Home | History | Annotate | Download | only in rand.dist.pois.poisson
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // REQUIRES: long_tests
     11 
     12 // <random>
     13 
     14 // template<class IntType = int>
     15 // class poisson_distribution
     16 
     17 // template<class _URNG> result_type operator()(_URNG& g);
     18 
     19 #include <random>
     20 #include <cassert>
     21 #include <vector>
     22 #include <numeric>
     23 
     24 template <class T>
     25 inline
     26 T
     27 sqr(T x)
     28 {
     29     return x * x;
     30 }
     31 
     32 int main()
     33 {
     34     {
     35         typedef std::poisson_distribution<> D;
     36         typedef std::minstd_rand G;
     37         G g;
     38         D d(2);
     39         const int N = 100000;
     40         std::vector<double> u;
     41         for (int i = 0; i < N; ++i)
     42         {
     43             D::result_type v = d(g);
     44             assert(d.min() <= v && v <= d.max());
     45             u.push_back(v);
     46         }
     47         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     48         double var = 0;
     49         double skew = 0;
     50         double kurtosis = 0;
     51         for (int i = 0; i < u.size(); ++i)
     52         {
     53             double d = (u[i] - mean);
     54             double d2 = sqr(d);
     55             var += d2;
     56             skew += d * d2;
     57             kurtosis += d2 * d2;
     58         }
     59         var /= u.size();
     60         double dev = std::sqrt(var);
     61         skew /= u.size() * dev * var;
     62         kurtosis /= u.size() * var * var;
     63         kurtosis -= 3;
     64         double x_mean = d.mean();
     65         double x_var = d.mean();
     66         double x_skew = 1 / std::sqrt(x_var);
     67         double x_kurtosis = 1 / x_var;
     68         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     69         assert(std::abs((var - x_var) / x_var) < 0.01);
     70         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     71         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
     72     }
     73     {
     74         typedef std::poisson_distribution<> D;
     75         typedef std::minstd_rand G;
     76         G g;
     77         D d(0.75);
     78         const int N = 100000;
     79         std::vector<double> u;
     80         for (int i = 0; i < N; ++i)
     81         {
     82             D::result_type v = d(g);
     83             assert(d.min() <= v && v <= d.max());
     84             u.push_back(v);
     85         }
     86         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     87         double var = 0;
     88         double skew = 0;
     89         double kurtosis = 0;
     90         for (int i = 0; i < u.size(); ++i)
     91         {
     92             double d = (u[i] - mean);
     93             double d2 = sqr(d);
     94             var += d2;
     95             skew += d * d2;
     96             kurtosis += d2 * d2;
     97         }
     98         var /= u.size();
     99         double dev = std::sqrt(var);
    100         skew /= u.size() * dev * var;
    101         kurtosis /= u.size() * var * var;
    102         kurtosis -= 3;
    103         double x_mean = d.mean();
    104         double x_var = d.mean();
    105         double x_skew = 1 / std::sqrt(x_var);
    106         double x_kurtosis = 1 / x_var;
    107         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    108         assert(std::abs((var - x_var) / x_var) < 0.01);
    109         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    110         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
    111     }
    112     {
    113         typedef std::poisson_distribution<> D;
    114         typedef std::mt19937 G;
    115         G g;
    116         D d(20);
    117         const int N = 1000000;
    118         std::vector<double> u;
    119         for (int i = 0; i < N; ++i)
    120         {
    121             D::result_type v = d(g);
    122             assert(d.min() <= v && v <= d.max());
    123             u.push_back(v);
    124         }
    125         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
    126         double var = 0;
    127         double skew = 0;
    128         double kurtosis = 0;
    129         for (int i = 0; i < u.size(); ++i)
    130         {
    131             double d = (u[i] - mean);
    132             double d2 = sqr(d);
    133             var += d2;
    134             skew += d * d2;
    135             kurtosis += d2 * d2;
    136         }
    137         var /= u.size();
    138         double dev = std::sqrt(var);
    139         skew /= u.size() * dev * var;
    140         kurtosis /= u.size() * var * var;
    141         kurtosis -= 3;
    142         double x_mean = d.mean();
    143         double x_var = d.mean();
    144         double x_skew = 1 / std::sqrt(x_var);
    145         double x_kurtosis = 1 / x_var;
    146         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    147         assert(std::abs((var - x_var) / x_var) < 0.01);
    148         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    149         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    150     }
    151 }
    152