Home | History | Annotate | Download | only in rand.dist.bern.bin
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // REQUIRES: long_tests
     11 
     12 // <random>
     13 
     14 // template<class IntType = int>
     15 // class binomial_distribution
     16 
     17 // template<class _URNG> result_type operator()(_URNG& g);
     18 
     19 #include <random>
     20 #include <numeric>
     21 #include <vector>
     22 #include <cassert>
     23 
     24 template <class T>
     25 inline
     26 T
     27 sqr(T x)
     28 {
     29     return x * x;
     30 }
     31 
     32 int main()
     33 {
     34     {
     35         typedef std::binomial_distribution<> D;
     36         typedef std::mt19937_64 G;
     37         G g;
     38         D d(5, .75);
     39         const int N = 1000000;
     40         std::vector<D::result_type> u;
     41         for (int i = 0; i < N; ++i)
     42         {
     43             D::result_type v = d(g);
     44             assert(d.min() <= v && v <= d.max());
     45             u.push_back(v);
     46         }
     47         double mean = std::accumulate(u.begin(), u.end(),
     48                                               double(0)) / u.size();
     49         double var = 0;
     50         double skew = 0;
     51         double kurtosis = 0;
     52         for (int i = 0; i < u.size(); ++i)
     53         {
     54             double d = (u[i] - mean);
     55             double d2 = sqr(d);
     56             var += d2;
     57             skew += d * d2;
     58             kurtosis += d2 * d2;
     59         }
     60         var /= u.size();
     61         double dev = std::sqrt(var);
     62         skew /= u.size() * dev * var;
     63         kurtosis /= u.size() * var * var;
     64         kurtosis -= 3;
     65         double x_mean = d.t() * d.p();
     66         double x_var = x_mean*(1-d.p());
     67         double x_skew = (1-2*d.p()) / std::sqrt(x_var);
     68         double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
     69         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     70         assert(std::abs((var - x_var) / x_var) < 0.01);
     71         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     72         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
     73     }
     74     {
     75         typedef std::binomial_distribution<> D;
     76         typedef std::mt19937 G;
     77         G g;
     78         D d(30, .03125);
     79         const int N = 100000;
     80         std::vector<D::result_type> u;
     81         for (int i = 0; i < N; ++i)
     82         {
     83             D::result_type v = d(g);
     84             assert(d.min() <= v && v <= d.max());
     85             u.push_back(v);
     86         }
     87         double mean = std::accumulate(u.begin(), u.end(),
     88                                               double(0)) / u.size();
     89         double var = 0;
     90         double skew = 0;
     91         double kurtosis = 0;
     92         for (int i = 0; i < u.size(); ++i)
     93         {
     94             double d = (u[i] - mean);
     95             double d2 = sqr(d);
     96             var += d2;
     97             skew += d * d2;
     98             kurtosis += d2 * d2;
     99         }
    100         var /= u.size();
    101         double dev = std::sqrt(var);
    102         skew /= u.size() * dev * var;
    103         kurtosis /= u.size() * var * var;
    104         kurtosis -= 3;
    105         double x_mean = d.t() * d.p();
    106         double x_var = x_mean*(1-d.p());
    107         double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    108         double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    109         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    110         assert(std::abs((var - x_var) / x_var) < 0.01);
    111         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    112         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    113     }
    114     {
    115         typedef std::binomial_distribution<> D;
    116         typedef std::mt19937 G;
    117         G g;
    118         D d(40, .25);
    119         const int N = 100000;
    120         std::vector<D::result_type> u;
    121         for (int i = 0; i < N; ++i)
    122         {
    123             D::result_type v = d(g);
    124             assert(d.min() <= v && v <= d.max());
    125             u.push_back(v);
    126         }
    127         double mean = std::accumulate(u.begin(), u.end(),
    128                                               double(0)) / u.size();
    129         double var = 0;
    130         double skew = 0;
    131         double kurtosis = 0;
    132         for (int i = 0; i < u.size(); ++i)
    133         {
