Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jdarith.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Developed 1997-2009 by Guido Vollbeding.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains portable arithmetic entropy decoding routines for JPEG
     11  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
     12  *
     13  * Both sequential and progressive modes are supported in this single module.
     14  *
     15  * Suspension is not currently supported in this module.
     16  */
     17 
     18 #define JPEG_INTERNALS
     19 #include "jinclude.h"
     20 #include "jpeglib.h"
     21 
     22 
     23 /* Expanded entropy decoder object for arithmetic decoding. */
     24 
     25 typedef struct {
     26   struct jpeg_entropy_decoder pub; /* public fields */
     27 
     28   INT32 c;       /* C register, base of coding interval + input bit buffer */
     29   INT32 a;               /* A register, normalized size of coding interval */
     30   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
     31                                                          /* init: ct = -16 */
     32                                                          /* run: ct = 0..7 */
     33                                                          /* error: ct = -1 */
     34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     35   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
     36 
     37   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
     38 
     39   /* Pointers to statistics areas (these workspaces have image lifespan) */
     40   unsigned char * dc_stats[NUM_ARITH_TBLS];
     41   unsigned char * ac_stats[NUM_ARITH_TBLS];
     42 
     43   /* Statistics bin for coding with fixed probability 0.5 */
     44   unsigned char fixed_bin[4];
     45 } arith_entropy_decoder;
     46 
     47 typedef arith_entropy_decoder * arith_entropy_ptr;
     48 
     49 /* The following two definitions specify the allocation chunk size
     50  * for the statistics area.
     51  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
     52  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
     53  *
     54  * We use a compact representation with 1 byte per statistics bin,
     55  * thus the numbers directly represent byte sizes.
     56  * This 1 byte per statistics bin contains the meaning of the MPS
     57  * (more probable symbol) in the highest bit (mask 0x80), and the
     58  * index into the probability estimation state machine table
     59  * in the lower bits (mask 0x7F).
     60  */
     61 
     62 #define DC_STAT_BINS 64
     63 #define AC_STAT_BINS 256
     64 
     65 
     66 LOCAL(int)
     67 get_byte (j_decompress_ptr cinfo)
     68 /* Read next input byte; we do not support suspension in this module. */
     69 {
     70   struct jpeg_source_mgr * src = cinfo->src;
     71 
     72   if (src->bytes_in_buffer == 0)
     73     if (! (*src->fill_input_buffer) (cinfo))
     74       ERREXIT(cinfo, JERR_CANT_SUSPEND);
     75   src->bytes_in_buffer--;
     76   return GETJOCTET(*src->next_input_byte++);
     77 }
     78 
     79 
     80 /*
     81  * The core arithmetic decoding routine (common in JPEG and JBIG).
     82  * This needs to go as fast as possible.
     83  * Machine-dependent optimization facilities
     84  * are not utilized in this portable implementation.
     85  * However, this code should be fairly efficient and
     86  * may be a good base for further optimizations anyway.
     87  *
     88  * Return value is 0 or 1 (binary decision).
     89  *
     90  * Note: I've changed the handling of the code base & bit
     91  * buffer register C compared to other implementations
     92  * based on the standards layout & procedures.
     93  * While it also contains both the actual base of the
     94  * coding interval (16 bits) and the next-bits buffer,
     95  * the cut-point between these two parts is floating
     96  * (instead of fixed) with the bit shift counter CT.
     97  * Thus, we also need only one (variable instead of
     98  * fixed size) shift for the LPS/MPS decision, and
     99  * we can get away with any renormalization update
    100  * of C (except for new data insertion, of course).
    101  *
    102  * I've also introduced a new scheme for accessing
    103  * the probability estimation state machine table,
    104  * derived from Markus Kuhn's JBIG implementation.
