1 /* 2 ****************************************************************************** 3 * Copyright (C) 1997-2015, International Business Machines 4 * Corporation and others. All Rights Reserved. 5 ****************************************************************************** 6 * file name: nfrule.cpp 7 * encoding: US-ASCII 8 * tab size: 8 (not used) 9 * indentation:4 10 * 11 * Modification history 12 * Date Name Comments 13 * 10/11/2001 Doug Ported from ICU4J 14 */ 15 16 #include "nfrule.h" 17 18 #if U_HAVE_RBNF 19 20 #include "unicode/localpointer.h" 21 #include "unicode/rbnf.h" 22 #include "unicode/tblcoll.h" 23 #include "unicode/plurfmt.h" 24 #include "unicode/upluralrules.h" 25 #include "unicode/coleitr.h" 26 #include "unicode/uchar.h" 27 #include "nfrs.h" 28 #include "nfrlist.h" 29 #include "nfsubs.h" 30 #include "patternprops.h" 31 32 U_NAMESPACE_BEGIN 33 34 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status) 35 : baseValue((int32_t)0) 36 , radix(10) 37 , exponent(0) 38 , decimalPoint(0) 39 , ruleText(_ruleText) 40 , sub1(NULL) 41 , sub2(NULL) 42 , formatter(_rbnf) 43 , rulePatternFormat(NULL) 44 { 45 if (!ruleText.isEmpty()) { 46 parseRuleDescriptor(ruleText, status); 47 } 48 } 49 50 NFRule::~NFRule() 51 { 52 if (sub1 != sub2) { 53 delete sub2; 54 sub2 = NULL; 55 } 56 delete sub1; 57 sub1 = NULL; 58 delete rulePatternFormat; 59 rulePatternFormat = NULL; 60 } 61 62 static const UChar gLeftBracket = 0x005b; 63 static const UChar gRightBracket = 0x005d; 64 static const UChar gColon = 0x003a; 65 static const UChar gZero = 0x0030; 66 static const UChar gNine = 0x0039; 67 static const UChar gSpace = 0x0020; 68 static const UChar gSlash = 0x002f; 69 static const UChar gGreaterThan = 0x003e; 70 static const UChar gLessThan = 0x003c; 71 static const UChar gComma = 0x002c; 72 static const UChar gDot = 0x002e; 73 static const UChar gTick = 0x0027; 74 //static const UChar gMinus = 0x002d; 75 static const UChar gSemicolon = 0x003b; 76 static const UChar gX = 0x0078; 77 78 static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ 79 static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */ 80 static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */ 81 82 static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */ 83 static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */ 84 85 static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ 86 static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ 87 static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ 88 static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ 89 static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ 90 static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ 91 static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ 92 static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ 93 static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ 94 static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ 95 static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ 96 static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ 97 98 static const UChar * const RULE_PREFIXES[] = { 99 gLessLess, gLessPercent, gLessHash, gLessZero, 100 gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, 101 gEqualPercent, gEqualHash, gEqualZero, NULL 102 }; 103 104 void 105 NFRule::makeRules(UnicodeString& description, 106 NFRuleSet *owner, 107 const NFRule *predecessor, 108 const RuleBasedNumberFormat *rbnf, 109 NFRuleList& rules, 110 UErrorCode& status) 111 { 112 // we know we're making at least one rule, so go ahead and 113 // new it up and initialize its basevalue and divisor 114 // (this also strips the rule descriptor, if any, off the 115 // descripton string) 116 NFRule* rule1 = new NFRule(rbnf, description, status); 117 /* test for NULL */ 118 if (rule1 == 0) { 119 status = U_MEMORY_ALLOCATION_ERROR; 120 return; 121 } 122 description = rule1->ruleText; 123 124 // check the description to see whether there's text enclosed 125 // in brackets 126 int32_t brack1 = description.indexOf(gLeftBracket); 127 int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket); 128 129 // if the description doesn't contain a matched pair of brackets, 130 // or if it's of a type that doesn't recognize bracketed text, 131 // then leave the description alone, initialize the rule's 132 // rule text and substitutions, and return that rule 133 if (brack2 < 0 || brack1 > brack2 134 || rule1->getType() == kProperFractionRule 135 || rule1->getType() == kNegativeNumberRule 136 || rule1->getType() == kInfinityRule 137 || rule1->getType() == kNaNRule) 138 { 139 rule1->extractSubstitutions(owner, description, predecessor, status); 140 } 141 else { 142 // if the description does contain a matched pair of brackets, 143 // then it's really shorthand for two rules (with one exception) 144 NFRule* rule2 = NULL; 145 UnicodeString sbuf; 146 147 // we'll actually only split the rule into two rules if its 148 // base value is an even multiple of its divisor (or it's one 149 // of the special rules) 150 if ((rule1->baseValue > 0 151 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) 152 || rule1->getType() == kImproperFractionRule 153 || rule1->getType() == kMasterRule) { 154 155 // if it passes that test, new up the second rule. If the 156 // rule set both rules will belong to is a fraction rule 157 // set, they both have the same base value; otherwise, 158 // increment the original rule's base value ("rule1" actually 159 // goes SECOND in the rule set's rule list) 160 rule2 = new NFRule(rbnf, UnicodeString(), status); 161 /* test for NULL */ 162 if (rule2 == 0) { 163 status = U_MEMORY_ALLOCATION_ERROR; 164 return; 165 } 166 if (rule1->baseValue >= 0) { 167 rule2->baseValue = rule1->baseValue; 168 if (!owner->isFractionRuleSet()) { 169 ++rule1->baseValue; 170 } 171 } 172 173 // if the description began with "x.x" and contains bracketed 174 // text, it describes both the improper fraction rule and 175 // the proper fraction rule 176 else if (rule1->getType() == kImproperFractionRule) { 177 rule2->setType(kProperFractionRule); 178 } 179 180 // if the description began with "x.0" and contains bracketed 181 // text, it describes both the master rule and the 182 // improper fraction rule 183 else if (rule1->getType() == kMasterRule) { 184 rule2->baseValue = rule1->baseValue; 185 rule1->setType(kImproperFractionRule); 186 } 187 188 // both rules have the same radix and exponent (i.e., the 189 // same divisor) 190 rule2->radix = rule1->radix; 191 rule2->exponent = rule1->exponent; 192 193 // rule2's rule text omits the stuff in brackets: initalize 194 // its rule text and substitutions accordingly 195 sbuf.append(description, 0, brack1); 196 if (brack2 + 1 < description.length()) { 197 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); 198 } 199 rule2->extractSubstitutions(owner, sbuf, predecessor, status); 200 } 201 202 // rule1's text includes the text in the brackets but omits 203 // the brackets themselves: initialize _its_ rule text and 204 // substitutions accordingly 205 sbuf.setTo(description, 0, brack1); 206 sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); 207 if (brack2 + 1 < description.length()) { 208 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); 209 } 210 rule1->extractSubstitutions(owner, sbuf, predecessor, status); 211 212 // if we only have one rule, return it; if we have two, return 213 // a two-element array containing them (notice that rule2 goes 214 // BEFORE rule1 in the list: in all cases, rule2 OMITS the 215 // material in the brackets and rule1 INCLUDES the material 216 // in the brackets) 217 if (rule2 != NULL) { 218 if (rule2->baseValue >= kNoBase) { 219 rules.add(rule2); 220 } 221 else { 222 owner->setNonNumericalRule(rule2); 223 } 224 } 225 } 226 if (rule1->baseValue >= kNoBase) { 227 rules.add(rule1); 228 } 229 else { 230 owner->setNonNumericalRule(rule1); 231 } 232 } 233 234 /** 235 * This function parses the rule's rule descriptor (i.e., the base 236 * value and/or other tokens that precede the rule's rule text 237 * in the description) and sets the rule's base value, radix, and 238 * exponent according to the descriptor. (If the description doesn't 239 * include a rule descriptor, then this function sets everything to 240 * default values and the rule set sets the rule's real base value). 