1 // 2 // file: rbbiscan.cpp 3 // 4 // Copyright (C) 2002-2015, International Business Machines Corporation and others. 5 // All Rights Reserved. 6 // 7 // This file contains the Rule Based Break Iterator Rule Builder functions for 8 // scanning the rules and assembling a parse tree. This is the first phase 9 // of compiling the rules. 10 // 11 // The overall of the rules is managed by class RBBIRuleBuilder, which will 12 // create and use an instance of this class as part of the process. 13 // 14 15 #include "unicode/utypes.h" 16 17 #if !UCONFIG_NO_BREAK_ITERATION 18 19 #include "unicode/unistr.h" 20 #include "unicode/uniset.h" 21 #include "unicode/uchar.h" 22 #include "unicode/uchriter.h" 23 #include "unicode/parsepos.h" 24 #include "unicode/parseerr.h" 25 #include "cmemory.h" 26 #include "cstring.h" 27 28 #include "rbbirpt.h" // Contains state table for the rbbi rules parser. 29 // generated by a Perl script. 30 #include "rbbirb.h" 31 #include "rbbinode.h" 32 #include "rbbiscan.h" 33 #include "rbbitblb.h" 34 35 #include "uassert.h" 36 37 //------------------------------------------------------------------------------ 38 // 39 // Unicode Set init strings for each of the character classes needed for parsing a rule file. 40 // (Initialized with hex values for portability to EBCDIC based machines. 41 // Really ugly, but there's no good way to avoid it.) 42 // 43 // The sets are referred to by name in the rbbirpt.txt, which is the 44 // source form of the state transition table for the RBBI rule parser. 45 // 46 //------------------------------------------------------------------------------ 47 static const UChar gRuleSet_rule_char_pattern[] = { 48 // [ ^ [ \ p { Z } \ u 0 0 2 0 49 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30, 50 // - \ u 0 0 7 f ] - [ \ p 51 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 52 // { L } ] - [ \ p { N } ] ] 53 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0}; 54 55 static const UChar gRuleSet_name_char_pattern[] = { 56 // [ _ \ p { L } \ p { N } ] 57 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0}; 58 59 static const UChar gRuleSet_digit_char_pattern[] = { 60 // [ 0 - 9 ] 61 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0}; 62 63 static const UChar gRuleSet_name_start_char_pattern[] = { 64 // [ _ \ p { L } ] 65 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 }; 66 67 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any" 68 69 70 U_CDECL_BEGIN 71 static void U_CALLCONV RBBISetTable_deleter(void *p) { 72 icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p; 73 delete px->key; 74 // Note: px->val is owned by the linked list "fSetsListHead" in scanner. 75 // Don't delete the value nodes here. 76 uprv_free(px); 77 } 78 U_CDECL_END 79 80 U_NAMESPACE_BEGIN 81 82 //------------------------------------------------------------------------------ 83 // 84 // Constructor. 85 // 86 //------------------------------------------------------------------------------ 87 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb) 88 { 89 fRB = rb; 90 fStackPtr = 0; 91 fStack[fStackPtr] = 0; 92 fNodeStackPtr = 0; 93 fRuleNum = 0; 94 fNodeStack[0] = NULL; 95 96 fSymbolTable = NULL; 97 fSetTable = NULL; 98 99 fScanIndex = 0; 100 fNextIndex = 0; 101 102 fReverseRule = FALSE; 103 fLookAheadRule = FALSE; 104 105 fLineNum = 1; 106 fCharNum = 0; 107 fQuoteMode = FALSE; 108 109 // Do not check status until after all critical fields are sufficiently initialized 110 // that the destructor can run cleanly. 111 if (U_FAILURE(*rb->fStatus)) { 112 return; 113 } 114 115 // 116 // Set up the constant Unicode Sets. 117 // Note: These could be made static, lazily initialized, and shared among 118 // all instances of RBBIRuleScanners. BUT this is quite a bit simpler, 119 // and the time to build these few sets should be small compared to a 120 // full break iterator build. 121 fRuleSets[kRuleSet_rule_char-128] 122 = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus); 123 // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:] 124 fRuleSets[kRuleSet_white_space-128]. 125 add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029); 126 fRuleSets[kRuleSet_name_char-128] 127 = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus); 128 fRuleSets[kRuleSet_name_start_char-128] 129 = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus); 130 fRuleSets[kRuleSet_digit_char-128] 131 = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus); 132 if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) { 133 // This case happens if ICU's data is missing. UnicodeSet tries to look up property 134 // names from the init string, can't find them, and claims an illegal argument. 135 // Change the error so that the actual problem will be clearer to users. 