    105  */
    106 
    107 LOCAL(int)
    108 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
    109 {
    110   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    111   register unsigned char nl, nm;
    112   register INT32 qe, temp;
    113   register int sv, data;
    114 
    115   /* Renormalization & data input per section D.2.6 */
    116   while (e->a < 0x8000L) {
    117     if (--e->ct < 0) {
    118       /* Need to fetch next data byte */
    119       if (cinfo->unread_marker)
    120         data = 0;               /* stuff zero data */
    121       else {
    122         data = get_byte(cinfo); /* read next input byte */
    123         if (data == 0xFF) {     /* zero stuff or marker code */
    124           do data = get_byte(cinfo);
    125           while (data == 0xFF); /* swallow extra 0xFF bytes */
    126           if (data == 0)
    127             data = 0xFF;        /* discard stuffed zero byte */
    128           else {
    129             /* Note: Different from the Huffman decoder, hitting
    130              * a marker while processing the compressed data
    131              * segment is legal in arithmetic coding.
    132              * The convention is to supply zero data
    133              * then until decoding is complete.
    134              */
    135             cinfo->unread_marker = data;
    136             data = 0;
    137           }
    138         }
    139       }
    140       e->c = (e->c << 8) | data; /* insert data into C register */
    141       if ((e->ct += 8) < 0)      /* update bit shift counter */
    142         /* Need more initial bytes */
    143         if (++e->ct == 0)
    144           /* Got 2 initial bytes -> re-init A and exit loop */
    145           e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
    146     }
    147     e->a <<= 1;
    148   }
    149 
    150   /* Fetch values from our compact representation of Table D.2:
    151    * Qe values and probability estimation state machine
    152    */
    153   sv = *st;
    154   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
    155   nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
    156   nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
    157 
    158   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
    159   temp = e->a - qe;
    160   e->a = temp;
    161   temp <<= e->ct;
    162   if (e->c >= temp) {
    163     e->c -= temp;
    164     /* Conditional LPS (less probable symbol) exchange */
    165     if (e->a < qe) {
    166       e->a = qe;
    167       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
    168     } else {
    169       e->a = qe;
    170       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
    171       sv ^= 0x80;               /* Exchange LPS/MPS */
    172     }
    173   } else if (e->a < 0x8000L) {
    174     /* Conditional MPS (more probable symbol) exchange */
    175     if (e->a < qe) {
    176       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
    177       sv ^= 0x80;               /* Exchange LPS/MPS */
    178     } else {
    179       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
    180     }
    181   }
    182 
    183   return sv >> 7;
    184 }
    185 
    186 
    187 /*
    188  * Check for a restart marker & resynchronize decoder.
    189  */
    190 
    191 LOCAL(void)
    192 process_restart (j_decompress_ptr cinfo)
    193 {
    194   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    195   int ci;
    196   jpeg_component_info * compptr;
    197 
    198   /* Advance past the RSTn marker */
    199   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    200     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    201 
    202   /* Re-initialize statistics areas */
    203   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    204     compptr = cinfo->cur_comp_info[ci];
    205     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    206       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
    207       /* Reset DC predictions to 0 */
    208       entropy->last_dc_val[ci] = 0;
    209       entropy->dc_context[ci] = 0;
    210     }
    211     if (! cinfo->progressive_mode || cinfo->Ss) {
    212       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
    213     }
    214   }
    215 
    216   /* Reset arithmetic decoding variables */
    217   entropy->c = 0;
    218   entropy->a = 0;
    219   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
    220 
    221   /* Reset restart counter */
    222   entropy->restarts_to_go = cinfo->restart_interval;
    223 }
    224 
    225 
    226 /*
    227  * Arithmetic MCU decoding.
    228  * Each of these routines decodes and returns one MCU's worth of
    229  * arithmetic-compressed coefficients.
    230  * The coefficients are reordered from zigzag order into natural array order,
    231  * but are not dequantized.
    232  *
    233  * The i'th block of the MCU is stored into the block pointed to by
    234  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
    235  */
    236 
    237 /*
    238  * MCU decoding for DC initial scan (either spectral selection,
    239  * or first pass of successive approximation).
