv2[] = {
   6048       "foo.exe",
   6049       NULL
   6050     };
   6051 
   6052     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6053                               Flags::AlsoRunDisabledTests(true), false);
   6054 }
   6055 
   6056 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   6057 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   6058     const char* argv[] = {
   6059       "foo.exe",
   6060       "--gtest_also_run_disabled_tests=0",
   6061       NULL
   6062     };
   6063 
   6064     const char* argv2[] = {
   6065       "foo.exe",
   6066       NULL
   6067     };
   6068 
   6069     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6070                               Flags::AlsoRunDisabledTests(false), false);
   6071 }
   6072 
   6073 // Tests parsing --gtest_shuffle.
   6074 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   6075   const char* argv[] = {
   6076     "foo.exe",
   6077     "--gtest_shuffle",
   6078     NULL
   6079 };
   6080 
   6081   const char* argv2[] = {
   6082     "foo.exe",
   6083     NULL
   6084   };
   6085 
   6086   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6087 }
   6088 
   6089 // Tests parsing --gtest_shuffle=0.
   6090 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   6091   const char* argv[] = {
   6092     "foo.exe",
   6093     "--gtest_shuffle=0",
   6094     NULL
   6095   };
   6096 
   6097   const char* argv2[] = {
   6098     "foo.exe",
   6099     NULL
   6100   };
   6101 
   6102   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
   6103 }
   6104 
   6105 // Tests parsing a --gtest_shuffle flag that has a "true"
   6106 // definition.
   6107 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   6108   const char* argv[] = {
   6109     "foo.exe",
   6110     "--gtest_shuffle=1",
   6111     NULL
   6112   };
   6113 
   6114   const char* argv2[] = {
   6115     "foo.exe",
   6116     NULL
   6117   };
   6118 
   6119   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6120 }
   6121 
   6122 // Tests parsing --gtest_stack_trace_depth=number.
   6123 TEST_F(InitGoogleTestTest, StackTraceDepth) {
   6124   const char* argv[] = {
   6125     "foo.exe",
   6126     "--gtest_stack_trace_depth=5",
   6127     NULL
   6128   };
   6129 
   6130   const char* argv2[] = {
   6131     "foo.exe",
   6132     NULL
   6133   };
   6134 
   6135   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
   6136 }
   6137 
   6138 TEST_F(InitGoogleTestTest, StreamResultTo) {
   6139   const char* argv[] = {
   6140     "foo.exe",
   6141     "--gtest_stream_result_to=localhost:1234",
   6142     NULL
   6143   };
   6144 
   6145   const char* argv2[] = {
   6146     "foo.exe",
   6147     NULL
   6148   };
   6149 
   6150   GTEST_TEST_PARSING_FLAGS_(
   6151       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
   6152 }
   6153 
   6154 // Tests parsing --gtest_throw_on_failure.
   6155 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   6156   const char* argv[] = {
   6157     "foo.exe",
   6158     "--gtest_throw_on_failure",
   6159     NULL
   6160 };
   6161 
   6162   const char* argv2[] = {
   6163     "foo.exe",
   6164     NULL
   6165   };
   6166 
   6167   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6168 }
   6169 
   6170 // Tests parsing --gtest_throw_on_failure=0.
   6171 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6172   const char* argv[] = {
   6173     "foo.exe",
   6174     "--gtest_throw_on_failure=0",
   6175     NULL
   6176   };
   6177 
   6178   const char* argv2[] = {
   6179     "foo.exe",
   6180     NULL
   6181   };
   6182 
   6183   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
   6184 }
   6185 
   6186 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6187 // definition.
   6188 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6189   const char* argv[] = {
   6190     "foo.exe",
   6191     "--gtest_throw_on_failure=1",
   6192     NULL
   6193   };
   6194 
   6195   const char* argv2[] = {
   6196     "foo.exe",
   6197     NULL
   6198   };
   6199 
   6200   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6201 }
   6202 
   6203 #if GTEST_OS_WINDOWS
   6204 // Tests parsing wide strings.
   6205 TEST_F(InitGoogleTestTest, WideStrings) {
   6206   const wchar_t* argv[] = {
   6207     L"foo.exe",
   6208     L"--gtest_filter=Foo*",
   6209     L"--gtest_list_tests=1",
   6210     L"--gtest_break_on_failure",
   6211     L"--non_gtest_flag",
   6212     NULL
   6213   };
   6214 
   6215   const wchar_t* argv2[] = {
   6216     L"foo.exe",
   6217     L"--non_gtest_flag",
   6218     NULL
   6219   };
   6220 
   6221   Flags expected_flags;
   6222   expected_flags.break_on_failure = true;
   6223   expected_flags.filter = "Foo*";
   6224   expected_flags.list_tests = true;
   6225 
   6226   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6227 }
   6228 #endif  // GTEST_OS_WINDOWS
   6229 
   6230 // Tests current_test_info() in UnitTest.
   6231 class CurrentTestInfoTest : public Test {
   6232  protected:
   6233   // Tests that current_test_info() returns NULL before the first test in
   6234   // the test case is run.
   6235   static void SetUpTestCase() {
   6236     // There should be no tests running at this point.
