Home | History | Annotate | Download | only in rand.dist.bern.bernoulli
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // <random>
     11 
     12 // class bernoulli_distribution
     13 
     14 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
     15 
     16 #include <random>
     17 #include <numeric>
     18 #include <vector>
     19 #include <cassert>
     20 
     21 template <class T>
     22 inline
     23 T
     24 sqr(T x)
     25 {
     26     return x * x;
     27 }
     28 
     29 int main()
     30 {
     31     {
     32         typedef std::bernoulli_distribution D;
     33         typedef D::param_type P;
     34         typedef std::minstd_rand G;
     35         G g;
     36         D d(.75);
     37         P p(.25);
     38         const int N = 100000;
     39         std::vector<D::result_type> u;
     40         for (int i = 0; i < N; ++i)
     41             u.push_back(d(g, p));
     42         double mean = std::accumulate(u.begin(), u.end(),
     43                                               double(0)) / u.size();
     44         double var = 0;
     45         double skew = 0;
     46         double kurtosis = 0;
     47         for (int i = 0; i < u.size(); ++i)
     48         {
     49             double d = (u[i] - mean);
     50             double d2 = sqr(d);
     51             var += d2;
     52             skew += d * d2;
     53             kurtosis += d2 * d2;
     54         }
     55         var /= u.size();
     56         double dev = std::sqrt(var);
     57         skew /= u.size() * dev * var;
     58         kurtosis /= u.size() * var * var;
     59         kurtosis -= 3;
     60         double x_mean = p.p();
     61         double x_var = p.p()*(1-p.p());
     62         double x_skew = (1 - 2 * p.p())/std::sqrt(x_var);
     63         double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var;
     64         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     65         assert(std::abs((var - x_var) / x_var) < 0.01);
     66         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     67         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
     68     }
     69     {
     70         typedef std::bernoulli_distribution D;
     71         typedef D::param_type P;
     72         typedef std::minstd_rand G;
     73         G g;
     74         D d(.25);
     75         P p(.75);
     76         const int N = 100000;
     77         std::vector<D::result_type> u;
     78         for (int i = 0; i < N; ++i)
     79             u.push_back(d(g, p));
     80         double mean = std::accumulate(u.begin(), u.end(),
     81                                               double(0)) / u.size();
     82         double var = 0;
     83         double skew = 0;
     84         double kurtosis = 0;
     85         for (int i = 0; i < u.size(); ++i)
     86         {
     87             double d = (u[i] - mean);
     88             double d2 = sqr(d);
     89             var += d2;
     90             skew += d * d2;
     91             kurtosis += d2 * d2;
     92         }
     93         var /= u.size();
     94         double dev = std::sqrt(var);
     95         skew /= u.size() * dev * var;
     96         kurtosis /= u.size() * var * var;
     97         kurtosis -= 3;
     98         double x_mean = p.p();
     99         double x_var = p.p()*(1-p.p());
    100         double x_skew = (1 - 2 * p.p())/std::sqrt(x_var);
    101         double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var;
    102         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    103         assert(std::abs((var - x_var) / x_var) < 0.01);
    104         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    105         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
    106     }
    107 }
    108