    134             double d = (u[i] - mean);
    135             double d2 = sqr(d);
    136             var += d2;
    137             skew += d * d2;
    138             kurtosis += d2 * d2;
    139         }
    140         var /= u.size();
    141         double dev = std::sqrt(var);
    142         skew /= u.size() * dev * var;
    143         kurtosis /= u.size() * var * var;
    144         kurtosis -= 3;
    145         double x_mean = d.t() * d.p();
    146         double x_var = x_mean*(1-d.p());
    147         double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    148         double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    149         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    150         assert(std::abs((var - x_var) / x_var) < 0.01);
    151         assert(std::abs((skew - x_skew) / x_skew) < 0.03);
    152         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
    153     }
    154     {
    155         typedef std::binomial_distribution<> D;
    156         typedef std::mt19937 G;
    157         G g;
    158         D d(40, 0);
    159         const int N = 100000;
    160         std::vector<D::result_type> u;
    161         for (int i = 0; i < N; ++i)
    162         {
    163             D::result_type v = d(g);
    164             assert(d.min() <= v && v <= d.max());
    165             u.push_back(v);
    166         }
    167         double mean = std::accumulate(u.begin(), u.end(),
    168                                               double(0)) / u.size();
    169         double var = 0;
    170         double skew = 0;
    171         double kurtosis = 0;
    172         for (int i = 0; i < u.size(); ++i)
    173         {
    174             double d = (u[i] - mean);
    175             double d2 = sqr(d);
    176             var += d2;
    177             skew += d * d2;
    178             kurtosis += d2 * d2;
    179         }
    180         var /= u.size();
    181         double dev = std::sqrt(var);
    182         // In this case:
    183         //   skew     computes to 0./0. == nan
    184         //   kurtosis computes to 0./0. == nan
    185         //   x_skew     == inf
    186         //   x_kurtosis == inf
    187         //   These tests are commented out because UBSan warns about division by 0
    188 //        skew /= u.size() * dev * var;
    189 //        kurtosis /= u.size() * var * var;
    190 //        kurtosis -= 3;
    191         double x_mean = d.t() * d.p();
    192         double x_var = x_mean*(1-d.p());
    193 //        double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    194 //        double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    195         assert(mean == x_mean);
    196         assert(var == x_var);
    197 //        assert(skew == x_skew);
    198 //        assert(kurtosis == x_kurtosis);
    199     }
    200     {
    201         typedef std::binomial_distribution<> D;
    202         typedef std::mt19937 G;
    203         G g;
    204         D d(40, 1);
    205         const int N = 100000;
    206         std::vector<D::result_type> u;
    207         for (int i = 0; i < N; ++i)
    208         {
    209             D::result_type v = d(g);
    210             assert(d.min() <= v && v <= d.max());
    211             u.push_back(v);
    212         }
    213         double mean = std::accumulate(u.begin(), u.end(),
    214                                               double(0)) / u.size();
    215         double var = 0;
    216         double skew = 0;
    217         double kurtosis = 0;
    218         for (int i = 0; i < u.size(); ++i)
    219         {
    220             double d = (u[i] - mean);
    221             double d2 = sqr(d);
    222             var += d2;
    223             skew += d * d2;
    224             kurtosis += d2 * d2;
    225         }
    226         var /= u.size();
    227         double dev = std::sqrt(var);
    228         // In this case:
    229         //   skew     computes to 0./0. == nan
    230         //   kurtosis computes to 0./0. == nan
    231         //   x_skew     == -inf
    232         //   x_kurtosis == inf
    233         //   These tests are commented out because UBSan warns about division by 0
    234 //        skew /= u.size() * dev * var;
    235 //        kurtosis /= u.size() * var * var;
    236 //        kurtosis -= 3;
    237         double x_mean = d.t() * d.p();
    238         double x_var = x_mean*(1-d.p());
    239 //        double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    240 //        double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    241         assert(mean == x_mean);
    242         assert(var == x_var);
    243 //        assert(skew == x_skew);
    244 //        assert(kurtosis == x_kurtosis);