   6237     const TestInfo* test_info =
   6238       UnitTest::GetInstance()->current_test_info();
   6239     EXPECT_TRUE(test_info == NULL)
   6240         << "There should be no tests running at this point.";
   6241   }
   6242 
   6243   // Tests that current_test_info() returns NULL after the last test in
   6244   // the test case has run.
   6245   static void TearDownTestCase() {
   6246     const TestInfo* test_info =
   6247       UnitTest::GetInstance()->current_test_info();
   6248     EXPECT_TRUE(test_info == NULL)
   6249         << "There should be no tests running at this point.";
   6250   }
   6251 };
   6252 
   6253 // Tests that current_test_info() returns TestInfo for currently running
   6254 // test by checking the expected test name against the actual one.
   6255 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6256   const TestInfo* test_info =
   6257     UnitTest::GetInstance()->current_test_info();
   6258   ASSERT_TRUE(NULL != test_info)
   6259       << "There is a test running so we should have a valid TestInfo.";
   6260   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6261       << "Expected the name of the currently running test case.";
   6262   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6263       << "Expected the name of the currently running test.";
   6264 }
   6265 
   6266 // Tests that current_test_info() returns TestInfo for currently running
   6267 // test by checking the expected test name against the actual one.  We
   6268 // use this test to see that the TestInfo object actually changed from
   6269 // the previous invocation.
   6270 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6271   const TestInfo* test_info =
   6272     UnitTest::GetInstance()->current_test_info();
   6273   ASSERT_TRUE(NULL != test_info)
   6274       << "There is a test running so we should have a valid TestInfo.";
   6275   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6276       << "Expected the name of the currently running test case.";
   6277   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6278       << "Expected the name of the currently running test.";
   6279 }
   6280 
   6281 }  // namespace testing
   6282 
   6283 // These two lines test that we can define tests in a namespace that
   6284 // has the name "testing" and is nested in another namespace.
   6285 namespace my_namespace {
   6286 namespace testing {
   6287 
   6288 // Makes sure that TEST knows to use ::testing::Test instead of
   6289 // ::my_namespace::testing::Test.
   6290 class Test {};
   6291 
   6292 // Makes sure that an assertion knows to use ::testing::Message instead of
   6293 // ::my_namespace::testing::Message.
   6294 class Message {};
   6295 
   6296 // Makes sure that an assertion knows to use
   6297 // ::testing::AssertionResult instead of
   6298 // ::my_namespace::testing::AssertionResult.
   6299 class AssertionResult {};
   6300 
   6301 // Tests that an assertion that should succeed works as expected.
   6302 TEST(NestedTestingNamespaceTest, Success) {
   6303   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6304 }
   6305 
   6306 // Tests that an assertion that should fail works as expected.
   6307 TEST(NestedTestingNamespaceTest, Failure) {
   6308   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6309                        "This failure is expected.");
   6310 }
   6311 
   6312 }  // namespace testing
   6313 }  // namespace my_namespace
   6314 
   6315 // Tests that one can call superclass SetUp and TearDown methods--
   6316 // that is, that they are not private.
   6317 // No tests are based on this fixture; the test "passes" if it compiles
   6318 // successfully.
   6319 class ProtectedFixtureMethodsTest : public Test {
   6320  protected:
   6321   virtual void SetUp() {
   6322     Test::SetUp();
   6323   }
   6324   virtual void TearDown() {
   6325     Test::TearDown();
   6326   }
   6327 };
   6328 
   6329 // StreamingAssertionsTest tests the streaming versions of a representative
   6330 // sample of assertions.
   6331 TEST(StreamingAssertionsTest, Unconditional) {
   6332   SUCCEED() << "expected success";
   6333   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6334                           "expected failure");
   6335   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6336                        "expected failure");
   6337 }
   6338 
   6339 #ifdef __BORLANDC__
   6340 // Silences warnings: "Condition is always true", "Unreachable code"
   6341 # pragma option push -w-ccc -w-rch
   6342 #endif
   6343 
   6344 TEST(StreamingAssertionsTest, Truth) {
   6345   EXPECT_TRUE(true) << "unexpected failure";
   6346   ASSERT_TRUE(true) << "unexpected failure";
   6347   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6348                           "expected failure");
   6349   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6350                        "expected failure");
   6351 }
   6352 
   6353 TEST(StreamingAssertionsTest, Truth2) {
   6354   EXPECT_FALSE(false) << "unexpected failure";
   6355   ASSERT_FALSE(false) << "unexpected failure";
   6356   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6357                           "expected failure");
   6358   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6359                        "expected failure");
   6360 }
   6361 
   6362 #ifdef __BORLANDC__
   6363 // Restores warnings after previous "#pragma option push" supressed them
   6364 # pragma option pop
   6365 #endif
   6366 
   6367 TEST(StreamingAssertionsTest, IntegerEquals) {
   6368   EXPECT_EQ(1, 1) << "unexpected failure";
   6369   ASSERT_EQ(1, 1) << "unexpected failure";
   6370   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6371                           "expected failure");
   6372   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6373                        "expected failure");
   6374 }
   6375 
   6376 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6377   EXPECT_LT(1, 2) << "unexpected failure";
   6378   ASSERT_LT(1, 2) << "unexpected failure";
   6379   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6380                           "expected failure");
   6381   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6382                        "expected failure");
   6383 }
   6384 
   6385 TEST(StreamingAssertionsTest, StringsEqual) {
   6386   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6387   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6388   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6389                           "expected failure");
   6390   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6391                        "expected failure");
   6392 }
   6393 
   6394 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6395   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6396   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6397   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6398                           "expected failure");
   6399   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6400                        "expected failure");
   6401 }
   6402 
   6403 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6404   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6405   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6406   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6407                           "expected failure");
   6408   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6409                        "expected failure");
   6410 }
   6411 
   6412 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6413   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6414   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6415   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6416                           "expected failure");
   6417   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6418                        "expected failure");
   6419 }
   6420 
   6421 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6422   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6423   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6424   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6425                           "expected failure");
   6426   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6427                        "expected failure");
   6428 }
   6429 
   6430 #if GTEST_HAS_EXCEPTIONS
   6431 
   6432 TEST(StreamingAssertionsTest, Throw) {
   6433   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6434   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6435   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6436                           "expected failure", "expected failure");
   6437   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6438                        "expected failure", "expected failure");
   6439 }
   6440 
   6441 TEST(StreamingAssertionsTest, NoThrow) {
   6442   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6443   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6444   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6445                           "expected failure", "expected failure");
   6446   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6447                        "expected failure", "expected failure");
   6448 }
   6449 
   6450 TEST(StreamingAssertionsTest, AnyThrow) {
   6451   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6452   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6453   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6454                           "expected failure", "expected failure");
   6455   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6456                        "expected failure", "expected failure");
   6457 }
   6458 
   6459 #endif  // GTEST_HAS_EXCEPTIONS
   6460 
   6461 // Tests that Google Test correctly decides whether to use colors in the output.
