Home | History | Annotate | Download | only in crypto
      1 // Copyright 2012 The Chromium OS Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This code implements SPAKE2, a variant of EKE:
      6 //  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
      7 
      8 #include "third_party/chromium/crypto/p224_spake.h"
      9 
     10 #include <algorithm>
     11 
     12 #include <base/logging.h>
     13 #include <base/rand_util.h>
     14 
     15 #include "third_party/chromium/crypto/p224.h"
     16 
     17 namespace {
     18 
     19 // The following two points (M and N in the protocol) are verifiable random
     20 // points on the curve and can be generated with the following code:
     21 
     22 // #include <stdint.h>
     23 // #include <stdio.h>
     24 // #include <string.h>
     25 //
     26 // #include <openssl/ec.h>
     27 // #include <openssl/obj_mac.h>
     28 // #include <openssl/sha.h>
     29 //
     30 // static const char kSeed1[] = "P224 point generation seed (M)";
     31 // static const char kSeed2[] = "P224 point generation seed (N)";
     32 //
     33 // void find_seed(const char* seed) {
     34 //   SHA256_CTX sha256;
     35 //   uint8_t digest[SHA256_DIGEST_LENGTH];
     36 //
     37 //   SHA256_Init(&sha256);
     38 //   SHA256_Update(&sha256, seed, strlen(seed));
     39 //   SHA256_Final(digest, &sha256);
     40 //
     41 //   BIGNUM x, y;
     42 //   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
     43 //   EC_POINT* p = EC_POINT_new(p224);
     44 //
     45 //   for (unsigned i = 0;; i++) {
     46 //     BN_init(&x);
     47 //     BN_bin2bn(digest, 28, &x);
     48 //
     49 //     if (EC_POINT_set_compressed_coordinates_GFp(
     50 //             p224, p, &x, digest[28] & 1, NULL)) {
     51 //       BN_init(&y);
     52 //       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
     53 //       char* x_str = BN_bn2hex(&x);
     54 //       char* y_str = BN_bn2hex(&y);
     55 //       printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
     56 //       OPENSSL_free(x_str);
     57 //       OPENSSL_free(y_str);
     58 //       BN_free(&x);
     59 //       BN_free(&y);
     60 //       break;
     61 //     }
     62 //
     63 //     SHA256_Init(&sha256);
     64 //     SHA256_Update(&sha256, digest, sizeof(digest));
     65 //     SHA256_Final(digest, &sha256);
     66 //
     67 //     BN_free(&x);
     68 //   }
     69 //
     70 //   EC_POINT_free(p);
     71 //   EC_GROUP_free(p224);
     72 // }
     73 //
     74 // int main() {
     75 //   find_seed(kSeed1);
     76 //   find_seed(kSeed2);
     77 //   return 0;
     78 // }
     79 
     80 const crypto::p224::Point kM = {
     81   {174237515, 77186811, 235213682, 33849492,
     82    33188520, 48266885, 177021753, 81038478},
     83   {104523827, 245682244, 266509668, 236196369,
     84    28372046, 145351378, 198520366, 113345994},
     85   {1, 0, 0, 0, 0, 0, 0, 0},
     86 };
     87 
     88 const crypto::p224::Point kN = {
     89   {136176322, 263523628, 251628795, 229292285,
     90    5034302, 185981975, 171998428, 11653062},
     91   {197567436, 51226044, 60372156, 175772188,
     92    42075930, 8083165, 160827401, 65097570},
     93   {1, 0, 0, 0, 0, 0, 0, 0},
     94 };
     95 
     96 // Performs a constant-time comparison of two strings, returning true if the
     97 // strings are equal.
     98 //
     99 // For cryptographic operations, comparison functions such as memcmp() may
    100 // expose side-channel information about input, allowing an attacker to
    101 // perform timing analysis to determine what the expected bits should be. In
    102 // order to avoid such attacks, the comparison must execute in constant time,
    103 // so as to not to reveal to the attacker where the difference(s) are.
    104 // For an example attack, see
    105 // http://groups.google.com/group/keyczar-discuss/browse_thread/thread/5571eca0948b2a13
    106 bool SecureMemEqual(const uint8_t* s1_ptr, const uint8_t* s2_ptr, size_t n) {
    107   uint8_t tmp = 0;
    108   for (size_t i = 0; i < n; ++i, ++s1_ptr, ++s2_ptr)
    109     tmp |= *s1_ptr ^ *s2_ptr;
    110   return (tmp == 0);
    111 }
    112 
    113 }  // anonymous namespace
    114 
    115 namespace crypto {
    116 
    117 P224EncryptedKeyExchange::P224EncryptedKeyExchange(
    118     PeerType peer_type, const base::StringPiece& password)
    119     : state_(kStateInitial),
    120       is_server_(peer_type == kPeerTypeServer) {
    121   memset(&x_, 0, sizeof(x_));
    122   memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
    123 
    124   // x_ is a random scalar.
    125   base::RandBytes(x_, sizeof(x_));
    126 
    127   // Calculate |password| hash to get SPAKE password value.
