Home | History | Annotate | Download | only in rand.dist.bern.bernoulli
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // <random>
     11 
     12 // class bernoulli_distribution
     13 
     14 // template<class _URNG> result_type operator()(_URNG& g);
     15 
     16 #include <random>
     17 #include <numeric>
     18 #include <vector>
     19 #include <cassert>
     20 
     21 template <class T>
     22 inline
     23 T
     24 sqr(T x)
     25 {
     26     return x * x;
     27 }
     28 
     29 int main()
     30 {
     31     {
     32         typedef std::bernoulli_distribution D;
     33         typedef std::minstd_rand G;
     34         G g;
     35         D d(.75);
     36         const int N = 100000;
     37         std::vector<D::result_type> u;
     38         for (int i = 0; i < N; ++i)
     39             u.push_back(d(g));
     40         double mean = std::accumulate(u.begin(), u.end(),
     41                                               double(0)) / u.size();
     42         double var = 0;
     43         double skew = 0;
     44         double kurtosis = 0;
     45         for (int i = 0; i < u.size(); ++i)
     46         {
     47             double d = (u[i] - mean);
     48             double d2 = sqr(d);
     49             var += d2;
     50             skew += d * d2;
     51             kurtosis += d2 * d2;
     52         }
     53         var /= u.size();
     54         double dev = std::sqrt(var);
     55         skew /= u.size() * dev * var;
     56         kurtosis /= u.size() * var * var;
     57         kurtosis -= 3;
     58         double x_mean = d.p();
     59         double x_var = d.p()*(1-d.p());
     60         double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
     61         double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
     62         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     63         assert(std::abs((var - x_var) / x_var) < 0.01);
     64         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     65         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
     66     }
     67     {
     68         typedef std::bernoulli_distribution D;
     69         typedef std::minstd_rand G;
     70         G g;
     71         D d(.25);
     72         const int N = 100000;
     73         std::vector<D::result_type> u;
     74         for (int i = 0; i < N; ++i)
     75             u.push_back(d(g));
     76         double mean = std::accumulate(u.begin(), u.end(),
     77                                               double(0)) / u.size();
     78         double var = 0;
     79         double skew = 0;
     80         double kurtosis = 0;
     81         for (int i = 0; i < u.size(); ++i)
     82         {
     83             double d = (u[i] - mean);
     84             double d2 = sqr(d);
     85             var += d2;
     86             skew += d * d2;
     87             kurtosis += d2 * d2;
     88         }
     89         var /= u.size();
     90         double dev = std::sqrt(var);
     91         skew /= u.size() * dev * var;
     92         kurtosis /= u.size() * var * var;
     93         kurtosis -= 3;
     94         double x_mean = d.p();
     95         double x_var = d.p()*(1-d.p());
     96         double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
     97         double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
     98         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     99         assert(std::abs((var - x_var) / x_var) < 0.01);
    100         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    101         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
    102     }
    103 }
    104