   6462 
   6463 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6464   GTEST_FLAG(color) = "yes";
   6465 
   6466   SetEnv("TERM", "xterm");  // TERM supports colors.
   6467   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6468   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6469 
   6470   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6471   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6472   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6473 }
   6474 
   6475 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6476   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6477 
   6478   GTEST_FLAG(color) = "True";
   6479   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6480 
   6481   GTEST_FLAG(color) = "t";
   6482   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6483 
   6484   GTEST_FLAG(color) = "1";
   6485   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6486 }
   6487 
   6488 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6489   GTEST_FLAG(color) = "no";
   6490 
   6491   SetEnv("TERM", "xterm");  // TERM supports colors.
   6492   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6493   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6494 
   6495   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6496   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6497   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6498 }
   6499 
   6500 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6501   SetEnv("TERM", "xterm");  // TERM supports colors.
   6502 
   6503   GTEST_FLAG(color) = "F";
   6504   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6505 
   6506   GTEST_FLAG(color) = "0";
   6507   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6508 
   6509   GTEST_FLAG(color) = "unknown";
   6510   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6511 }
   6512 
   6513 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6514   GTEST_FLAG(color) = "auto";
   6515 
   6516   SetEnv("TERM", "xterm");  // TERM supports colors.
   6517   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6518   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6519 }
   6520 
   6521 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6522   GTEST_FLAG(color) = "auto";
   6523 
   6524 #if GTEST_OS_WINDOWS
   6525   // On Windows, we ignore the TERM variable as it's usually not set.
   6526 
   6527   SetEnv("TERM", "dumb");
   6528   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6529 
   6530   SetEnv("TERM", "");
   6531   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6532 
   6533   SetEnv("TERM", "xterm");
   6534   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6535 #else
   6536   // On non-Windows platforms, we rely on TERM to determine if the
   6537   // terminal supports colors.
   6538 
   6539   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6540   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6541 
   6542   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6543   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6544 
   6545   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6546   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6547 
   6548   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6549   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6550 
   6551   SetEnv("TERM", "xterm");  // TERM supports colors.
   6552   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6553 
   6554   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6555   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6556 
   6557   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
   6558   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6559 
   6560   SetEnv("TERM", "screen");  // TERM supports colors.
   6561   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6562 
   6563   SetEnv("TERM", "screen-256color");  // TERM supports colors.
   6564   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6565 
   6566   SetEnv("TERM", "linux");  // TERM supports colors.
   6567   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6568 
   6569   SetEnv("TERM", "cygwin");  // TERM supports colors.
   6570   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6571 #endif  // GTEST_OS_WINDOWS
   6572 }
   6573 
   6574 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6575 
   6576 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
   6577 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
   6578     StaticAssertTypeEq<const int, const int>();
   6579 
   6580 // Verifies that StaticAssertTypeEq works in a class.
   6581 
   6582 template <typename T>
   6583 class StaticAssertTypeEqTestHelper {
   6584  public:
   6585   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6586 };
   6587 
   6588 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6589   StaticAssertTypeEqTestHelper<bool>();
   6590 }
   6591 
   6592 // Verifies that StaticAssertTypeEq works inside a function.
   6593 
   6594 typedef int IntAlias;
   6595 
   6596 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6597   StaticAssertTypeEq<int, IntAlias>();
   6598   StaticAssertTypeEq<int*, IntAlias*>();
   6599 }
   6600 
   6601 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6602   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6603 
   6604   // We don't have a stack walker in Google Test yet.
