Home | History | Annotate | Download | only in rand.dist.pois.weibull
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // REQUIRES: long_tests
     11 
     12 // <random>
     13 
     14 // template<class RealType = double>
     15 // class weibull_distribution
     16 
     17 // template<class _URNG> result_type operator()(_URNG& g);
     18 
     19 #include <random>
     20 #include <cassert>
     21 #include <vector>
     22 #include <numeric>
     23 
     24 template <class T>
     25 inline
     26 T
     27 sqr(T x)
     28 {
     29     return x * x;
     30 }
     31 
     32 int main()
     33 {
     34     {
     35         typedef std::weibull_distribution<> D;
     36         typedef D::param_type P;
     37         typedef std::mt19937 G;
     38         G g;
     39         D d(0.5, 2);
     40         const int N = 1000000;
     41         std::vector<D::result_type> u;
     42         for (int i = 0; i < N; ++i)
     43         {
     44             D::result_type v = d(g);
     45             assert(d.min() <= v);
     46             u.push_back(v);
     47         }
     48         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     49         double var = 0;
     50         double skew = 0;
     51         double kurtosis = 0;
     52         for (int i = 0; i < u.size(); ++i)
     53         {
     54             double d = (u[i] - mean);
     55             double d2 = sqr(d);
     56             var += d2;
     57             skew += d * d2;
     58             kurtosis += d2 * d2;
     59         }
     60         var /= u.size();
     61         double dev = std::sqrt(var);
     62         skew /= u.size() * dev * var;
     63         kurtosis /= u.size() * var * var;
     64         kurtosis -= 3;
     65         double x_mean = d.b() * std::tgamma(1 + 1/d.a());
     66         double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
     67         double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
     68                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
     69                         (std::sqrt(x_var)*x_var);
     70         double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
     71                        4*x_skew*x_var*sqrt(x_var)*x_mean -
     72                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
     73         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     74         assert(std::abs((var - x_var) / x_var) < 0.01);
     75         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     76         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
     77     }
     78     {
     79         typedef std::weibull_distribution<> D;
     80         typedef D::param_type P;
     81         typedef std::mt19937 G;
     82         G g;
     83         D d(1, .5);
     84         const int N = 1000000;
     85         std::vector<D::result_type> u;
     86         for (int i = 0; i < N; ++i)
     87         {
     88             D::result_type v = d(g);
     89             assert(d.min() <= v);
     90             u.push_back(v);
     91         }
     92         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     93         double var = 0;
     94         double skew = 0;
     95         double kurtosis = 0;
     96         for (int i = 0; i < u.size(); ++i)
     97         {
     98             double d = (u[i] - mean);
     99             double d2 = sqr(d);
    100             var += d2;
    101             skew += d * d2;
    102             kurtosis += d2 * d2;
    103         }
    104         var /= u.size();
    105         double dev = std::sqrt(var);
    106         skew /= u.size() * dev * var;
    107         kurtosis /= u.size() * var * var;
    108         kurtosis -= 3;
    109         double x_mean = d.b() * std::tgamma(1 + 1/d.a());
    110         double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
    111         double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
    112                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
    113                         (std::sqrt(x_var)*x_var);
    114         double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
    115                        4*x_skew*x_var*sqrt(x_var)*x_mean -
    116                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
    117         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    118         assert(std::abs((var - x_var) / x_var) < 0.01);
    119         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    120         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    121     }
    122     {
    123         typedef std::weibull_distribution<> D;
    124         typedef D::param_type P;
    125         typedef std::mt19937 G;
    126         G g;
    127         D d(2, 3);
    128         const int N = 1000000;
    129         std::vector<D::result_type> u;
    130         for (int i = 0; i < N; ++i)
    131         {
    132             D::result_type v = d(g);
    133             assert(d.min() <= v);
    134             u.push_back(v);
    135         }
    136         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
    137         double var = 0;
    138         double skew = 0;
    139         double kurtosis = 0;
    140         for (int i = 0; i < u.size(); ++i)
    141         {
    142             double d = (u[i] - mean);
    143             double d2 = sqr(d);
    144             var += d2;
    145             skew += d * d2;
    146             kurtosis += d2 * d2;
    147         }
    148         var /= u.size();
    149         double dev = std::sqrt(var);
    150         skew /= u.size() * dev * var;
    151         kurtosis /= u.size() * var * var;
    152         kurtosis -= 3;
    153         double x_mean = d.b() * std::tgamma(1 + 1/d.a());
    154         double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
    155         double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
    156                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
    157                         (std::sqrt(x_var)*x_var);
    158         double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
    159                        4*x_skew*x_var*sqrt(x_var)*x_mean -
    160                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
    161         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    162         assert(std::abs((var - x_var) / x_var) < 0.01);
    163         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    164         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
    165     }
    166 }
    167