136 *rb->fStatus = U_BRK_INIT_ERROR; 137 } 138 if (U_FAILURE(*rb->fStatus)) { 139 return; 140 } 141 142 fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus); 143 if (fSymbolTable == NULL) { 144 *rb->fStatus = U_MEMORY_ALLOCATION_ERROR; 145 return; 146 } 147 fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus); 148 if (U_FAILURE(*rb->fStatus)) { 149 return; 150 } 151 uhash_setValueDeleter(fSetTable, RBBISetTable_deleter); 152 } 153 154 155 156 //------------------------------------------------------------------------------ 157 // 158 // Destructor 159 // 160 //------------------------------------------------------------------------------ 161 RBBIRuleScanner::~RBBIRuleScanner() { 162 delete fSymbolTable; 163 if (fSetTable != NULL) { 164 uhash_close(fSetTable); 165 fSetTable = NULL; 166 167 } 168 169 170 // Node Stack. 171 // Normally has one entry, which is the entire parse tree for the rules. 172 // If errors occured, there may be additional subtrees left on the stack. 173 while (fNodeStackPtr > 0) { 174 delete fNodeStack[fNodeStackPtr]; 175 fNodeStackPtr--; 176 } 177 178 } 179 180 //------------------------------------------------------------------------------ 181 // 182 // doParseAction Do some action during rule parsing. 183 // Called by the parse state machine. 184 // Actions build the parse tree and Unicode Sets, 185 // and maintain the parse stack for nested expressions. 186 // 187 // TODO: unify EParseAction and RBBI_RuleParseAction enum types. 188 // They represent exactly the same thing. They're separate 189 // only to work around enum forward declaration restrictions 190 // in some compilers, while at the same time avoiding multiple 191 // definitions problems. I'm sure that there's a better way. 192 // 193 //------------------------------------------------------------------------------ 194 UBool RBBIRuleScanner::doParseActions(int32_t action) 195 { 196 RBBINode *n = NULL; 197 198 UBool returnVal = TRUE; 199 200 switch (action) { 201 202 case doExprStart: 203 pushNewNode(RBBINode::opStart); 204 fRuleNum++; 205 break; 206 207 208 case doExprOrOperator: 209 { 210 fixOpStack(RBBINode::precOpCat); 211 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; 212 RBBINode *orNode = pushNewNode(RBBINode::opOr); 213 if (U_FAILURE(*fRB->fStatus)) { 214 break; 215 } 216 orNode->fLeftChild = operandNode; 217 operandNode->fParent = orNode; 218 } 219 break; 220 221 case doExprCatOperator: 222 // concatenation operator. 223 // For the implicit concatenation of adjacent terms in an expression that are 224 // not separated by any other operator. Action is invoked between the 225 // actions for the two terms. 226 { 227 fixOpStack(RBBINode::precOpCat); 228 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; 229 RBBINode *catNode = pushNewNode(RBBINode::opCat); 230 if (U_FAILURE(*fRB->fStatus)) { 231 break; 232 } 233 catNode->fLeftChild = operandNode; 234 operandNode->fParent = catNode; 235 } 236 break; 237 238 case doLParen: 239 // Open Paren. 240 // The openParen node is a dummy operation type with a low precedence, 241 // which has the affect of ensuring that any real binary op that 242 // follows within the parens binds more tightly to the operands than 243 // stuff outside of the parens. 244 pushNewNode(RBBINode::opLParen); 245 break; 246 247 case doExprRParen: 248 fixOpStack(RBBINode::precLParen); 249 break; 250 251 case doNOP: 252 break; 253 254 case doStartAssign: 255 // We've just scanned "$variable = " 256 // The top of the node stack has the $variable ref node. 257 258 // Save the start position of the RHS text in the StartExpression node 259 // that precedes the $variableReference node on the stack. 260 // This will eventually be used when saving the full $variable replacement 261 // text as a string. 262 n = fNodeStack[fNodeStackPtr-1]; 263 n->fFirstPos = fNextIndex; // move past the '=' 264 265 // Push a new start-of-expression node; needed to keep parse of the 266 // RHS expression happy. 267 pushNewNode(RBBINode::opStart); 268 break; 269 270 271 272 273 case doEndAssign: 274 { 275 // We have reached the end of an assignement statement. 276 // Current scan char is the ';' that terminates the assignment. 277 278 // Terminate expression, leaves expression parse tree rooted in TOS node. 279 fixOpStack(RBBINode::precStart); 280 281 RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2]; 282 RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1]; 283 RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr]; 284 285 // Save original text of right side of assignment, excluding the terminating ';' 286 // in the root of the node for the right-hand-side expression. 287 RHSExprNode->fFirstPos = startExprNode->fFirstPos; 288 RHSExprNode->fLastPos = fScanIndex; 289 fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText); 290 291 // Expression parse tree becomes l. child of the $variable reference node. 292 varRefNode->fLeftChild = RHSExprNode; 293 RHSExprNode->fParent = varRefNode; 294 295 // Make a symbol table entry for the $variableRef node. 296 fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus); 297 if (U_FAILURE(*fRB->fStatus)) { 298 // This is a round-about way to get the parse position set 299 // so that duplicate symbols error messages include a line number. 