    245     }
    246     {
    247         typedef std::binomial_distribution<> D;
    248         typedef std::mt19937 G;
    249         G g;
    250         D d(400, 0.5);
    251         const int N = 100000;
    252         std::vector<D::result_type> u;
    253         for (int i = 0; i < N; ++i)
    254         {
    255             D::result_type v = d(g);
    256             assert(d.min() <= v && v <= d.max());
    257             u.push_back(v);
    258         }
    259         double mean = std::accumulate(u.begin(), u.end(),
    260                                               double(0)) / u.size();
    261         double var = 0;
    262         double skew = 0;
    263         double kurtosis = 0;
    264         for (int i = 0; i < u.size(); ++i)
    265         {
    266             double d = (u[i] - mean);
    267             double d2 = sqr(d);
    268             var += d2;
    269             skew += d * d2;
    270             kurtosis += d2 * d2;
    271         }
    272         var /= u.size();
    273         double dev = std::sqrt(var);
    274         skew /= u.size() * dev * var;
    275         kurtosis /= u.size() * var * var;
    276         kurtosis -= 3;
    277         double x_mean = d.t() * d.p();
    278         double x_var = x_mean*(1-d.p());
    279         double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    280         double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    281         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    282         assert(std::abs((var - x_var) / x_var) < 0.01);
    283         assert(std::abs(skew - x_skew) < 0.01);
    284         assert(std::abs(kurtosis - x_kurtosis) < 0.01);
    285     }
    286     {
    287         typedef std::binomial_distribution<> D;
    288         typedef std::mt19937 G;
    289         G g;
    290         D d(1, 0.5);
    291         const int N = 100000;
    292         std::vector<D::result_type> u;
    293         for (int i = 0; i < N; ++i)
    294         {
    295             D::result_type v = d(g);
    296             assert(d.min() <= v && v <= d.max());
    297             u.push_back(v);
    298         }
    299         double mean = std::accumulate(u.begin(), u.end(),
    300                                               double(0)) / u.size();
    301         double var = 0;
    302         double skew = 0;
    303         double kurtosis = 0;
    304         for (int i = 0; i < u.size(); ++i)
    305         {
    306             double d = (u[i] - mean);
    307             double d2 = sqr(d);
    308             var += d2;
    309             skew += d * d2;
    310             kurtosis += d2 * d2;
    311         }
    312         var /= u.size();
    313         double dev = std::sqrt(var);
    314         skew /= u.size() * dev * var;
    315         kurtosis /= u.size() * var * var;
    316         kurtosis -= 3;
    317         double x_mean = d.t() * d.p();
    318         double x_var = x_mean*(1-d.p());
    319         double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    320         double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    321         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    322         assert(std::abs((var - x_var) / x_var) < 0.01);
    323         assert(std::abs(skew - x_skew) < 0.01);
    324         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    325     }
    326     {
    327         const int N = 100000;
    328         std::mt19937 gen1;
    329         std::mt19937 gen2;
    330 
    331         std::binomial_distribution<>         dist1(5, 0.1);
    332         std::binomial_distribution<unsigned> dist2(5, 0.1);
    333 
    334         for(int i = 0; i < N; ++i)
    335             assert(dist1(gen1) == dist2(gen2));
    336     }
    337     {
    338         typedef std::binomial_distribution<> D;
    339         typedef std::mt19937 G;
    340         G g;
    341         D d(0, 0.005);
    342         const int N = 100000;
    343         std::vector<D::result_type> u;
    344         for (int i = 0; i < N; ++i)
    345         {
    346             D::result_type v = d(g);
    347             assert(d.min() <= v && v <= d.max());
    348             u.push_back(v);
    349         }
    350         double mean = std::accumulate(u.begin(), u.end(),
    351                                               double(0)) / u.size();
    352         double var = 0;
    353         double skew = 0;
    354         double kurtosis = 0;
    355         for (int i = 0; i < u.size(); ++i)
    356         {
    357             double d = (u[i] - mean);
    358             double d2 = sqr(d);
    359             var += d2;
    360             skew += d * d2;
    361             kurtosis += d2 * d2;
    362         }
    363         var /= u.size();
