Home | History | Annotate | Download | only in simd
      1 ;
      2 ; jquant.asm - sample data conversion and quantization (MMX)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ;
      6 ; Based on
      7 ; x86 SIMD extension for IJG JPEG library
      8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
     10 ;
     11 ; This file should be assembled with NASM (Netwide Assembler),
     12 ; can *not* be assembled with Microsoft's MASM or any compatible
     13 ; assembler (including Borland's Turbo Assembler).
     14 ; NASM is available from http://nasm.sourceforge.net/ or
     15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     16 ;
     17 ; [TAB8]
     18 
     19 %include "jsimdext.inc"
     20 %include "jdct.inc"
     21 
     22 ; --------------------------------------------------------------------------
     23         SECTION SEG_TEXT
     24         BITS    32
     25 ;
     26 ; Load data into workspace, applying unsigned->signed conversion
     27 ;
     28 ; GLOBAL(void)
     29 ; jsimd_convsamp_mmx (JSAMPARRAY sample_data, JDIMENSION start_col,
     30 ;                     DCTELEM * workspace);
     31 ;
     32 
     33 %define sample_data     ebp+8           ; JSAMPARRAY sample_data
     34 %define start_col       ebp+12          ; JDIMENSION start_col
     35 %define workspace       ebp+16          ; DCTELEM * workspace
     36 
     37         align   16
     38         global  EXTN(jsimd_convsamp_mmx)
     39 
     40 EXTN(jsimd_convsamp_mmx):
     41         push    ebp
     42         mov     ebp,esp
     43         push    ebx
     44 ;       push    ecx             ; need not be preserved
     45 ;       push    edx             ; need not be preserved
     46         push    esi
     47         push    edi
     48 
     49         pxor    mm6,mm6                 ; mm6=(all 0's)
     50         pcmpeqw mm7,mm7
     51         psllw   mm7,7                   ; mm7={0xFF80 0xFF80 0xFF80 0xFF80}
     52 
     53         mov     esi, JSAMPARRAY [sample_data]   ; (JSAMPROW *)
     54         mov     eax, JDIMENSION [start_col]
     55         mov     edi, POINTER [workspace]        ; (DCTELEM *)
     56         mov     ecx, DCTSIZE/4
     57         alignx  16,7
     58 .convloop:
     59         mov     ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW]   ; (JSAMPLE *)
     60         mov     edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW]   ; (JSAMPLE *)
     61 
     62         movq    mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE]    ; mm0=(01234567)
     63         movq    mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE]    ; mm1=(89ABCDEF)
     64 
     65         mov     ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW]   ; (JSAMPLE *)
     66         mov     edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW]   ; (JSAMPLE *)
     67 
     68         movq    mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE]    ; mm2=(GHIJKLMN)
     69         movq    mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE]    ; mm3=(OPQRSTUV)
     70 
     71         movq      mm4,mm0
     72         punpcklbw mm0,mm6               ; mm0=(0123)
     73         punpckhbw mm4,mm6               ; mm4=(4567)
     74         movq      mm5,mm1
     75         punpcklbw mm1,mm6               ; mm1=(89AB)
     76         punpckhbw mm5,mm6               ; mm5=(CDEF)
     77 
     78         paddw   mm0,mm7
     79         paddw   mm4,mm7
     80         paddw   mm1,mm7
     81         paddw   mm5,mm7
     82 
     83         movq    MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
     84         movq    MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4
     85         movq    MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1
     86         movq    MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5
     87 
     88         movq      mm0,mm2
     89         punpcklbw mm2,mm6               ; mm2=(GHIJ)
     90         punpckhbw mm0,mm6               ; mm0=(KLMN)
     91         movq      mm4,mm3
     92         punpcklbw mm3,mm6               ; mm3=(OPQR)
     93         punpckhbw mm4,mm6               ; mm4=(STUV)
     94 
     95         paddw   mm2,mm7
     96         paddw   mm0,mm7
     97         paddw   mm3,mm7
     98         paddw   mm4,mm7
     99 
    100         movq    MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2
    101         movq    MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0
    102         movq    MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3
    103         movq    MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4
    104 
    105         add     esi, byte 4*SIZEOF_JSAMPROW
    106         add     edi, byte 4*DCTSIZE*SIZEOF_DCTELEM
    107         dec     ecx
    108         jnz     short .convloop
    109 
    110         emms            ; empty MMX state
    111 
    112         pop     edi
    113         pop     esi
    114 ;       pop     edx             ; need not be preserved
    115 ;       pop     ecx             ; need not be preserved
    116         pop     ebx
    117         pop     ebp
    118         ret
    119 
    120 ; --------------------------------------------------------------------------
    121 ;
    122 ; Quantize/descale the coefficients, and store into coef_block
    123 ;
    124 ; This implementation is based on an algorithm described in
    125 ;   "How to optimize for the Pentium family of microprocessors"
    126 ;   (http://www.agner.org/assem/).