300 UErrorCode t = *fRB->fStatus; 301 *fRB->fStatus = U_ZERO_ERROR; 302 error(t); 303 } 304 305 // Clean up the stack. 306 delete startExprNode; 307 fNodeStackPtr-=3; 308 break; 309 } 310 311 case doEndOfRule: 312 { 313 fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression 314 if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node. 315 break; 316 } 317 #ifdef RBBI_DEBUG 318 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");} 319 #endif 320 U_ASSERT(fNodeStackPtr == 1); 321 322 // If this rule includes a look-ahead '/', add a endMark node to the 323 // expression tree. 324 if (fLookAheadRule) { 325 RBBINode *thisRule = fNodeStack[fNodeStackPtr]; 326 RBBINode *endNode = pushNewNode(RBBINode::endMark); 327 RBBINode *catNode = pushNewNode(RBBINode::opCat); 328 if (U_FAILURE(*fRB->fStatus)) { 329 break; 330 } 331 fNodeStackPtr -= 2; 332 catNode->fLeftChild = thisRule; 333 catNode->fRightChild = endNode; 334 fNodeStack[fNodeStackPtr] = catNode; 335 endNode->fVal = fRuleNum; 336 endNode->fLookAheadEnd = TRUE; 337 } 338 339 // All rule expressions are ORed together. 340 // The ';' that terminates an expression really just functions as a '|' with 341 // a low operator prededence. 342 // 343 // Each of the four sets of rules are collected separately. 344 // (forward, reverse, safe_forward, safe_reverse) 345 // OR this rule into the appropriate group of them. 346 // 347 RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree); 348 349 if (*destRules != NULL) { 350 // This is not the first rule encounted. 351 // OR previous stuff (from *destRules) 352 // with the current rule expression (on the Node Stack) 353 // with the resulting OR expression going to *destRules 354 // 355 RBBINode *thisRule = fNodeStack[fNodeStackPtr]; 356 RBBINode *prevRules = *destRules; 357 RBBINode *orNode = pushNewNode(RBBINode::opOr); 358 if (U_FAILURE(*fRB->fStatus)) { 359 break; 360 } 361 orNode->fLeftChild = prevRules; 362 prevRules->fParent = orNode; 363 orNode->fRightChild = thisRule; 364 thisRule->fParent = orNode; 365 *destRules = orNode; 366 } 367 else 368 { 369 // This is the first rule encountered (for this direction). 370 // Just move its parse tree from the stack to *destRules. 371 *destRules = fNodeStack[fNodeStackPtr]; 372 } 373 fReverseRule = FALSE; // in preparation for the next rule. 374 fLookAheadRule = FALSE; 375 fNodeStackPtr = 0; 376 } 377 break; 378 379 380 case doRuleError: 381 error(U_BRK_RULE_SYNTAX); 382 returnVal = FALSE; 383 break; 384 385 386 case doVariableNameExpectedErr: 387 error(U_BRK_RULE_SYNTAX); 388 break; 389 390 391 // 392 // Unary operands + ? * 393 // These all appear after the operand to which they apply. 394 // When we hit one, the operand (may be a whole sub expression) 395 // will be on the top of the stack. 396 // Unary Operator becomes TOS, with the old TOS as its one child. 397 case doUnaryOpPlus: 398 { 399 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; 400 RBBINode *plusNode = pushNewNode(RBBINode::opPlus); 401 if (U_FAILURE(*fRB->fStatus)) { 402 break; 403 } 404 plusNode->fLeftChild = operandNode; 405 operandNode->fParent = plusNode; 406 } 407 break; 408 409 case doUnaryOpQuestion: 410 { 411 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; 412 RBBINode *qNode = pushNewNode(RBBINode::opQuestion); 413 if (U_FAILURE(*fRB->fStatus)) { 414 break; 415 } 416 qNode->fLeftChild = operandNode; 417 operandNode->fParent = qNode; 418 } 419 break; 420 421 case doUnaryOpStar: 422 { 423 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; 424 RBBINode *starNode = pushNewNode(RBBINode::opStar); 425 if (U_FAILURE(*fRB->fStatus)) { 426 break; 427 } 428 starNode->fLeftChild = operandNode; 429 operandNode->fParent = starNode; 430 } 431 break; 432 433 case doRuleChar: 434 // A "Rule Character" is any single character that is a literal part 435 // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]" 436 // These are pretty uncommon in break rules; the terms are more commonly 437 // sets. To keep things uniform, treat these characters like as 438 // sets that just happen to contain only one character. 439 { 440 n = pushNewNode(RBBINode::setRef); 441 if (U_FAILURE(*fRB->fStatus)) { 442 break; 443 } 444 findSetFor(UnicodeString(fC.fChar), n); 445 n->fFirstPos = fScanIndex; 446 n->fLastPos = fNextIndex; 447 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); 448 break; 449 } 450 451 case doDotAny: 452 // scanned a ".", meaning match any single character. 