241 * @param description The rule's description 242 * @return If "description" included a rule descriptor, this is 243 * "description" with the descriptor and any trailing whitespace 244 * stripped off. Otherwise; it's "descriptor" unchangd. 245 */ 246 void 247 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) 248 { 249 // the description consists of a rule descriptor and a rule body, 250 // separated by a colon. The rule descriptor is optional. If 251 // it's omitted, just set the base value to 0. 252 int32_t p = description.indexOf(gColon); 253 if (p != -1) { 254 // copy the descriptor out into its own string and strip it, 255 // along with any trailing whitespace, out of the original 256 // description 257 UnicodeString descriptor; 258 descriptor.setTo(description, 0, p); 259 260 ++p; 261 while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) { 262 ++p; 263 } 264 description.removeBetween(0, p); 265 266 // check first to see if the rule descriptor matches the token 267 // for one of the special rules. If it does, set the base 268 // value to the correct identifier value 269 int descriptorLength = descriptor.length(); 270 UChar firstChar = descriptor.charAt(0); 271 UChar lastChar = descriptor.charAt(descriptorLength - 1); 272 if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) { 273 // if the rule descriptor begins with a digit, it's a descriptor 274 // for a normal rule 275 // since we don't have Long.parseLong, and this isn't much work anyway, 276 // just build up the value as we encounter the digits. 277 int64_t val = 0; 278 p = 0; 279 UChar c = gSpace; 280 281 // begin parsing the descriptor: copy digits 282 // into "tempValue", skip periods, commas, and spaces, 283 // stop on a slash or > sign (or at the end of the string), 284 // and throw an exception on any other character 285 int64_t ll_10 = 10; 286 while (p < descriptorLength) { 287 c = descriptor.charAt(p); 288 if (c >= gZero && c <= gNine) { 289 val = val * ll_10 + (int32_t)(c - gZero); 290 } 291 else if (c == gSlash || c == gGreaterThan) { 292 break; 293 } 294 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { 295 } 296 else { 297 // throw new IllegalArgumentException("Illegal character in rule descriptor"); 298 status = U_PARSE_ERROR; 299 return; 300 } 301 ++p; 302 } 303 304 // we have the base value, so set it 305 setBaseValue(val, status); 306 307 // if we stopped the previous loop on a slash, we're 308 // now parsing the rule's radix. Again, accumulate digits 309 // in tempValue, skip punctuation, stop on a > mark, and 310 // throw an exception on anything else 311 if (c == gSlash) { 312 val = 0; 313 ++p; 314 int64_t ll_10 = 10; 315 while (p < descriptorLength) { 316 c = descriptor.charAt(p); 317 if (c >= gZero && c <= gNine) { 318 val = val * ll_10 + (int32_t)(c - gZero); 319 } 320 else if (c == gGreaterThan) { 321 break; 322 } 323 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { 324 } 325 else { 326 // throw new IllegalArgumentException("Illegal character is rule descriptor"); 327 status = U_PARSE_ERROR; 328 return; 329 } 330 ++p; 331 } 332 333 // tempValue now contain's the rule's radix. Set it 334 // accordingly, and recalculate the rule's exponent 335 radix = (int32_t)val; 336 if (radix == 0) { 337 // throw new IllegalArgumentException("Rule can't have radix of 0"); 338 status = U_PARSE_ERROR; 339 } 340 341 exponent = expectedExponent(); 342 } 343 344 // if we stopped the previous loop on a > sign, then continue 345 // for as long as we still see > signs. For each one, 346 // decrement the exponent (unless the exponent is already 0). 347 // If we see another character before reaching the end of 348 // the descriptor, that's also a syntax error. 349 if (c == gGreaterThan) { 350 while (p < descriptor.length()) { 351 c = descriptor.charAt(p); 352 if (c == gGreaterThan && exponent > 0) { 353 --exponent; 354 } else { 355 // throw new IllegalArgumentException("Illegal character in rule descriptor"); 356 status = U_PARSE_ERROR; 357 return; 358 } 359 ++p; 360 } 361 } 362 } 363 else if (0 == descriptor.compare(gMinusX, 2)) { 364 setType(kNegativeNumberRule); 365 } 366 else if (descriptorLength == 3) { 367 if (firstChar == gZero && lastChar == gX) { 368 setBaseValue(kProperFractionRule, status); 369 decimalPoint = descriptor.charAt(1); 370 } 371 else if (firstChar == gX && lastChar == gX) { 372 setBaseValue(kImproperFractionRule, status); 373 decimalPoint = descriptor.charAt(1); 374 } 375 else if (firstChar == gX && lastChar == gZero) { 376 setBaseValue(kMasterRule, status); 377 decimalPoint = descriptor.charAt(1); 378 } 379 else if (descriptor.compare(gNaN, 3) == 0) { 380 setBaseValue(kNaNRule, status); 381 } 382 else if (descriptor.compare(gInf, 3) == 0) { 383 setBaseValue(kInfinityRule, status); 384 } 385 } 386 } 387 // else use the default base value for now. 388 389 // finally, if the rule body begins with an apostrophe, strip it off 390 // (this is generally used to put whitespace at the beginning of 391 // a rule's rule text) 392 if (description.length() > 0 && description.charAt(0) == gTick) { 393 description.removeBetween(0, 1); 394 } 395 396 // return the description with all the stuff we've just waded through 397 // stripped off the front. It now contains just the rule body. 398 // return description; 399 } 400 401 /** 402 * Searches the rule's rule text for the substitution tokens, 403 * creates the substitutions, and removes the substitution tokens 404 * from the rule's rule text. 405 * @param owner The rule set containing this rule 406 * @param predecessor The rule preseding this one in "owners" rule list 407 * @param ownersOwner The RuleBasedFormat that owns this rule 408 */ 409 void 410 NFRule::extractSubstitutions(const NFRuleSet* ruleSet, 411 const UnicodeString &ruleText, 412 const NFRule* predecessor, 413 UErrorCode& status) 414 { 415 if (U_FAILURE(status)) { 416 return; 417 } 418 this->ruleText = ruleText; 419 sub1 = extractSubstitution(ruleSet, predecessor, status); 420 if (sub1 == NULL) { 421 // Small optimization. There is no need to create a redundant NullSubstitution. 