Home | History | Annotate | Download | only in rand.dist.pois.gamma
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // REQUIRES: long_tests
     11 
     12 // <random>
     13 
     14 // template<class RealType = double>
     15 // class gamma_distribution
     16 
     17 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
     18 
     19 #include <random>
     20 #include <cassert>
     21 #include <vector>
     22 #include <numeric>
     23 
     24 template <class T>
     25 inline
     26 T
     27 sqr(T x)
     28 {
     29     return x * x;
     30 }
     31 
     32 int main()
     33 {
     34     {
     35         typedef std::gamma_distribution<> D;
     36         typedef D::param_type P;
     37         typedef std::mt19937 G;
     38         G g;
     39         D d(0.5, 2);
     40         P p(1, .5);
     41         const int N = 1000000;
     42         std::vector<D::result_type> u;
     43         for (int i = 0; i < N; ++i)
     44         {
     45             D::result_type v = d(g, p);
     46             assert(d.min() < v);
     47             u.push_back(v);
     48         }
     49         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     50         double var = 0;
     51         double skew = 0;
     52         double kurtosis = 0;
     53         for (int i = 0; i < u.size(); ++i)
     54         {
     55             double d = (u[i] - mean);
     56             double d2 = sqr(d);
     57             var += d2;
     58             skew += d * d2;
     59             kurtosis += d2 * d2;
     60         }
     61         var /= u.size();
     62         double dev = std::sqrt(var);
     63         skew /= u.size() * dev * var;
     64         kurtosis /= u.size() * var * var;
     65         kurtosis -= 3;
     66         double x_mean = p.alpha() * p.beta();
     67         double x_var = p.alpha() * sqr(p.beta());
     68         double x_skew = 2 / std::sqrt(p.alpha());
     69         double x_kurtosis = 6 / p.alpha();
     70         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     71         assert(std::abs((var - x_var) / x_var) < 0.01);
     72         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     73         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
     74     }
     75     {
     76         typedef std::gamma_distribution<> D;
     77         typedef D::param_type P;
     78         typedef std::mt19937 G;
     79         G g;
     80         D d(1, .5);
     81         P p(2, 3);
     82         const int N = 1000000;
     83         std::vector<D::result_type> u;
     84         for (int i = 0; i < N; ++i)
     85         {
     86             D::result_type v = d(g, p);
     87             assert(d.min() < v);
     88             u.push_back(v);
     89         }
     90         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     91         double var = 0;
     92         double skew = 0;
     93         double kurtosis = 0;
     94         for (int i = 0; i < u.size(); ++i)
     95         {
     96             double d = (u[i] - mean);
     97             double d2 = sqr(d);
     98             var += d2;
     99             skew += d * d2;
    100             kurtosis += d2 * d2;
    101         }
    102         var /= u.size();
    103         double dev = std::sqrt(var);
    104         skew /= u.size() * dev * var;
    105         kurtosis /= u.size() * var * var;
    106         kurtosis -= 3;
    107         double x_mean = p.alpha() * p.beta();
    108         double x_var = p.alpha() * sqr(p.beta());
    109         double x_skew = 2 / std::sqrt(p.alpha());
    110         double x_kurtosis = 6 / p.alpha();
    111         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    112         assert(std::abs((var - x_var) / x_var) < 0.01);
    113         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    114         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    115     }
    116     {
    117         typedef std::gamma_distribution<> D;
    118         typedef D::param_type P;
    119         typedef std::mt19937 G;
    120         G g;
    121         D d(2, 3);
    122         P p(.5, 2);
    123         const int N = 1000000;
    124         std::vector<D::result_type> u;
    125         for (int i = 0; i < N; ++i)
    126         {
    127             D::result_type v = d(g, p);
    128             assert(d.min() < v);
    129             u.push_back(v);
    130         }
    131         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
    132         double var = 0;
    133         double skew = 0;
    134         double kurtosis = 0;
    135         for (int i = 0; i < u.size(); ++i)
    136         {
    137             double d = (u[i] - mean);
    138             double d2 = sqr(d);
    139             var += d2;
    140             skew += d * d2;
    141             kurtosis += d2 * d2;
    142         }
    143         var /= u.size();
    144         double dev = std::sqrt(var);
    145         skew /= u.size() * dev * var;
    146         kurtosis /= u.size() * var * var;
    147         kurtosis -= 3;
    148         double x_mean = p.alpha() * p.beta();
    149         double x_var = p.alpha() * sqr(p.beta());
    150         double x_skew = 2 / std::sqrt(p.alpha());
    151         double x_kurtosis = 6 / p.alpha();
    152         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    153         assert(std::abs((var - x_var) / x_var) < 0.01);
    154         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    155         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    156     }
    157 }
    158