1 // Copyright 2012 The Chromium OS Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This code implements SPAKE2, a variant of EKE: 6 // http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04 7 8 #include "third_party/chromium/crypto/p224_spake.h" 9 10 #include <algorithm> 11 12 #include <base/logging.h> 13 #include <base/rand_util.h> 14 15 #include "third_party/chromium/crypto/p224.h" 16 17 namespace { 18 19 // The following two points (M and N in the protocol) are verifiable random 20 // points on the curve and can be generated with the following code: 21 22 // #include <stdint.h> 23 // #include <stdio.h> 24 // #include <string.h> 25 // 26 // #include <openssl/ec.h> 27 // #include <openssl/obj_mac.h> 28 // #include <openssl/sha.h> 29 // 30 // static const char kSeed1[] = "P224 point generation seed (M)"; 31 // static const char kSeed2[] = "P224 point generation seed (N)"; 32 // 33 // void find_seed(const char* seed) { 34 // SHA256_CTX sha256; 35 // uint8_t digest[SHA256_DIGEST_LENGTH]; 36 // 37 // SHA256_Init(&sha256); 38 // SHA256_Update(&sha256, seed, strlen(seed)); 39 // SHA256_Final(digest, &sha256); 40 // 41 // BIGNUM x, y; 42 // EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1); 43 // EC_POINT* p = EC_POINT_new(p224); 44 // 45 // for (unsigned i = 0;; i++) { 46 // BN_init(&x); 47 // BN_bin2bn(digest, 28, &x); 48 // 49 // if (EC_POINT_set_compressed_coordinates_GFp( 50 // p224, p, &x, digest[28] & 1, NULL)) { 51 // BN_init(&y); 52 // EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL); 53 // char* x_str = BN_bn2hex(&x); 54 // char* y_str = BN_bn2hex(&y); 55 // printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str); 56 // OPENSSL_free(x_str); 57 // OPENSSL_free(y_str); 58 // BN_free(&x); 59 // BN_free(&y); 60 // break; 61 // } 62 // 63 // SHA256_Init(&sha256); 64 // SHA256_Update(&sha256, digest, sizeof(digest)); 65 // SHA256_Final(digest, &sha256); 66 // 67 // BN_free(&x); 68 // } 69 // 70 // EC_POINT_free(p); 71 // EC_GROUP_free(p224); 72 // } 73 // 74 // int main() { 75 // find_seed(kSeed1); 76 // find_seed(kSeed2); 77 // return 0; 78 // } 79 80 const crypto::p224::Point kM = { 81 {174237515, 77186811, 235213682, 33849492, 82 33188520, 48266885, 177021753, 81038478}, 83 {104523827, 245682244, 266509668, 236196369, 84 28372046, 145351378, 198520366, 113345994}, 85 {1, 0, 0, 0, 0, 0, 0, 0}, 86 }; 87 88 const crypto::p224::Point kN = { 89 {136176322, 263523628, 251628795, 229292285, 90 5034302, 185981975, 171998428, 11653062}, 91 {197567436, 51226044, 60372156, 175772188, 92 42075930, 8083165, 160827401, 65097570}, 93 {1, 0, 0, 0, 0, 0, 0, 0}, 94 }; 95 96 // Performs a constant-time comparison of two strings, returning true if the 97 // strings are equal. 98 // 99 // For cryptographic operations, comparison functions such as memcmp() may 100 // expose side-channel information about input, allowing an attacker to 101 // perform timing analysis to determine what the expected bits should be. In 102 // order to avoid such attacks, the comparison must execute in constant time, 103 // so as to not to reveal to the attacker where the difference(s) are. 104 // For an example attack, see 105 // http://groups.google.com/group/keyczar-discuss/browse_thread/thread/5571eca0948b2a13 106 bool SecureMemEqual(const uint8_t* s1_ptr, const uint8_t* s2_ptr, size_t n) { 107 uint8_t tmp = 0; 108 for (size_t i = 0; i < n; ++i, ++s1_ptr, ++s2_ptr) 109 tmp |= *s1_ptr ^ *s2_ptr; 110 return (tmp == 0); 111 } 112 113 } // anonymous namespace 114 115 namespace crypto { 116 117 P224EncryptedKeyExchange::P224EncryptedKeyExchange( 118 PeerType peer_type, const base::StringPiece& password) 119 : state_(kStateInitial), 120 is_server_(peer_type == kPeerTypeServer) { 121 memset(&x_, 0, sizeof(x_)); 122 memset(&expected_authenticator_, 0, sizeof(expected_authenticator_)); 123 124 // x_ is a random scalar. 125 base::RandBytes(x_, sizeof(x_)); 126 127 // Calculate |password| hash to get SPAKE password value. 