422 sub2 = NULL; 423 } 424 else { 425 sub2 = extractSubstitution(ruleSet, predecessor, status); 426 } 427 int32_t pluralRuleStart = this->ruleText.indexOf(gDollarOpenParenthesis, -1, 0); 428 int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? this->ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1); 429 if (pluralRuleEnd >= 0) { 430 int32_t endType = this->ruleText.indexOf(gComma, pluralRuleStart); 431 if (endType < 0) { 432 status = U_PARSE_ERROR; 433 return; 434 } 435 UnicodeString type(this->ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2)); 436 UPluralType pluralType; 437 if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) { 438 pluralType = UPLURAL_TYPE_CARDINAL; 439 } 440 else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) { 441 pluralType = UPLURAL_TYPE_ORDINAL; 442 } 443 else { 444 status = U_ILLEGAL_ARGUMENT_ERROR; 445 return; 446 } 447 rulePatternFormat = formatter->createPluralFormat(pluralType, 448 this->ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status); 449 } 450 } 451 452 /** 453 * Searches the rule's rule text for the first substitution token, 454 * creates a substitution based on it, and removes the token from 455 * the rule's rule text. 456 * @param owner The rule set containing this rule 457 * @param predecessor The rule preceding this one in the rule set's 458 * rule list 459 * @param ownersOwner The RuleBasedNumberFormat that owns this rule 460 * @return The newly-created substitution. This is never null; if 461 * the rule text doesn't contain any substitution tokens, this will 462 * be a NullSubstitution. 463 */ 464 NFSubstitution * 465 NFRule::extractSubstitution(const NFRuleSet* ruleSet, 466 const NFRule* predecessor, 467 UErrorCode& status) 468 { 469 NFSubstitution* result = NULL; 470 471 // search the rule's rule text for the first two characters of 472 // a substitution token 473 int32_t subStart = indexOfAnyRulePrefix(); 474 int32_t subEnd = subStart; 475 476 // if we didn't find one, create a null substitution positioned 477 // at the end of the rule text 478 if (subStart == -1) { 479 return NULL; 480 } 481 482 // special-case the ">>>" token, since searching for the > at the 483 // end will actually find the > in the middle 484 if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) { 485 subEnd = subStart + 2; 486 487 // otherwise the substitution token ends with the same character 488 // it began with 489 } else { 490 UChar c = ruleText.charAt(subStart); 491 subEnd = ruleText.indexOf(c, subStart + 1); 492 // special case for '<%foo<<' 493 if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) { 494 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle 495 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack 496 // to get around this. Having the duplicate at the front would cause problems with 497 // rules like "<<%" to format, say, percents... 498 ++subEnd; 499 } 500 } 501 502 // if we don't find the end of the token (i.e., if we're on a single, 503 // unmatched token character), create a null substitution positioned 504 // at the end of the rule 505 if (subEnd == -1) { 506 return NULL; 507 } 508 509 // if we get here, we have a real substitution token (or at least 510 // some text bounded by substitution token characters). Use 511 // makeSubstitution() to create the right kind of substitution 512 UnicodeString subToken; 513 subToken.setTo(ruleText, subStart, subEnd + 1 - subStart); 514 result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, 515 this->formatter, subToken, status); 516 517 // remove the substitution from the rule text 518 ruleText.removeBetween(subStart, subEnd+1); 519 520 return result; 521 } 522 523 /** 524 * Sets the rule's base value, and causes the radix and exponent 525 * to be recalculated. This is used during construction when we 526 * don't know the rule's base value until after it's been 527 * constructed. It should be used at any other time. 528 * @param The new base value for the rule. 529 */ 530 void 531 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) 532 { 533 // set the base value 534 baseValue = newBaseValue; 535 radix = 10; 536 537 // if this isn't a special rule, recalculate the radix and exponent 538 // (the radix always defaults to 10; if it's supposed to be something 539 // else, it's cleaned up by the caller and the exponent is 540 // recalculated again-- the only function that does this is 541 // NFRule.parseRuleDescriptor() ) 542 if (baseValue >= 1) { 543 exponent = expectedExponent(); 544 545 // this function gets called on a fully-constructed rule whose 546 // description didn't specify a base value. This means it 547 // has substitutions, and some substitutions hold on to copies 548 // of the rule's divisor. Fix their copies of the divisor. 549 if (sub1 != NULL) { 550 sub1->setDivisor(radix, exponent, status); 551 } 552 if (sub2 != NULL) { 553 sub2->setDivisor(radix, exponent, status); 554 } 555 556 // if this is a special rule, its radix and exponent are basically 557 // ignored. Set them to "safe" default values 558 } else { 559 exponent = 0; 560 } 561 } 562 563 /** 564 * This calculates the rule's exponent based on its radix and base 565 * value. This will be the highest power the radix can be raised to 566 * and still produce a result less than or equal to the base value. 567 */ 568 int16_t 569 NFRule::expectedExponent() const 570 { 571 // since the log of 0, or the log base 0 of something, causes an 572 // error, declare the exponent in these cases to be 0 (we also 573 // deal with the special-rule identifiers here) 574 if (radix == 0 || baseValue < 1) { 575 return 0; 576 } 577 578 // we get rounding error in some cases-- for example, log 1000 / log 10 579 // gives us 1.9999999996 instead of 2. The extra logic here is to take 580 // that into account 581 int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix)); 582 int64_t temp = util64_pow(radix, tempResult + 1); 583 if (temp <= baseValue) { 584 tempResult += 1; 585 } 586 return tempResult; 587 } 588 589 /** 590 * Searches the rule's rule text for any of the specified strings. 591 * @return The index of the first match in the rule's rule text 592 * (i.e., the first substring in the rule's rule text that matches 593 * _any_ of the strings in "strings"). If none of the strings in 594 * "strings" is found in the rule's rule text, returns -1. 595 */ 596 int32_t 597 NFRule::indexOfAnyRulePrefix() const 598 { 599 int result = -1; 600 for (int i = 0; RULE_PREFIXES[i]; i++) { 601 int32_t pos = ruleText.indexOf(*RULE_PREFIXES[i]); 602 if (pos != -1 && (result == -1 || pos < result)) { 603 result = pos; 604 } 605 } 606 return result; 607 } 608 609 //----------------------------------------------------------------------- 610 // boilerplate 611 //----------------------------------------------------------------------- 612 613 static UBool 614 util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2) 615 { 616 if (sub1) { 617 if (sub2) { 618 return *sub1 == *sub2; 619 } 620 } else if (!sub2) { 621 return TRUE; 622 } 623 return FALSE; 624 } 625 626 /** 627 * Tests two rules for equality. 628 * @param that The rule to compare this one against 629 * @return True is the two rules are functionally equivalent 630 */ 631 UBool 632 NFRule::operator==(const NFRule& rhs) const 633 { 634 return baseValue == rhs.baseValue 635 && radix == rhs.radix 636 && exponent == rhs.exponent 637 && ruleText == rhs.ruleText 638 && util_equalSubstitutions(sub1, rhs.sub1) 639 && util_equalSubstitutions(sub2, rhs.sub2); 640 } 641 642 /** 643 * Returns a textual representation of the rule. This won't 644 * necessarily be the same as the description that this rule 645 * was created with, but it will produce the same result. 