453 { 454 n = pushNewNode(RBBINode::setRef); 455 if (U_FAILURE(*fRB->fStatus)) { 456 break; 457 } 458 findSetFor(UnicodeString(TRUE, kAny, 3), n); 459 n->fFirstPos = fScanIndex; 460 n->fLastPos = fNextIndex; 461 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); 462 break; 463 } 464 465 case doSlash: 466 // Scanned a '/', which identifies a look-ahead break position in a rule. 467 n = pushNewNode(RBBINode::lookAhead); 468 if (U_FAILURE(*fRB->fStatus)) { 469 break; 470 } 471 n->fVal = fRuleNum; 472 n->fFirstPos = fScanIndex; 473 n->fLastPos = fNextIndex; 474 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); 475 fLookAheadRule = TRUE; 476 break; 477 478 479 case doStartTagValue: 480 // Scanned a '{', the opening delimiter for a tag value within a rule. 481 n = pushNewNode(RBBINode::tag); 482 if (U_FAILURE(*fRB->fStatus)) { 483 break; 484 } 485 n->fVal = 0; 486 n->fFirstPos = fScanIndex; 487 n->fLastPos = fNextIndex; 488 break; 489 490 case doTagDigit: 491 // Just scanned a decimal digit that's part of a tag value 492 { 493 n = fNodeStack[fNodeStackPtr]; 494 uint32_t v = u_charDigitValue(fC.fChar); 495 U_ASSERT(v < 10); 496 n->fVal = n->fVal*10 + v; 497 break; 498 } 499 500 case doTagValue: 501 n = fNodeStack[fNodeStackPtr]; 502 n->fLastPos = fNextIndex; 503 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); 504 break; 505 506 case doTagExpectedError: 507 error(U_BRK_MALFORMED_RULE_TAG); 508 returnVal = FALSE; 509 break; 510 511 case doOptionStart: 512 // Scanning a !!option. At the start of string. 513 fOptionStart = fScanIndex; 514 break; 515 516 case doOptionEnd: 517 { 518 UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart); 519 if (opt == UNICODE_STRING("chain", 5)) { 520 fRB->fChainRules = TRUE; 521 } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) { 522 fRB->fLBCMNoChain = TRUE; 523 } else if (opt == UNICODE_STRING("forward", 7)) { 524 fRB->fDefaultTree = &fRB->fForwardTree; 525 } else if (opt == UNICODE_STRING("reverse", 7)) { 526 fRB->fDefaultTree = &fRB->fReverseTree; 527 } else if (opt == UNICODE_STRING("safe_forward", 12)) { 528 fRB->fDefaultTree = &fRB->fSafeFwdTree; 529 } else if (opt == UNICODE_STRING("safe_reverse", 12)) { 530 fRB->fDefaultTree = &fRB->fSafeRevTree; 531 } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) { 532 fRB->fLookAheadHardBreak = TRUE; 533 } else { 534 error(U_BRK_UNRECOGNIZED_OPTION); 535 } 536 } 537 break; 538 539 case doReverseDir: 540 fReverseRule = TRUE; 541 break; 542 543 case doStartVariableName: 544 n = pushNewNode(RBBINode::varRef); 545 if (U_FAILURE(*fRB->fStatus)) { 546 break; 547 } 548 n->fFirstPos = fScanIndex; 549 break; 550 551 case doEndVariableName: 552 n = fNodeStack[fNodeStackPtr]; 553 if (n==NULL || n->fType != RBBINode::varRef) { 554 error(U_BRK_INTERNAL_ERROR); 555 break; 556 } 557 n->fLastPos = fScanIndex; 558 fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText); 559 // Look the newly scanned name up in the symbol table 560 // If there's an entry, set the l. child of the var ref to the replacement expression. 561 // (We also pass through here when scanning assignments, but no harm is done, other 562 // than a slight wasted effort that seems hard to avoid. Lookup will be null) 563 n->fLeftChild = fSymbolTable->lookupNode(n->fText); 564 break; 565 566 case doCheckVarDef: 567 n = fNodeStack[fNodeStackPtr]; 568 if (n->fLeftChild == NULL) { 569 error(U_BRK_UNDEFINED_VARIABLE); 570 returnVal = FALSE; 571 } 572 break; 573 574 case doExprFinished: 575 break; 576 577 case doRuleErrorAssignExpr: 578 error(U_BRK_ASSIGN_ERROR); 579 returnVal = FALSE; 580 break; 581 582 case doExit: 583 returnVal = FALSE; 584 break; 585 586 case doScanUnicodeSet: 587 scanSet(); 588 break; 589 590 default: 591 error(U_BRK_INTERNAL_ERROR); 592 returnVal = FALSE; 593 break; 594 } 595 return returnVal && U_SUCCESS(*fRB->fStatus); 596 } 597 598 599 600 601 //------------------------------------------------------------------------------ 602 // 603 // Error Report a rule parse error. 604 // Only report it if no previous error has been recorded. 605 // 606 //------------------------------------------------------------------------------ 607 void RBBIRuleScanner::error(UErrorCode e) { 608 if (U_SUCCESS(*fRB->fStatus)) { 609 *fRB->fStatus = e; 610 if (fRB->fParseError) { 611 fRB->fParseError->line = fLineNum; 612 fRB->fParseError->offset = fCharNum; 613 fRB->fParseError->preContext[0] = 0; 614 fRB->fParseError->postContext[0] = 0; 615 } 616 } 617 } 618 619 620 621 622 //------------------------------------------------------------------------------ 623 // 624 // fixOpStack The parse stack holds partially assembled chunks of the parse tree. 625 // An entry on the stack may be as small as a single setRef node, 626 // or as large as the parse tree 627 // for an entire expression (this will be the one item left on the stack 628 // when the parsing of an RBBI rule completes. 629 // 630 // This function is called when a binary operator is encountered. 631 // It looks back up the stack for operators that are not yet associated 632 // with a right operand, and if the precedence of the stacked operator >= 633 // the precedence of the current operator, binds the operand left, 634 // to the previously encountered operator. 