    240  */
    241 
    242 METHODDEF(boolean)
    243 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    244 {
    245   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    246   JBLOCKROW block;
    247   unsigned char *st;
    248   int blkn, ci, tbl, sign;
    249   int v, m;
    250 
    251   /* Process restart marker if needed */
    252   if (cinfo->restart_interval) {
    253     if (entropy->restarts_to_go == 0)
    254       process_restart(cinfo);
    255     entropy->restarts_to_go--;
    256   }
    257 
    258   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    259 
    260   /* Outer loop handles each block in the MCU */
    261 
    262   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    263     block = MCU_data[blkn];
    264     ci = cinfo->MCU_membership[blkn];
    265     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
    266 
    267     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    268 
    269     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    270     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    271 
    272     /* Figure F.19: Decode_DC_DIFF */
    273     if (arith_decode(cinfo, st) == 0)
    274       entropy->dc_context[ci] = 0;
    275     else {
    276       /* Figure F.21: Decoding nonzero value v */
    277       /* Figure F.22: Decoding the sign of v */
    278       sign = arith_decode(cinfo, st + 1);
    279       st += 2; st += sign;
    280       /* Figure F.23: Decoding the magnitude category of v */
    281       if ((m = arith_decode(cinfo, st)) != 0) {
    282         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
    283         while (arith_decode(cinfo, st)) {
    284           if ((m <<= 1) == 0x8000) {
    285             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    286             entropy->ct = -1;                   /* magnitude overflow */
    287             return TRUE;
    288           }
    289           st += 1;
    290         }
    291       }
    292       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    293       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    294         entropy->dc_context[ci] = 0;               /* zero diff category */
    295       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    296         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    297       else
    298         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    299       v = m;
    300       /* Figure F.24: Decoding the magnitude bit pattern of v */
    301       st += 14;
    302       while (m >>= 1)
    303         if (arith_decode(cinfo, st)) v |= m;
    304       v += 1; if (sign) v = -v;
    305       entropy->last_dc_val[ci] += v;
    306     }
    307 
    308     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
    309     (*block)[0] = (JCOEF) LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al);
    310   }
    311 
    312   return TRUE;
    313 }
    314 
    315 
    316 /*
    317  * MCU decoding for AC initial scan (either spectral selection,
    318  * or first pass of successive approximation).
    319  */
    320 
    321 METHODDEF(boolean)
    322 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    323 {
    324   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    325   JBLOCKROW block;
    326   unsigned char *st;
    327   int tbl, sign, k;
    328   int v, m;
    329 
    330   /* Process restart marker if needed */
    331   if (cinfo->restart_interval) {
    332     if (entropy->restarts_to_go == 0)
    333       process_restart(cinfo);
    334     entropy->restarts_to_go--;
    335   }
    336 
    337   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    338 
    339   /* There is always only one block per MCU */
    340   block = MCU_data[0];
    341   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    342 
    343   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    344 
    345   /* Figure F.20: Decode_AC_coefficients */
    346   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    347     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    348     if (arith_decode(cinfo, st)) break;         /* EOB flag */
    349     while (arith_decode(cinfo, st + 1) == 0) {
    350       st += 3; k++;
    351       if (k > cinfo->Se) {
    352         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    353         entropy->ct = -1;                       /* spectral overflow */
    354         return TRUE;
    355       }
    356     }
    357     /* Figure F.21: Decoding nonzero value v */
    358     /* Figure F.22: Decoding the sign of v */
    359     sign = arith_decode(cinfo, entropy->fixed_bin);
    360     st += 2;
    361     /* Figure F.23: Decoding the magnitude category of v */
    362     if ((m = arith_decode(cinfo, st)) != 0) {
    363       if (arith_decode(cinfo, st)) {
    364         m <<= 1;
    365         st = entropy->ac_stats[tbl] +
    366              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    367         while (arith_decode(cinfo, st)) {
    368           if ((m <<= 1) == 0x8000) {
    369             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    370             entropy->ct = -1;                   /* magnitude overflow */
    371             return TRUE;
    372           }
    373           st += 1;
    374         }
    375       }
    376     }
    377     v = m;
    378     /* Figure F.24: Decoding the magnitude bit pattern of v */
    379     st += 14;
    380     while (m >>= 1)
    381       if (arith_decode(cinfo, st)) v |= m;
    382     v += 1; if (sign) v = -v;
    383     /* Scale and output coefficient in natural (dezigzagged) order */
    384     (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
    385   }
    386 
    387   return TRUE;
    388 }
    389 
    390 
    391 /*
    392  * MCU decoding for DC successive approximation refinement scan.