   6605   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6606   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6607 }
   6608 
   6609 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6610   EXPECT_FALSE(HasNonfatalFailure());
   6611 }
   6612 
   6613 static void FailFatally() { FAIL(); }
   6614 
   6615 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6616   FailFatally();
   6617   const bool has_nonfatal_failure = HasNonfatalFailure();
   6618   ClearCurrentTestPartResults();
   6619   EXPECT_FALSE(has_nonfatal_failure);
   6620 }
   6621 
   6622 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6623   ADD_FAILURE();
   6624   const bool has_nonfatal_failure = HasNonfatalFailure();
   6625   ClearCurrentTestPartResults();
   6626   EXPECT_TRUE(has_nonfatal_failure);
   6627 }
   6628 
   6629 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6630   FailFatally();
   6631   ADD_FAILURE();
   6632   const bool has_nonfatal_failure = HasNonfatalFailure();
   6633   ClearCurrentTestPartResults();
   6634   EXPECT_TRUE(has_nonfatal_failure);
   6635 }
   6636 
   6637 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6638 static bool HasNonfatalFailureHelper() {
   6639   return testing::Test::HasNonfatalFailure();
   6640 }
   6641 
   6642 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6643   EXPECT_FALSE(HasNonfatalFailureHelper());
   6644 }
   6645 
   6646 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6647   ADD_FAILURE();
   6648   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6649   ClearCurrentTestPartResults();
   6650   EXPECT_TRUE(has_nonfatal_failure);
   6651 }
   6652 
   6653 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6654   EXPECT_FALSE(HasFailure());
   6655 }
   6656 
   6657 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6658   FailFatally();
   6659   const bool has_failure = HasFailure();
   6660   ClearCurrentTestPartResults();
   6661   EXPECT_TRUE(has_failure);
   6662 }
   6663 
   6664 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6665   ADD_FAILURE();
   6666   const bool has_failure = HasFailure();
   6667   ClearCurrentTestPartResults();
   6668   EXPECT_TRUE(has_failure);
   6669 }
   6670 
   6671 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6672   FailFatally();
   6673   ADD_FAILURE();
   6674   const bool has_failure = HasFailure();
   6675   ClearCurrentTestPartResults();
   6676   EXPECT_TRUE(has_failure);
   6677 }
   6678 
   6679 // A wrapper for calling HasFailure outside of a test body.
   6680 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6681 
   6682 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6683   EXPECT_FALSE(HasFailureHelper());
   6684 }
   6685 
   6686 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6687   ADD_FAILURE();
   6688   const bool has_failure = HasFailureHelper();
   6689   ClearCurrentTestPartResults();
   6690   EXPECT_TRUE(has_failure);
   6691 }
   6692 
   6693 class TestListener : public EmptyTestEventListener {
   6694  public:
   6695   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6696   TestListener(int* on_start_counter, bool* is_destroyed)
   6697       : on_start_counter_(on_start_counter),
   6698         is_destroyed_(is_destroyed) {}
   6699 
   6700   virtual ~TestListener() {
   6701     if (is_destroyed_)
   6702       *is_destroyed_ = true;
   6703   }
   6704 
   6705  protected:
   6706   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6707     if (on_start_counter_ != NULL)
   6708       (*on_start_counter_)++;
   6709   }
   6710 
   6711  private:
   6712   int* on_start_counter_;
   6713   bool* is_destroyed_;
   6714 };
   6715 
   6716 // Tests the constructor.
   6717 TEST(TestEventListenersTest, ConstructionWorks) {
   6718   TestEventListeners listeners;
   6719 
   6720   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   6721   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6722   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6723 }
   6724 
   6725 // Tests that the TestEventListeners destructor deletes all the listeners it
   6726 // owns.
   6727 TEST(TestEventListenersTest, DestructionWorks) {
   6728   bool default_result_printer_is_destroyed = false;
   6729   bool default_xml_printer_is_destroyed = false;
   6730   bool extra_listener_is_destroyed = false;
   6731   TestListener* default_result_printer = new TestListener(
   6732       NULL, &default_result_printer_is_destroyed);
   6733   TestListener* default_xml_printer = new TestListener(
   6734       NULL, &default_xml_printer_is_destroyed);
   6735   TestListener* extra_listener = new TestListener(
   6736       NULL, &extra_listener_is_destroyed);
   6737 
   6738   {
   6739     TestEventListeners listeners;
   6740     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   6741                                                         default_result_printer);
   6742     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   6743                                                        default_xml_printer);
   6744     listeners.Append(extra_listener);
   6745   }
   6746   EXPECT_TRUE(default_result_printer_is_destroyed);
   6747   EXPECT_TRUE(default_xml_printer_is_destroyed);
   6748   EXPECT_TRUE(extra_listener_is_destroyed);
   6749 }
   6750 
   6751 // Tests that a listener Append'ed to a TestEventListeners list starts
   6752 // receiving events.
   6753 TEST(TestEventListenersTest, Append) {
   6754   int on_start_counter = 0;
   6755   bool is_destroyed = false;
   6756   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6757   {
   6758     TestEventListeners listeners;
   6759     listeners.Append(listener);
   6760     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6761         *UnitTest::GetInstance());
   6762     EXPECT_EQ(1, on_start_counter);
   6763   }
   6764   EXPECT_TRUE(is_destroyed);
   6765 }
   6766 
   6767 // Tests that listeners receive events in the order they were appended to
   6768 // the list, except for *End requests, which must be received in the reverse
   6769 // order.