635 // 636 //------------------------------------------------------------------------------ 637 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) { 638 RBBINode *n; 639 // printNodeStack("entering fixOpStack()"); 640 for (;;) { 641 n = fNodeStack[fNodeStackPtr-1]; // an operator node 642 if (n->fPrecedence == 0) { 643 RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node"); 644 error(U_BRK_INTERNAL_ERROR); 645 return; 646 } 647 648 if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) { 649 // The most recent operand goes with the current operator, 650 // not with the previously stacked one. 651 break; 652 } 653 // Stack operator is a binary op ( '|' or concatenation) 654 // TOS operand becomes right child of this operator. 655 // Resulting subexpression becomes the TOS operand. 656 n->fRightChild = fNodeStack[fNodeStackPtr]; 657 fNodeStack[fNodeStackPtr]->fParent = n; 658 fNodeStackPtr--; 659 // printNodeStack("looping in fixOpStack() "); 660 } 661 662 if (p <= RBBINode::precLParen) { 663 // Scan is at a right paren or end of expression. 664 // The scanned item must match the stack, or else there was an error. 665 // Discard the left paren (or start expr) node from the stack, 666 // leaving the completed (sub)expression as TOS. 667 if (n->fPrecedence != p) { 668 // Right paren encountered matched start of expression node, or 669 // end of expression matched with a left paren node. 670 error(U_BRK_MISMATCHED_PAREN); 671 } 672 fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr]; 673 fNodeStackPtr--; 674 // Delete the now-discarded LParen or Start node. 675 delete n; 676 } 677 // printNodeStack("leaving fixOpStack()"); 678 } 679 680 681 682 683 //------------------------------------------------------------------------------ 684 // 685 // findSetFor given a UnicodeString, 686 // - find the corresponding Unicode Set (uset node) 687 // (create one if necessary) 688 // - Set fLeftChild of the caller's node (should be a setRef node) 689 // to the uset node 690 // Maintain a hash table of uset nodes, so the same one is always used 691 // for the same string. 692 // If a "to adopt" set is provided and we haven't seen this key before, 693 // add the provided set to the hash table. 694 // If the string is one (32 bit) char in length, the set contains 695 // just one element which is the char in question. 696 // If the string is "any", return a set containing all chars. 697 // 698 //------------------------------------------------------------------------------ 699 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) { 700 701 RBBISetTableEl *el; 702 703 // First check whether we've already cached a set for this string. 704 // If so, just use the cached set in the new node. 705 // delete any set provided by the caller, since we own it. 706 el = (RBBISetTableEl *)uhash_get(fSetTable, &s); 707 if (el != NULL) { 708 delete setToAdopt; 709 node->fLeftChild = el->val; 710 U_ASSERT(node->fLeftChild->fType == RBBINode::uset); 711 return; 712 } 713 714 // Haven't seen this set before. 715 // If the caller didn't provide us with a prebuilt set, 716 // create a new UnicodeSet now. 717 if (setToAdopt == NULL) { 718 if (s.compare(kAny, -1) == 0) { 719 setToAdopt = new UnicodeSet(0x000000, 0x10ffff); 720 } else { 721 UChar32 c; 722 c = s.char32At(0); 723 setToAdopt = new UnicodeSet(c, c); 724 } 725 } 726 727 // 728 // Make a new uset node to refer to this UnicodeSet 729 // This new uset node becomes the child of the caller's setReference node. 730 // 731 RBBINode *usetNode = new RBBINode(RBBINode::uset); 732 if (usetNode == NULL) { 733 error(U_MEMORY_ALLOCATION_ERROR); 734 return; 735 } 736 usetNode->fInputSet = setToAdopt; 737 usetNode->fParent = node; 738 node->fLeftChild = usetNode; 739 usetNode->fText = s; 740 741 742 // 743 // Add the new uset node to the list of all uset nodes. 744 // 745 fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus); 746 747 748 // 749 // Add the new set to the set hash table. 750 // 751 el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl)); 752 UnicodeString *tkey = new UnicodeString(s); 753 if (tkey == NULL || el == NULL || setToAdopt == NULL) { 754 // Delete to avoid memory leak 755 delete tkey; 756 tkey = NULL; 757 uprv_free(el); 758 el = NULL; 759 delete setToAdopt; 760 setToAdopt = NULL; 761 762 error(U_MEMORY_ALLOCATION_ERROR); 763 return; 764 } 765 el->key = tkey; 766 el->val = usetNode; 767 uhash_put(fSetTable, el->key, el, fRB->fStatus); 768 769 return; 770 } 771 772 773 774 // 775 // Assorted Unicode character constants. 776 // Numeric because there is no portable way to enter them as literals. 777 // (Think EBCDIC). 778 // 779 static const UChar chCR = 0x0d; // New lines, for terminating comments. 780 static const UChar chLF = 0x0a; 781 static const UChar chNEL = 0x85; // NEL newline variant 782 static const UChar chLS = 0x2028; // Unicode Line Separator 783 static const UChar chApos = 0x27; // single quote, for quoted chars. 784 static const UChar chPound = 0x23; // '#', introduces a comment. 