    393  */
    394 
    395 METHODDEF(boolean)
    396 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    397 {
    398   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    399   unsigned char *st;
    400   int p1, blkn;
    401 
    402   /* Process restart marker if needed */
    403   if (cinfo->restart_interval) {
    404     if (entropy->restarts_to_go == 0)
    405       process_restart(cinfo);
    406     entropy->restarts_to_go--;
    407   }
    408 
    409   st = entropy->fixed_bin;      /* use fixed probability estimation */
    410   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
    411 
    412   /* Outer loop handles each block in the MCU */
    413 
    414   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    415     /* Encoded data is simply the next bit of the two's-complement DC value */
    416     if (arith_decode(cinfo, st))
    417       MCU_data[blkn][0][0] |= p1;
    418   }
    419 
    420   return TRUE;
    421 }
    422 
    423 
    424 /*
    425  * MCU decoding for AC successive approximation refinement scan.
    426  */
    427 
    428 METHODDEF(boolean)
    429 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    430 {
    431   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    432   JBLOCKROW block;
    433   JCOEFPTR thiscoef;
    434   unsigned char *st;
    435   int tbl, k, kex;
    436   int p1, m1;
    437 
    438   /* Process restart marker if needed */
    439   if (cinfo->restart_interval) {
    440     if (entropy->restarts_to_go == 0)
    441       process_restart(cinfo);
    442     entropy->restarts_to_go--;
    443   }
    444 
    445   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    446 
    447   /* There is always only one block per MCU */
    448   block = MCU_data[0];
    449   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    450 
    451   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
    452   m1 = (-1) << cinfo->Al;       /* -1 in the bit position being coded */
    453 
    454   /* Establish EOBx (previous stage end-of-block) index */
    455   for (kex = cinfo->Se; kex > 0; kex--)
    456     if ((*block)[jpeg_natural_order[kex]]) break;
    457 
    458   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    459     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    460     if (k > kex)
    461       if (arith_decode(cinfo, st)) break;       /* EOB flag */
    462     for (;;) {
    463       thiscoef = *block + jpeg_natural_order[k];
    464       if (*thiscoef) {                          /* previously nonzero coef */
    465         if (arith_decode(cinfo, st + 2)) {
    466           if (*thiscoef < 0)
    467             *thiscoef += m1;
    468           else
    469             *thiscoef += p1;
    470         }
    471         break;
    472       }
    473       if (arith_decode(cinfo, st + 1)) {        /* newly nonzero coef */
    474         if (arith_decode(cinfo, entropy->fixed_bin))
    475           *thiscoef = m1;
    476         else
    477           *thiscoef = p1;
    478         break;
    479       }
    480       st += 3; k++;
    481       if (k > cinfo->Se) {
    482         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    483         entropy->ct = -1;                       /* spectral overflow */
    484         return TRUE;
    485       }
    486     }
    487   }
    488 
    489   return TRUE;
    490 }
    491 
    492 
    493 /*
    494  * Decode one MCU's worth of arithmetic-compressed coefficients.