    128   SHA256HashString(std::string(password.data(), password.length()),
    129                    pw_, sizeof(pw_));
    130 
    131   Init();
    132 }
    133 
    134 void P224EncryptedKeyExchange::Init() {
    135   // X = g**x_
    136   p224::Point X;
    137   p224::ScalarBaseMult(x_, &X);
    138 
    139   // The client masks the Diffie-Hellman value, X, by adding M**pw and the
    140   // server uses N**pw.
    141   p224::Point MNpw;
    142   p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
    143 
    144   // X* = X + (N|M)**pw
    145   p224::Point Xstar;
    146   p224::Add(X, MNpw, &Xstar);
    147 
    148   next_message_ = Xstar.ToString();
    149 }
    150 
    151 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
    152   if (state_ == kStateInitial) {
    153     state_ = kStateRecvDH;
    154     return next_message_;
    155   } else if (state_ == kStateSendHash) {
    156     state_ = kStateRecvHash;
    157     return next_message_;
    158   }
    159 
    160   LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
    161                 " bad state " << state_;
    162   next_message_ = "";
    163   return next_message_;
    164 }
    165 
    166 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
    167     const base::StringPiece& message) {
    168   if (state_ == kStateRecvHash) {
    169     // This is the final state of the protocol: we are reading the peer's
    170     // authentication hash and checking that it matches the one that we expect.
    171     if (message.size() != sizeof(expected_authenticator_)) {
    172       error_ = "peer's hash had an incorrect size";
    173       return kResultFailed;
    174     }
    175     if (!SecureMemEqual(reinterpret_cast<const uint8_t*>(message.data()),
    176                         expected_authenticator_, message.size())) {
    177       error_ = "peer's hash had incorrect value";
    178       return kResultFailed;
    179     }
    180     state_ = kStateDone;
    181     return kResultSuccess;
    182   }
    183 
    184   if (state_ != kStateRecvDH) {
    185     LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
    186                   " bad state " << state_;
    187     error_ = "internal error";
    188     return kResultFailed;
    189   }
    190 
    191   // Y* is the other party's masked, Diffie-Hellman value.
    192   p224::Point Ystar;
    193   if (!Ystar.SetFromString(message)) {
    194     error_ = "failed to parse peer's masked Diffie-Hellman value";
    195     return kResultFailed;
    196   }
    197 
    198   // We calculate the mask value: (N|M)**pw
    199   p224::Point MNpw, minus_MNpw, Y, k;
    200   p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
    201   p224::Negate(MNpw, &minus_MNpw);
    202 
    203   // Y = Y* - (N|M)**pw
    204   p224::Add(Ystar, minus_MNpw, &Y);
    205 
    206   // K = Y**x_
    207   p224::ScalarMult(Y, x_, &k);
    208 
    209   // If everything worked out, then K is the same for both parties.
    210   key_ = k.ToString();
    211 
    212   std::string client_masked_dh, server_masked_dh;
    213   if (is_server_) {
    214     client_masked_dh = message.as_string();
    215     server_masked_dh = next_message_;
    216   } else {
    217     client_masked_dh = next_message_;
    218     server_masked_dh = message.as_string();
    219   }
    220 
    221   // Now we calculate the hashes that each side will use to prove to the other
    222   // that they derived the correct value for K.
    223   uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
    224   CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
    225                 client_hash);
    226   CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
    227                 server_hash);
    228 
    229   const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
    230   const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
    231 
    232   next_message_ =
    233       std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
    234   memcpy(expected_authenticator_, their_hash, kSHA256Length);
    235   state_ = kStateSendHash;
    236   return kResultPending;
    237 }
    238 
    239 void P224EncryptedKeyExchange::CalculateHash(
    240     PeerType peer_type,
    241     const std::string& client_masked_dh,
    242     const std::string& server_masked_dh,
    243     const std::string& k,
    244     uint8_t* out_digest) {
    245   std::string hash_contents;
    246 
    247   if (peer_type == kPeerTypeServer) {
    248     hash_contents = "server";
    249   } else {
    250     hash_contents = "client";
    251   }
    252 
    253   hash_contents += client_masked_dh;
    254   hash_contents += server_masked_dh;
    255   hash_contents +=
    256       std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
    257   hash_contents += k;
    258 
    259   SHA256HashString(hash_contents, out_digest, kSHA256Length);
    260 }
    261 
    262 const std::string& P224EncryptedKeyExchange::error() const {
    263   return error_;
    264 }
    265 
    266 const std::string& P224EncryptedKeyExchange::GetKey() const {
    267   DCHECK_EQ(state_, kStateDone);
    268   return GetUnverifiedKey();
    269 }
    270 
    271 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
    272   // Key is already final when state is kStateSendHash. Subsequent states are
    273   // used only for verification of the key. Some users may combine verification
    274   // with sending verifiable data instead of |expected_authenticator_|.
    275   DCHECK_GE(state_, kStateSendHash);
    276   return key_;
    277 }
    278 
    279 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
    280   memset(&x_, 0, sizeof(x_));
    281   memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
    282   Init();
    283 }
    284 
    285 }  // namespace crypto
    286