   6770 class SequenceTestingListener : public EmptyTestEventListener {
   6771  public:
   6772   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
   6773       : vector_(vector), id_(id) {}
   6774 
   6775  protected:
   6776   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6777     vector_->push_back(GetEventDescription("OnTestProgramStart"));
   6778   }
   6779 
   6780   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   6781     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
   6782   }
   6783 
   6784   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   6785                                     int /*iteration*/) {
   6786     vector_->push_back(GetEventDescription("OnTestIterationStart"));
   6787   }
   6788 
   6789   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   6790                                   int /*iteration*/) {
   6791     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
   6792   }
   6793 
   6794  private:
   6795   std::string GetEventDescription(const char* method) {
   6796     Message message;
   6797     message << id_ << "." << method;
   6798     return message.GetString();
   6799   }
   6800 
   6801   std::vector<std::string>* vector_;
   6802   const char* const id_;
   6803 
   6804   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   6805 };
   6806 
   6807 TEST(EventListenerTest, AppendKeepsOrder) {
   6808   std::vector<std::string> vec;
   6809   TestEventListeners listeners;
   6810   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   6811   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   6812   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   6813 
   6814   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6815       *UnitTest::GetInstance());
   6816   ASSERT_EQ(3U, vec.size());
   6817   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
   6818   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
   6819   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
   6820 
   6821   vec.clear();
   6822   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   6823       *UnitTest::GetInstance());
   6824   ASSERT_EQ(3U, vec.size());
   6825   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
   6826   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
   6827   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
   6828 
   6829   vec.clear();
   6830   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   6831       *UnitTest::GetInstance(), 0);
   6832   ASSERT_EQ(3U, vec.size());
   6833   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
   6834   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
   6835   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
   6836 
   6837   vec.clear();
   6838   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   6839       *UnitTest::GetInstance(), 0);
   6840   ASSERT_EQ(3U, vec.size());
   6841   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
   6842   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
   6843   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
   6844 }
   6845 
   6846 // Tests that a listener removed from a TestEventListeners list stops receiving
   6847 // events and is not deleted when the list is destroyed.
   6848 TEST(TestEventListenersTest, Release) {
   6849   int on_start_counter = 0;
   6850   bool is_destroyed = false;
   6851   // Although Append passes the ownership of this object to the list,
   6852   // the following calls release it, and we need to delete it before the
   6853   // test ends.
   6854   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6855   {
   6856     TestEventListeners listeners;
   6857     listeners.Append(listener);
   6858     EXPECT_EQ(listener, listeners.Release(listener));
   6859     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6860         *UnitTest::GetInstance());
   6861     EXPECT_TRUE(listeners.Release(listener) == NULL);
   6862   }
   6863   EXPECT_EQ(0, on_start_counter);
   6864   EXPECT_FALSE(is_destroyed);
   6865   delete listener;
   6866 }
   6867 
   6868 // Tests that no events are forwarded when event forwarding is disabled.
   6869 TEST(EventListenerTest, SuppressEventForwarding) {
   6870   int on_start_counter = 0;
   6871   TestListener* listener = new TestListener(&on_start_counter, NULL);
   6872 
   6873   TestEventListeners listeners;
   6874   listeners.Append(listener);
   6875   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6876   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   6877   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6878   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6879       *UnitTest::GetInstance());
   6880   EXPECT_EQ(0, on_start_counter);
   6881 }
   6882 
   6883 // Tests that events generated by Google Test are not forwarded in
   6884 // death test subprocesses.
   6885 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   6886   EXPECT_DEATH_IF_SUPPORTED({
   6887       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   6888           *GetUnitTestImpl()->listeners())) << "expected failure";},
   6889       "expected failure");
   6890 }
   6891 
   6892 // Tests that a listener installed via SetDefaultResultPrinter() starts
   6893 // receiving events and is returned via default_result_printer() and that
   6894 // the previous default_result_printer is removed from the list and deleted.
   6895 TEST(EventListenerTest, default_result_printer) {
   6896   int on_start_counter = 0;
   6897   bool is_destroyed = false;
   6898   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6899 
   6900   TestEventListeners listeners;
   6901   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6902 
   6903   EXPECT_EQ(listener, listeners.default_result_printer());
   6904 
   6905   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6906       *UnitTest::GetInstance());
   6907 
   6908   EXPECT_EQ(1, on_start_counter);
   6909 
   6910   // Replacing default_result_printer with something else should remove it
   6911   // from the list and destroy it.
   6912   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   6913 
   6914   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6915   EXPECT_TRUE(is_destroyed);
   6916 
   6917   // After broadcasting an event the counter is still the same, indicating
   6918   // the listener is not in the list anymore.
   6919   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6920       *UnitTest::GetInstance());
   6921   EXPECT_EQ(1, on_start_counter);
   6922 }
   6923 
   6924 // Tests that the default_result_printer listener stops receiving events
   6925 // when removed via Release and that is not owned by the list anymore.
   6926 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   6927   int on_start_counter = 0;
   6928   bool is_destroyed = false;
   6929   // Although Append passes the ownership of this object to the list,
   6930   // the following calls release it, and we need to delete it before the
   6931   // test ends.
   6932   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6933   {
   6934     TestEventListeners listeners;
   6935     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6936 
   6937     EXPECT_EQ(listener, listeners.Release(listener));
   6938     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6939     EXPECT_FALSE(is_destroyed);
   6940 
   6941     // Broadcasting events now should not affect default_result_printer.