    495  */
    496 
    497 METHODDEF(boolean)
    498 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    499 {
    500   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    501   jpeg_component_info * compptr;
    502   JBLOCKROW block;
    503   unsigned char *st;
    504   int blkn, ci, tbl, sign, k;
    505   int v, m;
    506 
    507   /* Process restart marker if needed */
    508   if (cinfo->restart_interval) {
    509     if (entropy->restarts_to_go == 0)
    510       process_restart(cinfo);
    511     entropy->restarts_to_go--;
    512   }
    513 
    514   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    515 
    516   /* Outer loop handles each block in the MCU */
    517 
    518   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    519     block = MCU_data ? MCU_data[blkn] : NULL;
    520     ci = cinfo->MCU_membership[blkn];
    521     compptr = cinfo->cur_comp_info[ci];
    522 
    523     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    524 
    525     tbl = compptr->dc_tbl_no;
    526 
    527     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    528     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    529 
    530     /* Figure F.19: Decode_DC_DIFF */
    531     if (arith_decode(cinfo, st) == 0)
    532       entropy->dc_context[ci] = 0;
    533     else {
    534       /* Figure F.21: Decoding nonzero value v */
    535       /* Figure F.22: Decoding the sign of v */
    536       sign = arith_decode(cinfo, st + 1);
    537       st += 2; st += sign;
    538       /* Figure F.23: Decoding the magnitude category of v */
    539       if ((m = arith_decode(cinfo, st)) != 0) {
    540         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
    541         while (arith_decode(cinfo, st)) {
    542           if ((m <<= 1) == 0x8000) {
    543             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    544             entropy->ct = -1;                   /* magnitude overflow */
    545             return TRUE;
    546           }
    547           st += 1;
    548         }
    549       }
    550       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    551       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    552         entropy->dc_context[ci] = 0;               /* zero diff category */
    553       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    554         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    555       else
    556         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    557       v = m;
    558       /* Figure F.24: Decoding the magnitude bit pattern of v */
    559       st += 14;
    560       while (m >>= 1)
    561         if (arith_decode(cinfo, st)) v |= m;
    562       v += 1; if (sign) v = -v;
    563       entropy->last_dc_val[ci] += v;
    564     }
    565 
    566     if (block)
    567       (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
    568 
    569     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    570 
    571     tbl = compptr->ac_tbl_no;
    572 
    573     /* Figure F.20: Decode_AC_coefficients */
    574     for (k = 1; k <= DCTSIZE2 - 1; k++) {
    575       st = entropy->ac_stats[tbl] + 3 * (k - 1);
    576       if (arith_decode(cinfo, st)) break;       /* EOB flag */
    577       while (arith_decode(cinfo, st + 1) == 0) {
    578         st += 3; k++;
    579         if (k > DCTSIZE2 - 1) {
    580           WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    581           entropy->ct = -1;                     /* spectral overflow */
    582           return TRUE;
    583         }
    584       }
    585       /* Figure F.21: Decoding nonzero value v */
    586       /* Figure F.22: Decoding the sign of v */
    587       sign = arith_decode(cinfo, entropy->fixed_bin);
    588       st += 2;
    589       /* Figure F.23: Decoding the magnitude category of v */
    590       if ((m = arith_decode(cinfo, st)) != 0) {
    591         if (arith_decode(cinfo, st)) {
    592           m <<= 1;
    593           st = entropy->ac_stats[tbl] +
    594                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    595           while (arith_decode(cinfo, st)) {
    596             if ((m <<= 1) == 0x8000) {
    597               WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    598               entropy->ct = -1;                 /* magnitude overflow */
    599               return TRUE;
    600             }
    601             st += 1;
    602           }
    603         }
    604       }
    605       v = m;
    606       /* Figure F.24: Decoding the magnitude bit pattern of v */
    607       st += 14;
    608       while (m >>= 1)
    609         if (arith_decode(cinfo, st)) v |= m;
    610       v += 1; if (sign) v = -v;
    611       if (block)
    612         (*block)[jpeg_natural_order[k]] = (JCOEF) v;
    613     }
    614   }
    615 
    616   return TRUE;
    617 }
    618 
    619 
    620 /*
    621  * Initialize for an arithmetic-compressed scan.
    622  */
    623 
    624 METHODDEF(void)
    625 start_pass (j_decompress_ptr cinfo)
    626 {
    627   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    628   int ci, tbl;
    629   jpeg_component_info * compptr;
    630 
    631   if (cinfo->progressive_mode) {
    632     /* Validate progressive scan parameters */
    633     if (cinfo->Ss == 0) {
    634       if (cinfo->Se != 0)
    635         goto bad;
    636     } else {
    637       /* need not check Ss/Se < 0 since they came from unsigned bytes */
    638       if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
    639         goto bad;
    640       /* AC scans may have only one component */
    641       if (cinfo->comps_in_scan != 1)
    642         goto bad;
    643     }
    644     if (cinfo->Ah != 0) {
    645       /* Successive approximation refinement scan: must have Al = Ah-1. */
    646       if (cinfo->Ah-1 != cinfo->Al)
    647         goto bad;
    648     }
    649     if (cinfo->Al > 13) {       /* need not check for < 0 */
    650       bad:
    651       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
    652                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
    653     }
    654     /* Update progression status, and verify that scan order is legal.