128 SHA256HashString(std::string(password.data(), password.length()), 129 pw_, sizeof(pw_)); 130 131 Init(); 132 } 133 134 void P224EncryptedKeyExchange::Init() { 135 // X = g**x_ 136 p224::Point X; 137 p224::ScalarBaseMult(x_, &X); 138 139 // The client masks the Diffie-Hellman value, X, by adding M**pw and the 140 // server uses N**pw. 141 p224::Point MNpw; 142 p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw); 143 144 // X* = X + (N|M)**pw 145 p224::Point Xstar; 146 p224::Add(X, MNpw, &Xstar); 147 148 next_message_ = Xstar.ToString(); 149 } 150 151 const std::string& P224EncryptedKeyExchange::GetNextMessage() { 152 if (state_ == kStateInitial) { 153 state_ = kStateRecvDH; 154 return next_message_; 155 } else if (state_ == kStateSendHash) { 156 state_ = kStateRecvHash; 157 return next_message_; 158 } 159 160 LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in" 161 " bad state " << state_; 162 next_message_ = ""; 163 return next_message_; 164 } 165 166 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage( 167 const base::StringPiece& message) { 168 if (state_ == kStateRecvHash) { 169 // This is the final state of the protocol: we are reading the peer's 170 // authentication hash and checking that it matches the one that we expect. 171 if (message.size() != sizeof(expected_authenticator_)) { 172 error_ = "peer's hash had an incorrect size"; 173 return kResultFailed; 174 } 175 if (!SecureMemEqual(reinterpret_cast<const uint8_t*>(message.data()), 176 expected_authenticator_, message.size())) { 177 error_ = "peer's hash had incorrect value"; 178 return kResultFailed; 179 } 180 state_ = kStateDone; 181 return kResultSuccess; 182 } 183 184 if (state_ != kStateRecvDH) { 185 LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in" 186 " bad state " << state_; 187 error_ = "internal error"; 188 return kResultFailed; 189 } 190 191 // Y* is the other party's masked, Diffie-Hellman value. 192 p224::Point Ystar; 193 if (!Ystar.SetFromString(message)) { 194 error_ = "failed to parse peer's masked Diffie-Hellman value"; 195 return kResultFailed; 196 } 197 198 // We calculate the mask value: (N|M)**pw 199 p224::Point MNpw, minus_MNpw, Y, k; 200 p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw); 201 p224::Negate(MNpw, &minus_MNpw); 202 203 // Y = Y* - (N|M)**pw 204 p224::Add(Ystar, minus_MNpw, &Y); 205 206 // K = Y**x_ 207 p224::ScalarMult(Y, x_, &k); 208 209 // If everything worked out, then K is the same for both parties. 210 key_ = k.ToString(); 211 212 std::string client_masked_dh, server_masked_dh; 213 if (is_server_) { 214 client_masked_dh = message.as_string(); 215 server_masked_dh = next_message_; 216 } else { 217 client_masked_dh = next_message_; 218 server_masked_dh = message.as_string(); 219 } 220 221 // Now we calculate the hashes that each side will use to prove to the other 222 // that they derived the correct value for K. 223 uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length]; 224 CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_, 225 client_hash); 226 CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_, 227 server_hash); 228 229 const uint8_t* my_hash = is_server_ ? server_hash : client_hash; 230 const uint8_t* their_hash = is_server_ ? client_hash : server_hash; 231 232 next_message_ = 233 std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length); 234 memcpy(expected_authenticator_, their_hash, kSHA256Length); 235 state_ = kStateSendHash; 236 return kResultPending; 237 } 238 239 void P224EncryptedKeyExchange::CalculateHash( 240 PeerType peer_type, 241 const std::string& client_masked_dh, 242 const std::string& server_masked_dh, 243 const std::string& k, 244 uint8_t* out_digest) { 245 std::string hash_contents; 246 247 if (peer_type == kPeerTypeServer) { 248 hash_contents = "server"; 249 } else { 250 hash_contents = "client"; 251 } 252 253 hash_contents += client_masked_dh; 254 hash_contents += server_masked_dh; 255 hash_contents += 256 std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_)); 257 hash_contents += k; 258 259 SHA256HashString(hash_contents, out_digest, kSHA256Length); 260 } 261 262 const std::string& P224EncryptedKeyExchange::error() const { 263 return error_; 264 } 265 266 const std::string& P224EncryptedKeyExchange::GetKey() const { 267 DCHECK_EQ(state_, kStateDone); 268 return GetUnverifiedKey(); 269 } 270 271 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const { 272 // Key is already final when state is kStateSendHash. Subsequent states are 273 // used only for verification of the key. Some users may combine verification 274 // with sending verifiable data instead of |expected_authenticator_|. 275 DCHECK_GE(state_, kStateSendHash); 276 return key_; 277 } 278 279 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) { 280 memset(&x_, 0, sizeof(x_)); 281 memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_))); 282 Init(); 283 } 284 285 } // namespace crypto 286