   6942     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6943         *UnitTest::GetInstance());
   6944     EXPECT_EQ(0, on_start_counter);
   6945   }
   6946   // Destroying the list should not affect the listener now, too.
   6947   EXPECT_FALSE(is_destroyed);
   6948   delete listener;
   6949 }
   6950 
   6951 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   6952 // receiving events and is returned via default_xml_generator() and that
   6953 // the previous default_xml_generator is removed from the list and deleted.
   6954 TEST(EventListenerTest, default_xml_generator) {
   6955   int on_start_counter = 0;
   6956   bool is_destroyed = false;
   6957   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6958 
   6959   TestEventListeners listeners;
   6960   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6961 
   6962   EXPECT_EQ(listener, listeners.default_xml_generator());
   6963 
   6964   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6965       *UnitTest::GetInstance());
   6966 
   6967   EXPECT_EQ(1, on_start_counter);
   6968 
   6969   // Replacing default_xml_generator with something else should remove it
   6970   // from the list and destroy it.
   6971   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   6972 
   6973   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6974   EXPECT_TRUE(is_destroyed);
   6975 
   6976   // After broadcasting an event the counter is still the same, indicating
   6977   // the listener is not in the list anymore.
   6978   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6979       *UnitTest::GetInstance());
   6980   EXPECT_EQ(1, on_start_counter);
   6981 }
   6982 
   6983 // Tests that the default_xml_generator listener stops receiving events
   6984 // when removed via Release and that is not owned by the list anymore.
   6985 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   6986   int on_start_counter = 0;
   6987   bool is_destroyed = false;
   6988   // Although Append passes the ownership of this object to the list,
   6989   // the following calls release it, and we need to delete it before the
   6990   // test ends.
   6991   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6992   {
   6993     TestEventListeners listeners;
   6994     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6995 
   6996     EXPECT_EQ(listener, listeners.Release(listener));
   6997     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6998     EXPECT_FALSE(is_destroyed);
   6999 
   7000     // Broadcasting events now should not affect default_xml_generator.
   7001     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7002         *UnitTest::GetInstance());
   7003     EXPECT_EQ(0, on_start_counter);
   7004   }
   7005   // Destroying the list should not affect the listener now, too.
   7006   EXPECT_FALSE(is_destroyed);
   7007   delete listener;
   7008 }
   7009 
   7010 // Sanity tests to ensure that the alternative, verbose spellings of
   7011 // some of the macros work.  We don't test them thoroughly as that
   7012 // would be quite involved.  Since their implementations are
   7013 // straightforward, and they are rarely used, we'll just rely on the
   7014 // users to tell us when they are broken.
   7015 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
   7016   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
   7017 
   7018   // GTEST_FAIL is the same as FAIL.
   7019   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
   7020                        "An expected failure");
   7021 
   7022   // GTEST_ASSERT_XY is the same as ASSERT_XY.
   7023 
   7024   GTEST_ASSERT_EQ(0, 0);
   7025   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
   7026                        "An expected failure");
   7027   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
   7028                        "An expected failure");
   7029 
   7030   GTEST_ASSERT_NE(0, 1);
   7031   GTEST_ASSERT_NE(1, 0);
   7032   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
   7033                        "An expected failure");
   7034 
   7035   GTEST_ASSERT_LE(0, 0);
   7036   GTEST_ASSERT_LE(0, 1);
   7037   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
   7038                        "An expected failure");
   7039 
   7040   GTEST_ASSERT_LT(0, 1);
   7041   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
   7042                        "An expected failure");
   7043   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
   7044                        "An expected failure");
   7045 
   7046   GTEST_ASSERT_GE(0, 0);
   7047   GTEST_ASSERT_GE(1, 0);
   7048   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
   7049                        "An expected failure");
   7050 
   7051   GTEST_ASSERT_GT(1, 0);
   7052   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
   7053                        "An expected failure");
   7054   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
   7055                        "An expected failure");
   7056 }
   7057 
   7058 // Tests for internal utilities necessary for implementation of the universal
   7059 // printing.
   7060 // TODO(vladl (at) google.com): Find a better home for them.
   7061 
   7062 class ConversionHelperBase {};
   7063 class ConversionHelperDerived : public ConversionHelperBase {};
   7064 
   7065 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
   7066 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
   7067   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
   7068                         const_true);
   7069   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
   7070 }
   7071 
   7072 // Tests that IsAProtocolMessage<T>::value is true when T is
   7073 // proto2::Message or a sub-class of it.
   7074 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
   7075   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
   7076   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
   7077 }
   7078 
   7079 // Tests that IsAProtocolMessage<T>::value is false when T is neither
   7080 // ProtocolMessage nor a sub-class of it.
   7081 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
   7082   EXPECT_FALSE(IsAProtocolMessage<int>::value);
   7083   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
   7084 }
   7085 
   7086 // Tests that CompileAssertTypesEqual compiles when the type arguments are
   7087 // equal.
   7088 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
   7089   CompileAssertTypesEqual<void, void>();
   7090   CompileAssertTypesEqual<int*, int*>();
   7091 }
   7092 
   7093 // Tests that RemoveReference does not affect non-reference types.
   7094 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
   7095   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
   7096   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
   7097 }
   7098 
   7099 // Tests that RemoveReference removes reference from reference types.