785 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape 786 static const UChar chLParen = 0x28; 787 static const UChar chRParen = 0x29; 788 789 790 //------------------------------------------------------------------------------ 791 // 792 // stripRules Return a rules string without unnecessary 793 // characters. 794 // 795 //------------------------------------------------------------------------------ 796 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) { 797 UnicodeString strippedRules; 798 int rulesLength = rules.length(); 799 for (int idx = 0; idx < rulesLength; ) { 800 UChar ch = rules[idx++]; 801 if (ch == chPound) { 802 while (idx < rulesLength 803 && ch != chCR && ch != chLF && ch != chNEL) 804 { 805 ch = rules[idx++]; 806 } 807 } 808 if (!u_isISOControl(ch)) { 809 strippedRules.append(ch); 810 } 811 } 812 // strippedRules = strippedRules.unescape(); 813 return strippedRules; 814 } 815 816 817 //------------------------------------------------------------------------------ 818 // 819 // nextCharLL Low Level Next Char from rule input source. 820 // Get a char from the input character iterator, 821 // keep track of input position for error reporting. 822 // 823 //------------------------------------------------------------------------------ 824 UChar32 RBBIRuleScanner::nextCharLL() { 825 UChar32 ch; 826 827 if (fNextIndex >= fRB->fRules.length()) { 828 return (UChar32)-1; 829 } 830 ch = fRB->fRules.char32At(fNextIndex); 831 fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1); 832 833 if (ch == chCR || 834 ch == chNEL || 835 ch == chLS || 836 (ch == chLF && fLastChar != chCR)) { 837 // Character is starting a new line. Bump up the line number, and 838 // reset the column to 0. 839 fLineNum++; 840 fCharNum=0; 841 if (fQuoteMode) { 842 error(U_BRK_NEW_LINE_IN_QUOTED_STRING); 843 fQuoteMode = FALSE; 844 } 845 } 846 else { 847 // Character is not starting a new line. Except in the case of a 848 // LF following a CR, increment the column position. 849 if (ch != chLF) { 850 fCharNum++; 851 } 852 } 853 fLastChar = ch; 854 return ch; 855 } 856 857 858 //------------------------------------------------------------------------------ 859 // 860 // nextChar for rules scanning. At this level, we handle stripping 861 // out comments and processing backslash character escapes. 862 // The rest of the rules grammar is handled at the next level up. 863 // 864 //------------------------------------------------------------------------------ 865 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) { 866 867 // Unicode Character constants needed for the processing done by nextChar(), 868 // in hex because literals wont work on EBCDIC machines. 869 870 fScanIndex = fNextIndex; 871 c.fChar = nextCharLL(); 872 c.fEscaped = FALSE; 873 874 // 875 // check for '' sequence. 876 // These are recognized in all contexts, whether in quoted text or not. 877 // 878 if (c.fChar == chApos) { 879 if (fRB->fRules.char32At(fNextIndex) == chApos) { 880 c.fChar = nextCharLL(); // get nextChar officially so character counts 881 c.fEscaped = TRUE; // stay correct. 882 } 883 else 884 { 885 // Single quote, by itself. 886 // Toggle quoting mode. 887 // Return either '(' or ')', because quotes cause a grouping of the quoted text. 888 fQuoteMode = !fQuoteMode; 889 if (fQuoteMode == TRUE) { 890 c.fChar = chLParen; 891 } else { 892 c.fChar = chRParen; 893 } 894 c.fEscaped = FALSE; // The paren that we return is not escaped. 895 return; 896 } 897 } 898 899 if (fQuoteMode) { 900 c.fEscaped = TRUE; 901 } 902 else 903 { 904 // We are not in a 'quoted region' of the source. 905 // 906 if (c.fChar == chPound) { 907 // Start of a comment. Consume the rest of it. 908 // The new-line char that terminates the comment is always returned. 909 // It will be treated as white-space, and serves to break up anything 910 // that might otherwise incorrectly clump together with a comment in 911 // the middle (a variable name, for example.) 912 for (;;) { 913 c.fChar = nextCharLL(); 914 if (c.fChar == (UChar32)-1 || // EOF 915 c.fChar == chCR || 916 c.fChar == chLF || 917 c.fChar == chNEL || 918 c.fChar == chLS) {break;} 919 } 920 } 921 if (c.fChar == (UChar32)-1) { 922 return; 923 } 924 925 // 926 // check for backslash escaped characters. 927 // Use UnicodeString::unescapeAt() to handle them. 928 // 929 if (c.fChar == chBackSlash) { 930 c.fEscaped = TRUE; 931 int32_t startX = fNextIndex; 932 c.fChar = fRB->fRules.unescapeAt(fNextIndex); 933 if (fNextIndex == startX) { 934 error(U_BRK_HEX_DIGITS_EXPECTED); 935 } 936 fCharNum += fNextIndex-startX; 937 } 938 } 939 // putc(c.fChar, stdout); 940 } 941 942 //------------------------------------------------------------------------------ 943 // 944 // Parse RBBI rules. The state machine for rules parsing is here. 945 // The state tables are hand-written in the file rbbirpt.txt, 946 // and converted to the form used here by a perl 947 // script rbbicst.pl 948 // 949 //------------------------------------------------------------------------------ 950 void RBBIRuleScanner::parse() { 951 uint16_t state; 952 const RBBIRuleTableEl *tableEl; 953 954 if (U_FAILURE(*fRB->fStatus)) { 955 return; 956 } 957 958 state = 1; 959 nextChar(fC); 960 // 961 // Main loop for the rule parsing state machine. 