    364         double dev = std::sqrt(var);
    365         // In this case:
    366         //   skew     computes to 0./0. == nan
    367         //   kurtosis computes to 0./0. == nan
    368         //   x_skew     == inf
    369         //   x_kurtosis == inf
    370         //   These tests are commented out because UBSan warns about division by 0
    371 //        skew /= u.size() * dev * var;
    372 //        kurtosis /= u.size() * var * var;
    373 //        kurtosis -= 3;
    374         double x_mean = d.t() * d.p();
    375         double x_var = x_mean*(1-d.p());
    376 //        double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    377 //        double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    378         assert(mean == x_mean);
    379         assert(var == x_var);
    380 //        assert(skew == x_skew);
    381 //        assert(kurtosis == x_kurtosis);
    382     }
    383     {
    384         typedef std::binomial_distribution<> D;
    385         typedef std::mt19937 G;
    386         G g;
    387         D d(0, 0);
    388         const int N = 100000;
    389         std::vector<D::result_type> u;
    390         for (int i = 0; i < N; ++i)
    391         {
    392             D::result_type v = d(g);
    393             assert(d.min() <= v && v <= d.max());
    394             u.push_back(v);
    395         }
    396         double mean = std::accumulate(u.begin(), u.end(),
    397                                               double(0)) / u.size();
    398         double var = 0;
    399         double skew = 0;
    400         double kurtosis = 0;
    401         for (int i = 0; i < u.size(); ++i)
    402         {
    403             double d = (u[i] - mean);
    404             double d2 = sqr(d);
    405             var += d2;
    406             skew += d * d2;
    407             kurtosis += d2 * d2;
    408         }
    409         var /= u.size();
    410         double dev = std::sqrt(var);
    411         // In this case:
    412         //   skew     computes to 0./0. == nan
    413         //   kurtosis computes to 0./0. == nan
    414         //   x_skew     == inf
    415         //   x_kurtosis == inf
    416         //   These tests are commented out because UBSan warns about division by 0
    417 //        skew /= u.size() * dev * var;
    418 //        kurtosis /= u.size() * var * var;
    419 //        kurtosis -= 3;
    420         double x_mean = d.t() * d.p();
    421         double x_var = x_mean*(1-d.p());
    422 //        double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    423 //        double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    424         assert(mean == x_mean);
    425         assert(var == x_var);
    426 //        assert(skew == x_skew);
    427 //        assert(kurtosis == x_kurtosis);
    428     }
    429     {
    430         typedef std::binomial_distribution<> D;
    431         typedef std::mt19937 G;
    432         G g;
    433         D d(0, 1);
    434         const int N = 100000;
    435         std::vector<D::result_type> u;
    436         for (int i = 0; i < N; ++i)
    437         {
    438             D::result_type v = d(g);
    439             assert(d.min() <= v && v <= d.max());
    440             u.push_back(v);
    441         }
    442         double mean = std::accumulate(u.begin(), u.end(),
    443                                               double(0)) / u.size();
    444         double var = 0;
    445         double skew = 0;
    446         double kurtosis = 0;
    447         for (int i = 0; i < u.size(); ++i)
    448         {
    449             double d = (u[i] - mean);
    450             double d2 = sqr(d);
    451             var += d2;
    452             skew += d * d2;
    453             kurtosis += d2 * d2;
    454         }
    455         var /= u.size();
    456         double dev = std::sqrt(var);
    457         // In this case:
    458         //   skew     computes to 0./0. == nan
    459         //   kurtosis computes to 0./0. == nan
    460         //   x_skew     == -inf
    461         //   x_kurtosis == inf
    462         //   These tests are commented out because UBSan warns about division by 0
    463 //        skew /= u.size() * dev * var;
    464 //        kurtosis /= u.size() * var * var;
    465 //        kurtosis -= 3;
    466         double x_mean = d.t() * d.p();
    467         double x_var = x_mean*(1-d.p());
    468 //        double x_skew = (1-2*d.p()) / std::sqrt(x_var);
    469 //        double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
    470         assert(mean == x_mean);
    471         assert(var == x_var);
    472 //        assert(skew == x_skew);
    473 //        assert(kurtosis == x_kurtosis);
    474     }
    475 }
    476