646 * @return A textual description of the rule 647 */ 648 static void util_append64(UnicodeString& result, int64_t n) 649 { 650 UChar buffer[256]; 651 int32_t len = util64_tou(n, buffer, sizeof(buffer)); 652 UnicodeString temp(buffer, len); 653 result.append(temp); 654 } 655 656 void 657 NFRule::_appendRuleText(UnicodeString& result) const 658 { 659 switch (getType()) { 660 case kNegativeNumberRule: result.append(gMinusX, 2); break; 661 case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; 662 case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; 663 case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break; 664 case kInfinityRule: result.append(gInf, 3); break; 665 case kNaNRule: result.append(gNaN, 3); break; 666 default: 667 // for a normal rule, write out its base value, and if the radix is 668 // something other than 10, write out the radix (with the preceding 669 // slash, of course). Then calculate the expected exponent and if 670 // if isn't the same as the actual exponent, write an appropriate 671 // number of > signs. Finally, terminate the whole thing with 672 // a colon. 673 util_append64(result, baseValue); 674 if (radix != 10) { 675 result.append(gSlash); 676 util_append64(result, radix); 677 } 678 int numCarets = expectedExponent() - exponent; 679 for (int i = 0; i < numCarets; i++) { 680 result.append(gGreaterThan); 681 } 682 break; 683 } 684 result.append(gColon); 685 result.append(gSpace); 686 687 // if the rule text begins with a space, write an apostrophe 688 // (whitespace after the rule descriptor is ignored; the 689 // apostrophe is used to make the whitespace significant) 690 if (ruleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) { 691 result.append(gTick); 692 } 693 694 // now, write the rule's rule text, inserting appropriate 695 // substitution tokens in the appropriate places 696 UnicodeString ruleTextCopy; 697 ruleTextCopy.setTo(ruleText); 698 699 UnicodeString temp; 700 if (sub2 != NULL) { 701 sub2->toString(temp); 702 ruleTextCopy.insert(sub2->getPos(), temp); 703 } 704 if (sub1 != NULL) { 705 sub1->toString(temp); 706 ruleTextCopy.insert(sub1->getPos(), temp); 707 } 708 709 result.append(ruleTextCopy); 710 711 // and finally, top the whole thing off with a semicolon and 712 // return the result 713 result.append(gSemicolon); 714 } 715 716 //----------------------------------------------------------------------- 717 // formatting 718 //----------------------------------------------------------------------- 719 720 /** 721 * Formats the number, and inserts the resulting text into 722 * toInsertInto. 723 * @param number The number being formatted 724 * @param toInsertInto The string where the resultant text should 725 * be inserted 726 * @param pos The position in toInsertInto where the resultant text 727 * should be inserted 728 */ 729 void 730 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const 731 { 732 // first, insert the rule's rule text into toInsertInto at the 733 // specified position, then insert the results of the substitutions 734 // into the right places in toInsertInto (notice we do the 735 // substitutions in reverse order so that the offsets don't get 736 // messed up) 737 int32_t pluralRuleStart = ruleText.length(); 738 int32_t lengthOffset = 0; 739 if (!rulePatternFormat) { 740 toInsertInto.insert(pos, ruleText); 741 } 742 else { 743 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0); 744 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); 745 int initialLength = toInsertInto.length(); 746 if (pluralRuleEnd < ruleText.length() - 1) { 747 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2)); 748 } 749 toInsertInto.insert(pos, 750 rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status)); 751 if (pluralRuleStart > 0) { 752 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart)); 753 } 754 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength); 755 } 756 757 if (sub2 != NULL) { 758 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); 759 } 760 if (sub1 != NULL) { 761 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); 762 } 763 } 764 765 /** 766 * Formats the number, and inserts the resulting text into 767 * toInsertInto. 768 * @param number The number being formatted 769 * @param toInsertInto The string where the resultant text should 770 * be inserted 771 * @param pos The position in toInsertInto where the resultant text 772 * should be inserted 773 */ 774 void 775 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const 776 { 777 // first, insert the rule's rule text into toInsertInto at the 778 // specified position, then insert the results of the substitutions 779 // into the right places in toInsertInto 780 // [again, we have two copies of this routine that do the same thing 781 // so that we don't sacrifice precision in a long by casting it 782 // to a double] 783 int32_t pluralRuleStart = ruleText.length(); 784 int32_t lengthOffset = 0; 785 if (!rulePatternFormat) { 786 toInsertInto.insert(pos, ruleText); 787 } 788 else { 789 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0); 790 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); 791 int initialLength = toInsertInto.length(); 792 if (pluralRuleEnd < ruleText.length() - 1) { 793 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2)); 794 } 795 double pluralVal = number; 796 if (0 <= pluralVal && pluralVal < 1) { 797 // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior. 798 // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors. 799 pluralVal = uprv_round(pluralVal * uprv_pow(radix, exponent)); 800 } 801 else { 802 pluralVal = pluralVal / uprv_pow(radix, exponent); 803 } 804 toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status)); 805 if (pluralRuleStart > 0) { 806 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart)); 807 } 808 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength); 809 } 810 811 if (sub2 != NULL) { 812 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); 813 } 814 if (sub1 != NULL) { 815 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); 816 } 817 } 818 819 /** 820 * Used by the owning rule set to determine whether to invoke the 821 * rollback rule (i.e., whether this rule or the one that precedes 822 * it in the rule set's list should be used to format the number) 823 * @param The number being formatted 824 * @return True if the rule set should use the rule that precedes 825 * this one in its list; false if it should use this rule 826 */ 827 UBool 828 NFRule::shouldRollBack(double number) const 829 { 830 // we roll back if the rule contains a modulus substitution, 831 // the number being formatted is an even multiple of the rule's 832 // divisor, and the rule's base value is NOT an even multiple 833 // of its divisor 834 // In other words, if the original description had 835 // 100: << hundred[ >>]; 836 // that expands into 837 // 100: << hundred; 838 // 101: << hundred >>; 839 // internally. But when we're formatting 200, if we use the rule 840 // at 101, which would normally apply, we get "two hundred zero". 841 // To prevent this, we roll back and use the rule at 100 instead. 