962 // Runs once per state transition. 963 // Each time through optionally performs, depending on the state table, 964 // - an advance to the the next input char 965 // - an action to be performed. 966 // - pushing or popping a state to/from the local state return stack. 967 // 968 for (;;) { 969 // Bail out if anything has gone wrong. 970 // RBBI rule file parsing stops on the first error encountered. 971 if (U_FAILURE(*fRB->fStatus)) { 972 break; 973 } 974 975 // Quit if state == 0. This is the normal way to exit the state machine. 976 // 977 if (state == 0) { 978 break; 979 } 980 981 // Find the state table element that matches the input char from the rule, or the 982 // class of the input character. Start with the first table row for this 983 // state, then linearly scan forward until we find a row that matches the 984 // character. The last row for each state always matches all characters, so 985 // the search will stop there, if not before. 986 // 987 tableEl = &gRuleParseStateTable[state]; 988 #ifdef RBBI_DEBUG 989 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { 990 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ", 991 fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]); 992 } 993 #endif 994 995 for (;;) { 996 #ifdef RBBI_DEBUG 997 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");} 998 #endif 999 if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) { 1000 // Table row specified an individual character, not a set, and 1001 // the input character is not escaped, and 1002 // the input character matched it. 1003 break; 1004 } 1005 if (tableEl->fCharClass == 255) { 1006 // Table row specified default, match anything character class. 1007 break; 1008 } 1009 if (tableEl->fCharClass == 254 && fC.fEscaped) { 1010 // Table row specified "escaped" and the char was escaped. 1011 break; 1012 } 1013 if (tableEl->fCharClass == 253 && fC.fEscaped && 1014 (fC.fChar == 0x50 || fC.fChar == 0x70 )) { 1015 // Table row specified "escaped P" and the char is either 'p' or 'P'. 1016 break; 1017 } 1018 if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) { 1019 // Table row specified eof and we hit eof on the input. 1020 break; 1021 } 1022 1023 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && 1024 fC.fEscaped == FALSE && // char is not escaped && 1025 fC.fChar != (UChar32)-1) { // char is not EOF 1026 U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets)); 1027 if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { 1028 // Table row specified a character class, or set of characters, 1029 // and the current char matches it. 1030 break; 1031 } 1032 } 1033 1034 // No match on this row, advance to the next row for this state, 1035 tableEl++; 1036 } 1037 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");} 1038 1039 // 1040 // We've found the row of the state table that matches the current input 1041 // character from the rules string. 1042 // Perform any action specified by this row in the state table. 1043 if (doParseActions((int32_t)tableEl->fAction) == FALSE) { 1044 // Break out of the state machine loop if the 1045 // the action signalled some kind of error, or 1046 // the action was to exit, occurs on normal end-of-rules-input. 1047 break; 1048 } 1049 1050 if (tableEl->fPushState != 0) { 1051 fStackPtr++; 1052 if (fStackPtr >= kStackSize) { 1053 error(U_BRK_INTERNAL_ERROR); 1054 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow."); 1055 fStackPtr--; 1056 } 1057 fStack[fStackPtr] = tableEl->fPushState; 1058 } 1059 1060 if (tableEl->fNextChar) { 1061 nextChar(fC); 1062 } 1063 1064 // Get the next state from the table entry, or from the 1065 // state stack if the next state was specified as "pop". 1066 if (tableEl->fNextState != 255) { 1067 state = tableEl->fNextState; 1068 } else { 1069 state = fStack[fStackPtr]; 1070 fStackPtr--; 1071 if (fStackPtr < 0) { 1072 error(U_BRK_INTERNAL_ERROR); 1073 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow."); 1074 fStackPtr++; 1075 } 1076 } 1077 1078 } 1079 1080 // 1081 // If there were NO user specified reverse rules, set up the equivalent of ".*;" 1082 // 1083 if (fRB->fReverseTree == NULL) { 1084 fRB->fReverseTree = pushNewNode(RBBINode::opStar); 1085 RBBINode *operand = pushNewNode(RBBINode::setRef); 1086 if (U_FAILURE(*fRB->fStatus)) { 1087 return; 1088 } 1089 findSetFor(UnicodeString(TRUE, kAny, 3), operand); 1090 fRB->fReverseTree->fLeftChild = operand; 1091 operand->fParent = fRB->fReverseTree; 1092 fNodeStackPtr -= 2; 1093 } 1094 1095 1096 // 1097 // Parsing of the input RBBI rules is complete. 1098 // We now have a parse tree for the rule expressions 1099 // and a list of all UnicodeSets that are referenced. 