    127 ;
    128 ; GLOBAL(void)
    129 ; jsimd_quantize_mmx (JCOEFPTR coef_block, DCTELEM * divisors,
    130 ;                     DCTELEM * workspace);
    131 ;
    132 
    133 %define RECIPROCAL(m,n,b) MMBLOCK(DCTSIZE*0+(m),(n),(b),SIZEOF_DCTELEM)
    134 %define CORRECTION(m,n,b) MMBLOCK(DCTSIZE*1+(m),(n),(b),SIZEOF_DCTELEM)
    135 %define SCALE(m,n,b)      MMBLOCK(DCTSIZE*2+(m),(n),(b),SIZEOF_DCTELEM)
    136 %define SHIFT(m,n,b)      MMBLOCK(DCTSIZE*3+(m),(n),(b),SIZEOF_DCTELEM)
    137 
    138 %define coef_block      ebp+8           ; JCOEFPTR coef_block
    139 %define divisors        ebp+12          ; DCTELEM * divisors
    140 %define workspace       ebp+16          ; DCTELEM * workspace
    141 
    142         align   16
    143         global  EXTN(jsimd_quantize_mmx)
    144 
    145 EXTN(jsimd_quantize_mmx):
    146         push    ebp
    147         mov     ebp,esp
    148 ;       push    ebx             ; unused
    149 ;       push    ecx             ; unused
    150 ;       push    edx             ; need not be preserved
    151         push    esi
    152         push    edi
    153 
    154         mov     esi, POINTER [workspace]
    155         mov     edx, POINTER [divisors]
    156         mov     edi, JCOEFPTR [coef_block]
    157         mov     ah, 2
    158         alignx  16,7
    159 .quantloop1:
    160         mov     al, DCTSIZE2/8/2
    161         alignx  16,7
    162 .quantloop2:
    163         movq    mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)]
    164         movq    mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)]
    165 
    166         movq    mm0,mm2
    167         movq    mm1,mm3
    168 
    169         psraw   mm2,(WORD_BIT-1)  ; -1 if value < 0, 0 otherwise
    170         psraw   mm3,(WORD_BIT-1)
    171 
    172         pxor    mm0,mm2   ; val = -val
    173         pxor    mm1,mm3
    174         psubw   mm0,mm2
    175         psubw   mm1,mm3
    176 
    177         ;
    178         ; MMX is an annoyingly crappy instruction set. It has two
    179         ; misfeatures that are causing problems here:
    180         ;
    181         ; - All multiplications are signed.
    182         ;
    183         ; - The second operand for the shifts is not treated as packed.
    184         ;
    185         ;
    186         ; We work around the first problem by implementing this algorithm:
    187         ;
    188         ; unsigned long unsigned_multiply(unsigned short x, unsigned short y)
    189         ; {
    190         ;   enum { SHORT_BIT = 16 };
    191         ;   signed short sx = (signed short) x;
    192         ;   signed short sy = (signed short) y;
    193         ;   signed long sz;
    194         ;
    195         ;   sz = (long) sx * (long) sy;     /* signed multiply */
    196         ;
    197         ;   if (sx < 0) sz += (long) sy << SHORT_BIT;
    198         ;   if (sy < 0) sz += (long) sx << SHORT_BIT;
    199         ;
    200         ;   return (unsigned long) sz;
    201         ; }
    202         ;
    203         ; (note that a negative sx adds _sy_ and vice versa)
    204         ;
    205         ; For the second problem, we replace the shift by a multiplication.
    206         ; Unfortunately that means we have to deal with the signed issue again.
    207         ;
    208 
    209         paddw   mm0, MMWORD [CORRECTION(0,0,edx)]   ; correction + roundfactor
    210         paddw   mm1, MMWORD [CORRECTION(0,1,edx)]
    211 
    212         movq    mm4,mm0   ; store current value for later
    213         movq    mm5,mm1
    214         pmulhw  mm0, MMWORD [RECIPROCAL(0,0,edx)]   ; reciprocal
    215         pmulhw  mm1, MMWORD [RECIPROCAL(0,1,edx)]
    216         paddw   mm0,mm4         ; reciprocal is always negative (MSB=1),
    217         paddw   mm1,mm5   ; so we always need to add the initial value
    218                         ; (input value is never negative as we
    219                         ; inverted it at the start of this routine)
    220 
    221         ; here it gets a bit tricky as both scale
    222         ; and mm0/mm1 can be negative
    223         movq    mm6, MMWORD [SCALE(0,0,edx)]    ; scale
    224         movq    mm7, MMWORD [SCALE(0,1,edx)]
    225         movq    mm4,mm0
    226         movq    mm5,mm1
    227         pmulhw  mm0,mm6
    228         pmulhw  mm1,mm7
    229 
    230         psraw   mm6,(WORD_BIT-1)    ; determine if scale is negative
    231         psraw   mm7,(WORD_BIT-1)
    232 
    233         pand    mm6,mm4             ; and add input if it is
    234         pand    mm7,mm5
    235         paddw   mm0,mm6
    236         paddw   mm1,mm7
    237 
    238         psraw   mm4,(WORD_BIT-1)    ; then check if negative input
    239         psraw   mm5,(WORD_BIT-1)
    240 
    241         pand    mm4, MMWORD [SCALE(0,0,edx)]    ; and add scale if it is
    242         pand    mm5, MMWORD [SCALE(0,1,edx)]
    243         paddw   mm0,mm4
    244         paddw   mm1,mm5
    245 
    246         pxor    mm0,mm2   ; val = -val
    247         pxor    mm1,mm3
    248         psubw   mm0,mm2
    249         psubw   mm1,mm3
    250 
    251         movq    MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
    252         movq    MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1
    253 
    254         add     esi, byte 8*SIZEOF_DCTELEM
    255         add     edx, byte 8*SIZEOF_DCTELEM
    256         add     edi, byte 8*SIZEOF_JCOEF
    257         dec     al
    258         jnz     near .quantloop2
    259         dec     ah
    260         jnz     near .quantloop1        ; to avoid branch misprediction
    261 
    262         emms            ; empty MMX state
    263 
    264         pop     edi
    265         pop     esi
    266 ;       pop     edx             ; need not be preserved
    267 ;       pop     ecx             ; unused
    268 ;       pop     ebx             ; unused
    269         pop     ebp
    270         ret
    271 
    272 ; For some reason, the OS X linker does not honor the request to align the
    273 ; segment unless we do this.
    274         align   16
    275