842 // This is the logic that makes this happen: the rule at 101 has 843 // a modulus substitution, its base value isn't an even multiple 844 // of 100, and the value we're trying to format _is_ an even 845 // multiple of 100. This is called the "rollback rule." 846 if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) { 847 int64_t re = util64_pow(radix, exponent); 848 return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0; 849 } 850 return FALSE; 851 } 852 853 //----------------------------------------------------------------------- 854 // parsing 855 //----------------------------------------------------------------------- 856 857 /** 858 * Attempts to parse the string with this rule. 859 * @param text The string being parsed 860 * @param parsePosition On entry, the value is ignored and assumed to 861 * be 0. On exit, this has been updated with the position of the first 862 * character not consumed by matching the text against this rule 863 * (if this rule doesn't match the text at all, the parse position 864 * if left unchanged (presumably at 0) and the function returns 865 * new Long(0)). 866 * @param isFractionRule True if this rule is contained within a 867 * fraction rule set. This is only used if the rule has no 868 * substitutions. 869 * @return If this rule matched the text, this is the rule's base value 870 * combined appropriately with the results of parsing the substitutions. 871 * If nothing matched, this is new Long(0) and the parse position is 872 * left unchanged. The result will be an instance of Long if the 873 * result is an integer and Double otherwise. The result is never null. 874 */ 875 #ifdef RBNF_DEBUG 876 #include <stdio.h> 877 878 static void dumpUS(FILE* f, const UnicodeString& us) { 879 int len = us.length(); 880 char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; 881 if (buf != NULL) { 882 us.extract(0, len, buf); 883 buf[len] = 0; 884 fprintf(f, "%s", buf); 885 uprv_free(buf); //delete[] buf; 886 } 887 } 888 #endif 889 UBool 890 NFRule::doParse(const UnicodeString& text, 891 ParsePosition& parsePosition, 892 UBool isFractionRule, 893 double upperBound, 894 Formattable& resVal) const 895 { 896 // internally we operate on a copy of the string being parsed 897 // (because we're going to change it) and use our own ParsePosition 898 ParsePosition pp; 899 UnicodeString workText(text); 900 901 int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : ruleText.length(); 902 int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : ruleText.length(); 903 904 // check to see whether the text before the first substitution 905 // matches the text at the beginning of the string being 906 // parsed. If it does, strip that off the front of workText; 907 // otherwise, dump out with a mismatch 908 UnicodeString prefix; 909 prefix.setTo(ruleText, 0, sub1Pos); 910 911 #ifdef RBNF_DEBUG 912 fprintf(stderr, "doParse %p ", this); 913 { 914 UnicodeString rt; 915 _appendRuleText(rt); 916 dumpUS(stderr, rt); 917 } 918 919 fprintf(stderr, " text: '"); 920 dumpUS(stderr, text); 921 fprintf(stderr, "' prefix: '"); 922 dumpUS(stderr, prefix); 923 #endif 924 stripPrefix(workText, prefix, pp); 925 int32_t prefixLength = text.length() - workText.length(); 926 927 #ifdef RBNF_DEBUG 928 fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos); 929 #endif 930 931 if (pp.getIndex() == 0 && sub1Pos != 0) { 932 // commented out because ParsePosition doesn't have error index in 1.1.x 933 // restored for ICU4C port 934 parsePosition.setErrorIndex(pp.getErrorIndex()); 935 resVal.setLong(0); 936 return TRUE; 937 } 938 if (baseValue == kInfinityRule) { 939 // If you match this, don't try to perform any calculations on it. 940 parsePosition.setIndex(pp.getIndex()); 941 resVal.setDouble(uprv_getInfinity()); 942 return TRUE; 943 } 944 if (baseValue == kNaNRule) { 945 // If you match this, don't try to perform any calculations on it. 946 parsePosition.setIndex(pp.getIndex()); 947 resVal.setDouble(uprv_getNaN()); 948 return TRUE; 949 } 950 951 // this is the fun part. The basic guts of the rule-matching 952 // logic is matchToDelimiter(), which is called twice. The first 953 // time it searches the input string for the rule text BETWEEN 954 // the substitutions and tries to match the intervening text 955 // in the input string with the first substitution. If that 956 // succeeds, it then calls it again, this time to look for the 957 // rule text after the second substitution and to match the 958 // intervening input text against the second substitution. 959 // 960 // For example, say we have a rule that looks like this: 961 // first << middle >> last; 962 // and input text that looks like this: 963 // first one middle two last 964 // First we use stripPrefix() to match "first " in both places and 965 // strip it off the front, leaving 966 // one middle two last 967 // Then we use matchToDelimiter() to match " middle " and try to 968 // match "one" against a substitution. If it's successful, we now 969 // have 970 // two last 971 // We use matchToDelimiter() a second time to match " last" and 972 // try to match "two" against a substitution. If "two" matches 973 // the substitution, we have a successful parse. 974 // 975 // Since it's possible in many cases to find multiple instances 976 // of each of these pieces of rule text in the input string, 977 // we need to try all the possible combinations of these 978 // locations. This prevents us from prematurely declaring a mismatch, 979 // and makes sure we match as much input text as we can. 980 int highWaterMark = 0; 981 double result = 0; 982 int start = 0; 983 double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue); 984 985 UnicodeString temp; 986 do { 987 // our partial parse result starts out as this rule's base 988 // value. If it finds a successful match, matchToDelimiter() 989 // will compose this in some way with what it gets back from 990 // the substitution, giving us a new partial parse result 991 pp.setIndex(0); 992 993 temp.setTo(ruleText, sub1Pos, sub2Pos - sub1Pos); 994 double partialResult = matchToDelimiter(workText, start, tempBaseValue, 995 temp, pp, sub1, 996 upperBound); 997 998 // if we got a successful match (or were trying to match a 999 // null substitution), pp is now pointing at the first unmatched 1000 // character. Take note of that, and try matchToDelimiter() 1001 // on the input text again 1002 if (pp.getIndex() != 0 || sub1 == NULL) { 1003 start = pp.getIndex(); 1004 1005 UnicodeString workText2; 1006 workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); 1007 ParsePosition pp2; 1008 1009 // the second matchToDelimiter() will compose our previous 1010 // partial result with whatever it gets back from its 1011 // substitution if there's a successful match, giving us 1012 // a real result 1013 temp.setTo(ruleText, sub2Pos, ruleText.length() - sub2Pos); 1014 partialResult = matchToDelimiter(workText2, 0, partialResult, 1015 temp, pp2, sub2, 1016 upperBound); 1017 1018 // if we got a successful match on this second 1019 // matchToDelimiter() call, update the high-water mark 1020 // and result (if necessary) 1021 if (pp2.getIndex() != 0 || sub2 == NULL) { 1022 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { 1023 highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); 1024 result = partialResult; 1025 } 1026 } 1027 else { 1028 // commented out because ParsePosition doesn't have error index in 1.1.x 1029 // restored for ICU4C port 1030 int32_t temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex(); 