1100 // 1101 #ifdef RBBI_DEBUG 1102 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();} 1103 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) 1104 { 1105 RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n"); 1106 fRB->fForwardTree->printTree(TRUE); 1107 RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n"); 1108 fRB->fReverseTree->printTree(TRUE); 1109 RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n"); 1110 fRB->fSafeFwdTree->printTree(TRUE); 1111 RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n"); 1112 fRB->fSafeRevTree->printTree(TRUE); 1113 } 1114 #endif 1115 } 1116 1117 1118 //------------------------------------------------------------------------------ 1119 // 1120 // printNodeStack for debugging... 1121 // 1122 //------------------------------------------------------------------------------ 1123 #ifdef RBBI_DEBUG 1124 void RBBIRuleScanner::printNodeStack(const char *title) { 1125 int i; 1126 RBBIDebugPrintf("%s. Dumping node stack...\n", title); 1127 for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);} 1128 } 1129 #endif 1130 1131 1132 1133 1134 //------------------------------------------------------------------------------ 1135 // 1136 // pushNewNode create a new RBBINode of the specified type and push it 1137 // onto the stack of nodes. 1138 // 1139 //------------------------------------------------------------------------------ 1140 RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) { 1141 if (U_FAILURE(*fRB->fStatus)) { 1142 return NULL; 1143 } 1144 fNodeStackPtr++; 1145 if (fNodeStackPtr >= kStackSize) { 1146 error(U_BRK_INTERNAL_ERROR); 1147 RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow."); 1148 *fRB->fStatus = U_BRK_INTERNAL_ERROR; 1149 return NULL; 1150 } 1151 fNodeStack[fNodeStackPtr] = new RBBINode(t); 1152 if (fNodeStack[fNodeStackPtr] == NULL) { 1153 *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR; 1154 } 1155 return fNodeStack[fNodeStackPtr]; 1156 } 1157 1158 1159 1160 //------------------------------------------------------------------------------ 1161 // 1162 // scanSet Construct a UnicodeSet from the text at the current scan 1163 // position. Advance the scan position to the first character 1164 // after the set. 1165 // 1166 // A new RBBI setref node referring to the set is pushed onto the node 1167 // stack. 1168 // 1169 // The scan position is normally under the control of the state machine 1170 // that controls rule parsing. UnicodeSets, however, are parsed by 1171 // the UnicodeSet constructor, not by the RBBI rule parser. 1172 // 1173 //------------------------------------------------------------------------------ 1174 void RBBIRuleScanner::scanSet() { 1175 UnicodeSet *uset; 1176 ParsePosition pos; 1177 int startPos; 1178 int i; 1179 1180 if (U_FAILURE(*fRB->fStatus)) { 1181 return; 1182 } 1183 1184 pos.setIndex(fScanIndex); 1185 startPos = fScanIndex; 1186 UErrorCode localStatus = U_ZERO_ERROR; 1187 uset = new UnicodeSet(); 1188 if (uset == NULL) { 1189 localStatus = U_MEMORY_ALLOCATION_ERROR; 1190 } else { 1191 uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus); 1192 } 1193 if (U_FAILURE(localStatus)) { 1194 // TODO: Get more accurate position of the error from UnicodeSet's return info. 1195 // UnicodeSet appears to not be reporting correctly at this time. 1196 #ifdef RBBI_DEBUG 1197 RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex()); 1198 #endif 1199 error(localStatus); 1200 delete uset; 1201 return; 1202 } 1203 1204 // Verify that the set contains at least one code point. 1205 // 1206 U_ASSERT(uset!=NULL); 1207 if (uset->isEmpty()) { 1208 // This set is empty. 1209 // Make it an error, because it almost certainly is not what the user wanted. 1210 // Also, avoids having to think about corner cases in the tree manipulation code 1211 // that occurs later on. 1212 error(U_BRK_RULE_EMPTY_SET); 1213 delete uset; 1214 return; 1215 } 1216 1217 1218 // Advance the RBBI parse postion over the UnicodeSet pattern. 1219 // Don't just set fScanIndex because the line/char positions maintained 1220 // for error reporting would be thrown off. 1221 i = pos.getIndex(); 1222 for (;;) { 1223 if (fNextIndex >= i) { 1224 break; 1225 } 1226 nextCharLL(); 1227 } 1228 1229 if (U_SUCCESS(*fRB->fStatus)) { 1230 RBBINode *n; 1231 1232 n = pushNewNode(RBBINode::setRef); 1233 if (U_FAILURE(*fRB->fStatus)) { 1234 return; 1235 } 1236 n->fFirstPos = startPos; 1237 n->fLastPos = fNextIndex; 1238 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); 1239 // findSetFor() serves several purposes here: 1240 // - Adopts storage for the UnicodeSet, will be responsible for deleting. 1241 // - Mantains collection of all sets in use, needed later for establishing 1242 // character categories for run time engine. 1243 // - Eliminates mulitiple instances of the same set. 1244 // - Creates a new uset node if necessary (if this isn't a duplicate.) 1245 findSetFor(n->fText, n, uset); 1246 } 1247 1248 } 1249 1250 U_NAMESPACE_END 1251 1252 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ 1253