    655      * Note that inter-scan inconsistencies are treated as warnings
    656      * not fatal errors ... not clear if this is right way to behave.
    657      */
    658     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    659       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
    660       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
    661       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
    662         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
    663       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
    664         int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
    665         if (cinfo->Ah != expected)
    666           WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
    667         coef_bit_ptr[coefi] = cinfo->Al;
    668       }
    669     }
    670     /* Select MCU decoding routine */
    671     if (cinfo->Ah == 0) {
    672       if (cinfo->Ss == 0)
    673         entropy->pub.decode_mcu = decode_mcu_DC_first;
    674       else
    675         entropy->pub.decode_mcu = decode_mcu_AC_first;
    676     } else {
    677       if (cinfo->Ss == 0)
    678         entropy->pub.decode_mcu = decode_mcu_DC_refine;
    679       else
    680         entropy->pub.decode_mcu = decode_mcu_AC_refine;
    681     }
    682   } else {
    683     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
    684      * This ought to be an error condition, but we make it a warning.
    685      */
    686     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
    687         (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
    688       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    689     /* Select MCU decoding routine */
    690     entropy->pub.decode_mcu = decode_mcu;
    691   }
    692 
    693   /* Allocate & initialize requested statistics areas */
    694   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    695     compptr = cinfo->cur_comp_info[ci];
    696     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    697       tbl = compptr->dc_tbl_no;
    698       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    699         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    700       if (entropy->dc_stats[tbl] == NULL)
    701         entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    702           ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
    703       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
    704       /* Initialize DC predictions to 0 */
    705       entropy->last_dc_val[ci] = 0;
    706       entropy->dc_context[ci] = 0;
    707     }
    708     if (! cinfo->progressive_mode || cinfo->Ss) {
    709       tbl = compptr->ac_tbl_no;
    710       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    711         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    712       if (entropy->ac_stats[tbl] == NULL)
    713         entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    714           ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
    715       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
    716     }
    717   }
    718 
    719   /* Initialize arithmetic decoding variables */
    720   entropy->c = 0;
    721   entropy->a = 0;
    722   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
    723 
    724   /* Initialize restart counter */
    725   entropy->restarts_to_go = cinfo->restart_interval;
    726 }
    727 
    728 
    729 /*
    730  * Module initialization routine for arithmetic entropy decoding.
    731  */
    732 
    733 GLOBAL(void)
    734 jinit_arith_decoder (j_decompress_ptr cinfo)
    735 {
    736   arith_entropy_ptr entropy;
    737   int i;
    738 
    739   entropy = (arith_entropy_ptr)
    740     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    741                                 sizeof(arith_entropy_decoder));
    742   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    743   entropy->pub.start_pass = start_pass;
    744 
    745   /* Mark tables unallocated */
    746   for (i = 0; i < NUM_ARITH_TBLS; i++) {
    747     entropy->dc_stats[i] = NULL;
    748     entropy->ac_stats[i] = NULL;
    749   }
    750 
    751   /* Initialize index for fixed probability estimation */
    752   entropy->fixed_bin[0] = 113;
    753 
    754   if (cinfo->progressive_mode) {
    755     /* Create progression status table */
    756     int *coef_bit_ptr, ci;
    757     cinfo->coef_bits = (int (*)[DCTSIZE2])
    758       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    759                                   cinfo->num_components*DCTSIZE2*sizeof(int));
    760     coef_bit_ptr = & cinfo->coef_bits[0][0];
    761     for (ci = 0; ci < cinfo->num_components; ci++)
    762       for (i = 0; i < DCTSIZE2; i++)
    763         *coef_bit_ptr++ = -1;
    764   }
    765 }
    766