1031 if (temp> parsePosition.getErrorIndex()) { 1032 parsePosition.setErrorIndex(temp); 1033 } 1034 } 1035 } 1036 else { 1037 // commented out because ParsePosition doesn't have error index in 1.1.x 1038 // restored for ICU4C port 1039 int32_t temp = sub1Pos + pp.getErrorIndex(); 1040 if (temp > parsePosition.getErrorIndex()) { 1041 parsePosition.setErrorIndex(temp); 1042 } 1043 } 1044 // keep trying to match things until the outer matchToDelimiter() 1045 // call fails to make a match (each time, it picks up where it 1046 // left off the previous time) 1047 } while (sub1Pos != sub2Pos 1048 && pp.getIndex() > 0 1049 && pp.getIndex() < workText.length() 1050 && pp.getIndex() != start); 1051 1052 // update the caller's ParsePosition with our high-water mark 1053 // (i.e., it now points at the first character this function 1054 // didn't match-- the ParsePosition is therefore unchanged if 1055 // we didn't match anything) 1056 parsePosition.setIndex(highWaterMark); 1057 // commented out because ParsePosition doesn't have error index in 1.1.x 1058 // restored for ICU4C port 1059 if (highWaterMark > 0) { 1060 parsePosition.setErrorIndex(0); 1061 } 1062 1063 // this is a hack for one unusual condition: Normally, whether this 1064 // rule belong to a fraction rule set or not is handled by its 1065 // substitutions. But if that rule HAS NO substitutions, then 1066 // we have to account for it here. By definition, if the matching 1067 // rule in a fraction rule set has no substitutions, its numerator 1068 // is 1, and so the result is the reciprocal of its base value. 1069 if (isFractionRule && highWaterMark > 0 && sub1 == NULL) { 1070 result = 1 / result; 1071 } 1072 1073 resVal.setDouble(result); 1074 return TRUE; // ??? do we need to worry if it is a long or a double? 1075 } 1076 1077 /** 1078 * This function is used by parse() to match the text being parsed 1079 * against a possible prefix string. This function 1080 * matches characters from the beginning of the string being parsed 1081 * to characters from the prospective prefix. If they match, pp is 1082 * updated to the first character not matched, and the result is 1083 * the unparsed part of the string. If they don't match, the whole 1084 * string is returned, and pp is left unchanged. 1085 * @param text The string being parsed 1086 * @param prefix The text to match against 1087 * @param pp On entry, ignored and assumed to be 0. On exit, points 1088 * to the first unmatched character (assuming the whole prefix matched), 1089 * or is unchanged (if the whole prefix didn't match). 1090 * @return If things match, this is the unparsed part of "text"; 1091 * if they didn't match, this is "text". 1092 */ 1093 void 1094 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const 1095 { 1096 // if the prefix text is empty, dump out without doing anything 1097 if (prefix.length() != 0) { 1098 UErrorCode status = U_ZERO_ERROR; 1099 // use prefixLength() to match the beginning of 1100 // "text" against "prefix". This function returns the 1101 // number of characters from "text" that matched (or 0 if 1102 // we didn't match the whole prefix) 1103 int32_t pfl = prefixLength(text, prefix, status); 1104 if (U_FAILURE(status)) { // Memory allocation error. 1105 return; 1106 } 1107 if (pfl != 0) { 1108 // if we got a successful match, update the parse position 1109 // and strip the prefix off of "text" 1110 pp.setIndex(pp.getIndex() + pfl); 1111 text.remove(0, pfl); 1112 } 1113 } 1114 } 1115 1116 /** 1117 * Used by parse() to match a substitution and any following text. 1118 * "text" is searched for instances of "delimiter". For each instance 1119 * of delimiter, the intervening text is tested to see whether it 1120 * matches the substitution. The longest match wins. 1121 * @param text The string being parsed 1122 * @param startPos The position in "text" where we should start looking 1123 * for "delimiter". 1124 * @param baseValue A partial parse result (often the rule's base value), 1125 * which is combined with the result from matching the substitution 1126 * @param delimiter The string to search "text" for. 1127 * @param pp Ignored and presumed to be 0 on entry. If there's a match, 1128 * on exit this will point to the first unmatched character. 1129 * @param sub If we find "delimiter" in "text", this substitution is used 1130 * to match the text between the beginning of the string and the 1131 * position of "delimiter." (If "delimiter" is the empty string, then 1132 * this function just matches against this substitution and updates 1133 * everything accordingly.) 1134 * @param upperBound When matching the substitution, it will only 1135 * consider rules with base values lower than this value. 1136 * @return If there's a match, this is the result of composing 1137 * baseValue with the result of matching the substitution. Otherwise, 1138 * this is new Long(0). It's never null. If the result is an integer, 1139 * this will be an instance of Long; otherwise, it's an instance of 1140 * Double. 1141 * 1142 * !!! note {dlf} in point of fact, in the java code the caller always converts 1143 * the result to a double, so we might as well return one. 1144 */ 1145 double 1146 NFRule::matchToDelimiter(const UnicodeString& text, 1147 int32_t startPos, 1148 double _baseValue, 1149 const UnicodeString& delimiter, 1150 ParsePosition& pp, 1151 const NFSubstitution* sub, 1152 double upperBound) const 1153 { 1154 UErrorCode status = U_ZERO_ERROR; 1155 // if "delimiter" contains real (i.e., non-ignorable) text, search 1156 // it for "delimiter" beginning at "start". If that succeeds, then 1157 // use "sub"'s doParse() method to match the text before the 1158 // instance of "delimiter" we just found. 1159 if (!allIgnorable(delimiter, status)) { 1160 if (U_FAILURE(status)) { //Memory allocation error. 1161 return 0; 1162 } 1163 ParsePosition tempPP; 1164 Formattable result; 1165 1166 // use findText() to search for "delimiter". It returns a two- 1167 // element array: element 0 is the position of the match, and 1168 // element 1 is the number of characters that matched 1169 // "delimiter". 1170 int32_t dLen; 1171 int32_t dPos = findText(text, delimiter, startPos, &dLen); 1172 1173 // if findText() succeeded, isolate the text preceding the 1174 // match, and use "sub" to match that text 1175 while (dPos >= 0) { 1176 UnicodeString subText; 1177 subText.setTo(text, 0, dPos); 1178 if (subText.length() > 0) { 1179 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, 1180 #if UCONFIG_NO_COLLATION 1181 FALSE, 1182 #else 1183 formatter->isLenient(), 1184 #endif 1185 result); 1186 1187 // if the substitution could match all the text up to 1188 // where we found "delimiter", then this function has 1189 // a successful match. Bump the caller's parse position 1190 // to point to the first character after the text 1191 // that matches "delimiter", and return the result 1192 // we got from parsing the substitution. 