   7100 TEST(RemoveReferenceTest, RemovesReference) {
   7101   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
   7102   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
   7103 }
   7104 
   7105 // Tests GTEST_REMOVE_REFERENCE_.
   7106 
   7107 template <typename T1, typename T2>
   7108 void TestGTestRemoveReference() {
   7109   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
   7110 }
   7111 
   7112 TEST(RemoveReferenceTest, MacroVersion) {
   7113   TestGTestRemoveReference<int, int>();
   7114   TestGTestRemoveReference<const char, const char&>();
   7115 }
   7116 
   7117 
   7118 // Tests that RemoveConst does not affect non-const types.
   7119 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
   7120   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
   7121   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
   7122 }
   7123 
   7124 // Tests that RemoveConst removes const from const types.
   7125 TEST(RemoveConstTest, RemovesConst) {
   7126   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
   7127   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
   7128   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
   7129 }
   7130 
   7131 // Tests GTEST_REMOVE_CONST_.
   7132 
   7133 template <typename T1, typename T2>
   7134 void TestGTestRemoveConst() {
   7135   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
   7136 }
   7137 
   7138 TEST(RemoveConstTest, MacroVersion) {
   7139   TestGTestRemoveConst<int, int>();
   7140   TestGTestRemoveConst<double&, double&>();
   7141   TestGTestRemoveConst<char, const char>();
   7142 }
   7143 
   7144 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
   7145 
   7146 template <typename T1, typename T2>
   7147 void TestGTestRemoveReferenceAndConst() {
   7148   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
   7149 }
   7150 
   7151 TEST(RemoveReferenceToConstTest, Works) {
   7152   TestGTestRemoveReferenceAndConst<int, int>();
   7153   TestGTestRemoveReferenceAndConst<double, double&>();
   7154   TestGTestRemoveReferenceAndConst<char, const char>();
   7155   TestGTestRemoveReferenceAndConst<char, const char&>();
   7156   TestGTestRemoveReferenceAndConst<const char*, const char*>();
   7157 }
   7158 
   7159 // Tests that AddReference does not affect reference types.
   7160 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
   7161   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
   7162   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
   7163 }
   7164 
   7165 // Tests that AddReference adds reference to non-reference types.
   7166 TEST(AddReferenceTest, AddsReference) {
   7167   CompileAssertTypesEqual<int&, AddReference<int>::type>();
   7168   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
   7169 }
   7170 
   7171 // Tests GTEST_ADD_REFERENCE_.
   7172 
   7173 template <typename T1, typename T2>
   7174 void TestGTestAddReference() {
   7175   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
   7176 }
   7177 
   7178 TEST(AddReferenceTest, MacroVersion) {
   7179   TestGTestAddReference<int&, int>();
   7180   TestGTestAddReference<const char&, const char&>();
   7181 }
   7182 
   7183 // Tests GTEST_REFERENCE_TO_CONST_.
   7184 
   7185 template <typename T1, typename T2>
   7186 void TestGTestReferenceToConst() {
   7187   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
   7188 }
   7189 
   7190 TEST(GTestReferenceToConstTest, Works) {
   7191   TestGTestReferenceToConst<const char&, char>();
   7192   TestGTestReferenceToConst<const int&, const int>();
   7193   TestGTestReferenceToConst<const double&, double>();
   7194   TestGTestReferenceToConst<const std::string&, const std::string&>();
   7195 }
   7196 
   7197 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
   7198 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
   7199   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
   7200   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
   7201                         const_false);
   7202 }
   7203 
   7204 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
   7205 // be implicitly converted to T2.
   7206 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
   7207   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
   7208   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
   7209   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
   7210   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
   7211   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
   7212                                      const ConversionHelperBase&>::value));
   7213   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
   7214                                      ConversionHelperBase>::value));
   7215 }
   7216 
   7217 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
   7218 // cannot be implicitly converted to T2.
   7219 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
   7220   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
   7221   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
   7222   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
   7223   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
   7224                                       ConversionHelperDerived&>::value));
   7225 }
   7226 
   7227 // Tests IsContainerTest.
   7228 
   7229 class NonContainer {};
   7230 
   7231 TEST(IsContainerTestTest, WorksForNonContainer) {
   7232   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
   7233   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
   7234   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
   7235 }
   7236 
   7237 TEST(IsContainerTestTest, WorksForContainer) {
   7238   EXPECT_EQ(sizeof(IsContainer),
   7239             sizeof(IsContainerTest<std::vector<bool> >(0)));
   7240   EXPECT_EQ(sizeof(IsContainer),
   7241             sizeof(IsContainerTest<std::map<int, double> >(0)));
   7242 }
   7243 
   7244 // Tests ArrayEq().
   7245 
   7246 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
   7247   EXPECT_TRUE(ArrayEq(5, 5L));
   7248   EXPECT_FALSE(ArrayEq('a', 0));
   7249 }
   7250 
   7251 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
   7252   // Note that a and b are distinct but compatible types.
