1 /* 2 * This code implements the MD5 message-digest algorithm. 3 * The algorithm is due to Ron Rivest. This code was 4 * written by Colin Plumb in 1993, no copyright is claimed. 5 * This code is in the public domain; do with it what you wish. 6 * 7 * Equivalent code is available from RSA Data Security, Inc. 8 * This code has been tested against that, and is equivalent, 9 * except that you don't need to include two pages of legalese 10 * with every copy. 11 * 12 * To compute the message digest of a chunk of bytes, declare an 13 * MD5Context structure, pass it to MD5Init, call MD5Update as 14 * needed on buffers full of bytes, and then call MD5Final, which 15 * will fill a supplied 16-byte array with the digest. 16 */ 17 18 /* Brutally hacked by John Walker back from ANSI C to K&R (no 19 prototypes) to maintain the tradition that Netfone will compile 20 with Sun's original "cc". */ 21 22 #include "md5.h" 23 24 25 #ifndef HIGHFIRST 26 #define byteReverse(buf, len) /* Nothing */ 27 #else 28 /* 29 * Note: this code is harmless on little-endian machines. 30 */ 31 static void 32 byteReverse(unsigned char *buf, 33 unsigned longs) 34 { 35 uint32_t t; 36 do { 37 t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 | 38 ((unsigned) buf[1] << 8 | buf[0]); 39 *(uint32_t *) buf = t; 40 buf += 4; 41 } while (--longs); 42 } 43 #endif 44 45 46 /* The four core functions - F1 is optimized somewhat */ 47 48 /* #define F1(x, y, z) (x & y | ~x & z) */ 49 #define F1(x, y, z) (z ^ (x & (y ^ z))) 50 #define F2(x, y, z) F1(z, x, y) 51 #define F3(x, y, z) (x ^ y ^ z) 52 #define F4(x, y, z) (y ^ (x | ~z)) 53 54 /* This is the central step in the MD5 algorithm. */ 55 #define MD5STEP(f, w, x, y, z, data, s) \ 56 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 57 58 /* 59 * The core of the MD5 algorithm, this alters an existing MD5 hash to 60 * reflect the addition of 16 longwords of new data. MD5Update blocks 61 * the data and converts bytes into longwords for this routine. 62 */ 63 static void 64 MD5Transform(uint32_t buf[4], 65 uint32_t in[16]) 66 { 67 uint32_t a, b, c, d; 68 69 a = buf[0]; 70 b = buf[1]; 71 c = buf[2]; 72 d = buf[3]; 73 74 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 75 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 76 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 77 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 78 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 79 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 80 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 81 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 82 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 83 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 84 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 85 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 86 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 87 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 88 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 89 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 90 91 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 92 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 93 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 94 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 95 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 96 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 97 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 98 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 99 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 100 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 101 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 102 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 103 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 104 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 105 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 106 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 107 108 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 109 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 110 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 111 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 112 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 113 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 114 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 115 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 116 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 117 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 118 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 119 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 120 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 121 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 122 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 123 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 124 125 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 126 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 127 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 128 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 129 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 130 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 131 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 132 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 133 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 134 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 135 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 136 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 137 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 138 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 139 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 140 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 141 142 buf[0] += a; 143 buf[1] += b; 144 buf[2] += c; 145 buf[3] += d; 146 } 147 148 149 /* 150 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 151 * initialization constants. 152 */ 153 void 154 MD5Init(struct MD5Context *ctx) 155 { 156 ctx->buf[0] = 0x67452301; 157 ctx->buf[1] = 0xefcdab89; 158 ctx->buf[2] = 0x98badcfe; 159 ctx->buf[3] = 0x10325476; 160 161 ctx->bits[0] = 0; 162 ctx->bits[1] = 0; 163 } 164 165 /* 166 * Update context to reflect the concatenation of another buffer full 167 * of bytes. 168 */ 169 void 170 MD5Update(struct MD5Context *ctx, 171 const void *data, 172 unsigned len) 173 { 174 const unsigned char *buf = data; 175 uint32_t t; 176 177 /* Update bitcount */ 178 179 t = ctx->bits[0]; 180 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) 181 ctx->bits[1]++; /* Carry from low to high */ 182 ctx->bits[1] += len >> 29; 183 184 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 185 186 /* Handle any leading odd-sized chunks */ 187 188 if (t) { 189 unsigned char *p = (unsigned char *) ctx->in + t; 190 191 t = 64 - t; 192 if (len < t) { 193 memcpy(p, buf, len); 194 return; 195 } 196 memcpy(p, buf, t); 197 byteReverse(ctx->in, 16); 198 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 199 buf += t; 200 len -= t; 201 } 202 /* Process data in 64-byte chunks */ 203 204 while (len >= 64) { 205 memcpy(ctx->in, buf, 64); 206 byteReverse(ctx->in, 16); 207 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 208 buf += 64; 209 len -= 64; 210 } 211 212 /* Handle any remaining bytes of data. */ 213 214 memcpy(ctx->in, buf, len); 215 } 216 217 /* 218 * Final wrapup - pad to 64-byte boundary with the bit pattern 219 * 1 0* (64-bit count of bits processed, MSB-first) 220 */ 221 void 222 MD5Final (unsigned char digest[16], 223 struct MD5Context *ctx) 224 { 225 unsigned count; 226 unsigned char *p; 227 228 /* Compute number of bytes mod 64 */ 229 count = (ctx->bits[0] >> 3) & 0x3F; 230 231 /* Set the first char of padding to 0x80. This is safe since there is 232 always at least one byte free */ 233 p = ctx->in + count; 234 *p++ = 0x80; 235 236 /* Bytes of padding needed to make 64 bytes */ 237 count = 64 - 1 - count; 238 239 /* Pad out to 56 mod 64 */ 240 if (count < 8) 241 { 242 /* Two lots of padding: Pad the first block to 64 bytes */ 243 memset(p, 0, count); 244 byteReverse(ctx->in, 16); 245 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 246 247 /* Now fill the next block with 56 bytes */ 248 memset(ctx->in, 0, 56); 249 } 250 else 251 { 252 /* Pad block to 56 bytes */ 253 memset(p, 0, count - 8); 254 } 255 byteReverse(ctx->in, 14); 256 257 /* Append length in bits and transform */ 258 ((uint32_t *) ctx->in)[14] = ctx->bits[0]; 259 ((uint32_t *) ctx->in)[15] = ctx->bits[1]; 260 261 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 262 byteReverse((unsigned char *) ctx->buf, 4); 263 memcpy(digest, ctx->buf, 16); 264 memset(ctx, 0, sizeof(struct MD5Context)); /* In case it's sensitive */ 265 } 266 267 /* end of md5.c */ 268