1193 if (success && tempPP.getIndex() == dPos) { 1194 pp.setIndex(dPos + dLen); 1195 return result.getDouble(); 1196 } 1197 else { 1198 // commented out because ParsePosition doesn't have error index in 1.1.x 1199 // restored for ICU4C port 1200 if (tempPP.getErrorIndex() > 0) { 1201 pp.setErrorIndex(tempPP.getErrorIndex()); 1202 } else { 1203 pp.setErrorIndex(tempPP.getIndex()); 1204 } 1205 } 1206 } 1207 1208 // if we didn't match the substitution, search for another 1209 // copy of "delimiter" in "text" and repeat the loop if 1210 // we find it 1211 tempPP.setIndex(0); 1212 dPos = findText(text, delimiter, dPos + dLen, &dLen); 1213 } 1214 // if we make it here, this was an unsuccessful match, and we 1215 // leave pp unchanged and return 0 1216 pp.setIndex(0); 1217 return 0; 1218 1219 // if "delimiter" is empty, or consists only of ignorable characters 1220 // (i.e., is semantically empty), thwe we obviously can't search 1221 // for "delimiter". Instead, just use "sub" to parse as much of 1222 // "text" as possible. 1223 } 1224 else if (sub == NULL) { 1225 return _baseValue; 1226 } 1227 else { 1228 ParsePosition tempPP; 1229 Formattable result; 1230 1231 // try to match the whole string against the substitution 1232 UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, 1233 #if UCONFIG_NO_COLLATION 1234 FALSE, 1235 #else 1236 formatter->isLenient(), 1237 #endif 1238 result); 1239 if (success && (tempPP.getIndex() != 0)) { 1240 // if there's a successful match (or it's a null 1241 // substitution), update pp to point to the first 1242 // character we didn't match, and pass the result from 1243 // sub.doParse() on through to the caller 1244 pp.setIndex(tempPP.getIndex()); 1245 return result.getDouble(); 1246 } 1247 else { 1248 // commented out because ParsePosition doesn't have error index in 1.1.x 1249 // restored for ICU4C port 1250 pp.setErrorIndex(tempPP.getErrorIndex()); 1251 } 1252 1253 // and if we get to here, then nothing matched, so we return 1254 // 0 and leave pp alone 1255 return 0; 1256 } 1257 } 1258 1259 /** 1260 * Used by stripPrefix() to match characters. If lenient parse mode 1261 * is off, this just calls startsWith(). If lenient parse mode is on, 1262 * this function uses CollationElementIterators to match characters in 1263 * the strings (only primary-order differences are significant in 1264 * determining whether there's a match). 1265 * @param str The string being tested 1266 * @param prefix The text we're hoping to see at the beginning 1267 * of "str" 1268 * @return If "prefix" is found at the beginning of "str", this 1269 * is the number of characters in "str" that were matched (this 1270 * isn't necessarily the same as the length of "prefix" when matching 1271 * text with a collator). If there's no match, this is 0. 1272 */ 1273 int32_t 1274 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const 1275 { 1276 // if we're looking for an empty prefix, it obviously matches 1277 // zero characters. Just go ahead and return 0. 1278 if (prefix.length() == 0) { 1279 return 0; 1280 } 1281 1282 #if !UCONFIG_NO_COLLATION 1283 // go through all this grief if we're in lenient-parse mode 1284 if (formatter->isLenient()) { 1285 // get the formatter's collator and use it to create two 1286 // collation element iterators, one over the target string 1287 // and another over the prefix (right now, we'll throw an 1288 // exception if the collator we get back from the formatter 1289 // isn't a RuleBasedCollator, because RuleBasedCollator defines 1290 // the CollationElementIterator protocol. Hopefully, this 1291 // will change someday.) 1292 const RuleBasedCollator* collator = formatter->getCollator(); 1293 if (collator == NULL) { 1294 status = U_MEMORY_ALLOCATION_ERROR; 1295 return 0; 1296 } 1297 LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str)); 1298 LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix)); 1299 // Check for memory allocation error. 1300 if (strIter.isNull() || prefixIter.isNull()) { 1301 status = U_MEMORY_ALLOCATION_ERROR; 1302 return 0; 1303 } 1304 1305 UErrorCode err = U_ZERO_ERROR; 1306 1307 // The original code was problematic. Consider this match: 1308 // prefix = "fifty-" 1309 // string = " fifty-7" 1310 // The intent is to match string up to the '7', by matching 'fifty-' at position 1 1311 // in the string. Unfortunately, we were getting a match, and then computing where 1312 // the match terminated by rematching the string. The rematch code was using as an 1313 // initial guess the substring of string between 0 and prefix.length. Because of 1314 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving 1315 // the position before the hyphen in the string. Recursing down, we then parsed the 1316 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). 1317 // This was not pretty, especially since the string "fifty-7" parsed just fine. 1318 // 1319 // We have newer APIs now, so we can use calls on the iterator to determine what we 1320 // matched up to. If we terminate because we hit the last element in the string, 1321 // our match terminates at this length. If we terminate because we hit the last element 1322 // in the target, our match terminates at one before the element iterator position. 1323 1324 // match collation elements between the strings 1325 int32_t oStr = strIter->next(err); 1326 int32_t oPrefix = prefixIter->next(err); 1327 1328 while (oPrefix != CollationElementIterator::NULLORDER) { 1329 // skip over ignorable characters in the target string 1330 while (CollationElementIterator::primaryOrder(oStr) == 0 1331 && oStr != CollationElementIterator::NULLORDER) { 1332 oStr = strIter->next(err); 1333 } 1334 1335 // skip over ignorable characters in the prefix 1336 while (CollationElementIterator::primaryOrder(oPrefix) == 0 1337 && oPrefix != CollationElementIterator::NULLORDER) { 1338 oPrefix = prefixIter->next(err); 1339 } 1340 1341 // dlf: move this above following test, if we consume the 1342 // entire target, aren't we ok even if the source was also 1343 // entirely consumed? 1344 1345 // if skipping over ignorables brought to the end of 1346 // the prefix, we DID match: drop out of the loop 1347 if (oPrefix == CollationElementIterator::NULLORDER) { 1348 break; 1349 } 1350 1351 // if skipping over ignorables brought us to the end 1352 // of the target string, we didn't match and return 0 1353 if (oStr == CollationElementIterator::NULLORDER) { 1354 return 0; 1355 } 1356 1357 // match collation elements from the two strings 1358 // (considering only primary differences). If we 1359 // get a mismatch, dump out and return 0 1360 if (CollationElementIterator::primaryOrder(oStr) 1361 != CollationElementIterator::primaryOrder(oPrefix)) { 1362 return 0; 1363 1364 // otherwise, advance to the next character in each string 1365 // and loop (we drop out of the loop when we exhaust 1366 // collation elements in the prefix) 1367 } else { 1368 oStr = strIter->next(err); 1369 oPrefix = prefixIter->next(err); 1370 } 1371 } 1372 1373 int32_t result = strIter->getOffset(); 1374 if (oStr != CollationElementIterator::NULLORDER) { 1375 --result; // back over character that we don't want to consume; 1376 } 1377 1378 #ifdef RBNF_DEBUG 1379 fprintf(stderr, "prefix length: %d\n", result); 1380 #endif 1381 return result; 1382 #if 0 1383 //---------------------------------------------------------------- 1384 // JDK 1.2-specific API call 1385 // return strIter.getOffset(); 1386 //---------------------------------------------------------------- 1387 // JDK 1.1 HACK (take out for 1.2-specific code) 1388 1389 // if we make it to here, we have a successful match. Now we 1390 // have to find out HOW MANY characters from the target string 1391 // matched the prefix (there isn't necessarily a one-to-one 1392 // mapping between collation elements and characters). 