   7253   const int a[] = { 0, 1 };
   7254   long b[] = { 0, 1 };
   7255   EXPECT_TRUE(ArrayEq(a, b));
   7256   EXPECT_TRUE(ArrayEq(a, 2, b));
   7257 
   7258   b[0] = 2;
   7259   EXPECT_FALSE(ArrayEq(a, b));
   7260   EXPECT_FALSE(ArrayEq(a, 1, b));
   7261 }
   7262 
   7263 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
   7264   const char a[][3] = { "hi", "lo" };
   7265   const char b[][3] = { "hi", "lo" };
   7266   const char c[][3] = { "hi", "li" };
   7267 
   7268   EXPECT_TRUE(ArrayEq(a, b));
   7269   EXPECT_TRUE(ArrayEq(a, 2, b));
   7270 
   7271   EXPECT_FALSE(ArrayEq(a, c));
   7272   EXPECT_FALSE(ArrayEq(a, 2, c));
   7273 }
   7274 
   7275 // Tests ArrayAwareFind().
   7276 
   7277 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
   7278   const char a[] = "hello";
   7279   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
   7280   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
   7281 }
   7282 
   7283 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
   7284   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
   7285   const int b[2] = { 2, 3 };
   7286   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
   7287 
   7288   const int c[2] = { 6, 7 };
   7289   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
   7290 }
   7291 
   7292 // Tests CopyArray().
   7293 
   7294 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
   7295   int n = 0;
   7296   CopyArray('a', &n);
   7297   EXPECT_EQ('a', n);
   7298 }
   7299 
   7300 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
   7301   const char a[3] = "hi";
   7302   int b[3];
   7303 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7304   CopyArray(a, &b);
   7305   EXPECT_TRUE(ArrayEq(a, b));
   7306 #endif
   7307 
   7308   int c[3];
   7309   CopyArray(a, 3, c);
   7310   EXPECT_TRUE(ArrayEq(a, c));
   7311 }
   7312 
   7313 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
   7314   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
   7315   int b[2][3];
   7316 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7317   CopyArray(a, &b);
   7318   EXPECT_TRUE(ArrayEq(a, b));
   7319 #endif
   7320 
   7321   int c[2][3];
   7322   CopyArray(a, 2, c);
   7323   EXPECT_TRUE(ArrayEq(a, c));
   7324 }
   7325 
   7326 // Tests NativeArray.
   7327 
   7328 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
   7329   const int a[3] = { 0, 1, 2 };
   7330   NativeArray<int> na(a, 3, kReference);
   7331   EXPECT_EQ(3U, na.size());
   7332   EXPECT_EQ(a, na.begin());
   7333 }
   7334 
   7335 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
   7336   typedef int Array[2];
   7337   Array* a = new Array[1];
   7338   (*a)[0] = 0;
   7339   (*a)[1] = 1;
   7340   NativeArray<int> na(*a, 2, kCopy);
   7341   EXPECT_NE(*a, na.begin());
   7342   delete[] a;
   7343   EXPECT_EQ(0, na.begin()[0]);
   7344   EXPECT_EQ(1, na.begin()[1]);
   7345 
   7346   // We rely on the heap checker to verify that na deletes the copy of
   7347   // array.
   7348 }
   7349 
   7350 TEST(NativeArrayTest, TypeMembersAreCorrect) {
   7351   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
   7352   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
   7353 
   7354   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
   7355   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
   7356 }
   7357 
   7358 TEST(NativeArrayTest, MethodsWork) {
   7359   const int a[3] = { 0, 1, 2 };
   7360   NativeArray<int> na(a, 3, kCopy);
   7361   ASSERT_EQ(3U, na.size());
   7362   EXPECT_EQ(3, na.end() - na.begin());
   7363 
   7364   NativeArray<int>::const_iterator it = na.begin();
   7365   EXPECT_EQ(0, *it);
   7366   ++it;
   7367   EXPECT_EQ(1, *it);
   7368   it++;
   7369   EXPECT_EQ(2, *it);
   7370   ++it;
   7371   EXPECT_EQ(na.end(), it);
   7372 
   7373   EXPECT_TRUE(na == na);
   7374 
   7375   NativeArray<int> na2(a, 3, kReference);
   7376   EXPECT_TRUE(na == na2);
   7377 
   7378   const int b1[3] = { 0, 1, 1 };
   7379   const int b2[4] = { 0, 1, 2, 3 };
   7380   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
   7381   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
   7382 }
   7383 
   7384 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
   7385   const char a[2][3] = { "hi", "lo" };
   7386   NativeArray<char[3]> na(a, 2, kReference);
   7387   ASSERT_EQ(2U, na.size());
   7388   EXPECT_EQ(a, na.begin());
   7389 }
   7390 
   7391 // Tests SkipPrefix().
   7392 
   7393 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
   7394   const char* const str = "hello";
   7395 
   7396   const char* p = str;
   7397   EXPECT_TRUE(SkipPrefix("", &p));
   7398   EXPECT_EQ(str, p);
   7399 
   7400   p = str;
   7401   EXPECT_TRUE(SkipPrefix("hell", &p));
   7402   EXPECT_EQ(str + 4, p);
   7403 }
   7404 
   7405 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
   7406   const char* const str = "world";
   7407 
   7408   const char* p = str;
   7409   EXPECT_FALSE(SkipPrefix("W", &p));
   7410   EXPECT_EQ(str, p);
   7411 
   7412   p = str;
   7413   EXPECT_FALSE(SkipPrefix("world!", &p));
   7414   EXPECT_EQ(str, p);
   7415 }
   7416