1393 // In JDK 1.2, there's a simple getOffset() call we can use. 1394 // In JDK 1.1, on the other hand, we have to go through some 1395 // ugly contortions. First, use the collator to compare the 1396 // same number of characters from the prefix and target string. 1397 // If they're equal, we're done. 1398 collator->setStrength(Collator::PRIMARY); 1399 if (str.length() >= prefix.length()) { 1400 UnicodeString temp; 1401 temp.setTo(str, 0, prefix.length()); 1402 if (collator->equals(temp, prefix)) { 1403 #ifdef RBNF_DEBUG 1404 fprintf(stderr, "returning: %d\n", prefix.length()); 1405 #endif 1406 return prefix.length(); 1407 } 1408 } 1409 1410 // if they're not equal, then we have to compare successively 1411 // larger and larger substrings of the target string until we 1412 // get to one that matches the prefix. At that point, we know 1413 // how many characters matched the prefix, and we can return. 1414 int32_t p = 1; 1415 while (p <= str.length()) { 1416 UnicodeString temp; 1417 temp.setTo(str, 0, p); 1418 if (collator->equals(temp, prefix)) { 1419 return p; 1420 } else { 1421 ++p; 1422 } 1423 } 1424 1425 // SHOULD NEVER GET HERE!!! 1426 return 0; 1427 //---------------------------------------------------------------- 1428 #endif 1429 1430 // If lenient parsing is turned off, forget all that crap above. 1431 // Just use String.startsWith() and be done with it. 1432 } else 1433 #endif 1434 { 1435 if (str.startsWith(prefix)) { 1436 return prefix.length(); 1437 } else { 1438 return 0; 1439 } 1440 } 1441 } 1442 1443 /** 1444 * Searches a string for another string. If lenient parsing is off, 1445 * this just calls indexOf(). If lenient parsing is on, this function 1446 * uses CollationElementIterator to match characters, and only 1447 * primary-order differences are significant in determining whether 1448 * there's a match. 1449 * @param str The string to search 1450 * @param key The string to search "str" for 1451 * @param startingAt The index into "str" where the search is to 1452 * begin 1453 * @return A two-element array of ints. Element 0 is the position 1454 * of the match, or -1 if there was no match. Element 1 is the 1455 * number of characters in "str" that matched (which isn't necessarily 1456 * the same as the length of "key") 1457 */ 1458 int32_t 1459 NFRule::findText(const UnicodeString& str, 1460 const UnicodeString& key, 1461 int32_t startingAt, 1462 int32_t* length) const 1463 { 1464 if (rulePatternFormat) { 1465 Formattable result; 1466 FieldPosition position(UNUM_INTEGER_FIELD); 1467 position.setBeginIndex(startingAt); 1468 rulePatternFormat->parseType(str, this, result, position); 1469 int start = position.getBeginIndex(); 1470 if (start >= 0) { 1471 int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0); 1472 int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2; 1473 int32_t matchLen = position.getEndIndex() - start; 1474 UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart)); 1475 UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix)); 1476 if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0 1477 && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0) 1478 { 1479 *length = matchLen + prefix.length() + suffix.length(); 1480 return start - prefix.length(); 1481 } 1482 } 1483 *length = 0; 1484 return -1; 1485 } 1486 if (!formatter->isLenient()) { 1487 // if lenient parsing is turned off, this is easy: just call 1488 // String.indexOf() and we're done 1489 *length = key.length(); 1490 return str.indexOf(key, startingAt); 1491 } 1492 else { 1493 // but if lenient parsing is turned ON, we've got some work 1494 // ahead of us 1495 return findTextLenient(str, key, startingAt, length); 1496 } 1497 } 1498 1499 int32_t 1500 NFRule::findTextLenient(const UnicodeString& str, 1501 const UnicodeString& key, 1502 int32_t startingAt, 1503 int32_t* length) const 1504 { 1505 //---------------------------------------------------------------- 1506 // JDK 1.1 HACK (take out of 1.2-specific code) 1507 1508 // in JDK 1.2, CollationElementIterator provides us with an 1509 // API to map between character offsets and collation elements 1510 // and we can do this by marching through the string comparing 1511 // collation elements. We can't do that in JDK 1.1. Insted, 1512 // we have to go through this horrible slow mess: 1513 int32_t p = startingAt; 1514 int32_t keyLen = 0; 1515 1516 // basically just isolate smaller and smaller substrings of 1517 // the target string (each running to the end of the string, 1518 // and with the first one running from startingAt to the end) 1519 // and then use prefixLength() to see if the search key is at 1520 // the beginning of each substring. This is excruciatingly 1521 // slow, but it will locate the key and tell use how long the 1522 // matching text was. 1523 UnicodeString temp; 1524 UErrorCode status = U_ZERO_ERROR; 1525 while (p < str.length() && keyLen == 0) { 1526 temp.setTo(str, p, str.length() - p); 1527 keyLen = prefixLength(temp, key, status); 1528 if (U_FAILURE(status)) { 1529 break; 1530 } 1531 if (keyLen != 0) { 1532 *length = keyLen; 1533 return p; 1534 } 1535 ++p; 1536 } 1537 // if we make it to here, we didn't find it. Return -1 for the 1538 // location. The length should be ignored, but set it to 0, 1539 // which should be "safe" 1540 *length = 0; 1541 return -1; 1542 } 1543 1544 /** 1545 * Checks to see whether a string consists entirely of ignorable 1546 * characters. 1547 * @param str The string to test. 1548 * @return true if the string is empty of consists entirely of 1549 * characters that the number formatter's collator says are 1550 * ignorable at the primary-order level. false otherwise. 1551 */ 1552 UBool 1553 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const 1554 { 1555 // if the string is empty, we can just return true 1556 if (str.length() == 0) { 1557 return TRUE; 1558 } 1559 1560 #if !UCONFIG_NO_COLLATION 1561 // if lenient parsing is turned on, walk through the string with 1562 // a collation element iterator and make sure each collation 1563 // element is 0 (ignorable) at the primary level 1564 if (formatter->isLenient()) { 1565 const RuleBasedCollator* collator = formatter->getCollator(); 1566 if (collator == NULL) { 1567 status = U_MEMORY_ALLOCATION_ERROR; 1568 return FALSE; 1569 } 1570 LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str)); 1571 1572 // Memory allocation error check. 1573 if (iter.isNull()) { 1574 status = U_MEMORY_ALLOCATION_ERROR; 1575 return FALSE; 1576 } 1577 1578 UErrorCode err = U_ZERO_ERROR; 1579 int32_t o = iter->next(err); 1580 while (o != CollationElementIterator::NULLORDER 1581 && CollationElementIterator::primaryOrder(o) == 0) { 1582 o = iter->next(err); 1583 } 1584 1585 return o == CollationElementIterator::NULLORDER; 1586 } 1587 #endif 1588 1589 // if lenient parsing is turned off, there is no such thing as 1590 // an ignorable character: return true only if the string is empty 1591 return FALSE; 1592 } 1593 1594 void 1595 NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) { 1596 if (sub1 != NULL) { 1597 sub1->setDecimalFormatSymbols(newSymbols, status); 1598 } 1599 if (sub2 != NULL) { 1600 sub2->setDecimalFormatSymbols(newSymbols, status); 1601 } 1602 } 1603 1604 U_NAMESPACE_END 1605 1606 /* U_HAVE_RBNF */ 1607 #endif 1608